JP2020522071A - Multimodal performance oriented seismic design method based on performance bispectrum - Google Patents

Multimodal performance oriented seismic design method based on performance bispectrum Download PDF

Info

Publication number
JP2020522071A
JP2020522071A JP2019565937A JP2019565937A JP2020522071A JP 2020522071 A JP2020522071 A JP 2020522071A JP 2019565937 A JP2019565937 A JP 2019565937A JP 2019565937 A JP2019565937 A JP 2019565937A JP 2020522071 A JP2020522071 A JP 2020522071A
Authority
JP
Japan
Prior art keywords
performance
seismic
degree
freedom
bispectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019565937A
Other languages
Japanese (ja)
Other versions
JP6798732B2 (en
Inventor
▲劉▼文▲鋒▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Publication of JP2020522071A publication Critical patent/JP2020522071A/en
Application granted granted Critical
Publication of JP6798732B2 publication Critical patent/JP6798732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

【課題】 本発明は性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法を得ることにある。【解決手段】 本発明は耐震設計の技術分野に関し、具体的には性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法に関するものであり、それは定量化した性能レベルに基づいてそのまま耐震設計を行う方法であり、最初に1つの性能双スペクトルの1自由度弾塑性構造系を人為的に仮定し、構造物の最上層における特性変位角ρobj−m(d)及び2本折れ線弾塑性モデルの第2剛性を調整して、それらを標準1自由度弾塑性構造系と等しくさせることにより、耐震性能レベルにおける構造物の耐震応答効果を求めるものである。本発明の性能レベルに基づいて耐震設計を行う方法では、最終的な破壊状態を耐震設計の基礎とするため、設計震度(地震動パラメーター)を上回る地震が発生したとしても、構造物の耐震性能を制御することが可能である。明らかに、本件特許出願は、従来の設計震度(地震動パラメーター)に基づく性能指向型耐震設計よりもさらに科学的で、構造物の耐震挙動を制御することが可能である。PROBLEM TO BE SOLVED: To obtain a multimodal performance-oriented seismic design method based on a performance bispectrum. The present invention relates to the technical field of seismic design, and more particularly, to a multimodal performance-oriented seismic design method based on performance bispectrum, which directly performs seismic design based on quantified performance levels. First, one performance bispectral one-degree-of-freedom elasto-plastic structural system is artificially assumed, and the characteristic displacement angle ρ obj -m(d) and the two broken line elasto-plastic model in the top layer of the structure are artificially assumed. By adjusting the two stiffnesses and making them equal to the standard one-degree-of-freedom elasto-plastic structural system, the seismic response effect of the structure at the seismic performance level is obtained. In the method of performing seismic design based on the performance level of the present invention, since the final fracture state is the basis of seismic design, even if an earthquake exceeding the design seismic intensity (seismic motion parameter) occurs, the seismic performance of the structure will be improved. It is possible to control. Apparently, the present patent application is more scientific than the performance-oriented seismic design based on the conventional design seismic intensity (seismic motion parameter), and can control the seismic behavior of the structure.

Description

本発明は耐震設計の技術分野に関し、具体的には性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法に関するものである。 The present invention relates to the technical field of seismic design, and more particularly, to a multimodal performance-oriented seismic design method based on performance bispectrum.

中国の耐震規範(GB 50011−2016)では、耐震設計震度(地震動パラメーター)による耐震設計が行われている。50年超過確率10%、63%及び2%の地震動強さをそれぞれ小地震、中地震及び大地震の震度とし、小震不壊、中震可修、大震不倒の3レベルに基づく対策が採用されている。また2段階法が採用されており、第1段階は弾性設計、第2段階は弾塑性設計となっている。第1段階は、小地震の作用下において弾性設計を採用し、2次元の弾性地震応答スペクトルに基づき、モーダルアナリシス法又はEquivalent Base Shear法を用いて地震作用を計算し、小地震による構造物の変位を計算した上で、重力などの他の荷重と組み合わせて、構造の内力を求める。第2段階は、大地震下の弾塑性変形の検証であり、構造の変形が規範で定められた変形の許容値を超えないことが要求され、これによって大震不倒の要求を満たしており、特定の構造については、2次元の弾性地震応答スペクトルに基づき、簡略化された方法で大地震による構造物の変位を計算している。 According to the seismic code of China (GB 50011-2016), seismic design based on seismic design seismic intensity (seismic motion parameter) is performed. The seismic intensity of 50% excess probability of 10%, 63% and 2% is taken as the seismic intensity of a small earthquake, a medium earthquake and a large earthquake, respectively, and measures based on three levels of small earthquake non-destruction, medium earthquake repair and large earthquake failure Has been adopted. Also, a two-step method is adopted, with the first step being elastic design and the second step being elasto-plastic design. The first stage adopts elastic design under the action of a small earthquake, calculates the earthquake action by using the modal analysis method or the Equivalent Base Shear method based on the two-dimensional elastic seismic response spectrum, and calculates the structure of the structure caused by the small earthquake. After calculating the displacement, combine it with other loads such as gravity to determine the internal force of the structure. The second stage is the verification of elasto-plastic deformation under a large earthquake, and it is required that the deformation of the structure does not exceed the allowable value of deformation specified in the norm, which satisfies the demand for a large earthquake. For a specific structure, the displacement of the structure due to a large earthquake is calculated by a simplified method based on the two-dimensional elastic seismic response spectrum.

米国のASCE7、IBCでは、2レベルの対策に基づく変換を行い、最大想定地震(中国の規範でいう「大地震」に相当する)の2/3を設計用地震動(中国の規範でいう「中地震」に相当する)に変換し、単一段階設計で耐震強度の検算を行い、構造物が弾塑性状態にあると仮定した上で、応答スペクトルに基づいて静的設計のEquivalent Base Shear法(等価水平力法)及び動的設計のモーダルアナリシス法を採用し、構造物の調整係数Rにより様々な構造別変形性能を考慮した上で設計用地震動を弾性範囲に換算し、内力耐荷力の検算及び変位の計算を行い、構造物の変位増幅係数Cdを弾塑性変形に換算することで構造物の剛性を計算し、P−デルタ分析を行うかどうか判断している。欧州の耐震基準は米国と似ており、設計用地震動における設計用地震力の換算は、性能係数qにより、設計用応答スペクトル中でqの陽関数形式で表し、内力耐荷力の検算及び変位の計算を行い、構造物の変位増幅係数qeを用いて弾塑性変形を計算している。 In the US ASCE7 and IBC, conversion based on two-level measures is performed, and 2/3 of the maximum expected earthquake (corresponding to the "major earthquake" in the Chinese norm) is the design seismic motion ("Medium in the Chinese norm"). Equivalent to “earthquake”), the seismic resistance is calculated by a single-stage design, and assuming that the structure is in an elasto-plastic state, the Equivalent Base Shear method of static design based on the response spectrum ( Equivalent horizontal force method) and modal analysis method of dynamic design are adopted, and the design seismic motion is converted into the elastic range after considering various structural deformation performance by the adjustment coefficient R of the structure, and the internal load bearing capacity is verified. Then, the displacement is calculated, and the displacement amplification coefficient Cd of the structure is converted into elasto-plastic deformation to calculate the rigidity of the structure, and it is determined whether or not the P-delta analysis is performed. The seismic standard in Europe is similar to that in the United States, and the conversion of the design seismic force in the design seismic motion is expressed by the coefficient of performance q in the explicit spectrum of q in the design response spectrum. The calculation is performed, and the elasto-plastic deformation is calculated using the displacement amplification coefficient qe of the structure.

上記の事実は、中国、米国、欧州の基準がいずれも設計震度(地震動パラメーター)下の設計用応答スペクトルによって性能指向型耐震設計を行っていることを示している。しかし、唐山(中国、1976)、ノースリッジ(米国、1994)、神戸(日本、1995)、集集(中国台湾、1999)、スマトラ−アンダマン(インドネシア、2004)、ペルー (ペルー、2007)、ブン川(中国、2008)、ポルトープランス(ハイチ、2010)、コンセプシオン(チリ、2010)、玉樹(中国、2010)、日本東北太平洋海域(日本、2011)などの地震は、設計震度(地震動パラメーター)の基準をはるかに上回っていた。設計震度(地震動パラメーター)で耐震設計を行った場合、設計震度(地震動パラメーター)と最終的な破壊状態との関連性がはっきりしないため、設計震度(地震動パラメーター)を上回る地震が発生した場合、工程の損壊程度を把握することは不可能である。そのため、設計震度(地震動パラメーター)に基づく性能指向型耐震設計は改良する必要があった。 The above facts indicate that the standards of China, the United States, and Europe all carry out performance-oriented seismic design based on the design response spectrum under the design seismic intensity (seismic motion parameter). However, Tangshan (China, 1976), Northridge (USA, 1994), Kobe (Japan, 1995), Shu (Chinese Taiwan, 1999), Sumatra-Andaman (Indonesia, 2004), Peru (Peru, 2007), Bun. Earthquakes of river (China, 2008), Port-au-Prince (Haiti, 2010), Concepcion (Chile, 2010), Tamaki (China, 2010), Japan Northeast Pacific Ocean Region (Japan, 2011) It was well above the standard. When a seismic design is performed with the design seismic intensity (seismic motion parameter), the relationship between the design seismic intensity (seismic motion parameter) and the final failure state is not clear, so if an earthquake that exceeds the design seismic intensity (seismic motion parameter) occurs, the process It is impossible to know the extent of damage to the. Therefore, it was necessary to improve the performance-oriented seismic design based on the design seismic intensity (seismic motion parameter).

本発明は、以上のような技術的課題に鑑み、性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法を提供するが、それは定量化した性能レベルに基づいてそのまま耐震設計を行う方法であり、従来の設計震度(地震動パラメーター)に基づく性能指向型耐震設計よりもさらに科学的で、構造物の耐震挙動を制御することが可能である。 In view of the above technical problems, the present invention provides a multimodal performance-oriented seismic design method based on performance bispectrum, which is a method for performing seismic design as it is based on quantified performance levels, It is more scientific than conventional performance-oriented seismic design based on design seismic intensity (seismic motion parameter), and it is possible to control seismic behavior of structures.

上記目的を達成するために、本発明は以下の技術案を提供する。性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法は、以下の工程を含む。 In order to achieve the above object, the present invention provides the following technical solutions. The multimodal performance-oriented seismic design method based on the performance bispectrum includes the following steps.

第1工程:1組の異なる性能双スペクトルの仮想構造物の最上層における特性変位角ρobj−m(d)を設定し、性能双スペクトルの1自由度弾塑性構造系、及び性能双スペクトルの1自由度系の変位性能レベルを構築する。 First step: A characteristic displacement angle ρ obj -m (d) in the top layer of a set of virtual structures having different performance bispectra is set, and a one-degree-of-freedom elastoplastic structure system of performance bispectra and a performance bispectrum are set. Build a displacement performance level for a one degree of freedom system.

第2工程:耐震設計場所の地震環境特性に基づき、1組の地震動記録を選択し、性能双スペクトルの1自由度弾塑性微分方程式中に入力して、地震動記録における加速度のピーク値の最小値、平均値及び最大値、及び性能双スペクトルの1自由度弾塑性構造系における地震応答の絶対加速度のピーク値の最小値、平均値及び最大値を得る。 2nd step: Based on the seismic environment characteristics of the seismic design site, select a set of seismic motion records and input them into the one-degree-of-freedom elasto-plastic differential equation of the performance bispectrum to obtain the minimum acceleration peak value in the seismic motion record. , Average value and maximum value, and minimum value, average value and maximum value of peak value of absolute acceleration of seismic response in one-degree-of-freedom elasto-plastic structural system with performance bispectrum are obtained.

第3工程:同じ構造物周期において、1組の異なる2本折れ線弾塑性モデルの第2剛性を設定し、第2工程を繰り返す。 Third step: In the same structure cycle, the second stiffness of one set of two broken line elastic-plastic models is set, and the second step is repeated.

第4工程:実際の必要を考慮しつつ、耐震基準に基づいて設計する構造物の耐震性能レベルを設定し、それには耐震性能レベルの変位角
、構造物の高さ
を含める。
Step 4: Set the seismic performance level of the structure to be designed based on the seismic standard, taking into account the actual needs, and the displacement angle of the seismic performance level.
, The height of the structure
Include.

第5工程:設計構造物に基づき、異なる振動モードにおける構造物周期、振動モード及びモード刺激係数を計算する。 Fifth step: Calculate the structure period, vibration mode and modal stimulation coefficient in different vibration modes based on the designed structure.

第6工程:任意の応答量に対し、異なる振動モードの寄与係数を計算し、寄与閾値εを設定して、必要な振動モードの個数を求める。 Sixth step: Contribution coefficients of different vibration modes are calculated for an arbitrary amount of response, the contribution threshold ε is set, and the number of necessary vibration modes is obtained.

第7工程:第1構造物周期を標準1自由度弾塑性構造系として設定し、標準1自由度弾塑性構造系を基に構造物の耐震応答効果を合成する。 Seventh step: The first structure period is set as a standard one-degree-of-freedom elasto-plastic structural system, and the seismic response effect of the structure is synthesized based on the standard one-degree-of-freedom elasto-plastic structural system.

第8工程:構造物の耐震応答効果を設定した構造物の耐震性能レベルと等しくさせて、標準1自由度弾塑性構造系における耐震性能レベルを得る。 Eighth step: The seismic performance level of the standard 1-degree-of-freedom elasto-plastic structural system is obtained by making the seismic response effect of the structure equal to the seismic performance level of the structure.

第9工程:設計構造物をPushover解析し、構造物の耐力曲線(pushover curve)を対応する標準1自由度弾塑性構造系加速度−変位関係曲線に変換する。 Ninth step: Pushover analysis of the designed structure is performed, and the proof curve of the structure is converted into a corresponding standard 1-degree-of-freedom elasto-plastic structural system acceleration-displacement relationship curve.

第10工程:標準1自由度弾塑性構造系を性能双スペクトルの1自由度弾塑性構造系と等価にして、第1構造物周期に基づき、性能双スペクトルの1自由度弾塑性構造系から直接地震動記録における加速度のピーク値の最小値、平均値及び最大値、及び標準1自由度弾塑性構造系における地震応答の絶対加速度のピーク値の最小値、平均値及び最大値を得る。 Step 10: The standard 1-DOF elasto-plastic structural system is made equivalent to the performance bi-spectral 1-DOF elasto-plastic structural system, and based on the first structure period, directly from the performance bi-spectral 1-DOF elasto-plastic structural system. The minimum value, the average value, and the maximum value of the acceleration peak value in the seismic motion record, and the minimum value, the average value, and the maximum value of the absolute acceleration peak value of the seismic response in the standard one-degree-of-freedom elasto-plastic structural system are obtained.

第11工程:標準1自由度弾塑性構造系における地震応答の絶対加速度のピーク値の最小値、平均値及び最大値に基づき、耐震性能レベル下での構造物の耐震応答効果の最小値rmin、平均値rave及び最大値rmaxを計算する。 11th step: Based on the minimum value, the average value, and the maximum value of the absolute value of the absolute acceleration of the seismic response in the standard one-degree-of-freedom elasto-plastic structural system, the minimum value r min of the seismic response effect of the structure under the seismic performance level , Average r ave and maximum r max .

さらに、第1工程において、性能双スペクトルの1自由度系の変位性能レベルの計算式は以下の通りである。 Further, in the first step, the formula for calculating the displacement performance level of the performance bispectral one-degree-of-freedom system is as follows.

そのうち、Hは構造物の仮想の高さであり、
であり、χ及びCrは経験係数であり、経験式で得る。Dobj−mは性能双スペクトルの構造物の頂点変位性能値であり、
であり、仮想構造物の地震応答のモード制御については、モード形状ベクトルと高さは正比例の関係をなし、即ち
であり、hは第i層の層間高さであり、Hは第i層の構造物の高さであり、mは第i層の質量である。
Where H is the virtual height of the structure,
And χ and Cr are empirical coefficients and are obtained by an empirical formula. D obj-m is the vertex displacement performance value of the performance bispectral structure,
For the seismic response mode control of the virtual structure, the mode shape vector and the height have a direct proportional relationship, that is,
And a, h i is the interlayer height of the i-layer, H i is the height of the structure of the i layer, m i is the mass of the i-th layer.

さらに、第2工程において、地震環境特性は、マグニチュード、断層メカニズム、断層距離及び土地条件を含む。 Further, in the second step, the seismic environment characteristics include magnitude, fault mechanism, fault distance and land condition.

さらに、第2工程において、選択した地震動記録を性能双スペクトルの1自由度弾塑性微分方程式中に入力し、地震動記録の大きさを繰り返し調整して、性能双スペクトルの1自由度弾塑性系の変位応答ピーク値が性能双スペクトルの1自由度系の耐震性能レベルに達するようにして、地震動記録における加速度のピーク値の最小値、平均値及び最大値、及び前記性能双スペクトルの1自由度弾塑性構造系における地震応答の絶対加速度のピーク値の最小値、平均値及び最大値を得る。 Further, in the second step, the selected seismic motion record is input into the performance bispectral one-degree-of-freedom elasto-plastic differential equation, and the size of the seismic motion record is repeatedly adjusted to obtain the performance bispectral one-degree-of-freedom elasto-plastic system. The displacement response peak value reaches the seismic performance level of the performance bispectral one-degree-of-freedom system, and the minimum, average, and maximum acceleration peak values in the seismic motion record, and the performance bispectral one-degree-of-freedom bullet. Obtain the minimum, average, and maximum peak values of the absolute acceleration of seismic response in a plastic structure system.

さらに、第5工程において、動特性方程式を用いて設計構造物の動特性解析を行うが、動特性方程式は、 Furthermore, in the fifth step, the dynamic characteristic analysis of the design structure is performed using the dynamic characteristic equation.

そのうち、kは構造物自体の剛性マトリクスであり、
は第n次振動モードのモードであり、ωは第n次振動モードの構造物振動数であり、第n次振動モードの構造物周期は
であり、第n次振動モードのモード刺激係数は
であり、そのうちNは構造物の振動モードの合計次数であり、振動モードの総数でもある。mは構造物の第j層の質量である。
は構造物の第j層の振動モードである。
Where k is the stiffness matrix of the structure itself,
Is the mode of the nth vibration mode, ω n is the structure frequency of the nth vibration mode, and the structure period of the nth vibration mode is
And the modal stimulation coefficient of the nth vibration mode is
Where N is the total order of the vibration modes of the structure and is also the total number of vibration modes. m j is the mass of the j-th layer of the structure.
Is the vibration mode of the j-th layer of the structure.

さらに、第7工程において、平方及び平方根を求める方法又は完全二次結合法を用いて、構造物の耐震応答効果を合成する。 Further, in the seventh step, the seismic response effect of the structure is synthesized by using a method of obtaining a square and a square root or a complete quadratic coupling method.

さらに、第10工程において、標準1自由度弾塑性構造系における耐震性能レベルと性能双スペクトルの1自由度系の性能レベルが一致しない場合には、近接する2つの性能双スペクトルの1自由度系の性能レベルの間で内挿法を用いて確定することができる。また標準1自由度弾塑性構造系の第2剛性係数と性能双スペクトルの1自由度弾塑性構造系における2本折れ線弾塑性モデルの第2剛性係数が一致しない場合には、近接する2つの性能双スペクトルの1自由度系の性能レベルの間で内挿法を用いて確定することができる。 Further, in the tenth step, when the seismic performance level of the standard one-degree-of-freedom elasto-plastic structural system and the performance level of the one-degree-of-freedom system of the performance bispectrum do not match, two adjacent one-degree-of-freedom systems of the performance bispectral system are used. Can be established between the performance levels of using interpolation methods. Also, if the second stiffness coefficient of the standard one-degree-of-freedom elasto-plastic structure system and the second stiffness coefficient of the two-line broken line elasto-plastic model in the performance bispectral one-degree-of-freedom elasto-plastic structure system do not match, the two performances that are close to each other Interpolation can be used to establish between the performance levels of a bispectral one-degree-of-freedom system.

さらに、第11工程において、平方及び平方根を求める方法又は完全二次結合法を用いて、耐震性能レベル下での構造物の耐震応答効果の最小値rmin、平均値rave及び最大値rmaxを計算する。 Further, in the eleventh step, the minimum value r min , the average value r ave, and the maximum value r max of the seismic response effect of the structure under the seismic performance level are calculated by using a method of obtaining a square and a square root or a complete quadratic coupling method. To calculate.

本発明の性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法は、定量化した性能レベルに基づいてそのまま耐震設計を行う方法であり、性能レベルに基づいて耐震設計を行う方法では最終的な破壊状態を耐震設計の基礎とするため、設計震度(地震動パラメーター)を上回る地震が発生したとしても、構造物の耐震性能を制御することが可能である。明らかに、本件特許出願は、従来の設計震度(地震動パラメーター)に基づく性能指向型耐震設計よりもさらに科学的で、構造物の耐震挙動を制御することが可能である。 The multimodal performance-oriented seismic design method based on the performance bispectrum of the present invention is a method for performing seismic design as it is based on the quantified performance level, and the method of performing seismic design based on the performance level is the final failure. Since the state is the basis for seismic design, even if an earthquake that exceeds the design seismic intensity (seismic motion parameter) occurs, the seismic performance of the structure can be controlled. Clearly, the present patent application is more scientific than the performance-oriented seismic design based on the conventional design seismic intensity (seismic motion parameter), and is capable of controlling the seismic behavior of a structure.

本発明の目的、技術案及び優位点をより明解にするため、以下で実施例と合わせて本発明についてより詳細に説明する。ここに記述された具体的な実施例は本発明を説明するためのものに過ぎず、本発明を限定するものでは決してないことを理解されたい。 In order to make the objects, technical solutions and advantages of the present invention clearer, the present invention will be described in more detail with reference to Examples below. It is to be understood that the specific examples described herein are merely illustrative of the invention and are not limiting of the invention.

本発明の性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法は、以下の工程を含む。 The multimodal performance-oriented seismic design method based on the performance bispectrum of the present invention includes the following steps.

第1工程:1組の異なる性能双スペクトルの仮想構造物の最上層における特性変位角ρobj−m(d)を設定し、性能双スペクトルの1自由度弾塑性構造系、及び性能双スペクトルの1自由度系の変位性能レベルを構築する。 First step: A characteristic displacement angle ρ obj -m (d) in the top layer of a set of virtual structures having different performance bispectra is set, and a one-degree-of-freedom elastoplastic structure system of performance bispectra and a performance bispectrum are set. Build a displacement performance level for a one degree of freedom system.

性能双スペクトルの1自由度弾塑性動的微分方程式は以下の通りである。 The performance bispectral one-degree-of-freedom elasto-plastic dynamic differential equation is as follows.

そのうち、ωは構造物の固有振動数を表しており、周期は
であり、ξは減衰比であり、Dは1自由度系の変位であり、
は既知の地震励振であり、Fは標準の2本折れ線弾塑性モデルであり、標準の2本折れ線弾塑性モデルFの第2剛性係数ψFを規定する。
Among them, ω represents the natural frequency of the structure, and the period is
, Ξ is the damping ratio, D is the displacement of the one degree of freedom system,
Is a known seismic excitation, F is a standard two-line broken line elasto-plastic model, and defines the second stiffness coefficient ψF i of the standard two-line broken line elasto-plastic model F i .

性能双スペクトルのobj−m個の構造物の最上層における特性変位角ρobj−m(d)を設定し、構造物の高さは経験式に基づいて構造物の周期で表す。例えば、仮想構造物の高さは; The characteristic displacement angle ρ obj-m (d) in the uppermost layer of the obj-m structure of the performance bispectrum is set, and the height of the structure is represented by the period of the structure based on an empirical formula. For example, the height of the virtual structure is;

そのうち、χ及びCrは経験係数であり、経験式で得る。 Among them, χ and Cr are empirical coefficients and are obtained by an empirical formula.

性能双スペクトルの構造物の頂点変位性能値Dobj−mは; The vertex displacement performance value D obj-m of the performance bispectral structure is;

仮想構造物の地震応答のモード制御については、モード形状ベクトルと高さは正比例の関係をなしており、 Regarding the mode control of the seismic response of the virtual structure, the mode shape vector and the height are in direct proportion,

そのうち、hは第i層の層間高さであり、Hは第i層の構造物の高さであり、mは第i層の質量である。 Among them, h i is the interlayer height of the i-layer, H i is the height of the structure of the i layer, m i is the mass of the i-th layer.

性能双スペクトルの1自由度系の変位性能レベル; Performance Bispectral displacement performance level of one degree of freedom system;

第2工程:耐震設計場所の地震環境特性に基づき、1組の地震動記録を選択し、性能双スペクトルの1自由度弾塑性微分方程式中に入力して、地震動記録における加速度のピーク値の最小値、平均値及び最大値、及び性能双スペクトルの1自由度弾塑性構造系における地震応答の絶対加速度のピーク値の最小値、平均値及び最大値を得る。 2nd step: Based on the seismic environment characteristics of the seismic design site, select a set of seismic motion records and input them into the one-degree-of-freedom elasto-plastic differential equation of the performance bispectrum to obtain the minimum acceleration peak value in the seismic motion record. , Average value and maximum value, and minimum value, average value and maximum value of peak value of absolute acceleration of seismic response in one-degree-of-freedom elasto-plastic structural system with performance bispectrum are obtained.

そのうち、地震環境特性は、マグニチュード、断層メカニズム、断層距離及び土地条件を含む。 Among them, seismic environment characteristics include magnitude, fault mechanism, fault distance and land condition.

第2工程において、選択した地震動記録を性能双スペクトルの1自由度弾塑性微分方程式中に入力し、地震動記録の大きさを繰り返し調整して、性能双スペクトルの1自由度弾塑性系の変位応答ピーク値が性能双スペクトルの1自由度系の耐震性能レベルに達するようにして、地震動記録における加速度のピーク値の最小値、平均値及び最大値、及び前記性能双スペクトルの1自由度弾塑性構造系における地震応答の絶対加速度のピーク値の最小値、平均値及び最大値を得る。 In the second step, the selected seismic motion record is input into the performance bispectral one-degree-of-freedom elasto-plastic differential equation, and the size of the seismic motion record is repeatedly adjusted to determine the displacement response of the performance bispectral one-degree-of-freedom elastoplastic system. The peak value reaches the seismic performance level of the one-degree-of-freedom system of the performance bispectrum, and the minimum value, the average value, and the maximum value of the peak values of the acceleration in the seismic motion record, and the one-degree-of-freedom elastoplastic structure of the performance bispectrum. Obtain the minimum, average and maximum peak values of the absolute acceleration of the seismic response in the system.

第3工程:同じ構造物周期において、1組の異なる2本折れ線弾塑性モデルの第2剛性を設定し、第2工程を繰り返す。 Third step: In the same structure cycle, the second stiffness of one set of two broken line elastic-plastic models is set, and the second step is repeated.

第4工程:実際の必要を考慮しつつ、耐震基準に基づいて設計する構造の耐震性能レベルを設定し、それには耐震性能レベルの変位角
、構造の高さ
を含める。
Step 4: Set the seismic performance level of the structure to be designed based on the seismic performance criteria, taking into account actual needs, and set the seismic performance level displacement angle.
, Structure height
Include.

第5工程:設計した構造物に基づき、異なる振動モードにおける構造物周期、振動モード及びモード刺激係数を計算する。 Fifth step: Based on the designed structure, the structure period, the vibration mode and the modal stimulation coefficient in different vibration modes are calculated.

第5工程において、動特性方程式に基づき、異なる振動モードにおける構造物周期、振動モード及びモード刺激係数を求めるが、動特性方程式は以下の通りである。 In the fifth step, the structure period, the vibration mode and the modal stimulation coefficient in different vibration modes are obtained based on the dynamic characteristic equation. The dynamic characteristic equation is as follows.

そのうち、kは構造物自体の剛性マトリクスであり、
は第n次振動モードのモードであり、ωは第n次振動モードの構造物振動数であり、第n次振動モードの構造物周期は
であり、第n次振動モードのモード刺激係数は
であり、そのうちNは構造物の振動モードの合計次数であり、振動モードの総数でもある。mは構造物の第j層の質量である。
は構造物の第j層の振動モードである。
Where k is the stiffness matrix of the structure itself,
Is the mode of the nth vibration mode, ω n is the structure frequency of the nth vibration mode, and the structure period of the nth vibration mode is
And the modal stimulation coefficient of the nth vibration mode is
Where N is the total order of the vibration modes of the structure and is also the total number of vibration modes. m j is the mass of the j-th layer of the structure.
Is the vibration mode of the j-th layer of the structure.

第6工程:任意の応答量に対し、異なる振動モードの寄与係数を計算し、寄与閾値εを設定して、必要な振動モードの個数を求める。 Sixth step: Contribution coefficients of different vibration modes are calculated for an arbitrary amount of response, the contribution threshold ε is set, and the number of necessary vibration modes is obtained.

外力Sによって引き起こされる構造物rの静的値はrstで設定し、第n次振動モードにおける静的値は
であり、第n次振動モードのrstに対する貢献度は
で設定し、
The static value of the structure r caused by the external force S is set by r st , and the static value in the nth vibration mode is
And the contribution of the nth vibration mode to r st is
Set with

を解き、必要な振動モードの個数を得る。 To obtain the required number of vibration modes.

第7工程:第1構造物周期を標準1自由度弾塑性構造系として設定し、標準1自由度弾塑性構造系を基に構造物の耐震応答効果を合成する。 Seventh step: The first structure period is set as a standard one-degree-of-freedom elasto-plastic structural system, and the seismic response effect of the structure is synthesized based on the standard one-degree-of-freedom elasto-plastic structural system.

第1工程において選択した耐震性能レベルが変位であることに対応して、ここで選択する構造物の耐震応答効果も変位とする。 Corresponding to the fact that the seismic performance level selected in the first step is displacement, the seismic response effect of the structure selected here is also displacement.

第n次振動モードにおける静的値は
であり、第n次振動モードにおける変位は
であり;
The static value in the nth vibration mode is
And the displacement in the nth vibration mode is
And

そのうち、Sanは設計地震動の加速度応答スペクトルにおける第n構造物周期のスペクトル値であり、Dは性能双スペクトルの1自由度弾塑性構造系中でωに対応する応答値であり; Where S an is the spectral value of the nth structure period in the acceleration response spectrum of the design seismic motion, and D 1 is the response value corresponding to ω 1 in the one-degree-of-freedom elastoplastic structural system of the performance bispectrum;

とすれば、 given that,

第7工程において、平方及び平方根を求める方法又は完全二次結合法を用いて、構造物の耐震応答効果、即ち変位を合成する。 In the seventh step, the seismic response effect of the structure, that is, the displacement is synthesized by using a method of obtaining a square and a square root or a complete quadratic coupling method.

そのうち、平方及び平方根は以下の通りである。 The squares and square roots are as follows.

そのうち、完全二次結合法は以下の通りである。 Among them, the perfect quadratic coupling method is as follows.

ρinはモード結合係数であり、 ρ in is the mode coupling coefficient,

そのうち、ζ、ζはそれぞれ第i及び第nモードの減衰比であり、ρinは第i構造物振動数と第n構造物振動数の相関係数であり、λは第i構造物振動数と第n構造物振動数の比率である。 Where ζ i and ζ n are damping ratios of the i-th and n-th modes, ρ in is a correlation coefficient between the i-th structure frequency and the n-th structure frequency, and λ T is the i-th structure frequency. It is the ratio of the object frequency and the n-th structure frequency.

第8工程:構造物の耐震応答効果を設定した構造物の耐震性能レベルと等しくさせて、標準1自由度弾塑性構造系における耐震性能レベルを得る。即ち; Eighth step: The seismic performance level of the standard 1-degree-of-freedom elastoplastic structure system is obtained by making the seismic performance of the structure equal to the seismic performance level of the structure. Ie;

として、標準1自由度弾塑性構造系における耐震性能レベルの変位を求める。 As a result, the displacement of the seismic performance level in the standard one-degree-of-freedom elasto-plastic structural system is obtained.

第9工程:設計構造物をPushover解析し、構造物の耐力曲線(pushover curve)を対応する標準1自由度弾塑性構造系加速度−変位関係曲線に変換する。 Ninth step: Pushover analysis of the designed structure is performed, and the proof curve of the structure is converted into a corresponding standard 1-degree-of-freedom elasto-plastic structural system acceleration-displacement relationship curve.

変換式は以下の通りである。 The conversion formula is as follows.

そのうち、
は第1振動モード等価質量であり、Γは第1振動モード刺激係数である。
は第1振動モード頂点ベクトルである。urnは構造物の頂点の変位である。Vは構造物のベースシアであり、これにより構造物の第1モードにおける弾塑性折れ線モデルの第2剛性係数
を得る。
Of which
Is the first vibration mode equivalent mass, and Γ 1 is the first vibration mode stimulation coefficient.
Is the first vibration mode vertex vector. u rn is the displacement of the apex of the structure. V b is the base shear of the structure, and thus the second stiffness coefficient of the elasto-plastic broken line model in the first mode of the structure.
To get

第10工程:標準1自由度弾塑性構造系を性能双スペクトルの1自由度弾塑性構造系と等価にして、第1構造物周期に基づき、性能双スペクトルの1自由度弾塑性構造系から直接地震動記録における加速度のピーク値の最小値、平均値及び最大値、及び標準1自由度弾塑性構造系における地震応答の絶対加速度のピーク値の最小値、平均値及び最大値を得る。 Step 10: The standard 1-DOF elasto-plastic structural system is made equivalent to the performance bi-spectral 1-DOF elasto-plastic structural system, and based on the first structure period, directly from the performance bi-spectral 1-DOF elasto-plastic structural system. The minimum value, the average value, and the maximum value of the acceleration peak value in the seismic motion record, and the minimum value, the average value, and the maximum value of the absolute acceleration peak value of the seismic response in the standard one-degree-of-freedom elasto-plastic structural system are obtained.

標準1自由度弾塑性構造系における耐震性能レベルと性能層スペクトルの1自由度形の整能レベルが一致しない場合には、近接する2つの性能双スペクトルの1自由度系の性能レベルの間で内挿法を用いて確定することができる。また標準1自由度弾塑性構造系の第2剛性係数と性能双スペクトルの1自由度弾塑性構造系における2本折れ線弾塑性モデルの第2剛性係数が一致しない場合には、近接する2つの性能双スペクトルの1自由度系の性能レベルの間で内挿法を用いて確定することができる。 If the seismic performance level of the standard one-degree-of-freedom elasto-plastic structural system and the one-degree-of-freedom formability level of the performance layer spectrum do not match, the performance level of two adjacent performance bispectral one-degree-of-freedom systems is It can be determined using an interpolation method. Also, if the second stiffness coefficient of the standard one-degree-of-freedom elasto-plastic structure system and the second stiffness coefficient of the two-line broken line elasto-plastic model in the performance bispectral one-degree-of-freedom elasto-plastic structure system do not match, the two performances that are close to each other Interpolation can be used to establish between the performance levels of a bispectral one-degree-of-freedom system.

第11工程:標準1自由度弾塑性構造系における地震応答の絶対加速度のピーク値の最小値、平均値及び最大値に基づき、平方及び平方根を求める方法又は完全二次結合法を用いて、耐震性能レベル下での構造物の耐震応答効果の最小値rmin、平均値rave及び最大値rmaxを計算する。 11th step: Based on the minimum value, the average value, and the maximum value of the peak value of the absolute acceleration of the seismic response in the standard one-degree-of-freedom elasto-plastic structural system, the method of obtaining squares and square roots or the complete quadratic coupling method is used The minimum value r min , the average value r ave and the maximum value r max of the seismic response effect of the structure under the performance level are calculated.

そのうち、平方及び平方根を求める方法は以下の通りである。 The method of finding the square and the square root is as follows.

そのうち、完全二次結合法は以下の通りである。 Among them, the perfect quadratic coupling method is as follows.

本発明の性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法は、定量化した性能レベルに基づいてそのまま耐震設計を行う方法であり、最初に1つの性能双スペクトルの1自由度弾塑性構造系を人為的に仮定し、構造物の最上層における特性変位角ρobj−m(d)及び2本折れ線弾塑性モデルの第2剛性を調整して、それらを標準1自由度弾塑性構造系と等しくさせることにより、耐震性能レベルにおける構造物の耐震応答効果を求めるものである。本発明の性能レベルに基づいて耐震設計を行う方法では、最終的な破壊状態を耐震設計の基礎とするため、設計震度(地震動パラメーター)を上回る地震が発生したとしても、構造物の耐震性能を制御することが可能である。明らかに、本件特許出願は、従来の設計震度(地震動パラメーター)に基づく性能指向型耐震設計よりもさらに科学的で、構造物の耐震挙動を制御することが可能である。 The multimodal performance-oriented seismic design method based on the performance bispectrum of the present invention is a method for performing seismic design as it is based on the quantified performance level. First, one performance bispectral one-degree-of-freedom elastoplastic structural system is used. Is artificially assumed, and the characteristic displacement angle ρ obj -m (d) in the uppermost layer of the structure and the second rigidity of the two-line broken line elastic-plastic model are adjusted to make them the standard one-degree-of-freedom elastic-plastic structural system. By making them equal, the seismic response effect of the structure at the seismic performance level is obtained. In the method of performing seismic design based on the performance level of the present invention, since the final failure state is the basis of seismic design, even if an earthquake exceeding the design seismic intensity (seismic motion parameter) occurs, the seismic performance of the structure will be improved. It is possible to control. Clearly, the present patent application is more scientific than the performance-oriented seismic design based on the conventional design seismic intensity (seismic motion parameter), and is capable of controlling the seismic behavior of a structure.

なお、当業者であれば上述の説明に基づいて改良又は変換を行うことができ、それらの改良及び変換はすべて本発明が添付する特許請求の範囲の保護範囲に属することを理解されたい。 It should be understood that those skilled in the art can make improvements or conversions based on the above description, and all such modifications and conversions are included in the scope of protection of the claims attached to the present invention.

Claims (8)

1組の異なる性能双スペクトルの仮想構造物の最上層における特性変位角ρobj−m(d)を設定し、性能双スペクトルの1自由度弾塑性構造系、及び性能双スペクトルの1自由度系の変位性能レベルを構築する第1工程と、
耐震設計場所の地震環境特性に基づき、1組の地震動記録を選択し、性能双スペクトルの1自由度弾塑性微分方程式中に入力して、地震動記録における加速度のピーク値の最小値、平均値及び最大値、及び前記性能双スペクトルの1自由度弾塑性構造系における地震応答の絶対加速度のピーク値の最小値、平均値及び最大値を得る第2工程と、
同じ構造物周期において、1組の異なる2本折れ線弾塑性モデルの第2剛性を設定し、第2工程を繰り返す第3工程と、
実際の必要性を考慮しつつ、耐震基準に基づいて設計構造物の耐震性能レベルを設定し、前記耐震性能レベルの変位角
、構造の高さ
を含める第4工程と、
前記設計構造物に基づき、異なる振動モードにおける構造物周期、振動モード及びモード刺激係数を計算する第5工程と、
任意の応答量に対し、前記異なる振動モードの寄与係数を計算し、寄与閾値εを設定して、必要な振動モードの個数を求める第6工程と、
第1構造物周期を標準1自由度弾塑性構造系として設定し、前記標準1自由度弾塑性構造系を基に構造物の耐震応答効果を合成する第7工程と、
前記構造物の耐震応答効果を前記設定した構造物の耐震性能レベルと等しくさせて、前記標準1自由度弾塑性構造系における耐震性能レベルを得る第8工程と、
前記設計構造物をPushover解析し、構造物の耐力曲線(pushover curve)を対応する標準1自由度弾塑性構造系加速度−変位関係曲線に変換する第9工程と、
前記標準1自由度弾塑性構造系を前記性能双スペクトルの1自由度弾塑性構造系と等価にして、第1構造物周期に基づき、前記性能双スペクトルの1自由度弾塑性構造系から直接地震動記録における加速度のピーク値の最小値、平均値及び最大値、及び前記標準1自由度弾塑性構造系における地震応答の絶対加速度のピーク値の最小値、平均値及び最大値を得る第10工程と、
前記標準1自由度弾塑性構造系における地震応答の絶対加速度のピーク値の最小値、平均値及び最大値に基づき、前記耐震性能レベル下での構造物の耐震応答効果の最小値rmin、平均値rave及び最大値rmaxを計算する第11工程、を含むことを特徴とする、性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法。
A characteristic displacement angle ρ obj -m (d) in the top layer of a set of different performance bispectral virtual structures is set, and a performance bispectral one-degree-of-freedom elastoplastic structure system and a performance bispectral one-degree-of-freedom system are set. First step to build the displacement performance level of
Based on the seismic environment characteristics of the seismic design site, a set of seismic motion records is selected and input into the one-degree-of-freedom elasto-plastic differential equation of the performance bispectrum, and the minimum and average peak values of acceleration in seismic motion records and A second step of obtaining a maximum value and a minimum value, an average value and a maximum value of the peak value of the absolute acceleration of the seismic response in the one-degree-of-freedom elastoplastic structural system of the performance bispectrum;
A third step of setting a second stiffness of a pair of two broken line elastic-plastic models in the same structure cycle, and repeating the second step;
Considering the actual need, set the seismic performance level of the design structure based on the seismic resistance standard, and change the displacement angle of the seismic performance level.
, Structure height
A fourth step including
A fifth step of calculating a structure period, a vibration mode and a modal stimulation coefficient in different vibration modes based on the design structure;
A sixth step of calculating the contribution coefficient of the different vibration modes for an arbitrary response amount, setting a contribution threshold value ε, and obtaining the number of necessary vibration modes,
A seventh step of setting the first structure period as a standard one-degree-of-freedom elasto-plastic structural system and synthesizing a seismic response effect of the structure based on the standard one-degree-of-freedom elasto-plastic structural system;
An eighth step of making the seismic response effect of the structure equal to the seismic performance level of the set structure to obtain the seismic performance level in the standard one-degree-of-freedom elastoplastic structural system;
A ninth step of performing Pushover analysis of the design structure and converting a proof stress curve (pushover curve) of the structure into a corresponding standard one-degree-of-freedom elasto-plastic structural system acceleration-displacement relationship curve;
The standard one-degree-of-freedom elasto-plastic structural system is made equivalent to the one-degree-of-freedom elasto-plastic structural system of the performance bispectrum, and based on the first structure period, the seismic motion is directly generated from the one-degree-of-freedom elasto-plastic structural system of the performance bispectrum. A tenth step of obtaining a minimum value, an average value and a maximum value of the acceleration peak value in the record, and a minimum value, an average value and a maximum value of the absolute acceleration peak value of the seismic response in the standard one-degree-of-freedom elasto-plastic structural system; ,
Based on the minimum value, the average value, and the maximum value of the absolute acceleration peak values of the seismic response in the standard 1-degree-of-freedom elasto-plastic structural system, the minimum value r min of the seismic response effect of the structure under the seismic performance level, the average A multimodal performance-oriented seismic design method based on performance bispectra, comprising: an eleventh step of calculating a value r ave and a maximum value r max .
前記第1工程において、前記性能双スペクトルの1自由度系の変位性能レベルの計算式は:
そのうち、Hは構造物の仮想の高さであり、
であり、χ及びCrは経験係数であり、経験式で得て、Dobj−mは、性能双スペクトルの構造物の頂点変位性能値であり、
であり、仮想構造物の地震応答のモード制御については、モード形状ベクトルと高さは正比例の関係をなし、即ち
であり、hは第i層の層間高さであり、Hは第i層の構造物の高さであり、mは第i層の質量であることを特徴とする、請求項1に記載の性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法。
In the first step, the calculation formula of the displacement performance level of the performance bispectral one-degree-of-freedom system is:
Where H is the virtual height of the structure,
And χ and Cr are empirical coefficients, obtained by an empirical formula, D obj-m is the vertex displacement performance value of the structure of the performance bispectrum,
For the seismic response mode control of the virtual structure, the mode shape vector and the height have a direct proportional relationship, that is,
Wherein h i is the interlayer height of the i-th layer, H i is the height of the structure of the i-th layer, and mi is the mass of the i-th layer. A multimodal performance-oriented seismic design method based on the performance bispectrum described in.
前記第2工程において、前記地震環境特性は、マグニチュード、断層メカニズム、断層距離及び土地条件を含むことを特徴とする、請求項1に記載の性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法。 The multimodal performance-oriented seismic design method based on performance bispectrum according to claim 1, wherein, in the second step, the seismic environment characteristics include magnitude, fault mechanism, fault distance and land condition. 前記第2工程において、選択した地震動記録を性能双スペクトルの1自由度弾塑性微分方程式中に入力し、地震動記録の大きさを繰り返し調整して、性能双スペクトルの1自由度弾塑性系の変位応答ピーク値が性能双スペクトルの1自由度系の耐震性能レベルに達するようにして、地震動記録における加速度のピーク値の最小値、平均値及び最大値、及び前記性能双スペクトルの1自由度弾塑性構造系における地震応答の絶対加速度のピーク値の最小値、平均値及び最大値を得ることを特徴とする、請求項2に記載の性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法。 In the second step, the selected seismic motion record is input into the performance bispectral one-degree-of-freedom elasto-plastic differential equation, and the size of the seismic motion record is repeatedly adjusted to displace the performance bispectral one-degree-of-freedom elastoplastic system. The response peak value is set so as to reach the seismic performance level of the one-degree-of-freedom system of the performance bispectrum, and the minimum, mean, and maximum values of the acceleration peak values in the seismic motion record, and the one-degree-of-freedom elastoplasticity of the performance bispectrum. The multimodal performance-oriented seismic design method based on the performance bispectrum according to claim 2, wherein the minimum value, the average value, and the maximum value of the peak values of the absolute acceleration of the seismic response in the structural system are obtained. 前記第5工程において、動特性方程式を用いて設計構造物の動特性解析を行うが、動特性方程式は:
そのうち、kは構造物自体の剛性マトリクスであり、
は第n次振動モードのモードであり、ωは第n次振動モードの構造物振動数であり、第n次振動モードの構造物周期は
であり、第n次振動モードのモード刺激係数は
であり、そのうちNは構造物の振動モードの合計次数であり、振動モードの総数でもあり、mは構造物の第j層の質量であり、
は構造物の第j層の振動モードであることを特徴とする、請求項3に記載の性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法。
In the fifth step, the dynamic characteristic analysis of the design structure is performed using the dynamic characteristic equation.
Where k is the stiffness matrix of the structure itself,
Is the mode of the nth vibration mode, ω n is the structure frequency of the nth vibration mode, and the structure period of the nth vibration mode is
And the modal stimulation coefficient of the nth vibration mode is
Where N is the total order of the vibration modes of the structure and is also the total number of the vibration modes, m j is the mass of the j-th layer of the structure,
Is a vibration mode of the j-th layer of the structure, wherein the method is a multimodal performance-oriented seismic design method based on the performance bispectrum of claim 3.
前記第7工程において、平方及び平方根を求める方法又は完全二次結合法を用いて、構造物の耐震応答効果を合成することを特徴とする、請求項5に記載の性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法。 The multimodal based on performance bispectra according to claim 5, characterized in that, in the seventh step, the seismic response effect of the structure is synthesized by using a method of obtaining a square and a square root or a complete quadratic coupling method. Performance-oriented seismic design method. 前記第10工程において、標準1自由度弾塑性構造系における耐震性能レベルと性能双スペクトルの1自由度系の性能レベルが一致しない場合には、近接する2つの性能双スペクトルの1自由度系の性能レベルの間で内挿法を用いて確定することができ、標準1自由度弾塑性構造系の第2剛性係数と性能双スペクトルの1自由度弾塑性構造系における2本折れ線弾塑性モデルの第2剛性係数が一致しない場合には、近接する2つの性能双スペクトルの1自由度系の性能レベルの間で内挿法を用いて確定することができることを特徴とする、請求項6に記載の性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法。 In the tenth step, when the seismic performance level in the standard one-degree-of-freedom elasto-plastic structural system and the performance level of the one-degree-of-freedom system of the performance bispectrum do not match, the performance of two adjacent one-degree-of-performance bispectral systems is calculated. It can be determined by using the interpolation method between the performance levels. The second stiffness coefficient of the standard one-degree-of-freedom elasto-plastic structural system and the performance of the two broken line elasto-plastic model of the performance bispectral one-degree-of-freedom elasto-plastic structural system. 7. The method according to claim 6, wherein if the second stiffness coefficients do not match, the performance levels of two adjacent performance bispectral one-degree-of-freedom systems can be determined using an interpolation method. Multimodal Performance-oriented Seismic Design Method Based on Performance Bispectrum. 前記第11工程において、平方及び平方根を求める方法又は完全二次結合法を用いて、耐震性能レベル下での構造物の耐震応答効果の最小値rmin、平均値rave及び最大値rmaxを計算することを特徴とする、請求項7に記載の性能双スペクトルに基づくマルチモーダル性能指向型耐震設計方法。 In the eleventh step, the minimum value r min , the average value r ave, and the maximum value r max of the seismic response effect of the structure under the seismic performance level are calculated by using a method of obtaining a square and a square root or a complete quadratic coupling method. The multimodal performance-oriented seismic design method according to claim 7, wherein the method is a calculation.
JP2019565937A 2018-02-12 2018-10-27 Multimodal performance-oriented seismic design method based on performance bispectrum Active JP6798732B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810144575.9 2018-02-12
CN201810144575.9A CN108460200B (en) 2018-02-12 2018-02-12 Multi-modal performance-based Seismic Design Method based on condition bispectrum
PCT/CN2018/112249 WO2019153798A1 (en) 2018-02-12 2018-10-27 Multi-modal performance-based anti-seismic design method based on performance bispectrum

Publications (2)

Publication Number Publication Date
JP2020522071A true JP2020522071A (en) 2020-07-27
JP6798732B2 JP6798732B2 (en) 2020-12-09

Family

ID=63217032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019565937A Active JP6798732B2 (en) 2018-02-12 2018-10-27 Multimodal performance-oriented seismic design method based on performance bispectrum

Country Status (3)

Country Link
JP (1) JP6798732B2 (en)
CN (1) CN108460200B (en)
WO (1) WO2019153798A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109344511B (en) * 2018-10-09 2019-11-05 青岛理工大学 Structural elements Seismic Bearing Capacity calculation method based on performance standard
CN110674595B (en) * 2019-10-17 2023-04-07 上海市建筑科学研究院 Displacement-based masonry structure anti-seismic performance evaluation method
CN111695268B (en) * 2020-06-17 2022-05-31 青岛理工大学 Quick dynamic time course analysis method for earthquake prediction of smart city
CN113312691B (en) * 2021-05-18 2022-05-03 青岛理工大学 Seismic design method based on performance level correction coefficient

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092402A (en) * 2007-10-04 2009-04-30 Toda Constr Co Ltd Prediction system of seismic intensity of building according to earthquake information
JP2011257237A (en) * 2010-06-08 2011-12-22 Ohbayashi Corp Earthquake damage prediction method
JP2016103101A (en) * 2014-11-27 2016-06-02 株式会社東芝 Aseismic analysis apparatus, method and program
WO2018193564A1 (en) * 2017-04-19 2018-10-25 中国電力株式会社 Dynamic response analysis method for nonlinear multiple degree of freedom system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103106304B (en) * 2013-01-22 2017-08-29 青岛理工大学 The Seismic Design Method of hamonic function is composed based on condition
CN103065024B (en) * 2013-01-22 2018-01-12 青岛理工大学 Seismic Design Method based on design response spectrum hamonic function
JP6086752B2 (en) * 2013-02-21 2017-03-01 三菱重工業株式会社 Seismic evaluation method for steam generator
CN105160055B (en) * 2015-07-07 2018-01-16 重庆大学 A kind of Seismic Design Method of the frame structure based on displacement
CN107153728B (en) * 2017-04-26 2020-08-28 西安交通大学 Grinding wheel wear state feature extraction method based on double-spectrum amplitude distribution entropy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092402A (en) * 2007-10-04 2009-04-30 Toda Constr Co Ltd Prediction system of seismic intensity of building according to earthquake information
JP2011257237A (en) * 2010-06-08 2011-12-22 Ohbayashi Corp Earthquake damage prediction method
JP2016103101A (en) * 2014-11-27 2016-06-02 株式会社東芝 Aseismic analysis apparatus, method and program
WO2018193564A1 (en) * 2017-04-19 2018-10-25 中国電力株式会社 Dynamic response analysis method for nonlinear multiple degree of freedom system

Also Published As

Publication number Publication date
JP6798732B2 (en) 2020-12-09
WO2019153798A1 (en) 2019-08-15
CN108460200B (en) 2019-07-16
CN108460200A (en) 2018-08-28

Similar Documents

Publication Publication Date Title
JP2020522071A (en) Multimodal performance oriented seismic design method based on performance bispectrum
CN109344511B (en) Structural elements Seismic Bearing Capacity calculation method based on performance standard
Liu et al. Pushover analysis of underground structures: Method and application
WO2019192166A1 (en) Method for estimating setting of seismic risk for performance-based seismic design
CN106897510A (en) A kind of bridge structure 3-D seismics vulnerability analysis method
CN107784154B (en) Earthquake resistance probability evaluation method based on behavior bispectrum
JP6979805B2 (en) Seismic isolation structure
CN111767596B (en) Seismic oscillation evaluation method based on performance level
CN103065024B (en) Seismic Design Method based on design response spectrum hamonic function
CN108446444A (en) Multi-modal performance-based Seismic Design Method based on performance standard
Hongwang Seismic analysis for wind turbines including soil-structure interaction combining vertical and horizontal earthquake
JP5945889B2 (en) Seismic isolation structure
CN108427833A (en) Performance-based Seismic Design Method based on D elastic-plastic earthquake response spectrum
Leu et al. Optimal allocation of non-linear viscous dampers for three-dimensional building structures
CN114491748B (en) OC-PSO-based super high-rise building wind resistance design optimization method
CN111695268B (en) Quick dynamic time course analysis method for earthquake prediction of smart city
CN103790257B (en) A kind of control storage has the method for the building structure isolation efficiency of floating historical relic
CN110990910B (en) Rapid iteration method for linear energy consumption structure response under time-course excitation
JP6108370B2 (en) Optimal design method of low-rise centralized control system using viscous damping
Hosseini et al. A Comparative Study on the Seismic Behavior of Ribbed, Schwedler, and Diamatic Space Domes by Using Dynamic Analyses
CN113312691B (en) Seismic design method based on performance level correction coefficient
Levy et al. Seismic design of friction-damped braced frames based on historical records
Chikh et al. Ductility spectrum method for design and verification of structures: single-degree-of-freedom bilinear systems
CN113343536B (en) Method and device for establishing coupling model for earthquake-resistant analysis and coupling model
Nekooei et al. Spectral investigation on behaviour of mass isolated structures and their semi-active control against earthquakes

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200122

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191128

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201112

R150 Certificate of patent or registration of utility model

Ref document number: 6798732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150