JP2020523718A - 一意識別可能なデータを開示せずに、見解を支持する推論を発信する方法、及びそのためのシステム - Google Patents

一意識別可能なデータを開示せずに、見解を支持する推論を発信する方法、及びそのためのシステム Download PDF

Info

Publication number
JP2020523718A
JP2020523718A JP2020517282A JP2020517282A JP2020523718A JP 2020523718 A JP2020523718 A JP 2020523718A JP 2020517282 A JP2020517282 A JP 2020517282A JP 2020517282 A JP2020517282 A JP 2020517282A JP 2020523718 A JP2020523718 A JP 2020523718A
Authority
JP
Japan
Prior art keywords
inference
individual
uniquely identifiable
identifiable data
opinion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020517282A
Other languages
English (en)
Other versions
JP6858308B2 (ja
Inventor
クリストファー テイラー クリール
クリストファー テイラー クリール
ウィリアム ペイジ ヴェスタル
ウィリアム ペイジ ヴェスタル
クリフトファー ショーン ワトソン
クリフトファー ショーン ワトソン
Original Assignee
コティヴィティ コーポレイション
コティヴィティ コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コティヴィティ コーポレイション, コティヴィティ コーポレイション filed Critical コティヴィティ コーポレイション
Publication of JP2020523718A publication Critical patent/JP2020523718A/ja
Application granted granted Critical
Publication of JP6858308B2 publication Critical patent/JP6858308B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0825Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using asymmetric-key encryption or public key infrastructure [PKI], e.g. key signature or public key certificates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • G06N5/022Knowledge engineering; Knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/045Explanation of inference; Explainable artificial intelligence [XAI]; Interpretable artificial intelligence
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/20ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Epidemiology (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Biomedical Technology (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本明細書で開示される実施形態は、一意識別可能なデータを用いて形成された見解を支持する推論を、当該一意識別可能なデータを開示することなく発信する方法及びシステムに関する。

Description

関連出願の引用
本願は、2017年6月1日に出願された米国特許出願第15/610,945号に基づく優先権主張を伴い、その出願の開示内容全体が、引用により本願に援用される。
一意識別可能なデータ又は情報とは、特定の個人、会社、又は他の主体に帰属するデータ又は情報である。一意識別可能なデータには、個別に識別可能なデータ、個人を特定可能な情報、及び保護医療情報などが含まれる場合がある。一意識別可能なデータの保管、使用、又は生成などの取り扱いには、多くの課題が存在し、多くの場合に法律で規制されている。例えば、米国では個人医療情報は、数ある中で特に、Health Insurance Portability and Accountability Act(医療保険の相互運用性と説明責任に関する法律)(HIPAA)の規則及びHITECH法によって規制されている。これらの規則は、上記のような一意識別可能なデータの望まれない開示を防止するために、厳重な管理及びセキュリティ対策を義務付けている。
一意識別可能なデータを取り扱う主体は通常、上記のようなデータをどのように保全、使用、及び発信するかについてのポリシーを有する。しかし、一意識別可能なデータの使用には通常、当該データに対して人が関わることを要し、それにより当該データの望まない開示が起こる可能性が生じてしまう。
本出願で開示される実施形態は、一意識別可能なデータを用いて見解を決定し、当該一意識別可能なデータを開示せずにそれらの見解の理論的根拠を発信するための、方法及びシステムに関する。一実施形態では、一意識別可能なデータをホスト主体の1人以上の従業員にさらすことなく、コンピュータネットワークを通じて当該一意識別可能なデータに関する見解の推論を説明する方法が開示される。本方法は、一意的主体に帰属する一意識別可能なデータと推論グラフとを用いて、見解をコンピュータ装置で自動的に決定することを含む。推論グラフは複数のリーフノードを備え、各リーフノードは、見解識別子によって識別された見解を提供する。推論グラフはさらに複数の推論パスを備え、各推論パスは、複数のリーフノードのうちの1つにて終端する。また、推論グラフは複数の推論関数を備え、各推論関数は、推論パス上のいずれかの点において一意識別可能なデータを用いて下される個別的決定を下すための条件を規定する。特定の見解への推論パスは、見解識別子によってリーフノードにて規定され、当該推論パス内の推論関数及び個別的決定のみを含む。本方法はさらに、見解の決定に応じて、見解識別子を符号化した汎用一意識別子(UUID)をコンピュータ装置で提供することを含む。また本方法は、見解識別子に関連づけられたポータルを提供することを含み、ポータルは、UUIDの入力を受けて、当該UUID内に符号化された見解識別子に対応する推論パスからの個々の複数の推論関数及び個別的決定を表示するように構成されている。本方法は、UUIDの入力に応じて、個々の複数の推論関数と、見解識別子に対応する推論パスにおいて一意識別可能なデータを用いて下された個別的決定とを、ポータルにて表示することを含む。
一実施形態では、匿名化された見解情報を提供するシステムが開示される。本システムは、一意的主体に帰属する一意識別可能なデータと複数の推論グラフとを記憶する暗号化されたデータベースを有する少なくとも1つのメモリ記憶媒体を含むサーバを備える。各複数の推論グラフは、複数のリーフノードを備え、各リーフノードは、見解識別子によって識別された見解を提供する。各複数の推論グラフはさらに複数の推論パスを備え、各推論パスは、複数のリーフノードのうちの1つにて終端する。また、各複数の推論グラフは複数の推論関数を備え、各推論関数は、推論パス上のいずれかの点において一意識別可能なデータを用いて下される個別的決定を下すための条件を規定する。特定の見解への推論パスは、見解識別子によってリーフノードにて規定され、当該推論パス内の推論関数及び個別的決定のみを含む。サーバはさらに、メモリ記憶媒体に動作可能に接続された少なくとも1つのプロセッサを含む。この少なくとも1つのプロセッサは、一意的主体に帰属する一意識別可能なデータと、複数の推論グラフのうちの1つとを用いて、見解を自動的に決定するように構成されている。サーバ内の上記少なくとも1つのプロセッサは、見解識別子を符号化したUUIDを生成するように構成されている。サーバ内の上記少なくとも1つのプロセッサは、UUIDを出力するように構成されている。上記少なくとも1つのプロセッサはさらに、見解識別子に関連づけられたポータルを提供するように構成されている。上記少なくとも1つのプロセッサは、ポータルを通じてUUIDを入力として受け取るように構成されている。また上記少なくとも1つのプロセッサは、UUIDを受け取ったことに応じて、個々の複数の推論関数と、見解識別子に対応する推論パスにおいて一意識別可能なデータを用いて下された個別的決定とを、ポータルにて表示するように構成されている。
開示された実施形態に関する特徴は、制限なく互いに組み合わせて使用することができる。また、以下の詳細な説明及び添付の図面を参照することで、本開示内容の他の特徴及び利点が当業者に明らかになる。
図面は、本発明のいくつかの実施形態を表す。図面中の異なる図又は実施形態において、同じ符号は、同一又は類似の要素又は特徴を示す。
一実施形態による、一意識別可能なデータをさらすことなくコンピュータネットワークを通じて当該一意識別可能なデータについての見解の推論を説明する方法を示すフローチャートである。 一実施形態による推論グラフを示す略図である。 一実施形態による推論グラフを示す略図である。 一実施形態による推論グラフを示す略図である。 一実施形態による、匿名化された見解情報を提供するためのシステムを示す略図である。 一実施形態による、見解を閲覧するためのポータルを示す図である。
本出願で開示される実施形態は、一意識別可能なデータを用いて形成された見解を支持する推論を、当該一意識別可能なデータを開示せずに発信する方法及びシステムに関する。一意識別可能なデータ又は情報には、個別に識別可能なデータ又は情報、個人を特定可能な情報、保護医療情報、個人を特定可能な財務情報、若しくは、個人を特定可能であるか個人の特定に使用できる他のデータ又は情報が含まれることがある。一意識別可能なデータは、個人又は一意的主体に関する1つ以上の見解(例えば決定又は結論)を形成するのに有用な、個人又は一意的主体に関する詳細を提供する。例えば、一意識別可能なデータは、医療関連の見解(例えば保険の補償範囲、医療処置の適否、薬剤の適否など)、財務関連の見解(例えば担保又はローンに対する適格性、利率調整の適否など)、保険関連の見解(例えば支払い請求の範囲の適否、料率の決定、加入の適格性など)、又は、不正行為の実行可能性の判定などの他の見解など、情報に基づく無数の決定又は見解を形成するのに有用である。見解は、1つ以上のポリシーに基づく決定又は一連のクエリの結果を含む場合がある。例えば見解は、結果が一式の補償条件に該当するという判定又は結論、結果が一式の補償条件に該当しないという判定、医療関連の経費を補償するか否かについての判定、選択された処置をある個人が受けるべきか否かについての判定、選択された薬剤をある個人が受け取るべきか否かについての判定、ある医療従事者が不正又は医療過誤を犯しているという判定、ある個人が不正を犯しているという判定、一意的主体が資金援助(例えばローンや補助金など)を受けるべきか否かについての判定、若しくは、一意的主体が経済的利益(例えば税の減免措置や慈善団体資格など)を得るのに適格か否かについての判定を含むことがある。
しかし、一意識別可能なデータを使用及び保有することは、ホスト主体にとって多大なコストが伴う。そのコストには、一意識別可能なデータ/情報の望まれない開示と、一意識別可能なデータにアクセスを有する1人以上の従業員の隔離状態とを防止するためのインフラストラクチャが含まれる場合がある。そのようなインフラストラクチャは、一意識別可能なデータの開示を制限又は防止するためのコンピュータシステムアーキテクチャ及びポリシーを含むことがある。ホスト主体は、データ処理センタ又はプロバイダを含むことがあり、そのデータ処理センタ又はプロバイダは、ポリシー及び一意識別可能なデータを受け取り、一意識別可能なデータを用いてポリシーについての見解を決定する。ホスト主体は、コンピューティングに関する専門知識及びバンド幅とともに、データの保管及び処理(例えば、一意識別可能なデータの安全な保管及び取り扱いの提供)などのコンピューティングサービスを提供する場合がある。一意識別可能なデータを用いて見解を形成するホスト主体の外部へ、一意識別された情報に関する見解を送る場合に、より大きな課題が提示される。例えば、ある医療処置を保険でカバーすべきでないとホスト主体(例えば保険業者、サービス提供者、団体、企業など)が判定した時点で、ホスト主体はその情報を、医療サービス提供者、被保険者、保険業者、又は他の主体に連絡することがある。しかし、そのような連絡には、被保険者、保険業者、又は医療サービス提供者についての一意識別可能なデータを開示してしまうリスクがある。
本明細書で開示される方法及びシステムでは、推論グラフを利用して見解を決定する。推論グラフは、複数の推論関数を含む。推論関数は、推論グラフ内の推論パスにおいて一意識別可能なデータについて問い合わせ、推論グラフ内の終端リーフノードにて見解に到達する。推論グラフは、多くの個人又は主体の一意識別可能なデータに適用される場合があり、したがって、それらの間には多対一の関係が成り立つ。そのような実施形態では、推論グラフを通って見解に至る推論パスを開示しても、個人/主体と推論パスとの間に直接的な一対一の相関関係は成立し得ない。したがって、本明細書中の方法及びシステムは、一意識別可能なデータ及びそれに基づく見解についての、データ保護及び暗号化の改善を目指すものである。
本明細書で開示される実施形態は、一意識別可能なデータを用いて形成された見解を支持する推論を、当該一意識別可能なデータを開示せずに発信する方法及びシステムを意図したものである。本明細書で開示される方法及びシステムは、ホスト主体(例えば見解又は決定を形成する主体)の従業員をも含むいずれの主体にも一意識別可能なデータを開示することなく、一意識別可能なデータを用いて見解を系統的かつ安全に形成することを含む。
図1は、一実施形態による、一意識別可能なデータをさらすことなくコンピュータネットワークを通じて当該一意識別可能なデータに関する見解の推論を説明する方法100を示すフローチャートである。方法100は、一意識別可能なデータをホスト主体の従業員にさらさずに、コンピュータネットワークを通じて当該一意識別可能なデータについての見解の推論を説明するのに有用である。方法100は、一意的主体に帰属する一意識別可能なデータと推論グラフとを用いて、見解をコンピュータ装置で自動的に決定する行為110を含む。推論グラフは、各々が見解識別子(ID)によって識別された見解を提供する複数のリーフノードと、各々が複数のリーフノードのうちの1つにて終端する複数の推論パスと、複数の推論関数とを備える。各複数の推論関数は、推論パス上のいずれかの点において一意識別可能なデータを用いて下される個別的決定を下すための条件を規定する。特定の見解への推論パスは、見解IDによってリーフノードにて規定され、当該推論パス内の推論関数及び個別的決定のみを含む。多くの異なる個人からの一意識別可能なデータが同じ推論パスをたどる場合があるので、見解、推論パス、及びその推論パスにおける個別的決定のみを開示することは、推論パスと一意識別可能なデータとの間に存在し得る一対一の関係を断つことになる。したがって、見解に到達するために用いた一意識別可能なデータを開示せずに、見解及び推論パスを開示することが可能である。
方法100はさらに、見解の決定に応じて、見解IDを符号化したUUIDをコンピュータ装置で提供する行為120を含む。また方法100は、見解IDに関連づけられたポータルを提供する行為130を含む。ポータルは、UUIDの入力を受けて、UUID内に符号化された見解IDに対応する推論パスからの個々の複数の推論関数及び個別的決定を表示するように構成されている。方法100はさらに、UUIDの入力に応じて、個々の複数の推論関数と、見解IDに対応する推論パスにおいて一意識別可能なデータを用いて下された個別的決定とを、ポータルにて表示する行為140を含む。
一意的主体に帰属する一意識別可能なデータと推論グラフとを用いて見解をコンピュータ装置で自動的に決定する行為110は、非巡回有向推論グラフ(例えば有向二分決定木)などのいずれかの推論グラフを使用して見解を決定することを含む場合がある。非巡回有向推論グラフは、一方向のみのフローを有し、論理ループが生じない。さらに、非巡回有向推論グラフは、各々が当該グラフ内の複数のリーフノードのうちの1つに位置する複数の見解を含むことがある。各リーフノード又は見解は、推論グラフ内の終端ノードを表す。各見解には、初期点から、推論グラフ内の個別の推論パスを通じて到達できる。したがって、推論グラフの結果は、複数の見解のうちの1つの見解のみ、及び/又は、複数の推論パスのうちの1つの推論パスのみを含み得る。いくつかの実施形態では、推論グラフ及びそのいずれかの一部分は、コンピュータ読み取り及び実行可能なコードで表される場合がある。
コンピュータ装置は、コンピュータ(単数又は複数)、サーバ(単数又は複数)、及びコンピュータネットワーク(単数又は複数)のうちの1つ以上を含む場合がある。コンピュータ装置は、その内部に記憶された1つ以上の処理プログラムを含むことがある。上記1つ以上の処理プログラムは、コンピュータ装置に、記憶された推論グラフを(例えば内部のプロセッサを通じて)利用させ、一意識別可能なデータを用いて推論グラフの推論関数内のクエリに回答することで見解を決定させるように構成されることがある。コンピュータ装置又はその一部分(例えばサーバ)は、一意識別可能なデータを当該コンピュータ装置の他の部分(例えばサーバの外部)又は他の主体に送ることなく、一意識別可能なデータを記憶してそれにアクセスするように構成されることがある。コンピュータ装置を使用して、選択された一意的主体に関連づけられ選択された推論グラフを用いて見解を決定する場合がある。
一意的主体には、個々の人(例えば患者、被保険者、容疑者、顧客、申請者など)、法人(例えば保険業者、サービス提供者、又は政府機関)、金融機関、ホスト主体、又は、見解を決定するのに使用される一意識別可能なデータが帰属する他の主体が含まれる場合がある。一例において、一意的主体は、医療を求める個人を含むことがあり、一意識別可能なデータは、その個人の保護医療情報を含むことがある。いくつかの実施形態では、一意的主体は、医療サービス提供者(例えば医師又は病院)を含むことがあり、一意識別可能なデータは、患者の個人健康情報又は財務情報を含むことがある。いくつかの実施形態では、一意的主体は、金融サービス提供者(例えば銀行)を含むことがあり、一意識別可能なデータは、ローンの申請者の個人財務情報を含むことがある。
いくつかの実施形態では、推論グラフ(単数又は複数)は、各々が当該推論グラフ内の分岐点を規定する複数の推論関数を含む。各複数の推論関数は、推論グラフ内の各分岐点(例えば推論パス上の点)にて、(一意識別可能なデータの少なくとも一部を用いて下される)個別的決定を下すための条件を規定する。各推論関数は、推論パスを、推論グラフ内で選択された方向に向けて各リーフノードにおける見解に到達させることがある。したがって、推論パスは、見解を決定するのに(例えば、リーフノードに到達するのに)使用された推論関数及び個別的決定のみを含む。推論パスは、推論関数とその推論関数に基づく個別的決定とを含む個別的部分を含む場合がある。個別的部分は、見解をも含むことがある。推論グラフは、複数の推論パスを含む場合があり、各推論パスは、複数の推論関数を含み、複数のリーフノードのうちの1つにて終端する。リーフノードは、機械で読み出し及び実行可能なバージョンの推論グラフにおける終端ノードである。見解は、リーフノードにて見解識別子(見解ID)によって識別される。見解IDは、推論パスを符号化していることがある。特定のリーフノードにおける特定の見解への推論パスは、ユニークである場合があり、したがって、リーフノードに与えられたユニークな見解IDを有することがある。例えば、非巡回有向グラフでは、各見解又はリーフノードは、単一の推論パスのみによって到達可能であり、その推論パスは見解IDによって識別できる。
一意識別可能なデータの推論グラフを用いた処理は、コンピュータ読み出し及び実行可能なプログラムを通じて達成されるため、推論パスは、リーフノードにて見解IDによって識別できる。見解IDは、推論パスに対応する各推論関数及び個別的決定(例えば、推論関数と一意識別可能なデータとに基づく決定)を符号化していることがある。したがって、見解ID及び推論パスは、見解への到達に使用された各クエリ、条件、及び結果(例えば、クエリ、条件、及び一意識別可能なデータに基づく決定)を識別可能である。一意識別可能なデータを、クエリ、条件、及び結果から分離して、見解に関連づけられた主体についての匿名化された情報源又は他の識別不能な情報源を提供することができる。例えば、特定の見解への推論パスは、リーフノードにて見解IDによって規定されることがあり、個別的決定の形成に使用された一意識別可能なデータを含まずに、当該推論パス内の推論関数及び個別的決定のみを含むことがある。多数のうちのいずれかの数の個人又は主体からの一意識別可能なデータが、同じ推論パスをたどる場合があるので、特定の個人に直接に関連づけられないことがあり、したがって、推論グラフ又はそのいずれかの一部分と特定の個人との間に存在し得る一対一の関係が断たれる。したがって、一意識別可能なデータを開示することなく、推論グラフ、推論パス、推論関数、個別的決定、及び見解を開示することが可能である。
推論グラフは、少なくとも2個の推論関数及び少なくとも3個の見解などの、いずれの数の推論関数及び/又は見解をも含む場合がある。例えば、推論グラフは、約2個から約1000個の推論関数を含むことがあり、それは例えば、3個から100個、5個から50個、2個から20個、10個から100個、20個から100個、100個未満、50個未満、又は20個未満の推論関数である。いくつかの実施形態では、推論グラフは、2個から約1000個の見解などの、いずれの数の見解をも含むことがあり、それは例えば、3個から100個、5個から50個、2個から20個、10個から100個、20個から100個、100個未満、50個未満、又は20個未満の見解である。いくつかの実施形態では、推論グラフ内に存在可能な見解の数はn+1である場合があり、ここでnは推論関数の数である。
推論関数は、クエリと、当該クエリの結果を決定するための条件とを含む場合があり、その条件は例えば、閾値、又は要件の二分的な存否である。したがって、推論関数の結果は、量的及び/又は質的な条件に基づく場合がある。一例において、推論関数のクエリは、特定の薬剤が個人に処方された回数の閾値レベルを設定することがあり、この薬剤についての請求を提出した個人に対応する一意識別可能なデータは、当該閾値レベルを超過している場合がある。推論関数の当該閾値に関連する個別的決定は、推論パスにおける次のステップ群において、当該個人にとって他の治療がより役に立つかどうか、ポリシーの下で当該個人を補償すべきかどうか、又は、当該個人が依存又は不正を示す分量の薬剤を入手しているかどうかを判定するように設計された1個以上の推論関数をたどることを指示する場合がある。
各推論関数は、ポリシーに従って記述される(例えば、機械で読み出し及び実行可能なプログラム中に符号化される)場合がある。ポリシーは、FDA(米国食品医薬品局)勧告、FHA(米国連邦住宅局)ガイドライン、州又は連邦の制定法などの、政府命令又は勧告;薬事概論、医業のための手順書、保険引受ガイドラインなどの専門手引書;及び、保険引受ポリシーあるいは経理上のポリシー又は目標などの内部基準;のうちの1つ以上を含むことがある。各推論関数は、一意識別可能なデータに特定の見解が当てはまるかどうか(例えば、特定の行動をとるべきか否か)を判定することを意図した複数のクエリ中に、ポリシーに関する異なる条件を組み込んで記述され得る。各推論パスにおける推論関数の累積的結果又は個別的決定は、どのように見解に到達したか、又はいずれの見解に到達したかを規定する。各推論関数は、次の推論関数及び最終的な見解についての情報を与える。各推論関数は、見解にて回答されるより大きな質問の一部分に関して問い合わせる。一例において、見解は医療関連の結果を含むことがあり、各推論関数は、処方された薬剤に関連づけられた症状を患者が有すると診断されたかどうかなどの、医療関連のクエリ及び/又は決定を含むことがある。
上述のとおり、見解は、結果が一式の補償条件に該当するということ、結果が一式の補償条件に該当しないということ、医療関連の経費を補償するか否か、選択された処置を個人が受けるべきか否か、選択された薬剤を個人が受け取るべきか否か、医療従事者が不正又は医療過誤を犯しているということ、個人が不正を犯しているということ、一意的主体が資金援助(例えばローンや補助金など)を受けるべきか否か、あるいは、一意的主体が経済的利益(例えば税の減免措置や慈善団体資格など)を得るのに適格か否かについての最終的な判定又は結論、若しくは、他のいずれかの判定又は結論を含むことがある。
いくつかの実施形態では、一意識別可能なデータは、各見解に関連する情報のみを含む場合がある。いくつかの実施形態では、見解は、一意識別可能なデータに関連する決定の適格性についての最終的な判定又は結論を含む場合がある。一例において、一意的主体に帰属する一意識別可能なデータ又は情報は、保護医療情報を含むことがあり、見解は、推奨される処置又は薬剤あるいはローンの利率についての適格性などの、当該保護医療情報に関連する決定の適格性についての判定を含むことがある。ホスト主体は、保険業者又はサービス提供者を含むことがあり、一意識別可能なデータは、個人被保険者及びその個人に関連づけられた医療従事者のうちの1人以上を識別することがある。
推論グラフは、本明細書で開示される方法及びシステムでの使用のために、選択されたポリシーに基づいて見解を提供するように構築される場合がある。図2〜4は、様々な実施形態による推論グラフを示す。図2は、一実施形態による、選択された薬剤の注文が適切であるかどうかを判定するための推論グラフ200を示す。推論グラフ200は、複数の推論関数202及び212を含む。各推論関数202又は212は、クエリと、一意識別可能なデータに含まれる情報を用いて推論関数202又は212において各クエリに回答することで下される可能性のある少なくとも2つの個別的決定(例えば、204又は206、あるいは214又は216における結果)とを含む。個別的決定204又は206(例えば結果)は、別の推論関数212、あるいは見解208、217、又は218につながる場合がある。一例において、第1の推論関数202は、医療提供者が特定の薬剤についての請求を提出したかどうかを問い合わせることがある。請求が提出されていなかった場合は、個別的決定206はNO又は偽(F)であり、推論パス220は見解208へ進む。見解208は、何ら行動をとるべきでない(例えば、請求に対して支払うべきでない、及び/又は、処方箋を出すべきでない)という指示を含むことがある。後に主体(例えば医療提供者、被保険者、又は保険業者)に提供される推論パス220は、推論関数202(例えば、その中のクエリ)、個別的決定206、及び見解208のみを含む。したがって、一意識別可能なデータ/情報が実質的に全く開示されず、同時に、見解(例えば最終的決定)の背景にある推論についての説明が提供される。
医療提供者が請求を提出した場合は、推論関数202のクエリに対して、真(T)又はYESである個別的決定204が回答され、推論パスは推論関数212へ進む。推論関数212でのクエリは、一意識別可能なデータ内(例えば、医療記録内、又は請求のヘッダー内)に、注文された薬剤の必要性との整合性がある診断が示されているかどうかである。一意識別可能なデータを用いてクエリに応答することで、2つの個別的決定のうちの1つを下すことができる。個別的決定214における肯定的回答又は真(T)値によって見解217が得られ、否定的回答又は偽(F)値によって見解218が得られる。214の真(T)値に応じて選択される見解217は、請求に対して支払う指示、又は薬剤のための処方箋を出す指示を含むことがあり、あるいは、適切な管理ポリシーが順守されたと判定することがある。個別的決定216の偽(F)値に応じて選択される見解218は、何ら行動をとるべきでない(例えば、請求に対して支払うべきでない、及び/又は、処方箋を出すべきでない)という指示を含むことがある。各場合において、見解への推論パスのみが明かされ又は開示されることがあるが、推論グラフ全体や、個別的決定の判定に使用された一意識別可能なデータは開示されない。したがって、推論グラフのうちの見解に直接的に関連する選択部分のみが、主体(例えば被保険者、保険業者、又は医療提供者)に明かされる場合がある。各見解208、217、又は218は、当該見解208、217、又は218への到達に使用された推論パスを符号化した見解IDを含む。例えば、見解208を含むリーフノードの見解IDは、推論パス220と、それに含まれる推論関数202及び個別的決定206とを包含する。
上述のように、異なる推論関数において、異なる条件又は制約を用いる場合がある。例えば、上記のとおり、いくつかの推論関数は、クエリに対する二分的な肯定的又は否定的な決定に基づくことがある。いくつかの推論関数は、分量及びそれに関連づけられた閾値又は限度などの、定量的計測に基づくことがある。図2に関して説明したような診断的制約(例えば肯定的又は否定的な決定)とは対照的に、いくつかの実施形態では、最大値又は最小値に基づく制約が使用されることがある。
図3は、一実施形態による、選択された分量の薬剤の注文が適切かどうか(例えば、最大又は最小単位に基づく制約)を判定するための推論グラフ300を示す。推論グラフ300は、複数の推論関数302及び312を含む。各推論関数302又は312は、クエリと、下される可能性のある少なくとも2つの個別的決定(例えば、304又は306、あるいは314又は316)とを含む。個別的決定304又は306あるいは314又は316は、推論関数302又は312において、一意識別可能なデータに含まれる情報を用いて各クエリに回答することで下され得る。個別的決定304又は306は、別の推論関数312、あるいは見解308、317、又は318につながる場合がある。一例において、第1の推論関数302は、医療提供者が特定の薬剤についての請求を提出したかどうかを問い合わせることがある。請求が提出された場合は、個別的決定306はYES又は真(T)であり、推論パス320は第2の推論関数312へ進む。請求が提出されていなかった場合は、代替の推論パス(図示せず)によって見解308へ進む。見解308は、何ら行動をとるべきでない(例えば、請求に対して支払うべきでない、及び/又は、処方箋を出すべきでない)という指示を含むことがある。
推論パス320に戻る。一意識別可能なデータについて問い合わせて、薬剤の請求が提出されたと判定した時点で、推論パス320は第2の推論関数312へ進む。第2の推論関数312は、サービス提供日(例えば、サービス提供日のみ、又は、サービス提供日とその時点からのある時間枠を含む積算された期間)に処方された薬剤に対応する医薬品コードで費用請求された薬剤の単位量を問い合わせることがある。さらに、第2の推論関数312は、費用請求された薬剤の単位量を、ある閾値量(例えば最大又は最小許容単位)と比較することがある。推論グラフ300を処理するシステムは、第2の推論関数312に応じて、一意識別可能なデータを用いて、当該医薬品コードで費用請求された薬剤の単位数が閾値量を超過するか下回るかどうかを判定する場合がある。閾値量は、上記に開示されたポリシー(例えばFDA勧告)に従って設定できる。単位数が閾値量を下回る場合は、個別的決定316として否定値又は偽(F)値が与えられ、推論パスは見解318へ進む。見解318は、注文された単位数に対して何ら行動をとるべきでない(例えば、提出されたとおりに請求を進めてよい、又は、提出されたとおりに薬剤を調剤すべき)と規定することがある。
単位数が閾値を超過する場合は、個別的決定314は、肯定値又は真(T)値を含む。いくつかの実施形態では、推論関数312に対応する個別的決定は、追加又は代替で、総単位数、上限閾値を超過する単位数、又は、提出内容において下限閾値を下回る単位数を含む場合がある。提出された単位数が閾値を超過するという、個別的決定314によって与えられた判定に応じて、推論パス320は見解317へ進む。見解317は、ポリシー(例えばFDA勧告)に従うように単位数を削減すべきと規定することがある。
見解317への推論パス320のみが明かされることがあるが、推論グラフ300全体や、個別的決定の判定に使用された一意識別可能なデータは明かされない。後に主体(例えば医療提供者、薬剤師、被保険者、又は保険業者)に提供される推論パス320は、推論関数302及び312(例えば、それらの中のクエリ)、個別的決定304及び314、ならびに見解317のみを含む。したがって、推論グラフ300のうちの見解317に直接的に関連する選択部分のみが、主体(例えば被保険者、保険業者、又は医療提供者)に明かされる場合がある。
各見解308、317、又は318は、当該見解308、317、又は318への到達に使用された推論パスを符号化した見解IDを含む。例えば、見解317を含むリーフノードの見解IDは、推論パス320と、それに含まれる各推論関数302、312及び個別的決定304、314とを包含する。一意識別可能なデータは、実質的に全く開示されない。各見解は、当該見解の結果及び/又はそれに対応する決定パスの各部分についての説明文を含む場合がある。一例において、見解317は、各推論関数及びそれに含まれる個別的決定などの、決定パス320の各部分についての説明文を含むことがある。見解317は、提出された分量がポリシーの下で許容される分量を超過していたこと、及び、ポリシーに従うために分量の調節が必要であることの説明などの、決定パスの結果についての説明文を含むことがある。いくつかの実施形態では、見解(317)が、ポリシーの少なくとも一部分を説明する場合もある。例えば、見解317は、注文された薬剤量を、対応の薬剤についてのFDAガイドラインに従うように(例えば、FDA認可の添付文書に記載されたとおりに)修正したと説明することがある。上述のとおり、各見解308、317、318は、(主体へのUUID出力内に符号化され得る)ユニークな見解IDを含む。
いくつかの実施形態では、無駄に基づく制約が使用される場合がある。図4は、一実施形態による、選択された分量の薬剤の注文が適切か(例えば、無駄な薬剤が生じるか)どうかを判定するための推論グラフ400を示す。推論グラフ400は、複数の推論関数402、412、及び422を含む。各推論関数402、412、及び422は、クエリと、下される可能性のある少なくとも2つの個別的決定(404又は406、414又は416、あるいは424又は426)とを含む。個別的決定404又は406、414又は416、あるいは424又は426は、推論関数402、412、又は422において、又は当該推論関数に応じて、一意識別可能なデータに含まれる情報を用いて各クエリに回答することによって下される。個別的決定404又は406、414又は416、あるいは424又は426は、別の推論関数(412又は422)又は見解(408、418、427、又は428)につながる場合がある。一例において、第1の推論関数402は、医療提供者が特定の薬剤についての請求を提出したかどうかを問い合わせることがある。請求が提出された場合は、個別的決定406はYES又は真(T)であり、推論パス420は第2の推論関数412へ進む。請求が提出されていなかった場合は、代替の推論パス(図示せず)によって見解408へ進む。見解408は、何ら行動をとるべきでない(例えば、請求に対して支払うべきでない、及び/又は、処方箋を出すべきでない)という指示を含むことがある。
推論パス420に戻る。一意識別可能なデータについて問い合わせて、薬剤の請求が提出されたと判定した時点で、推論パス420は第2の推論関数412へ進む。第2の推論関数412は、選択された薬剤が補完薬(例えば修飾薬)と併せて注文されたかどうかを問い合わせることがある。推論グラフ400を処理するシステムは、第2の推論関数412に応じて、一意識別可能なデータを用いて、薬剤が補完薬と併せて注文されたかどうかを判定する場合がある。薬剤が補完薬と併せて注文されなかった場合は、個別的決定416として否定値又は偽(F)値が与えられ、推論パスは見解418へ進む。見解418は、注文された単位数を変更する行動は何らとるべきでない(例えば、提出されたとおりに請求を進めてよい、又は、提出されたとおりに薬剤を調剤すべき)と規定することがある。薬剤が補完薬と併せて注文された場合は、個別的決定414として肯定値又は真(T)値が与えられ、推論パスは第3の推論関数422へ進む。
第3の推論関数422は、補完薬と併せて注文又は費用請求された薬剤(例えば、それに対応する医薬品コード)の分量(単位)を問い合わせる場合がある。さらに、第3の推論関数422は、費用請求された薬剤の単位量を、補完薬との同時注文に対応する閾値量(例えば最大又は最小許容単位)と比較することがある。例えば、ポリシーの下で、補完薬は、薬剤の許容単位の総数(例えば閾値量)を減少又は増加させる場合がある。第3の推論関数422に応じて、推論グラフ400を運営するシステムは、一意識別可能なデータを用いて、当該医薬品コードで費用請求された薬剤の単位数が閾値量を超過するか下回るかどうかを判定する場合がある。閾値量は、上記に開示されたポリシー(例えばFDA勧告)に従って設定できる。単位数が閾値量を下回る場合は、個別的決定426として否定値又は偽(F)値が与えられ、推論パスは見解428へ進む。見解428は、注文された単位数に対して何ら行動をとるべきでない(例えば、提出されたとおりに請求を進めてよい、又は、提出されたとおりに薬剤を調剤すべき)と規定することがある。
単位数が閾値を超過する場合は、個別的決定424は、肯定値又は真値(T)を含む。いくつかの実施形態では、推論関数422に対応する個別的決定は、追加又は代替で、総単位数、上限閾値を超過する単位数、又は、提出内容において下限閾値を下回る単位数を含む場合がある。提出された単位数が閾値を超過するという、個別的決定424によって与えられた判定に応じて、推論パス420は見解427へ進む。見解427は、請求は却下される、薬剤を調剤すべきでない、又は、ポリシー(例えばFDA勧告)に従うように単位数を削減すべきと規定することがある。
見解427への推論パス420のみが明かされることがあるが、推論グラフ400全体や、個別的決定の判定に使用された一意識別可能なデータは明かされない。図示のように、後に主体(例えば医療提供者、薬剤師、被保険者、又は保険業者)に提供される推論パス420は、推論関数402、412、及び422(例えば、それらの中のクエリ)、個別的決定404、414、及び424、ならびに見解427のみを含む。したがって、推論グラフ400のうちの見解427に直接的に関連する選択部分のみが、主体(例えば被保険者、保険業者、又は医療提供者)に明かされる場合がある。
各見解408、418、427、及び428は、当該見解への到達に使用された推論パスを符号化した見解IDを含む。例えば、見解427を含むリーフノードの見解IDは、推論パス420と、それに含まれる各推論関数402、412、及び422ならびに個別的決定404、414、及び424とを包含する。複数の個人からの一意識別可能なデータが同じ推論パス420をたどる場合があるので、一意識別可能なデータは、推論パス420に実質的に全く含まれず、推論パス420を発信することによって開示もされない。したがって、見解、推論グラフ、推論パス、推論関数、及び個別的決定の開示によって、特定の個人に帰属する一意識別可能なデータは開示されない。各見解は、当該見解の結果及び/又はそれに対応する決定パスの各部分についての説明文を含む場合がある。一例において、見解427は、各推論関数及びそれに含まれる個別的決定などの、決定パス420の各部分についての説明文を含むことがある。各見解は、対応する決定パスの結果についての説明文を含む場合がある。例えば、見解427は、補完薬と併せて提出された薬剤の分量がポリシーの下で許容される分量を超過していたこと、及び、したがって請求又は注文が却下されたこと(例えば、ポリシーに従うために分量の調節が必要であること)の、テキスト又は音声による説明を含むことある。いくつかの実施形態では、見解(427)が、ポリシーの少なくとも一部分を説明する場合もある。例えば、見解427は、薬剤が補完薬と併せて処方された(又は同時に服用された)場合に、ポリシーの下で許容される当該薬剤の具体的な分量に対する制限が、FDAガイドラインに従うように(下方に)調節されると説明することがある。上述のとおり、各見解408、418、427、及び428は、(主体へのUUID出力内に符号化され得る)ユニークな見解IDを含む。
図2〜4の推論グラフ200、300、及び400は例であって、単純化された推論グラフを表す場合がある。いくつかの実施形態では、推論グラフは、いずれの数の推論関数、個別的決定、及び見解をも含むことがある。推論グラフは、二分的決定として表されているが、推論関数の二分的決定しか含まないわけではない。推論関数は、2つ又はそれ以上の個別的決定又は結果を含むことがある。例えば、推論関数は、一意識別可能なデータ内に特定された分量に基づく2つ又はそれ以上の個別的決定を含む定量的なクエリを含む場合がある。いくつかの実施形態では、推論グラフに、コンピュータ読み出し及び実行可能なコードが設けられているか組み込まれており、1つ以上のコンピュータシステムが、推論関数及びクエリを実行して個別的決定及び見解を提供することがある。本明細書では実施例として医療関連の実施例を示したが、いくつかの実施形態では、一意識別可能なデータとともに他のタイプの推論関数を使用する場合がある。一例では、ある主体がローン又は利率に適格かどうか、いつ資産を抵当流れにするか、いつ資金をファンドから移動する又はファンドに入れるかなどを判定するための推論関数などの、財務関連の推論関数を設けて使用することもある。そのような実施形態では、一意識別可能なデータは、消費者財務情報ルールのプライバシーによって規制される、個人を特定可能な財務情報を含む場合がある。
図1に戻る。方法100は、見解の決定に応じて、見解IDを符号化した汎用一意識別子(UUID)をコンピュータ装置で提供する行為120を含む。UUIDは、UUID生成器によって(例えばランダムに)生成され、後に生成されるUUIDにおいて実際的には複製されない128ビットの番号を含む。UUIDは、見解IDを符号化している。すなわち、UUIDは、特定の見解IDを識別する1つ以上の数字又はコードを含む。例えば、特定の見解IDは、生成されて当該見解IDに関連づけられたUUIDによって識別される。そのような実施形態では、特定の見解IDのために生成された各UUIDは、当該見解IDを符号化している、又はそれに対応しているとして、データベース又はコンピュータシステムにおいて特徴づけられる。このように、見解IDはUUID内に暗号化され、それにより、見解に関連する情報の望まれない開示に対する追加の保護策が重ねられる。UUIDはランダムに生成されるので、その中に暗号化された見解IDをUUIDのパターンから判別することはできない。このような追加の保護策は、見解に関連する情報に二重の暗号化を設ける。第一に、一意識別可能なデータは、当該一意識別可能なデータを有する処理中の推論グラフ以外はアクセスできない暗号化されたデータベース内に保管される(例えば、暗号化されたデータベース内の一意識別可能なデータは、公的にも私的にも閲覧のためにアクセス可能ではない)。第二に、見解IDは、UUID内に暗号化されており、当該UUID及び見解IDに関連づけられたプログラミングを有するポータルに当該UUIDを入力しない限り、そして入力するまでは、何ら情報は提供されない。
いくつかの実施形態では、見解識別子を符号化したUUIDを提供することは、電子的通信を介して、一意的主体に対応又は関連する電子的アドレスにUUIDを選択的に送信することを含む場合がある。電子的アドレスは、eメールアドレス又は電話番号を含むことがある。電子的通信は、eメール、テキストメッセージ、又は音声メッセージ(例えばロボコール)を含むことがある。電子的通信は、UUIDを含む場合があり、さらにオプションで、UUIDを入力するためのポータルにアクセス可能なウェブサイトURL識別子を含むことがある。例えば、一意的主体に対応又は関連する電子的アドレスにUUIDを選択的に送信することは、UUIDを含むeメール通信を生成して送ることを含む場合がある。見解の決定に使用されるコンピュータシステム又はサーバは、電子的通信の生成及び/又は各電子的アドレスへの送信を実施するためのコードを有する、コンピュータ読み出し及び実行可能なプログラムを記憶している場合がある。
いくつかの実施形態では、一意的主体に対応又は関連する電子的アドレスにUUIDを選択的に送信することは、1つ以上の一意的主体に対応する1つ以上の電子的アドレスにUUIDを送信することを含む場合がある。その1つ以上の一意的主体は、患者、個人被保険者、介護者、保護者(例えば親)、医療従事者(例えば医師や看護師など)などのサービス提供者、薬剤師、調査官、会計士、保険業者、ならびに、一意識別可能なデータ及び/又はそれに基づく見解に関連づけられたその他の人、のうちの1つ以上を含むことがある。
いくつかの実施形態では、推論グラフは、ポリシーの経時的な変更に従って変更される場合がある。そのような実施形態では、バージョン固有の推論グラフは、バージョン固有の一式の推論関数を含むことがある。したがって、バージョン固有の各見解は、各リーフノードにて対応のバージョン固有見解IDによって符号化される。バージョン固有の推論グラフに対応するバージョン固有見解IDは、UUID内に符号化/暗号化されることがある。例えば、バージョン固有見解IDなどの見解IDに対応するUUIDは、ランダムに生成された後に、バージョン固有見解IDに(例えば暗号化されたデータベース内で)関連づけられるので、ベースになっているバージョン固有見解IDを判別するための解読又は復号は実施されにくい。そのような実施形態では、現在使用されている推論グラフにおける現時点での推論関数一式及び/又は見解に関係なく、バージョン固有の見解の決定に使用されたバージョン固有の推論関数の正確な一式が、後日にポータルに呼び返され又は提供されることがある。したがって、主体は、古いバージョンの一式の推論関数を用いて決定された見解の背景にある理論的根拠又は推論を閲覧する場合がある。そのようなバージョン固有の推論グラフ、関数、見解IDなどは、後の参照用に、ホスト主体(例えばホスト主体のサーバ)に保管されることがある。
方法100は、見解識別子に関連づけられたポータルを提供する行為130を含む。ポータルは、UUIDの入力を受けて、当該UUID内に符号化された見解識別子に対応する推論パスからの個々の複数の推論関数及び個別的決定を表示するように構成されている。いくつかの実施形態では、UUIDの入力を受けて推論パスからの個々の複数の推論関数及び個別的決定を表示するように構成されているポータルは、UUID内に符号化された見解識別子に対応する決定パスからの推論関数及び個別的決定のみを表示するように構成される場合がある。
いくつかの実施形態では、見解識別子に関連づけられたポータルを提供することは、UUID内に符号化された見解IDに対応する見解についての説明文への電子的アクセスを提供することを含む場合がある。電子的アクセスは、ポータルを含むウェブページなどによるウェブ上のアクセスを含むことがあり、そのポータルは、UUIDの入力を受け付け、それに応じて当該UUIDに(その中に符号化された見解IDを通じて)関連づけられた推論パスの1つ以上の部分を伝達する(表示する又は聞き取れるように読み上げる)。電子的アクセスは、自動電話システムを含む場合があり、その自動電話システムは、英数字の入力(例えばUUID)を受け付けて、それに応じて見解についての説明文を音声で伝達するように構成される。
見解についての説明文は、少なくとも1つのクエリ、少なくとも1つの個別的決定、及び見解のうちの1つ以上の記述を含む場合がある。説明文は、見解に対応するスクリプトを含むことがあり、そのスクリプトは、見解の結果(例えば、補償は提供されない、提案された医療処置は文書に記載された症状に合わない、人が不正を犯している可能性が高い)を含む。説明文は、一意識別可能なデータを含まない場合がある。説明文は実質的に、推論パスの各個別的部分のクエリ(例えば推論関数)及び結果(例えば個別的決定)のみを含むことがあり、その両方とも、一意的主体に帰属する一意識別可能なデータを含まない。したがって、一意識別可能なデータを用いて推論グラフを処理するコンピュータシステム(例えばサーバ)は、説明文を、(全体としての)推論グラフ及び一意識別可能なデータから隔離又は分離することがある。本明細書で開示されるように推論グラフを処理するように構成されたコンピュータシステムでは、一意識別可能なデータが、外部の主体にだけでなくホスト主体の従業員に出力される説明文からも分離されているので、コンピュータ利用上の情報セキュリティにおける改善が示される。さらに、説明文自体が、既知の方法では実際的に再現されないコードを設けて見解IDに対応する説明文を符号化するUUIDの利用によって、保全されている。
方法100は、UUIDの入力に応じて、個々の複数の推論関数と、見解IDに対応する推論パスにおいて一意識別可能なデータを用いて下された個別的決定とを、ポータルにて表示する行為140を含む。いくつかの実施形態では、個々の複数の推論関数と、見解IDに対応する推論パスにおいて一意識別可能なデータを用いて下された個別的決定とを、ポータルにて表示することは、個々の複数の推論関数と、推論パスにおいて下された個別的決定とについての説明文を表示することを含む。いくつかの実施形態では、個々の複数の推論関数と、見解IDに対応する推論パスにおいて一意識別可能なデータを用いて下された個別的決定とを、ポータルにて表示することは、ポータルを介してコンピュータシステムにリンクされたコンピュータ装置又は通信装置に、個々の複数の推論関数と、推論パスにおいて下された個別的決定とについての説明文を表示させることを含む。そのコンピュータ装置は、ホスト主体によって提供されるポータル(例えばUUIDの入力に応じて説明文を提供するように構成されたウェブページ)にアクセスするリモートコンピュータを含むことがある。リモートコンピュータは、本明細書で開示されるいずれかの主体(例えば被保険者、保険業者、サービス提供者など)などの主体が所有するコンピュータを含む場合がある。いくつかの実施形態では、リモートコンピュータ装置は、ホスト主体から遠隔である場合がある。
ポータルを介してコンピュータシステムにリンクされたコンピュータ装置又は通信装置に、個々の複数の推論関数と、推論パスにおいて下された個別的決定とについての説明文を表示させることは、一意識別可能なデータを含まない1つ以上の説明文を提供することを含む場合がある。ポータルを介してコンピュータシステムにリンクされたコンピュータ装置又は通信装置に説明文を表示させることは、コンピュータ読み出し及び実行可能な命令(例えばHTMLコード)を生成し、サーバ又はそれと通信するコンピュータ装置に送信することを含み得る。そのコンピュータ読み出し及び実行可能な命令は、推論パス、当該推論パス内の少なくとも1つの推論関数、又は当該推論パス内の少なくとも1つの個別的決定、のうちの少なくとも1つ以上を含む説明文を表示する命令を備えるコンピュータコードを含む場合がある。
いくつかの実施形態では、個々の複数の推論関数と、UUIDに対応する推論パスにおいて一意識別可能なデータを用いて下された個別的決定とを、ポータルにて表示することは、個々の複数の推論関数と、バージョン固有の推論グラフに対応する推論パスにおいて下された個別的決定とについての説明文を表示することを含む場合がある。バージョン固有の推論グラフ、ならびに、それに対応するバージョン固有の推論関数、個別的決定、及び/又は見解は、現時点の推論グラフ、ならびに、それに対応する推論関数、個別的決定、及び/又は見解に当てはまらない説明を含むことがある。したがって、バージョン固有見解ID(ならびに、関連のバージョン固有推論グラフ及びその構成要素)に対応するUUIDを入力する主体は、バージョン固有の説明文(例えば、バージョン固有推論パス及びその構成要素)のみを閲覧する場合がある。いくつかの実施形態では、個々の複数の推論関数と、UUIDに対応する推論パスにおいて一意識別可能なデータを用いて下された個別的決定とを、ポータルにて表示することは、個々の複数のバージョン固有推論関数と、バージョン固有推論グラフに対応するバージョン固有推論パスにおいて下された個別的決定とについての説明文を表示することを含む場合がある。いくつかの実施形態では、ポータルで表示することは、見解、ならびに/あるいは、推論パスとそれに関連する推論関数及び個別的決定を、音声で読み上げることを含む場合がある。
いくつかの実施形態では、方法100はさらに、一意的主体に帰属する一意識別可能なデータを、上記一意識別可能なデータとして受け取ることを含む場合がある。一意的主体に帰属する一意識別可能なデータを上記一意識別可能なデータとして受け取ることは、コンピュータ装置にて、又はコンピュータ装置を用いて実施することがある。例えば、一意的主体に帰属する一意識別可能なデータを上記一意識別可能なデータとして受け取ることは、上記一意識別可能なデータを複数のデータポイントとして受け取ることを含む場合がある。いくつかの実施形態では、一意的主体に帰属する一意識別可能なデータを受け取ることは、一意識別可能なデータを、複数のデータポイントとしての一意識別可能なデータに変換又は処理することを含むことがある。いくつかの実施形態では、見解を自動的に決定することは、推論関数によって提示されたクエリに応じるなどして、複数のデータポイントを用いて各複数の個別的決定を下すことを含む場合がある。そのような実施形態では、複数のデータポイントを用いて各複数の個別的決定を下すことは、複数のデータポイントを記憶しているデータベース内で、クエリに対応する一意識別可能なデータを自動的に検索することを含む場合がある。
いくつかの実施形態では、方法100は、一意識別可能なデータ及び複数のデータポイントをデータベースに記憶することを含む場合がある。例えば、一意識別可能なデータ及び複数のデータポイントをデータベースに記憶することは、公的にアクセス可能な秘密鍵を有しない、コンピュータ装置(例えば、ホスト主体が提供するコンピュータ装置、システム、又はネットワーク)内の非対称暗号化されたデータベースにおいて実施されることがある。いくつかの実施形態では、データベースは、データ(例えば、一意識別可能なデータ、推論グラフ又はその一部分など)の入力、選択された一意的主体に関連する一意識別可能なデータを用いた1つ以上の推論グラフの処理、又は、本明細書で開示されるポータルの提供以外を実施する場合は、アクセス不可能であることがある。したがって、データベースの出力は、見解及び/又は推論パス(若しくはその一部分)についての説明文のみに限定される場合がある。
いくつかの実施形態では、ホスト主体は、匿名化された見解情報を提供するためのシステムを提供することがある。そのシステムは、すなわち、見解と、その1つ以上の部分(例えば推論パス)についての説明とを提供するシステムであって、見解への到達に使用された一意識別可能なデータを開示する可能性を排除するものである。本明細書で開示される1つの行為、いくつかの行為、又は各行為は、コンピュータ装置(例えば、当該行為を実施するように適切にプログラムされた汎用コンピュータ又はサーバ(単数又は複数))で実施される場合がある。
図5は、一実施形態による、匿名化された見解情報を提供するためのシステムを示す略図である。システム500は、例えば方法100などの、本明細書で開示される方法のいずれかを実行するように構成されることがある。システム500は、少なくとも1つのコンピュータ装置510を備える。いくつかの実施形態では、システム500は、当該システムにネットワーク接続を通じて動作可能に接続されているものなどの、1つ以上の追加のコンピュータ装置512及び/又は514を備える場合がある。少なくとも1つのコンピュータ装置510は、例示的なコンピュータ装置であって、例えば方法100などの上述の1つ以上の行為を実施するように構成されることがある。少なくとも1つのコンピュータ装置510は、1つ以上のサーバ、1つ以上のコンピュータ(例えばデスクトップコンピュータ、ラップトップコンピュータ)、又は1つ以上のモバイルコンピュータ装置(例えばスマートフォン、タブレットなど)を含み得る。コンピュータ装置510は、少なくとも1つのプロセッサ520、メモリ530、記憶装置540、I/Oインタフェース550、及び通信インタフェース560を備えることがある。図5に例示的なコンピュータ装置510を示したが、図5に示された構成要素は、システム500又はコンピュータ装置510を限定することを意図しない。他の実施形態では、追加又は代替の構成要素を使用する場合がある。さらに、特定の実施形態では、システム500又はコンピュータ装置510は、図5に示されたものより少ない構成要素を備えることがある。いくつかの実施形態では、少なくとも1つのコンピュータ装置510は、サーバファーム、コンピューティングネットワーク、又はコンピュータ装置のクラスタなどの、複数のコンピュータ装置を含む場合がある。図5に示されたコンピュータ装置510の構成要素について、以下でさらに詳細に説明する。
いくつかの実施形態では、プロセッサ(単数又は複数)520は、コンピュータプログラムを構成するものなどの、命令を実行する(例えば、選択された一意識別可能なデータを用いて推論グラフを処理する)ためのハードウェアを備える。例えば、命令を実行するために、プロセッサ520は、内部レジスタ、内部キャッシュ、メモリ530、又は記憶装置540から命令を読み出し(又はフェッチし)、それらを復号して実行することがある。特定の実施形態では、プロセッサ520は、データ(例えば、一意識別可能なデータ、推論グラフ、特定の推論グラフに対する特定のUUID又は見解IDの関連づけ、選択された推論パスに対応する説明文など)、命令(例えば、選択された一意識別可能なデータを用いて推論グラフを処理するための処理プログラム、主体へのUUIDの電子的通信を生成するための処理プログラム、UUIDの入力に応じてポータルにて説明文を表示する又は表示させるための処理プログラム)、又はアドレスのために、1つ以上のキャッシュを備える場合がある。一例として、プロセッサ520は、1つ以上の命令キャッシュ、1つ以上のデータキャッシュ、及び1つ以上のトランスレーション・ルックアサイド・バッファ(TLB)を含むことがある。命令キャッシュ内の命令は、メモリ530又は記憶装置540内の命令のコピーである場合がある。いくつかの実施形態では、プロセッサ520は、ポータルを介するなどして、UUIDに対応する見解、推論パス、推論関数、個別的決定、及び結果のうちの1つ以上についての説明文のみを出力するように構成される(例えば、記憶又は実行されるプログラミングを含む)場合がある。
いくつかの実施形態では、プロセッサ520は、本明細書で方法100などに開示される行為のいずれかを実行するように、又は、本明細書で開示される少なくとも1つの行為をコンピュータ装置510又はシステム500の1つ以上の部分に実施させるように、構成されている。そのような構成は、少なくとも1つのプロセッサ520によって実行可能な1つ以上の処理プログラムを含む場合がある。例えば、プロセッサ520は、一意的主体に帰属する一意識別可能なデータ(例えば一意識別可能なデータ)と、複数の推論グラフのうちの1つとを用いて、見解を自動的に決定するように構成されることがある。少なくとも1つのプロセッサ520は、バージョン固有見解IDなどの見解IDを符号化したUUIDを生成するように構成されることがある。少なくとも1つのプロセッサ520は、UUIDを出力するように構成されることがあり、例えば、I/Oインタフェース550が通信インタフェース560を介してUUIDを主体へ伝達するように、I/Oインタフェース550を動作させる。少なくとも1つのプロセッサ520は、見解IDに関連づけられたポータルを提供するように構成されることがあり、例えば、I/Oインタフェース550が、通信インタフェース560を介して、(UUID内に符号化された)見解IDに対応する説明文をアクセス及び閲覧するためのポータルを主体へ伝達するように(例えば、ウェブ上のポータルを提供するように)、I/Oインタフェース550を動作させる。少なくとも1つのプロセッサ520は、リモートコンピュータ装置(例えば、ウェブ接続又はネットワーク接続などを介してプロセッサ520に接続された追加のコンピュータ装置514)などから、ポータルを通じてUUIDを入力として受け取るプログラミングを備えことがある。少なくとも1つのプロセッサ520は、UUIDを受け取ったことに応じて、見解IDに対応する推論パスにおいて一意識別可能なデータを用いて形成された見解を、ポータルにて表示するプログラミングを備えることがある。少なくとも1つのプロセッサ520は、UUIDを受け取ったことに応じて、個々の複数の推論関数と、見解IDに対応する推論パスにおいて一意識別可能なデータを用いて下された個別的決定とを、ポータルにて表示するプログラミングを備えることがある。例えば、少なくとも1つのプロセッサ520は、I/Oインタフェース550が、通信インタフェース560を介して、(例えばバージョン固有推論グラフからの)見解、複数の推論関数、及び、見解IDに対応する推論パスにおいて一意識別可能なデータを用いて下された個別的決定、のうちの1つ以上を主体へ伝達するように、I/Oインタフェース550を動作させることがある。
少なくとも1つのコンピュータ装置510(例えばサーバ)は、少なくとも1つのメモリ記憶媒体(例えばメモリ530及び/又は記憶装置540)を備える場合がある。コンピュータ装置510は、プロセッサ520に動作可能に接続されたメモリ530を含むことがある。メモリ530は、データ、メタデータ、及び、プロセッサ520によって実行されるプログラムを記憶するために使用されることがある。メモリ530は、揮発性及び不揮発性メモリのうちの1つ以上を含むことがあり、それらは例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、ソリッドステートディスク(SSD)、フラッシュメモリ、相変化メモリ(PCM)、又は他のタイプのデータ記憶装置である。メモリ530は、内部メモリ又は分散メモリである場合がある。
コンピュータ装置510は、データ又は命令を記憶するための記憶部を有する記憶装置540を備えることがある。記憶装置540は、少なくとも1つのプロセッサ520に動作可能に接続される場合がある。実施例において、記憶装置540は、上述のいずれかのような非一過性のメモリ記憶媒体を含むことがある。記憶装置540(例えば非一過性の記憶媒体)は、ハードディスクドライブ(HDD)、フロッピー(登録商標)ディスクドライブ、フラッシュメモリ、光ディスク、光磁気ディスク、磁気テープ、又はユニバーサル・シリアル・バス(USB)ドライブ、あるいは、これらの2つ以上から成る組み合わせを含む場合がある。記憶装置540は、着脱式又は非着脱式(又は固定)の媒体を含むことがある。記憶装置540は、コンピュータ装置510の内部又は外部に位置することがある。いくつかの実施形態では、記憶装置540は、不揮発性の固体メモリを備える場合がある。いくつかの実施形態では、記憶装置540は、リードオンリーメモリ(ROM)を含むことがある。適切な場合には、このROMは、マスクプログラムROM、プログラマブルROM(PROM)、消去可能PROM(EPROM)、電気的消去可能PROM(EEPROM)、電気的書き換え可能ROM(EAROM)、又はフラッシュメモリ、あるいは、これらの2つ以上から成る組み合わせを含むことがある。いくつかの実施形態では、メモリ530及び/又は記憶装置540(例えばメモリ記憶媒体)の1つ以上の部分には、1つ以上のデータベースが記憶される場合がある。データベースの少なくともいくつかは、非対称暗号化されることがある。非対称暗号化された少なくともいくつかのデータベースは、公的にアクセス可能な秘密鍵を有しないことがある。少なくともいくつかのデータベースは、例えばデータポイントなどの形態で、一意識別可能なデータを保管するのに使用される場合がある。上記少なくともいくつかのデータベースは、本明細書で上述したような複数の推論グラフ(例えばバージョン固有推論グラフ)、推論関数、見解、説明文、及び、一意識別可能なデータを用いて出された推論グラフの結果のうちの1つ以上を保管するのに使用されることがある。
いくつかの実施形態では、一意識別可能なデータは、少なくとも1つのプロセッサ520(例えばプロセッサの内部キャッシュ)、メモリ530、及び記憶装置540のうちの1つ以上などの、メモリ記憶媒体に記憶される場合がある。いくつかの実施形態では、少なくとも1つのプロセッサ520は、メモリ530及び記憶装置540のうちの1つ以上のメモリ記憶媒体に(例えばバス570を通じて)アクセスするように構成されることがある。例えば、少なくとも1つのプロセッサ520は、一意的主体に帰属する一意識別可能なデータを、メモリ記憶媒体にて複数のデータポイントとして受け取って記憶することがある。少なくとも1つのプロセッサ520は、その内部に記憶されたプログラミングであって、メモリ記憶媒体内の一意識別可能なデータにアクセスし、複数のデータポイントのうちの少なくとも一部分を用いて個別的決定を下すなどして、自動的に見解を決定するように構成されたプログラミングを実行する場合がある。例えば、少なくとも1つのプロセッサ520は、メモリ530又は記憶装置540などのメモリ記憶媒体に記憶された一意識別可能なデータ、推論グラフ又はその一部分、及び説明文のうちの1つ以上にアクセスすることがある。いくつかの実施形態では、少なくとも1つのプロセッサ520は、ポータルを介するなどして、見解、推論グラフ、推論関数、個別的決定、又は結果についての説明文のみを出力する、1つ以上の処理プログラムを備える場合がある。したがって、コンピュータ装置510及び少なくとも1つのプロセッサ520は、一意識別可能なデータのための安全なデータベースを提供し、同時に、各々が一意識別可能なデータを実質的に含まない見解、推論グラフ、又はその一部分の出力のみを許可することがある。
コンピュータ装置510はさらに、ユーザが入力の提供、出力の受け取り、及び、コンピュータ装置510から、又はコンピュータ装置510へのデータ移動を実施できるようにするために設けられた、1つ以上の入力又は出力(I/O)装置/インタフェース550を備える。これらのI/O装置/インタフェース550は、マウス、キーパッド又はキーボード、タッチスクリーン、カメラ、光学スキャナ、ネットワークインタフェース、ウェブ上のアクセス、モデム、他の既知のI/O装置、あるいは、そのようなI/O装置/インタフェース550の組み合わせを含むことがある。タッチスクリーンは、スタイラス又は指で操作されることがある。
I/O装置/インタフェース550は、ユーザに出力を提示するための1つ以上の装置を備える場合がある。それらの装置は、グラフィックエンジン、ディスプレイ(例えば表示スクリーン又はモニタ)、1つ以上の出力ドライバ(例えばディスプレイドライバ)、1つ以上の音声スピーカ、及び1つ以上の音声ドライバを含むが、それらに限定されない。特定の実施形態では、装置/インタフェース550は、グラフィカルデータ(例えば、ポータル及び/又は説明文)をディスプレイ(例えば自宅又はオフィスのコンピュータスクリーン)に供給してユーザに提示するように構成されている。グラフィカルデータは、1つ以上のグラフィカル・ユーザ・インタフェース、及び/又は、特定の実施例において役立つような他のグラフィカルなコンテンツを表すことがある。
コンピュータ装置510はさらに、通信インタフェース560を備える場合がある。通信インタフェース560は、ハードウェア、ソフトウェア、又はその両方を含むことがある。通信インタフェース560は、コンピュータ装置510と、1つ以上の追加のコンピュータ装置512、514又は1つ以上のネットワークとの間の通信(例えばパケットベースの通信など)のための1つ以上のインタフェースを提供することがある。例えば、通信インタフェース560は、イーサネット(登録商標)又は他の有線ネットワークと通信するためのネットワーク・インタフェース・コントローラ(NIC)又はネットワークアダプタ、あるいは、Wi−Fi(登録商標)などの無線ネットワークと通信するための無線NIC(WNIC)又は無線アダプタを備えることがある。
適切なネットワーク及び適切な通信インタフェース560であれば、いずれのものでも使用できる。例えば、コンピュータ装置510は、アドホックネットワーク、パーソナル・エリア・ネットワーク(PAN)、ローカル・エリア・ネットワーク(LAN)、ワイド・エリア・ネットワーク(WAN)、メトロポリタン・エリア・ネットワーク(MAN)、又は、インターネットの1つ以上の部分、あるいは、これらの2つ以上から成る組み合わせと通信することがある。これらのネットワークのうちの1つ以上における1つ以上の部分は、有線又は無線である場合がある。一例として、システム500又はコンピュータ装置510の1つ以上の部分は、無線PAN(WPAN)(例えばブルートゥース(登録商標)WPANなど)、Wi−Fiネットワーク、WiMAXネットワーク、携帯電話ネットワーク(例えばグローバル・システム・フォー・モバイル・コミュニケーションズ(GSM)ネットワークなど)、又は他の適切な無線ネットワーク、あるいは、これらから成る組み合わせと通信することがある。コンピュータ装置510は、適切な場合には、これらのネットワークのいずれかのための適切な通信インタフェース560を備えることがある。
いくつかの実施形態では、コンピュータ装置510は、ネットワーク接続を有するサーバを備える場合があり、そのサーバは、見解の決定に応じて、ネットワーク接続を通じて、見解に関連する主体(例えば患者、顧客、サービス提供者、保険業者、個人被保険者)に対応する電子的アドレスへUUIDを出力するように構成されたプログラミングを含む。
コンピュータ装置510は、バス570を備える場合がある。バス570は、コンピュータ装置510の複数の構成要素を互いに接続するハードウェア、ソフトウェア、又はその両方を含むことがある。例えば、バス570は、アクセラレーテッド・グラフィックス・ポート(AGP)又は他のグラフィックスバス、拡張インダストリ・スタンダード・アーキテクチャ(EISA)バス、フロント・サイド・バス(FSB)、ハイパートランスポート(HT)インターコネクト、インダストリ・スタンダード・アーキテクチャ(ISA)バス、インフィニバンド・インターコネクト、ロー・ピン・カウント(LPC)バス、メモリバス、マイクロチャネル・アーキテクチャ(MCA)バス、ペリフェラル・コンポーネント・インターコネクト(PCI)バス、PCIエクスプレス(PCIe)バス、シリアル・アドバンスト・テクノロジ・アタッチメント(SATA)バス、ビデオ・エレクトロニクス・スタンダーズ・アソシエーション・ローカル(VLB)バス、又は他の適切なバス、あるいは、これらから成る組み合わせを含むことがある。
本明細書で方法100などにおいて説明したいずれの行為も、コンピュータ装置510によって、及び/又は、コンピュータ装置510にて実施される場合があると理解すべきである。追加又は代替で、本明細書で説明した1つ以上の行為を、追加のコンピュータ装置512又は追加のコンピュータ装置514などの他のコンピュータ装置によって、あるいはそのコンピュータ装置にて実施することがある。例えば、パーソナルコンピュータ、スマートフォンなどのユーザのパーソナルコンピュータ装置(例えば、追加のコンピュータ装置512又は514)によって、又はその装置にて、当該行為のいくつか(例えば、電子メッセージの受信)を実施することがあり、それとともに、ユーザのコンピュータ装置に動作可能に接続され得るサーバなどの他のコンピュータ装置(例えばコンピュータ装置510)によって当該行為の1つ以上を実施することがある(例えば、インターネットを介してユーザのコンピュータ装置に接続されたサーバによって見解の決定を実施することがある)。したがって、システム500の1つ以上の要素が互いに分散している場合があり、かつ/又は、システム500の1つ以上の要素が互いに併設される場合がある。例えば、一意識別可能なデータの入力は、医療従事者、監査人、会計士などが追加のコンピュータ装置512を用いて、ネットワーク接続を介してコンピュータ装置510に一意識別可能なデータを手作業で供給することで実施されることがあり、又は、データ転送のルーチン、指令、ダンプ、又は他のメカニズムによって一意識別可能なデータを自動的に転送することで実施されることがある。実施例において、追加のコンピュータ装置514上にポータルを表示することがあり、それは例えば、ウェブ接続又はネットワーク接続を通じて追加のコンピュータ装置514から直接的又は間接的にコンピュータ装置510に対して実施される。
いくつかの実施形態では、少なくとも1つのコンピュータ装置510(例えばサーバ)は、少なくとも1つのリモートコンピュータ装置(例えば、追加のコンピュータ装置512及び/又は514)に動作可能に接続され、かつ、1つ以上の処理プログラムを含む場合があり、その1つ以上の処理プログラムは、UUIDを受け取ったことに応じて、ポータルが、個々の複数の推論関数と推論パスにおいて下された個別的決定とについての説明文を、当該少なくとも1つのリモートコンピュータ装置において表示するように、ポータルを動作させる。例えば、少なくとも1つのコンピュータ装置510は、ポータルを提供するインターネットサイトを記憶したプログラミングを含むことがある。上記インターネットサイトのためのプログラミングは、UUIDのための入力フィールドと、UUID内に符号化された見解IDに対応する推論グラフ、見解、推論関数、個別的決定などのうちの1つ以上についての説明文を表示するための表示フィールドとを提供するプログラミングを含むことがある。いくつかの実施形態では、上記インターネットサイトは、イントラネットサイトである場合がある。1つ以上のリモートコンピュータ装置が、上記インターネットサイトにアクセスを有することがある。したがって、システム500は、第1の追加のコンピュータ装置512を備える場合がある。主体又はユーザが、第1の追加のコンピュータ装置512を通じて、一意識別可能なデータ又は推論グラフ(又はその個別的部分)をコンピュータ装置510に入力することがあり、かつ/又は、見解をコンピュータ装置510に対して要求することがある。
図6は、一実施形態による、本明細書で開示されるシステム及び方法によって生成された見解を閲覧するためのポータル600を示す。ポータル600は、一実施形態に従って、見解、推論関数、又は個別的決定についての説明文を提供する1つ以上のフィールドを含む場合がある。例えば、ポータル600は、見解についての説明文を提供するための第1のフィールド610を含むことがある。ポータル600は、推論パス内の1つ以上の推論関数についての説明文を提供するための、1つ以上の第2のフィールド620を含むことがある。ポータル600は、第2のフィールド620内の1つ以上の推論関数に対応する個別的決定などの、1つ以上の個別的決定についての説明文を提供するための、1つ以上の第3のフィールド630を含むことがある。
図示のとおり、ポータル600は、見解への到達に使用された一意識別可能なデータを見せることなく、見解の背景にある推論をユーザ又は主体に閲覧させる。いくつかの実施形態(図示せず)では、ポータル600は、UUIDを入力するための入力ボックスを含む場合がある。いくつかの実施形態では、ポータル600以外の別のインターネットページにてUUIDが入力されることがある。
図5に戻る。システム500は、追加のコンピュータ装置514を含む場合がある。追加のコンピュータ装置514は、主体の自宅又はオフィスにおけるコンピュータ装置を含むことがある。例えば、コンピュータ装置514は、保険業者又はサービス提供者などの主体の従業員のデスクトップコンピュータを含むことがある。コンピュータ装置514を使用して、コンピュータ装置510によって提供されるポータルにアクセスすることで、UUIDの入力及びそれに関連する説明文の閲覧などを実施することがある。いくつかの実施形態では、コンピュータ装置514が、個人被保険者のデスクトップコンピュータを含み、コンピュータ装置510が、保険提供者又はサービス提供者などのホスト主体の施設に設置されたコンピュータである場合がある。コンピュータ装置514を使用して、コンピュータ装置510によって提供されるポータルにアクセスすることで、UUIDの入力及び個人被保険者に適用される医療関連の決定に関連する説明文の閲覧などを実施することがある。追加のコンピュータ装置512又は514は、本明細書で開示されるコンピュータ装置510と類似又は同じ構成である場合があり、例えば、本明細書で開示されるコンピュータ装置510のいずれの構成要素を備えることもある。
本明細書で開示されたシステム及び方法は、一意識別可能なデータを用いて形成された見解の背景にある推論を開示するための現在のシステム及び方法に対して、いくつかの改善点を提供する。第一に、本明細書で開示されたシステム及び方法は、見解への到達に使用された論理又は推論、すなわち推論パスの、完全な透明化を可能にする。例えば、推論パスの開示によって、見解への到達に使用された各条件を顧客が検討でき、それにより、当該検討において一意識別可能なデータを顧客サイドに維持できる。第二に、見解への到達又は見解の形成に使用された全ての一意識別可能なデータが、アクセス不可能なデータベース内での保管(例えば、暗号化されたデータベース内の一意識別可能なデータは、ホスト主体を含むいずれの主体にも閲覧可能ではない)により、及び、推論パス(例えば推論関数、個別的決定、及び見解)のみが提供されることにより、開示から保護される。第三に、推論パス及び見解は、いずれの特定の一意識別可能なデータにも遡ることができないUUID内に符号化されることによって、暗号化される。このように、本明細書で開示されたシステム及び方法は、一意識別可能なデータの取り扱い、一意識別可能なデータ及びそれを用いて形成された見解の暗号化、一意識別可能なデータを用いての見解に到達するための推論グラフの処理、ならびに、見解の背景にある推論及び見解への到達に使用された論理の開示において、改善点をもたらす。
本明細書で様々な態様及び実施形態を開示してきたが、他の態様及び実施形態が考えられる。本明細書で開示された様々な態様及び実施形態は、例示を目的としており、限定することは意図しない。

Claims (27)

  1. 一意識別可能なデータをホスト主体の1人以上の従業員にさらすことなく、コンピュータネットワークを通じて当該一意識別可能なデータに関する見解の推論を説明する方法であって、
    一意的主体に帰属する一意識別可能なデータと、推論グラフとを用いて、見解をコンピュータ装置で自動的に決定することを含み、
    前記推論グラフは、
    各々が見解識別子によって識別された見解を提供する複数のリーフノードと、
    各々が前記複数のリーフノードのうちの1つにて終端する複数の推論パスと、
    複数の推論関数であって、各々が、推論パス上のいずれかの点において前記一意識別可能なデータを用いて下される個別的決定を下すための条件を規定する、複数の推論関数と、を有し、
    特定の見解への前記推論パスは、前記見解識別子によって前記複数のリーフノードのうちの1つにて規定され、当該推論パス内の前記推論関数及び前記個別的決定のみを含み、
    前記方法はさらに、
    前記見解の決定に応じて、前記見解識別子を符号化した汎用一意識別子(UUID)を前記コンピュータ装置で提供することと、
    前記見解識別子に関連づけられたポータルを提供することと、を含み、
    前記ポータルは、前記UUIDの入力を受けて、前記UUID内に符号化された前記見解識別子に対応する前記推論パスからの個々の前記複数の推論関数及び前記個別的決定を表示するように構成され、
    前記方法はさらに、
    前記UUIDの入力に応じて、個々の前記複数の推論関数と、前記見解識別子に対応する前記推論パスにおいて前記一意識別可能なデータを用いて下された前記個別的決定とを、前記ポータルにて表示することを含む、
    ことを特徴とする方法。
  2. 請求項1に記載の方法であって、
    個々の前記複数の推論関数と、前記見解識別子に対応する前記推論パスにおいて前記一意識別可能なデータを用いて下された前記個別的決定とを、前記ポータルにて表示することは、個々の前記複数の推論関数と、前記推論パスにおいて下された前記個別的決定とについての説明文を表示することを含む、
    ことを特徴とする方法。
  3. 請求項2に記載の方法であって、
    前記説明文が実質的にクエリ及び結果のみを含み、その両方が、前記一意的主体に帰属する一意識別可能なデータを含まない、
    ことを特徴とする方法。
  4. 請求項1に記載の方法であって、
    前記推論グラフが有向非巡回グラフを含む、
    ことを特徴とする方法。
  5. 請求項1に記載の方法であって、
    さらに、前記一意識別可能なデータとしての、前記一意的主体に帰属する一意識別可能なデータを、前記コンピュータ装置にて複数のデータポイントとして受け取ることを含む、
    ことを特徴とする方法。
  6. 請求項5に記載の方法であって、
    前記見解を自動的に決定することは、前記複数のデータポイントを用いて各前記複数の個別的決定を下すことを含み、
    個々の前記複数の推論関数と、前記見解識別子に対応する前記推論パスにおいて前記一意識別可能なデータを用いて下された前記個別的決定とを、前記ポータルにて表示することは、個々の前記複数の推論関数と、前記推論パスにおいて下された前記個別的決定とについての説明文を表示することを含み、
    前記説明文は前記一意識別可能なデータを含まない、
    ことを特徴とする方法。
  7. 請求項5に記載の方法であって、
    前記一意的主体に帰属する前記一意識別可能なデータが保護医療情報を含み、前記見解が、前記保護医療情報に関連する決定の適格性についての判断を含む、
    ことを特徴とする方法。
  8. 請求項5に記載の方法であって、
    さらに、前記一意識別可能なデータ及び前記複数のデータポイントを、公的にアクセス可能な秘密鍵を有しない、前記コンピュータ装置内の非対称暗号化されたデータベースに記憶することを含む、
    ことを特徴とする方法。
  9. 請求項1に記載の方法であって、
    前記見解識別子を符号化した前記UUIDを提供することは、電子的通信を通じて、前記一意的主体に対応又は関連する電子的アドレスへ前記UUIDを選択的に送信することを含む、
    ことを特徴とする方法。
  10. 請求項1に記載の方法であって、
    前記見解は、前記一意識別可能なデータに関連する決定の適格性についての判断を含む、
    ことを特徴とする方法。
  11. 請求項1に記載の方法であって、
    前記UUIDは、特定の日に前記見解を形成するのに使用されたバージョン固有の推論グラフに対応するバージョン固有見解識別子を符号化しており、
    個々の前記複数の推論関数と、前記UUIDに対応する前記推論パスにおいて前記一意識別可能なデータを用いて下された前記個別的決定とを、前記ポータルにて表示することは、個々の前記複数の推論関数と、前記バージョン固有の推論グラフに対応する前記推論パスにおいて下された前記個別的決定とについての説明文を表示することを含む、
    ことを特徴とする方法。
  12. 請求項1に記載の方法であって、
    前記一意的主体は、個人被保険者及びその者に関連する医療従事者のうちの1人以上を含む、
    ことを特徴とする方法。
  13. 請求項12に記載の方法であって、
    前記ホスト主体は、保険業者又はサービス提供者を含み、
    前記一意識別可能なデータは、前記個人被保険者及びその者に関連する前記医療従事者のうちの1人以上を識別する、
    ことを特徴とする方法。
  14. 請求項1に記載の方法であって、
    前記見解は、医療関連の結果を含み、
    各前記複数の推論関数は、医療関連の決定を含む、
    ことを特徴とする方法。
  15. 請求項14に記載の方法であって、
    前記見解は、結果が一式の補償条件に該当するという判定、前記結果が前記一式の補償条件に該当しないという判定、医療関連の経費を補償するという判定、前記医療関連の経費を補償しないという判定、選択された処置を個人が受けるべきという判定、前記選択された処置を前記個人が受けるべきでないという判定、選択された薬剤を前記個人が受け取るべきという判定、前記選択された薬剤を前記個人が受け取るべきでないという判定、医療従事者が不正を犯しているという判定、又は、前記個人が不正を犯しているという判定を含む、
    ことを特徴とする方法。
  16. 匿名化された見解情報を提供するシステムであって、
    サーバを備え、
    前記サーバは、一意的主体に帰属する一意識別可能なデータと複数の推論グラフとを記憶する暗号化されたデータベースを有する少なくとも1つのメモリ記憶媒体を含み、
    各前記複数の推論グラフは、
    各々が見解識別子によって識別された見解を提供する複数のリーフノードと、
    各々が前記複数のリーフノードのうちの1つにて終端する複数の推論パスと、
    複数の推論関数であって、各々が、推論パス上のいずれかの点において前記一意識別可能なデータを用いて下される個別的決定を下すための条件を規定する、複数の推論関数と、を有し、
    特定の見解への前記推論パスは、前記見解識別子によって前記複数のリーフノードのうちの1つにて規定され、当該推論パス内の前記推論関数及び前記個別的決定のみを含み、
    前記サーバは、前記メモリ記憶媒体に動作可能に接続された少なくとも1つのプロセッサを備え、
    前記少なくとも1つのプロセッサは、
    前記一意的主体に帰属する前記一意識別可能なデータと、前記複数の推論グラフのうちの1つとを用いて、前記見解を自動的に決定し、
    前記見解識別子を符号化した汎用一意識別子(UUID)を生成し、
    前記UUIDを出力し、
    前記見解識別子に関連づけられたポータルを提供し、
    前記ポータルを通じて前記UUIDを入力として受け取り、
    前記UUIDを受け取ったことに応じて、個々の前記複数の推論関数と、前記見解識別子に対応する前記推論パスにおいて前記一意識別可能なデータを用いて下された前記個別的決定とを、前記ポータルにて表示するように構成されている、
    ことを特徴とするシステム。
  17. 請求項16に記載のシステムであって、
    前記サーバは、少なくとも1つのリモートコンピュータ装置に接続されており、前記UUIDを受け取ったことに応じて、前記ポータルが、個々の前記複数の推論関数と、前記推論パスにおいて下された前記個別的決定とについての説明文を、前記少なくとも1つのリモートコンピュータ装置にて表示するように、前記ポータルを動作させるように構成されている、
    ことを特徴とするシステム。
  18. 請求項17に記載のシステムであって、
    各前記説明文は、前記一意的主体に帰属する前記一意識別可能なデータを含まない、
    ことを特徴とするシステム。
  19. 請求項16に記載のシステムであって、
    各前記説明文は実質的に、クエリと、前記一意識別可能なデータを用いて形成された前記クエリの結果のみを含み、その両方が、一意的主体に帰属する一意識別可能なデータを含まない、
    ことを特徴とするシステム。
  20. 請求項18に記載のシステムであって、
    前記サーバの前記プロセッサは、前記一意的主体に帰属する前記一意識別可能なデータを前記メモリ記憶媒体にて複数のデータポイントとして受け取って記憶し、前記複数のデータポイントの少なくとも一部分を用いて前記個別的決定を下すことで前記見解を自動的に決定するように構成されている、
    ことを特徴とするシステム。
  21. 請求項16に記載のシステムであって、
    各前記複数の推論グラフは、複数のリーフノードを有する有向非巡回グラフを含み、
    各前記推論関数は、前記一意的主体に帰属する前記一意識別可能なデータとそれに対する個別的クエリとを用いて下された、前記有向非巡回グラフにおける個別的決定を含み、
    前記サーバの前記メモリ記憶媒体は、前記一意的主体に帰属する前記一意識別可能なデータを受け取って記憶するように構成されており、
    前記サーバの前記プロセッサは、前記一意的主体に帰属する前記一意識別可能なデータを用いて各前記個別的決定及び前記見解を形成することで、前記見解を自動的に決定するように構成されており、
    前記サーバは、個々の前記複数の推論関数と前記推論パスにおいて下された前記個別的決定とについての説明文を含めて、前記UUIDに対応する前記推論パスにおける個々の前記複数の推論関数及び前記個別的決定を前記ポータルにて表示するように構成されており、
    各前記説明文は、前記一意的主体に帰属する前記一意識別可能なデータを含まない、
    ことを特徴とするシステム。
  22. 請求項16に記載のシステムであって、
    前記サーバはネットワーク接続を有し、前記見解が決定されたことに応じて、電子的通信を通じて、前記見解に関連する主体に対応する電子的アドレスへ前記UUIDを出力するように構成されている、
    ことを特徴とするシステム。
  23. 請求項16に記載のシステムであって、
    前記サーバは、特定の日に前記見解を決定するのに使用されたバージョン固有の推論グラフに対応するバージョン固有見解識別子を符号化している前記UUIDを生成するように構成されており、
    前記サーバは、前記UUIDを受け取ったことに応じて、個々の前記複数の推論関数と、前記バージョン固有の推論グラフに対応する前記推論パスにおいて下された前記個別的決定とについての説明文を、前記ポータルにて表示するように構成されている、
    ことを特徴とするシステム。
  24. 請求項16に記載のシステムであって、
    前記一意的主体は、個人被保険者及びその者に関連する医療従事者のうちの1人以上を含む、
    ことを特徴とするシステム。
  25. 請求項16に記載のシステムであって、
    前記サーバを有するホスト主体は、保険業者又はサービス提供者を含み、前記一意識別可能なデータは、個人被保険者及びその者に関連する医療従事者のうちの1人以上を識別する、
    ことを特徴とするシステム。
  26. 請求項16に記載のシステムであって、
    前記見解は医療関連の結果を含み、各前記複数の推論関数は医療関連の決定を含む、
    ことを特徴とするシステム。
  27. 請求項26に記載のシステムであって、
    前記見解は、結果が一式の補償条件に該当するという判定、前記結果が前記一式の補償条件に該当しないという判定、医療関連の経費を補償するという判定、前記医療関連の経費を補償しないという判定、選択された処置を個人が受けるべきという判定、前記選択された処置を前記個人が受けるべきでないという判定、選択された薬剤を前記個人が受け取るべきという判定、前記選択された薬剤を前記個人が受け取るべきでないという判定、医療従事者が不正を犯しているという判定、又は、前記個人が不正を犯しているという判定を含む、
    ことを特徴とするシステム。
JP2020517282A 2017-06-01 2018-05-17 一意識別可能なデータを開示せずに、見解を支持する推論を発信する方法、及びそのためのシステム Active JP6858308B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/610,945 US10958422B2 (en) 2017-06-01 2017-06-01 Methods for disseminating reasoning supporting insights without disclosing uniquely identifiable data, and systems for the same
US15/610,945 2017-06-01
PCT/US2018/033194 WO2018222406A1 (en) 2017-06-01 2018-05-17 Methods for disseminating reasoning supporting insights without disclosing uniquely identifiable data, and systems for the same

Publications (2)

Publication Number Publication Date
JP2020523718A true JP2020523718A (ja) 2020-08-06
JP6858308B2 JP6858308B2 (ja) 2021-04-14

Family

ID=64455960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020517282A Active JP6858308B2 (ja) 2017-06-01 2018-05-17 一意識別可能なデータを開示せずに、見解を支持する推論を発信する方法、及びそのためのシステム

Country Status (4)

Country Link
US (2) US10958422B2 (ja)
EP (1) EP3635534A4 (ja)
JP (1) JP6858308B2 (ja)
WO (1) WO2018222406A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10958422B2 (en) * 2017-06-01 2021-03-23 Cotiviti, Inc. Methods for disseminating reasoning supporting insights without disclosing uniquely identifiable data, and systems for the same
US11487520B2 (en) 2017-12-01 2022-11-01 Cotiviti, Inc. Automatically generating reasoning graphs
US11526772B2 (en) * 2019-02-11 2022-12-13 Cotiviti, Inc. Accelerated reasoning graph evaluation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112190A (en) * 1997-08-19 2000-08-29 Citibank, N.A. Method and system for commercial credit analysis
JP2002015251A (ja) * 2000-06-30 2002-01-18 Orient Corp 債務保証情報処理装置及び方法、債務保証情報処理システム並びに債務保証情報処理用ソフトウェアを記録した記録媒体
JP2002342570A (ja) * 2001-05-21 2002-11-29 Bank Of Fukuoka Ltd 融資限度額を事前通知する融資実行システム
JP2009009515A (ja) * 2007-06-29 2009-01-15 Sumitomo Mitsui Banking Corp 住宅ローン事前審査申込システム及びその方法

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343554A (en) 1988-05-20 1994-08-30 John R. Koza Non-linear genetic process for data encoding and for solving problems using automatically defined functions
US5602933A (en) * 1995-03-15 1997-02-11 Scientific-Atlanta, Inc. Method and apparatus for verification of remotely accessed data
US5778157A (en) 1996-06-17 1998-07-07 Yy Software Corporation System and method for expert system analysis using quiescent and parallel reasoning and set structured knowledge representation
US6631361B1 (en) * 1998-10-02 2003-10-07 Ncr Corporation Method and apparatus for providing explanations of automated decisions applied to user data
AU2000254223A1 (en) 2000-06-22 2002-01-08 Trintrech Limited A transaction dispute management system and method
US6813615B1 (en) 2000-09-06 2004-11-02 Cellomics, Inc. Method and system for interpreting and validating experimental data with automated reasoning
WO2002061679A2 (en) * 2001-01-31 2002-08-08 Prediction Dynamics Limited Neural network training
US7216088B1 (en) * 2001-07-26 2007-05-08 Perot Systems Corporation System and method for managing a project based on team member interdependency and impact relationships
US7313531B2 (en) * 2001-11-29 2007-12-25 Perot Systems Corporation Method and system for quantitatively assessing project risk and effectiveness
US8082207B2 (en) * 2004-06-17 2011-12-20 Certegy Check Services, Inc. Scored negative file system and method
EP1779295A4 (en) * 2004-07-26 2012-07-04 Automotive Systems Lab SYSTEM FOR PROTECTING USERS OF THE ROAD IN A DANGER SITUATION
US7613665B2 (en) * 2005-06-24 2009-11-03 Halliburton Energy Services, Inc. Ensembles of neural networks with different input sets
US20100004957A1 (en) * 2006-01-27 2010-01-07 Robert Ball Interactive system and methods for insurance-related activities
US8065326B2 (en) 2006-02-01 2011-11-22 Oracle International Corporation System and method for building decision trees in a database
US7958407B2 (en) 2006-06-30 2011-06-07 Spx Corporation Conversion of static diagnostic procedure to dynamic test plan method and apparatus
US7831526B1 (en) * 2006-08-25 2010-11-09 Fair Isaac Corporation Article and method for finding a compact representation to visualize complex decision trees
US20080133273A1 (en) * 2006-12-04 2008-06-05 Philip Marshall System and method for sharing medical information
US8161353B2 (en) 2007-12-06 2012-04-17 Fusion-Io, Inc. Apparatus, system, and method for validating that a correct data segment is read from a data storage device
KR100908121B1 (ko) * 2006-12-15 2009-07-16 삼성전자주식회사 음성 특징 벡터 변환 방법 및 장치
US7636697B1 (en) * 2007-01-29 2009-12-22 Ailive Inc. Method and system for rapid evaluation of logical expressions
KR101415534B1 (ko) * 2007-02-23 2014-07-07 삼성전자주식회사 다단계 음성인식장치 및 방법
US8112416B2 (en) 2007-05-25 2012-02-07 International Business Machines Corporation Method and system for semantic publish-subscribe services
US20180129325A1 (en) * 2008-01-14 2018-05-10 Jpmorgan Chase Bank, N.A. Credit Navigation System and Method
US8522348B2 (en) * 2009-07-29 2013-08-27 Northwestern University Matching with a large vulnerability signature ruleset for high performance network defense
US8700909B2 (en) * 2010-02-26 2014-04-15 International Business Machines Corporation Revocation of a biometric reference template
US9110882B2 (en) 2010-05-14 2015-08-18 Amazon Technologies, Inc. Extracting structured knowledge from unstructured text
AU2012332905B2 (en) * 2011-11-02 2015-11-05 Landmark Graphics Corporation Method and system for predicting a drill string stuck pipe event
US20130117280A1 (en) * 2011-11-04 2013-05-09 BigML, Inc. Method and apparatus for visualizing and interacting with decision trees
US20140108321A1 (en) 2012-10-12 2014-04-17 International Business Machines Corporation Text-based inference chaining
US9111228B2 (en) * 2012-10-29 2015-08-18 Sas Institute Inc. System and method for combining segmentation data
US9053436B2 (en) * 2013-03-13 2015-06-09 Dstillery, Inc. Methods and system for providing simultaneous multi-task ensemble learning
US9875428B2 (en) * 2013-03-15 2018-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Ensemble sparse models for image analysis and restoration
US9311429B2 (en) 2013-07-23 2016-04-12 Sap Se Canonical data model for iterative effort reduction in business-to-business schema integration
US9639642B2 (en) * 2013-10-09 2017-05-02 Fujitsu Limited Time series forecasting ensemble
JP6662782B2 (ja) * 2014-02-07 2020-03-11 サイランス・インコーポレイテッドCylance Inc. 識別のためのアンサンブル機械学習を利用するアプリケーション実行コントロール
US20150317337A1 (en) * 2014-05-05 2015-11-05 General Electric Company Systems and Methods for Identifying and Driving Actionable Insights from Data
US9787647B2 (en) 2014-12-02 2017-10-10 Microsoft Technology Licensing, Llc Secure computer evaluation of decision trees
US10163000B2 (en) * 2015-01-14 2018-12-25 Samsung Electronics Co., Ltd. Method and apparatus for determining type of movement of object in video
WO2016134183A1 (en) * 2015-02-19 2016-08-25 Digital Reasoning Systems, Inc. Systems and methods for neural language modeling
US10731984B2 (en) * 2015-02-26 2020-08-04 Stmicroelectronics, Inc. Reconfigurable sensor unit for electronic device
US10318584B2 (en) 2015-05-26 2019-06-11 Ayasdi, Inc. Outcome analysis for graph generation
US10268798B2 (en) 2015-09-22 2019-04-23 International Business Machines Corporation Condition analysis
WO2017078548A1 (en) 2015-11-06 2017-05-11 Linq Limited Systems and methods for information flow analysis
KR102449614B1 (ko) * 2015-11-06 2022-09-29 삼성전자주식회사 자동 번역의 품질 평가 장치 및 방법, 자동 번역 장치, 분산 표현 모델 구축 장치
KR102522924B1 (ko) * 2016-03-18 2023-04-19 한국전자통신연구원 음성인식을 위한 초벌학습 장치 및 방법
KR102589637B1 (ko) * 2016-08-16 2023-10-16 삼성전자주식회사 기계 번역 방법 및 장치
US20180121622A1 (en) * 2016-10-31 2018-05-03 Evinance Innovation Inc. Stateless decision support engine
KR20180070103A (ko) * 2016-12-16 2018-06-26 삼성전자주식회사 인식 방법 및 인식 장치
US11164082B2 (en) * 2017-02-28 2021-11-02 Anixa Diagnostics Corporation Methods for using artificial neural network analysis on flow cytometry data for cancer diagnosis
US11017324B2 (en) * 2017-05-17 2021-05-25 Microsoft Technology Licensing, Llc Tree ensemble explainability system
US10958422B2 (en) 2017-06-01 2021-03-23 Cotiviti, Inc. Methods for disseminating reasoning supporting insights without disclosing uniquely identifiable data, and systems for the same
KR101916348B1 (ko) * 2017-08-04 2018-11-08 주식회사 수아랩 인공 신경망의 훈련 방법
KR102483643B1 (ko) * 2017-08-14 2023-01-02 삼성전자주식회사 모델을 학습하는 방법 및 장치 및 상기 뉴럴 네트워크를 이용한 인식 방법 및 장치
KR102458244B1 (ko) * 2017-11-23 2022-10-24 삼성전자주식회사 기계 번역 방법 및 장치
US11221413B2 (en) * 2018-03-14 2022-01-11 Uatc, Llc Three-dimensional object detection
US20190378049A1 (en) * 2018-06-12 2019-12-12 Bank Of America Corporation Ensemble of machine learning engines coupled to a graph structure that spreads heat
US20190377819A1 (en) * 2018-06-12 2019-12-12 Bank Of America Corporation Machine learning system to detect, label, and spread heat in a graph structure
KR102659892B1 (ko) * 2018-07-24 2024-04-24 삼성전자주식회사 객체 인식 장치, 이를 포함하는 전자 장치 및 객체 인식 방법
KR102637340B1 (ko) * 2018-08-31 2024-02-16 삼성전자주식회사 문장 매핑 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112190A (en) * 1997-08-19 2000-08-29 Citibank, N.A. Method and system for commercial credit analysis
JP2002015251A (ja) * 2000-06-30 2002-01-18 Orient Corp 債務保証情報処理装置及び方法、債務保証情報処理システム並びに債務保証情報処理用ソフトウェアを記録した記録媒体
JP2002342570A (ja) * 2001-05-21 2002-11-29 Bank Of Fukuoka Ltd 融資限度額を事前通知する融資実行システム
JP2009009515A (ja) * 2007-06-29 2009-01-15 Sumitomo Mitsui Banking Corp 住宅ローン事前審査申込システム及びその方法

Also Published As

Publication number Publication date
EP3635534A1 (en) 2020-04-15
JP6858308B2 (ja) 2021-04-14
US10958422B2 (en) 2021-03-23
WO2018222406A1 (en) 2018-12-06
EP3635534A4 (en) 2021-03-17
US12095903B2 (en) 2024-09-17
US20180349773A1 (en) 2018-12-06
US20220123926A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
Hassan et al. Global survey on telemedicine utilization for movement disorders during the COVID‐19 pandemic
Hare et al. Work group report: COVID-19: unmasking telemedicine
US20130262328A1 (en) System and method for automated data breach compliance
US20130124226A1 (en) Method and Apparatus for Coordinating Healthcare of Patients
Sampat et al. Privacy risks and security threats in mHealth apps
US20240127305A1 (en) Pre-service client navigation
US20150242956A1 (en) Systems and Methods for Processing Workers Compensation Claim Administration to Facilitate Claim Resolution
US20170177810A1 (en) System and method for insurance risk adjustment
JP6858308B2 (ja) 一意識別可能なデータを開示せずに、見解を支持する推論を発信する方法、及びそのためのシステム
Manning et al. E-Health and telemedicine in otolaryngology: Risks and rewards
Lakshminarayanan et al. Health care equity through intelligent edge computing and augmented reality/virtual reality: a systematic review
Peterson et al. Telerehabilitation store and forward applications: A review of applications and privacy considerations in physical and occupational therapy practice
Rockwern et al. Health information privacy, protection, and use in the expanding digital health ecosystem: a position paper of the American College of Physicians
Grover et al. Data handling for e-mental health professionals
Addonizio The privacy risks surrounding consumer health and fitness apps, associated wearable devices, and HIPAA’s limitations
US20210304859A1 (en) Cloud-based medical record management system with patient control
Miller et al. Risk analysis of residual protected health information of android telehealth apps
Zahid et al. Digital health services in Bangladesh—The need for a sustainable design framework
Chang The dark cloud of convenience: How the HIPAA omnibus rules fail to protect electronic personal health information
Guide HealthCare
McKay et al. Is 911 The Answer? A Retrospective Review of Emergency Medical Services Use by Home Care Providers
Maurer Managing the Medical Matrix: A" DAIS" for Artificial Intelligence in Health Care (and Beyond)
Lee A study on patient data sharing acceptability among Malaysian with data mining techniques
Le et al. Modelled economic evaluation of a virtual emergency department in Victoria
Blay et al. Managing COVID-19 and health vulnerabilities: mHealth user experience, information quality and policy recommendations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200123

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210323

R150 Certificate of patent or registration of utility model

Ref document number: 6858308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250