JP2011257237A - Earthquake damage prediction method - Google Patents
Earthquake damage prediction method Download PDFInfo
- Publication number
- JP2011257237A JP2011257237A JP2010131309A JP2010131309A JP2011257237A JP 2011257237 A JP2011257237 A JP 2011257237A JP 2010131309 A JP2010131309 A JP 2010131309A JP 2010131309 A JP2010131309 A JP 2010131309A JP 2011257237 A JP2011257237 A JP 2011257237A
- Authority
- JP
- Japan
- Prior art keywords
- response
- damage
- earthquake
- building
- deformation angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 230000004044 response Effects 0.000 claims abstract description 148
- 238000009826 distribution Methods 0.000 claims abstract description 39
- 238000004364 calculation method Methods 0.000 claims abstract description 14
- 238000004088 simulation Methods 0.000 claims abstract description 3
- 238000006073 displacement reaction Methods 0.000 claims description 59
- 239000011229 interlayer Substances 0.000 claims description 35
- 230000009467 reduction Effects 0.000 claims description 17
- 238000012986 modification Methods 0.000 abstract 2
- 230000004048 modification Effects 0.000 abstract 2
- 238000013016 damping Methods 0.000 description 34
- 238000010586 diagram Methods 0.000 description 30
- 238000011156 evaluation Methods 0.000 description 18
- 230000033001 locomotion Effects 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 10
- 238000000342 Monte Carlo simulation Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000012916 structural analysis Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Geophysics And Detection Of Objects (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は、地震被害予測方法に関する。 The present invention relates to an earthquake damage prediction method.
近年、事業継続マネジメント(BCM: Business Continuity Management)が注目され、建物の地震被害予測に基づいた効果的な地震対策が求められている。この地震被害予測の方法として、例えば、特許文献1では、地震強度と建物属性データ(構造,階高,建築年代,耐震性能指標など)を設定することによって地震強度に対する建物の被害を予測する方法が提案されている。 In recent years, Business Continuity Management (BCM) has attracted attention, and effective earthquake countermeasures based on earthquake damage prediction of buildings are required. As a method for predicting earthquake damage, for example, in Patent Document 1, a method for predicting building damage to earthquake strength by setting earthquake strength and building attribute data (structure, floor height, building age, seismic performance index, etc.) Has been proposed.
建物の地震被害は、地震により生じる建物の応答値が建物の保有している限界値を超過した場合に発生するため、応答値と限界値を様々な不確定性(バラツキ)を適切に考慮して予測する必要がある。特に、建物の応答値は、地震動のスペクトル特性や建物特性(建物周期、復元力特性)により異なるが、上述した予測手法ではこれらの要因が十分に考慮されていないため信頼性の高い予測を行うことが困難であった。 Earthquake damage to a building occurs when the response value of the building caused by the earthquake exceeds the limit value possessed by the building. Therefore, various uncertainties (variations) are appropriately considered in the response value and limit value. Need to be predicted. In particular, the response value of the building varies depending on the spectral characteristics of the ground motion and the building characteristics (building cycle, restoring force characteristics), but the above prediction method does not fully consider these factors, so a highly reliable prediction is performed. It was difficult.
また、事業継続の観点から地震発生後には復旧に向けて早急に初動対応を決定する必要があり、建物の被害程度を迅速に予測することが重要となる。建物の応答値を迅速に予測する手法として等価線形化法があるが、この手法は建物の塑性化の程度に応じて定められた係数を用いて弾性系の応答値を補正することで弾塑性系の応答値を予測している。このため、現実の弾塑性系の応答値との間には予測誤差に伴う不確定性が生じることになり、信頼性の高い予測を行うことが困難であった。 In addition, from the viewpoint of business continuity, it is necessary to promptly determine the initial response for recovery after an earthquake occurs, and it is important to quickly predict the extent of damage to buildings. There is an equivalent linearization method as a method for quickly predicting the response value of a building, but this method is elastic-plastic by correcting the response value of the elastic system using a coefficient determined according to the degree of plasticization of the building. The response value of the system is predicted. For this reason, uncertainty associated with the prediction error occurs between the response value of the actual elasto-plastic system, and it is difficult to perform highly reliable prediction.
本発明は、上記のような課題に鑑みてなされたものであり、その目的は地震による建物の被害について信頼性の高い予測を行うことが可能な地震被害予測方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an earthquake damage prediction method capable of predicting a building damage due to an earthquake with high reliability.
かかる目的を達成するため、本発明の地震被害予測方法は、地震による建物の被害を予測する地震被害予測方法であって、前記建物を1自由度系に縮約した場合での地震に対する応答変位を等価線形化法によって算出する応答変位算出ステップであって、確率変数として定められた等価線形応答変位の修正係数および減衰補正係数の修正係数を用いて前記応答変位を算出する応答変位算出ステップと、前記応答変位から前記建物の応答変形角を算出する応答変形角算出ステップと、建物群を対象としたシミュレーションに基づいて、地震による応答層間変形角の確率分布を求める応答層間変形角算出ステップと、過去の地震被害結果から地震の強さと建物の被害率との関係を求める被害率算出ステップと、前記応答層間変形角の確率分布と前記被害率とに基づいて、前記建物の限界変形角を算出する限界変形角算出ステップと、前記応答変形角と前記限界変形角とを比較することによって前記建物の被害の発生を予測する被害予測ステップと、を有することを特徴とする。
このような地震被害予測方法によれば、地震による建物の被害について信頼性の高い予測を行うことが可能である。
In order to achieve such an object, the earthquake damage prediction method of the present invention is an earthquake damage prediction method for predicting damage to a building due to an earthquake, and the response displacement to an earthquake when the building is reduced to a one-degree-of-freedom system. A response displacement calculating step of calculating the response displacement using a correction coefficient of an equivalent linear response displacement and a correction coefficient of an attenuation correction coefficient determined as a random variable. A response deformation angle calculating step for calculating a response deformation angle of the building from the response displacement; and a response interlayer deformation angle calculating step for obtaining a probability distribution of response interlayer deformation angles due to an earthquake based on a simulation for a group of buildings; A damage rate calculating step for obtaining a relationship between the strength of the earthquake and the damage rate of the building from the past earthquake damage results, and the probability distribution of the response interlayer deformation angle and the previous A critical deformation angle calculating step for calculating a critical deformation angle of the building based on a damage rate, and a damage prediction step for predicting the occurrence of damage to the building by comparing the response deformation angle and the critical deformation angle. It is characterized by having.
According to such an earthquake damage prediction method, it is possible to predict the damage of buildings due to an earthquake with high reliability.
かかる地震被害予測方法であって、前記応答変位を算出する際に、確率変数として定められた履歴要素の等価減衰定数の低減係数をさらに用いることが望ましい。また、前記履歴要素の等価減衰定数の低減係数は、建物の復元力特性に応じて定められていることが望ましい。
このような地震被害予測方法によれば、より信頼性を高めることが可能である。
In this earthquake damage prediction method, it is preferable to further use a reduction coefficient of an equivalent attenuation constant of a history element defined as a random variable when calculating the response displacement. Further, it is desirable that the reduction coefficient of the equivalent attenuation constant of the history element is determined according to the restoring force characteristic of the building.
According to such an earthquake damage prediction method, it is possible to further improve the reliability.
かかる地震被害予測方法であって、前記応答変形角及び前記限界変形角は、それぞれ対数正規分布として算出され、前記被害予測ステップでは、前記応答変形角の平均値と、前記限界変形角の平均値とを比較してもよい。
このような地震被害予測方法によれば、信頼性の高い予測を行うことが可能である。
In this earthquake damage prediction method, the response deformation angle and the limit deformation angle are each calculated as a lognormal distribution, and in the damage prediction step, an average value of the response deformation angle and an average value of the limit deformation angle May be compared.
According to such an earthquake damage prediction method, it is possible to perform a highly reliable prediction.
かかる地震被害予測方法であって、前記応答変形角及び前記限界変形角は、それぞれ対数正規分布として算出され、前記被害予測ステップでは、前記応答変形角の平均値よりも高い所定値と、前記限界変形角の平均値とを比較してもよい。
このような地震被害予測方法によれば、より安全余裕を見込んだ予測を行うことが可能である。
In this earthquake damage prediction method, each of the response deformation angle and the limit deformation angle is calculated as a lognormal distribution, and in the damage prediction step, a predetermined value higher than an average value of the response deformation angles and the limit You may compare with the average value of a deformation angle.
According to such an earthquake damage prediction method, it is possible to make a prediction with a more safety margin.
かかる地震被害予測方法であって、前記限界変形角は、被害の大きさに応じて複数定められることが望ましい。
このような地震被害予測方法によれば、被災度を予測することができる。
In this earthquake damage prediction method, it is preferable that a plurality of the limit deformation angles are determined according to the magnitude of damage.
According to such an earthquake damage prediction method, the degree of damage can be predicted.
かかる地震被害予測方法であって、広域に分布した複数の建物について、地震による被害をそれぞれ予測することが望ましい。
このような地震被害予測方法によれば、地震の際の復旧の優先順位の初動対応を適切に決定することができる。
In this earthquake damage prediction method, it is desirable to predict damage caused by an earthquake for a plurality of buildings distributed over a wide area.
According to such an earthquake damage prediction method, it is possible to appropriately determine the initial response of the restoration priority in the event of an earthquake.
本発明によれば、地震による建物の被害について信頼性の高い予測を行うことが可能である。 According to the present invention, it is possible to make a highly reliable prediction of building damage caused by an earthquake.
以下、本発明の一実施形態について図面を参照しつつ説明する。なお、以下においては、本発明の地震被害予測方法を実行するシステム(装置)として、パーソナルコンピュータを例に挙げて説明することとするが、特にこれに制限されるものではない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following, a personal computer will be described as an example of a system (apparatus) for executing the earthquake damage prediction method of the present invention, but the present invention is not particularly limited thereto.
===システム構成===
図1はシステム構成を示す図である。図1に示すシステムは、CPUやメモリを有するコンピュータ10、記憶装置11、入力装置12、出力装置13を備えて構成される。本実施形態においては、コンピュータ10がパーソナルコンピュータであることとするが、これに限定されるものではない。記憶装置11は、例えば、ハードディスク、メモリなどである。記憶装置11には、各種プログラム、例えば、コンピュータ10に地震被害予測を実行させるためのプログラムなどが記憶されている。また、記憶装置11には、過去の地震に関するデータや、建物に関するデータなどが記憶されている。なお、記憶装置11は、コンピュータ10に内蔵させることとしてもよいし、コンピュータ10に外付けさせることとしてもよい。また、記憶装置11は、コンピュータ10とネットワーク(例えば、LAN(local area network)など)を介して接続されている他のコンピュータに備えさせることとしてもよい。入力装置12は、コンピュータ10に各種の条件やデータを入力するためのものであり、例えば、キーボードやマウスなどである。出力装置13は、コンピュータ10の演算結果を出力(表示)するためのものであり、例えばディスプレイなどである。
=== System configuration ===
FIG. 1 is a diagram showing a system configuration. The system shown in FIG. 1 includes a computer 10 having a CPU and a memory, a storage device 11, an input device 12, and an output device 13. In the present embodiment, the computer 10 is a personal computer, but is not limited to this. The storage device 11 is, for example, a hard disk or a memory. The storage device 11 stores various programs, for example, a program for causing the computer 10 to execute earthquake damage prediction. The storage device 11 stores data related to past earthquakes, data related to buildings, and the like. The storage device 11 may be built in the computer 10 or may be externally attached to the computer 10. The storage device 11 may be provided in another computer connected to the computer 10 via a network (for example, a local area network (LAN)). The input device 12 is for inputting various conditions and data to the computer 10, and is, for example, a keyboard or a mouse. The output device 13 is for outputting (displaying) the calculation result of the computer 10, and is, for example, a display.
なお、上記のプログラムは、例えば、フレキシブルディスク、CD−ROM、DVD−ROM、半導体メモリ等の記録媒体14から記憶装置11に記憶させることとしてもよいし、ネットワーク(例えば、LANなど)を介して接続されている他のコンピュータから取得することとしてもよい。 The above program may be stored in the storage device 11 from the recording medium 14 such as a flexible disk, a CD-ROM, a DVD-ROM, or a semiconductor memory, or via a network (for example, a LAN). It is good also as acquiring from other connected computers.
本実施形態では、地震動の応答スペクトルと建物条件(建築年、構造形式、建物階数、構造耐震指標など)を入力装置12から入力すると、後述するように、コンピュータ10により応答変形角Sと限界変形角Rが不確定性を考慮した対数正規分布として算出される。そして、応答変形角Sと限界変形角Rの比較に基づいて被害の予測が行われ、その予測結果が出力装置13に出力される。 In this embodiment, when a response spectrum of earthquake motion and building conditions (construction year, structure type, building floor number, structural seismic index, etc.) are input from the input device 12, the response deformation angle S and the limit deformation are calculated by the computer 10 as will be described later. The angle R is calculated as a lognormal distribution considering uncertainty. The damage is predicted based on the comparison between the response deformation angle S and the limit deformation angle R, and the prediction result is output to the output device 13.
===地震被害予測の概略について===
図2は、本実施形態における地震被害予測方法についての概念を示すフロー図である。図2を参照しつつ、本実施形態の地震被害予測方法の概略について説明する。
=== Outline of earthquake damage prediction ===
FIG. 2 is a flowchart showing the concept of the earthquake damage prediction method in the present embodiment. An outline of the earthquake damage prediction method of the present embodiment will be described with reference to FIG.
≪応答変形角の評価≫
本実施形態では、多自由度系の建物を1自由度系モデルに縮約し(言い換えると、建物を1層に置き換えた簡易モデルを用いて)、建物の応答変形角Sを等価線形化法に基づき評価する。等価線形化法では、弾塑性系の応答変形角を弾性系の応答変形角を用いて予測するため、地震動特性や建物特性に応じたモデル不確定性が生じる。このため、後述するように、モデル不確定性を考慮して等価1自由度系の応答変位δeを評価し(S11)、そして、等価1自由度系の応答変位δeを用いて応答変形角Sを評価する(S12)。
≪Evaluation of response deformation angle≫
In this embodiment, a multi-degree-of-freedom building is reduced to a one-degree-of-freedom model (in other words, using a simple model in which the building is replaced with one layer), and the response deformation angle S of the building is converted into an equivalent linearization method. Based on the evaluation. In the equivalent linearization method, the response deformation angle of the elasto-plastic system is predicted using the response deformation angle of the elastic system, so that model uncertainty is generated according to the seismic motion characteristics and the building characteristics. Therefore, as will be described later, the response displacement δe of the equivalent one-degree-of-freedom system is evaluated in consideration of the model uncertainty (S11), and the response deformation angle S using the response displacement δe of the equivalent one-degree-of-freedom system. Is evaluated (S12).
≪限界変形角の評価≫
建物の限界値を、材料強度や強度評価式の変動などに伴う不確定性を考慮して評価する一手法として、過去の地震被害データに基づき作成された被害率曲線を用いる手法がある。しかし、被害率曲線は、建物群を対象に作成されているため耐力の異なる複数の建物が含まれており、且つ、地震動強さと建物群の被害率の関係しか得られないため、被害率曲線のみでは建物の限界変形角Rを評価することはできない。このため、本実施形態では、既往文献の被害率曲線を用いて建物群の被害率を求める(S21)とともに、建物群モデルを対象としたモンテカルロシュミレーションを行って(S22)、応答層間変形角の確率分布を求める(S23)。そして、応答層間変形角の確率分布と、被害率とを組み合わせて、地震被害結果を模擬できるように信頼性理論に基づき建物の限界変形角Rを評価する(S24)。
≪Evaluation of limit deformation angle≫
One method for evaluating the limit value of a building in consideration of uncertainties associated with fluctuations in material strength and strength evaluation formulas is to use a damage rate curve created based on past earthquake damage data. However, since the damage rate curve is created for buildings, it includes multiple buildings with different proof stresses, and only the relationship between the seismic intensity and the damage rate of the buildings can be obtained. It is not possible to evaluate the limit deformation angle R of a building by itself. For this reason, in this embodiment, the damage rate of the building group is obtained using the damage rate curve of the past literature (S21), and Monte Carlo simulation is performed on the building group model (S22), and the response interlayer deformation angle is calculated. A probability distribution is obtained (S23). Then, the limit deformation angle R of the building is evaluated based on the reliability theory so that the earthquake damage result can be simulated by combining the probability distribution of the response interlayer deformation angle and the damage rate (S24).
≪被災度の評価≫
建物の応答変形角Sと限界変形角Rを比較することによって、建物の被害を評価する(S30)。なお、本実施形態では、限界変形角Rを被害の大きさに応じて4つ設定して、応答変形角Sと4つの限界変形角Rとの比較を行うことにより、被災度(小破,中破、大破,倒壊)を評価するようにしている。
以下、フローの各項目の詳細について説明する。
≪Evaluation of disaster damage≫
The damage of the building is evaluated by comparing the response deformation angle S and the limit deformation angle R of the building (S30). In the present embodiment, four critical deformation angles R are set according to the magnitude of damage, and the response deformation angle S is compared with the four critical deformation angles R, so that the degree of damage (small damage, Medium damage, major damage, collapse).
Hereinafter, details of each item of the flow will be described.
===建物の応答変形角Sの評価について===
<等価1自由度系の応答変位δeの評価方法>
前述したように、本実施形態では、多自由度系(多層)の建物を1自由度系(1層)に縮約して、地震時における1自由度弾塑性系の応答変位を、最大点剛性による等価線形化法を用いて評価する。等価線形化法では、弾塑性系の応答変位を弾性系の応答変位を用いて予測するため、地震動特性や建物特性に応じて予測誤差に伴うモデル不確定性が生じる。このため、モデル不確定性を考慮して等価1自由度系の応答変位δeを評価する。
(1)式において、等価減衰定数heの平均値E[he],等価線形応答変位の修正係数aならびに減衰補正係数の修正係数rは以下の手法で評価する。
=== About Evaluation of Response Deformation Angle S of Building ===
<Evaluation method of response displacement δe of equivalent single-degree-of-freedom system>
As described above, in this embodiment, a multi-degree-of-freedom system (multi-layer) building is contracted to a one-degree-of-freedom system (one layer), and the response displacement of the one-degree-of-freedom elasto-plastic system at the time of earthquake is the maximum point. Evaluate using the equivalent linearization method with stiffness. In the equivalent linearization method, the response displacement of the elasto-plastic system is predicted using the response displacement of the elastic system, so that model uncertainty associated with the prediction error occurs according to the seismic motion characteristics and the building characteristics. Therefore, the response displacement δe of the equivalent one degree of freedom system is evaluated in consideration of the model uncertainty.
In the equation (1), the average value E [he] of the equivalent damping constant he, the correction coefficient a of the equivalent linear response displacement, and the correction coefficient r of the damping correction coefficient are evaluated by the following method.
<履歴要素の等価減衰定数の低減係数>
等価線形化法は調和外力に対する定常状態において厳密に成立するため、非定常状態である地震に対して等価線形化法を適用するときは、等価剛性および等価減衰を適切に設定する必要がある。このため、等価剛性keは1自由度弾塑性系の最大応答変位δaを用いて設定する。
(出典 柴田明徳:最新耐震構造解析,森北出版,1981)
等価減衰は、定常共振状態を想定した履歴要素の等価減衰定数heqを用いて設定する。
<Reduction factor of equivalent damping constant of hysteresis element>
Since the equivalent linearization method is strictly established in a steady state with respect to a harmonic external force, when applying the equivalent linearization method to an earthquake in an unsteady state, it is necessary to appropriately set the equivalent stiffness and equivalent damping. For this reason, the equivalent stiffness ke is set using the maximum response displacement δa of the one-degree-of-freedom elastic-plastic system.
(Source: Akinori Shibata: Latest Seismic Structural Analysis, Morikita Publishing, 1981)
The equivalent damping is set using an equivalent damping constant heq of a hysteresis element assuming a steady resonance state.
しかし、地震時の応答は定常共振状態ではないので、上式の等価減衰定数heqをそのまま用いると履歴要素の減衰を過大評価し、1自由度弾塑性系の応答変位を過少評価する恐れがある。このため、1自由度弾塑性系の応答変位を1自由度弾性系の応答変位を用いて予測できるように、(3)式の履歴要素の等価減衰定数heqに低減係数dを乗じて等価減衰定数heとして評価する。
However, since the response at the time of an earthquake is not in a steady resonance state, if the equivalent damping constant heq in the above equation is used as it is, there is a risk of overestimating the attenuation of the hysteresis element and underestimating the response displacement of the one-degree-of-freedom elastic-plastic system. . Therefore, equivalent damping is obtained by multiplying the hysteresis element equivalent damping constant heq of equation (3) by the reduction factor d so that the response displacement of the one degree of freedom elastic-plastic system can be predicted using the response displacement of the one degree of freedom elastic system. Evaluate as the constant he.
履歴要素の等価減衰定数の低減係数dは、履歴要素の等価減衰定数heqが地震時における1自由度弾塑性系の平均的な減衰特性に一致するように求める。
また、平均減衰定数hsは、1自由度弾塑性系への地震入力エネルギーが等価剛性keを有する等価なダッシュポットの減衰エネルギーに変換されたとして評価する。
(出典 柴田明徳:最新耐震構造解析,森北出版,1981)
等価固有円振動数ωeは(2)式の等価剛性keを用いて計算する。
ただし、履歴要素の等価減衰定数の低減係数dは地震動特性や建物特性に応じて変動するので、dの平均値E[d]を用いて等価減衰定数heの平均値E[he]を評価する。
The reduction coefficient d of the hysteresis element equivalent damping constant is determined so that the hysteresis element equivalent damping constant heq matches the average damping characteristic of the one-degree-of-freedom elastic-plastic system during an earthquake.
In addition, the average damping constant hs is evaluated on the assumption that the seismic input energy to the one-degree-of-freedom elastic-plastic system has been converted into the equivalent dashpot damping energy having the equivalent stiffness ke.
(Source: Akinori Shibata: Latest Seismic Structural Analysis, Morikita Publishing, 1981)
The equivalent natural circular frequency ωe is calculated using the equivalent stiffness ke in the equation (2).
However, since the reduction coefficient d of the equivalent attenuation constant of the hysteresis element varies depending on the seismic motion characteristics and the building characteristics, the average value E [he] of the equivalent attenuation constant he is evaluated using the average value E [d] of d. .
<等価線形応答変位の修正係数>
1自由度弾塑性系の応答変位を等価1自由度系の応答変位を用いて予測するので、1自由度弾塑性系の応答変位との間に予測誤差に伴うモデル不確定性が生じる。このため、両者の比率で定義される等価線形応答変位の修正係数aを、確率変数としてモデル化する。
<Equivalent linear response displacement correction factor>
Since the response displacement of the one-degree-of-freedom elastic-plastic system is predicted using the response displacement of the equivalent one-degree-of-freedom system, model uncertainty associated with the prediction error occurs between the response displacement of the one-degree-of-freedom elastic-plastic system. For this reason, the correction coefficient a of the equivalent linear response displacement defined by the ratio of both is modeled as a random variable.
<減衰補正係数の修正係数>
周期T,減衰定数hの変位応答スペクトルは、減衰定数5%の変位応答スペクトルSD(T,0.05)に減衰補正係数F(h)を乗じて求める。しかし、減衰補正係数F(h)を乗じて予測された変位応答スペクトルは、地震応答解析から計算された変位応答スペクトルと完全に一致しないので、予測誤差に伴うモデル不確定性が生じる。このため、1自由度弾性系の変位応答スペクトルSD(T,h)を地震応答解析より計算し、減衰補正係数F(h)に対する比率を減衰補正係数の修正係数rとし、rを確率変数としてモデル化する。
なお、減衰補正係数F(h)は次式で設定する。
(出典 日本建築学会:建築物荷重指針・同解説,1993)
例えば、h=0.05のとき、F(h)=1になる。
<Correction coefficient for attenuation correction coefficient>
The displacement response spectrum with the period T and the attenuation constant h is obtained by multiplying the displacement response spectrum S D (T, 0.05) with the attenuation constant 5% by the attenuation correction coefficient F (h). However, since the displacement response spectrum predicted by multiplying the attenuation correction coefficient F (h) does not completely match the displacement response spectrum calculated from the seismic response analysis, model uncertainty associated with the prediction error occurs. Therefore, the displacement response spectrum S D (T, h) of the one-degree-of-freedom elastic system is calculated from the seismic response analysis, the ratio to the attenuation correction coefficient F (h) is set as the correction coefficient r of the attenuation correction coefficient, and r is a random variable. As a model.
The attenuation correction coefficient F (h) is set by the following equation.
(Source: Architectural Institute of Japan: Building Load Guidelines / Comments, 1993)
For example, when h = 0.05, F (h) = 1.
<建物の応答変形角S>
建物の応答変形角Sは、(1)式の等価1自由度系の応答変位δeを用いて評価する。
(12)式において、H1は1次の等価高さであり、建物を逆三角形1次モードの均等質量せん断系でモデル化すると、H1は次式から求められる。
(12)式と(1)式より、建物の応答変形角Sは、
となり、両辺の自然対数をとると応答変形角Sの自然対数lnSは次式となる。
<Building response deformation angle S>
The response deformation angle S of the building is evaluated using the response displacement δe of the equivalent one degree of freedom system of the equation (1).
In Eq. (12), H 1 is the first-order equivalent height, and when a building is modeled by the uniform mass shear system of the inverted triangular first-order mode, H 1 is obtained from the following equation.
From equation (12) and equation (1), the response deformation angle S of the building is
When the natural logarithm of both sides is taken, the natural logarithm lnS of the response deformation angle S is expressed by the following equation.
等価線形応答変位の修正係数aと減衰補正係数の修正係数rを対数正規分布でモデル化すると、建物の応答変形角Sの分布形状も対数正規分布となり、応答変形角Sの確率密度関数F(s)は次式から計算される。
応答変形角Sの対数平均値λsは、(15)式を用いて、
となり、応答変形角Sの対数標準偏差ζsは次式となる。
When the correction coefficient a of the equivalent linear response displacement and the correction coefficient r of the attenuation correction coefficient are modeled with a lognormal distribution, the distribution shape of the response deformation angle S of the building also becomes a lognormal distribution, and the probability density function F ( s) is calculated from the following equation.
The logarithmic average value λs of the response deformation angle S is calculated using the equation (15):
The logarithmic standard deviation ζs of the response deformation angle S is given by the following equation.
なお、等価線形応答変位の修正係数aの対数平均値λaと対数標準偏差ζaは次式より計算される。
同様に、減衰補正係数の修正係数rの対数平均値λrと対数標準偏差ζrも計算される。
このように、本実施形態では、建物を1自由度系に縮約して、等価線形化法を用いて等価1自由度系の応答変位δeを評価している。また、本実施形態では、等価線形化法による応答変位δeの評価の際に、不確定性(ばらつき)を考慮している。具体的には、モデル化された等価線形応答変位の修正係数および減衰補正係数の修正係数を用いて応答変位δeの評価を行っている。そして、応答変位δeに基づいて応答変形角Sを評価している。
The logarithmic average value λa and logarithmic standard deviation ζa of the correction coefficient a of the equivalent linear response displacement are calculated from the following equations.
Similarly, the logarithmic average value λr and the logarithmic standard deviation ζr of the correction coefficient r of the attenuation correction coefficient are also calculated.
Thus, in this embodiment, the building is reduced to a one-degree-of-freedom system, and the response displacement δe of the equivalent one-degree-of-freedom system is evaluated using the equivalent linearization method. In this embodiment, uncertainty (variation) is taken into account when evaluating the response displacement δe by the equivalent linearization method. Specifically, the response displacement δe is evaluated using the modeled correction coefficient of the equivalent linear response displacement and the correction coefficient of the attenuation correction coefficient. The response deformation angle S is evaluated based on the response displacement δe.
===建物の限界変形角Rの評価について===
建物の限界変形角Rは、過去の地震被害データから求められた建物群の被害率に、建物群モデルを対象としたモンテカルロシュミレーションを新たに組み合わせて、地震被害結果を模擬できるように信頼性理論に基づき設定する。まず、地震被害データから作成された被害率曲線を用いて、地震動強さと建物群の被害率の関係を求める。次に、建物群モデルを作成してモンテカルロシュミレーションを行い、地震動強さと応答層間変形角の分布の関係を計算し、限界層間変形角の分布を仮定して損傷確率Pを解析的に求める。なお、層間変形角とは、層間変位を階高さで基準化したものである。そして、地震動強さが同一値のとき、被害率曲線から求められた建物群の被害率rと解析的に求められた損傷確率Pを等値することにより、限界層間変形角の分布の中央値と対数標準偏差を評価する。
=== About the evaluation of the limit deformation angle R of the building ===
The critical deformation angle R of the building is a reliability theory that can simulate the earthquake damage result by newly combining Monte Carlo simulation targeting the building group model with the damage rate of the building group obtained from past earthquake damage data. Set based on. First, using the damage rate curve created from the earthquake damage data, the relationship between the seismic intensity and the damage rate of the building group is obtained. Next, a building group model is created and Monte Carlo simulation is performed. The relationship between the seismic intensity and the distribution of the response interlayer deformation angle is calculated, and the damage probability P is analytically obtained assuming the distribution of the critical interlayer deformation angle. The interlayer deformation angle is obtained by standardizing the interlayer displacement by the floor height. And when the seismic intensity is the same value, by dividing the damage rate r of the building group obtained from the damage rate curve and the damage probability P found analytically, Evaluate log standard deviation.
図3A及び図3Bは、限界層間変形角の評価方法についての説明図である。なお、図3Aは建物群モデルに対する地震応答解析結果を示す図である。また、図3Bは建物群の被害率曲線を示す図である。図3A、図3Bにおいて横軸は地表面最大速度である。また、図3Aの縦軸は層間変形角であり、図3Bの縦軸は被害率である。 3A and 3B are explanatory diagrams of a method for evaluating the limit interlayer deformation angle. FIG. 3A is a diagram showing a result of an earthquake response analysis for a building group model. Moreover, FIG. 3B is a figure which shows the damage rate curve of a building group. 3A and 3B, the horizontal axis represents the ground surface maximum speed. Moreover, the vertical axis | shaft of FIG. 3A is an interlayer deformation angle, and the vertical axis | shaft of FIG. 3B is a damage rate.
図3Aに示すように、限界層間変形角は地表面最大速度(言い換えると地震動の大きさ)によらず一定であるが、応答層間変形角は地表面最大速度に応じて大きさが変化する。同図では、地表面最大速度(V1、V2・・、Vn)ごとの応答層間変形角の中央値を結ぶ線を示している。このように、地表面最大速度が大きくなるほど応答層間変形角も大きくなる。また、図3Bの被害率曲線からわかるように、地表面最大速度が大きくなるほど被害率が大きくなっている。この関係に基づき地震被害結果を模擬できるように限界層間変形角の評価を行う。 As shown in FIG. 3A, the limit interlayer deformation angle is constant regardless of the ground surface maximum velocity (in other words, the magnitude of the ground motion), but the response interlayer deformation angle changes in size according to the ground surface maximum velocity. In the same figure, the line which connects the median value of the response interlayer deformation angle for each ground surface maximum velocity (V1, V2,..., Vn) is shown. Thus, the response interlayer deformation angle increases as the ground surface maximum speed increases. Moreover, as can be seen from the damage rate curve in FIG. 3B, the damage rate increases as the ground surface maximum speed increases. Based on this relationship, the critical interlayer deformation angle is evaluated so that the earthquake damage results can be simulated.
建物群モデルを対象とした限界状態関数Zは、応答層間変形角Qの分布と限界層間変形角R´の分布を用いて定義される。
応答層間変形角Qと限界層間変形角R´の分布をともに対数正規分布でモデル化すると、限界状態関数Zに対応する信頼性指標βは次式より求められる。
The limit state function Z for the building group model is defined using the distribution of the response interlayer deformation angle Q and the distribution of the limit interlayer deformation angle R ′.
When the distributions of the response interlayer deformation angle Q and the limit interlayer deformation angle R ′ are both modeled by a lognormal distribution, the reliability index β corresponding to the limit state function Z is obtained from the following equation.
また、応答層間変形角の対数平均値と対数標準偏差は次式を用いて計算する。
このとき、建物群モデルを対象とした損傷確率Pは次式より求められる。
一方、建物群の被害率rは、過去の地震被害データ用いて作成された被害率曲線により計算する。
The logarithmic mean value and logarithmic standard deviation of the response interlayer deformation angle are calculated using the following equations.
At this time, the damage probability P for the building group model is obtained from the following equation.
On the other hand, the damage rate r of the group of buildings is calculated from a damage rate curve created using past earthquake damage data.
地表面最大速度がvのとき、建物群モデルを対象とした損傷確率Pと、被害率曲線より求まる被害率rを等値とする。
上式を整理すると、限界層間変形角R´の対数平均値λRと対数標準偏差ζRが次式から求められる。
When the ground surface maximum speed is v, the damage probability P for the building group model and the damage rate r obtained from the damage rate curve are set to be equal.
In summary, the logarithmic average value λ R and the logarithmic standard deviation ζ R of the limit interlayer deformation angle R ′ can be obtained from the following equations.
以上により、建物の限界変形角Rは、限界層間変形角R´を用いて評価する。
このように、本実施形態では、過去の地震被害データから求められた建物群の被害率に、建物群モデルを対象としたモンテカルロシュミレーションを組み合わせて、限界変形角Rの評価を行うようにしている。
As described above, the limit deformation angle R of the building is evaluated using the limit interlayer deformation angle R ′.
As described above, in this embodiment, the limit deformation angle R is evaluated by combining the damage rate of the building group obtained from the past earthquake damage data with the Monte Carlo simulation for the building group model. .
===建物の被災度の評価について===
前述したような応答変形角S及び限界変形角Rの評価によって、応答変形角Sと限界変形角Rの分布がともに対数正規分布でモデル化される。応答変形角Sの平均値E[S]と限界変形角Rの平均値E[Rj]は次式より計算される。
=== Evaluation of building damage level ===
By evaluating the response deformation angle S and the limit deformation angle R as described above, the distributions of the response deformation angle S and the limit deformation angle R are both modeled in a lognormal distribution. The average value E [S] of the response deformation angle S and the average value E [R j ] of the limit deformation angle R are calculated from the following equations.
例えば、建物の被災度jとして、小破,中破,大破,倒壊の4レベル(j=1〜4)を設定すると、被災度は、表1に示すように、応答変形角の平均値E[S]と限界変形角の平均値E[Rj]を比較することで評価できる。
For example, if four levels (j = 1 to 4) of small damage, medium damage, major damage, and collapse are set as the damage degree j of the building, the damage degree is an average value E of response deformation angles as shown in Table 1. It can be evaluated by comparing [S] with the average value E [R j ] of the critical deformation angle.
なお、予測誤差に伴う不確定性がモデル化されているので、応答変形角として平均値よりも高い所定値(例えば、90%非超過値に相当する値)を判定に用いてもよい。このとき、応答変形角の90%非超過値S90は次式より計算される。
(34)式において、係数gは目標とする非超過値に対応しており、90%非超過値のときはg=1.28となる。
Note that since the uncertainty associated with the prediction error is modeled, a predetermined value (for example, a value corresponding to a non-exceeding 90% value) higher than the average value may be used for the determination as the response deformation angle. At this time, the 90% non-excess value S 90 of the response deformation angle is calculated from the following equation.
In equation (34), the coefficient g corresponds to the target non-exceeding value, and when the value is 90% non-exceeding value, g = 1.28.
応答変形角の90%非超過値S90を用いた建物の被災度の判定条件を表2に示す。
このように、被災度の判定を行際に、応答変形角Sの90%非超過値S90を用いると(表2)、平均値E[S]を用いる場合(表1)よりも、より安全余裕を見込んだ予測を行うことができる。
Table 2 shows the criteria for determining the damage level of a building using a 90% non-excessive value S 90 of the response deformation angle.
In this way, when determining the degree of damage, using the 90% non-excess value S 90 of the response deformation angle S (Table 2), more than when using the average value E [S] (Table 1) Predictions can be made with safety margins in mind.
===建物の応答変形角Sの評価例===
≪解析条件≫
RC造建物を対象として、履歴要素の等価減衰定数の低減係数,等価線形応答変位の修正係数、及び減衰補正係数の修正係数の評価を行った。
この評価において、1自由度弾塑性系の復元力特性として原点指向型と剛性低下トリリニア型の2種類とし、建物条件は表3に示すように設定した。
=== Example of Evaluation of Response Deformation Angle S of Building ===
≪Analysis condition≫
For RC buildings, the reduction coefficient of the equivalent damping constant of the hysteresis element, the correction coefficient of the equivalent linear response displacement, and the correction coefficient of the damping correction coefficient were evaluated.
In this evaluation, two types of restoring force characteristics of a one-degree-of-freedom elasto-plastic system, namely, an origin-oriented type and a rigidity-reduced trilinear type, were set as shown in Table 3.
ここで、塑性率μaが表4の範囲内に収まる場合を対象に上記(履歴要素の等価減衰定数の低減係数,等価線形応答変位の修正係数、及び減衰補正係数の修正係数)の検討を行った。
Here, the above (reduction factor of equivalent damping constant of hysteresis element, correction factor of equivalent linear response displacement, and correction factor of damping correction factor) is examined for the case where the plasticity factor μa falls within the range of Table 4. It was.
また、地震動特性の不確定性を考慮するため、複数の地震動に対して地震応答解析を行った。地震応答解析に用いた地震動のリストを表5に示す。
図4は、表5の各地震動における減衰定数5%での速度応答スペクトルを示す図である。なお、図の横軸は周期(sec)であり、縦軸は速度応答である。
In order to take into account the uncertainty of the ground motion characteristics, seismic response analysis was performed for multiple ground motions. Table 5 shows a list of ground motion used for the earthquake response analysis.
FIG. 4 is a diagram showing a velocity response spectrum at a damping constant of 5% in each earthquake motion in Table 5. In addition, the horizontal axis of a figure is a period (sec), and a vertical axis | shaft is a speed response.
≪等価減衰定数heq≫
建築年に応じてRC造建物の復元力特性を設定し、履歴要素の等価減衰定数heqを求めた。なお、前述したように復元力特性は原点指向型と剛性低下トリリニア型の2種類とした。建設年と復元力特性との関係を表6に示す。
また、図5A及び図5Bは復元力特性の説明図である。図5Aは原点指向型の場合の復元力特性を示しており、図5Bは剛性低下トリリニア型の復元力特性を示している。なお、図5A、図5Bにおいて横軸は変位量であり、縦軸はせん断力である。
≪Equivalent damping constant heq≫
The restoring force characteristics of RC buildings were set according to the construction year, and the equivalent damping constant heq of the hysteresis element was obtained. As described above, the restoring force characteristics are of two types: the origin-oriented type and the reduced rigidity trilinear type. Table 6 shows the relationship between the construction year and the restoring force characteristics.
5A and 5B are explanatory diagrams of restoring force characteristics. FIG. 5A shows the restoring force characteristic in the case of the origin-oriented type, and FIG. 5B shows the restoring force characteristic of the reduced rigidity trilinear type. In FIGS. 5A and 5B, the horizontal axis is the displacement amount, and the vertical axis is the shearing force.
<原点指向型の等価減衰定数(図5A参照)>
<Origin-oriented equivalent damping constant (see FIG. 5A)>
<剛性低下トリリニア型の等価減衰定数(図5B参照)>
<Equivalent damping constant of reduced rigidity trilinear type (see FIG. 5B)>
図6は、塑性率と履歴要素の等価減衰定数(heq)との関係を示す図である。図の横軸は塑性率であり、縦軸は等価減衰定数である。また、図において、実線は原点指向型における塑性率と履歴要素の等価減衰との関係を示しており、破線は剛性低下トリリニア型における塑性率と履歴要素の等価減衰との関係を示している。 FIG. 6 is a diagram showing the relationship between the plasticity factor and the equivalent damping constant (heq) of the hysteresis element. In the figure, the horizontal axis represents the plasticity factor, and the vertical axis represents the equivalent attenuation constant. In the figure, the solid line shows the relationship between the plasticity factor in the origin-oriented type and the equivalent damping of the hysteresis element, and the broken line shows the relationship between the plasticity factor and the equivalent damping of the hysteresis element in the reduced rigidity trilinear type.
≪塑性率と平均減衰定数の関係≫
1自由度弾塑性系の地震応答解析を行い、平均減衰定数hsを計算した。また、履歴要素の等価減衰定数の低減係数dを0.1〜1.0まで変化させて、等価減衰定数heを計算した。
図7A、図7Bは、塑性率μaと平均減衰定数hsの関係を示す図である。なお、図7Aは、原点指向型の場合の図であり、図7Bは剛性低下トリリニア型の場合の図である。
図中には、履歴要素の等価減衰定数の低減係数dを0.1〜1.0まで変化させたときの等価減衰定数heも示している。平均減衰定数hsと等価減衰定数heを比較するとd=1.0では概ねhe>hsの傾向があった。このため、履歴要素の等価減衰定数heqをそのまま用いると地震時の履歴減衰を過大に評価することがわかる。
≪Relationship between plastic modulus and average damping constant≫
Seismic response analysis of one-degree-of-freedom elastoplastic system was performed, and the average damping constant hs was calculated. Further, the equivalent attenuation constant he was calculated by changing the reduction coefficient d of the equivalent attenuation constant of the hysteresis element from 0.1 to 1.0.
7A and 7B are diagrams showing the relationship between the plasticity ratio μa and the average attenuation constant hs. 7A is a diagram in the case of the origin-oriented type, and FIG. 7B is a diagram in the case of the reduced-rigidity trilinear type.
The figure also shows the equivalent attenuation constant he when the reduction coefficient d of the equivalent attenuation constant of the hysteresis element is changed from 0.1 to 1.0. When the average damping constant hs and the equivalent damping constant he were compared, there was a tendency that he> hs at d = 1.0. For this reason, it can be seen that if the equivalent attenuation constant heq of the history element is used as it is, the history attenuation at the time of earthquake is overestimated.
≪履歴要素の等価減衰定数の低減係数≫
履歴要素の等価減衰定数の低減係数dの計算結果を表7に示す。
また、図8Aおよび図8Bは履歴要素の等価減衰定数の低減係数dの分布形状を示す図である。なお、図8Aは原点指向型の場合の図であり、図8Bは剛性低下トリリニア型の場合の図である。
≪Reduction factor of equivalent damping constant of history element≫
Table 7 shows the calculation result of the reduction coefficient d of the equivalent attenuation constant of the hysteresis element.
8A and 8B are diagrams showing the distribution shape of the reduction coefficient d of the equivalent attenuation constant of the hysteresis element. 8A is a diagram in the case of the origin-oriented type, and FIG. 8B is a diagram in the case of the reduced-rigidity trilinear type.
≪等価線形応答変位の修正係数≫
等価線形応答変位の修正係数aの計算結果を表8に示す。
また、図9Aおよび図9Bは等価線形応答変位の修正係数aの分布形状を示す図である。なお、図9Aは原点指向型の場合の図であり、図9Bは剛性低下トリリニア型の場合の図である。
<< Equivalent linear response displacement correction factor >>
Table 8 shows the calculation result of the correction coefficient a of the equivalent linear response displacement.
9A and 9B are diagrams showing the distribution shape of the correction coefficient a for the equivalent linear response displacement. 9A is a diagram in the case of the origin-oriented type, and FIG. 9B is a diagram in the case of the reduced-rigidity trilinear type.
また、図中には、分布形状を対数正規分布でモデル化した曲線を示している。このように、等価線形応答変位の修正係数の分布は、対数正規分布を用いてモデル化できる。また、等価線形応答変位の修正係数の平均値 は、原点指向型で約1.14となり1よりもやや大きいが、剛性低下トリリニア型では約1.0であり、等価減衰定数heの平均値 を用いて1自由度弾塑性系の応答変位を概ね予測できる。 Further, in the figure, a curve obtained by modeling the distribution shape with a lognormal distribution is shown. As described above, the distribution of the correction coefficient of the equivalent linear response displacement can be modeled using the lognormal distribution. In addition, the average value of the correction coefficient for the equivalent linear response displacement is about 1.14 for the origin-oriented type, which is slightly larger than 1, but about 1.0 for the low-rigidity trilinear type, and one free using the average value of the equivalent damping constant he. The response displacement of the elastic-plastic system can be roughly predicted.
≪減衰補正係数の修正係数≫
減衰補正係数の修正係数rの計算結果を表9に示す。
また、図10は減衰補正係数の修正係数rの分布形状を示す図である。また、図中には、分布形状を対数正規分布でモデル化したものを示している。このように、減衰補正係数の修正係数の分布は、対数正規分布を用いてモデル化できる。
≪Attenuation correction coefficient correction coefficient≫
Table 9 shows the calculation result of the correction coefficient r of the attenuation correction coefficient.
FIG. 10 is a diagram showing the distribution shape of the correction coefficient r of the attenuation correction coefficient. In the figure, the distribution shape is modeled by a lognormal distribution. As described above, the distribution of the correction coefficient of the attenuation correction coefficient can be modeled using the lognormal distribution.
≪塑性率の比較≫
図11Aおよび図11Bは、地震応答解析から計算された1自由度弾塑性系の塑性率μaと、等価1自由度系の塑性率μe(平均値ならびに90%非超過値)の関係の説明図である。なお、図11Aは原点指向型の場合の図であり、図11Bは剛性低下トリリニア型の場合の図である。
塑性率塑性率μeが平均値の場合はμa>μeとなり危険側の予測値となる場合もあるが、90%非超過値の場合では塑性率の比較的大きい領域を除くとほぼμe>μaとなっている。従って、予測誤差に伴うモデル不確定性を考慮した90%非超過値を用いることで、平均値を用いる場合よりも、1自由度弾塑性系の応答変位をより安全側に予測できるといえる。
≪Comparison of plastic modulus≫
11A and 11B are explanatory diagrams of the relationship between the plasticity ratio μa of the one-degree-of-freedom elastic-plastic system calculated from the seismic response analysis and the plasticity ratio μe (average value and 90% non-exceeding value) of the equivalent one-degree-of-freedom system. It is. 11A is a diagram in the case of the origin-oriented type, and FIG. 11B is a diagram in the case of the reduced-rigidity trilinear type.
When the plastic modulus μe is an average value, μa> μe, which may be a predicted value on the dangerous side, but in the case of a non-exceeding 90% value, except for a relatively large plasticity region, it is almost μe> μa. It has become. Therefore, it can be said that the response displacement of the one-degree-of-freedom elasto-plastic system can be predicted more safely by using the 90% non-exceeding value in consideration of the model uncertainty associated with the prediction error as compared with the case of using the average value.
===建物の限界変形角Rの評価例===
次に建物の限界変形角Rの評価例について説明する。この評価例において、建物の限界変形角Rは、1995年の兵庫県南部地震に対する地震被害結果を模擬できるように設定した。なお、前述したように、建物の限界変形角Rは限界層間変形角R´を用いて評価した。
まず、RC造建物を対象にし、建築年は1970年以前と1982年以降の2種類、建物階数は3階,7階,10階(1982年以降のみ)の3種類の計5種類を設定してRC造建物群モデルを作成した。そして、モンテカルロシミュレーションによる地震応答解析により、応答層間変形角Qの対数平均値λQと対数標準偏差ζQを計算した。
=== Evaluation example of limit deformation angle R of building ===
Next, an example of evaluating the limit deformation angle R of a building will be described. In this evaluation example, the limit deformation angle R of the building was set so as to simulate the earthquake damage result for the 1995 Hyogoken-Nanbu Earthquake. As described above, the limit deformation angle R of the building was evaluated using the limit interlayer deformation angle R ′.
First, for RC buildings, the building year is set to 5 types, 2 types before 1970 and after 1982, and 3 floors, 3rd floor, 7th floor, 10th floor (only after 1982). RC building group model was created. Then, the logarithmic mean value λ Q and the logarithmic standard deviation ζ Q of the response interlayer deformation angle Q were calculated by the seismic response analysis by Monte Carlo simulation.
次に、兵庫県南部地震におけるRC造建物群の被害率曲線を再現できるように、限界層間変形角R´の対数平均値λRと対数標準偏差ζRを計算した。この限界層間変形角R´の対数平均値λRと対数標準偏差ζRの計算結果を表10に示す。
Next, the logarithmic mean value λ R and logarithmic standard deviation ζ R of the critical interlayer deformation angle R ′ were calculated so as to reproduce the damage rate curve of the RC building group in the Hyogoken-Nanbu Earthquake. Table 10 shows the calculation results of the logarithmic average value λ R and logarithmic standard deviation ζ R of the limit interlayer deformation angle R ′.
兵庫県南部地震において大破以上のRC造建物では大破と倒壊の棟数に概ね1:1の関係があるため、倒壊の被害率が大破以上の被害率の約0.5となるように倒壊の限界層間変形角R´を設定した。
図12は、被害率と限界層間変形角R´との関係を被災度(小破、中破、大破、倒壊)ごとに示した図である。図において、横軸は限界層間変形角であり、縦軸は被害率である。建物の限界変形角Rを限界層間変形角R´を用いて評価すると、被災度ごとの限界変形角Rは同図のようになる。
In RC buildings that have been damaged by the Hyogoken-Nanbu Earthquake, there is a 1: 1 relationship between the number of damaged and collapsed buildings. A deformation angle R ′ was set.
FIG. 12 is a diagram showing the relationship between the damage rate and the limit interlayer deformation angle R ′ for each degree of damage (small damage, medium damage, heavy damage, collapse). In the figure, the horizontal axis is the critical interlayer deformation angle, and the vertical axis is the damage rate. When the limit deformation angle R of the building is evaluated using the limit interlayer deformation angle R ′, the limit deformation angle R for each degree of damage is as shown in FIG.
===地震被害予測の評価例===
次に、前述した応答変形角Sの評価結果と、限界変形角Rの評価結果に基づいて、地震被害を予測した評価例について説明する。
=== Evaluation example of earthquake damage prediction ===
Next, an evaluation example in which earthquake damage is predicted based on the evaluation result of the response deformation angle S and the evaluation result of the limit deformation angle R described above will be described.
≪解析条件について≫
・建物階数:1〜15階
・建築年:1970年以前,1971年〜1981年,1982年以降の3種類
・構造形式:RC造建物
RC造建物を対象としたときの、建築年と建物階数に対応した構造耐震指標Isの平均値を、表11に示す。
(出典 損害保険料率算定会:地震被害想定資料集,1998)
≪About analysis conditions≫
・ Number of building floors: 1 to 15 floors ・ Construction year: before 1970, 1971-1981, after 1982 ・ Structural type: RC building
Table 11 shows the average values of the structural seismic index Is corresponding to the building year and the number of floors when RC buildings are targeted.
(Source: Non-life Insurance Rate Calculation Group: Earthquake Damage Assumptions Collection, 1998)
建物の弾性周期T1は次式から求める。
また、降伏せん断力係数Cyは次式から求める。
The elastic period T 1 of the building is obtained from the following equation.
The yield shear force coefficient Cy is obtained from the following equation.
地震動の応答スペクトルとして、建築物荷重指針(1993)の加速度応答スペクトルSA(T,h)を設定する。
(出典 日本建築学会:建築物荷重指針・同解説,1993)
The acceleration response spectrum S A (T, h) of the building load guideline (1993) is set as the response spectrum of earthquake motion.
(Source: Architectural Institute of Japan: Building Load Guidelines / Comments, 1993)
≪地表面最大速度と建物の被災度との関係について≫
前述した各条件を用いて、応答変形角の平均値E[S]と限界変形角の平均値E[Rj]を計算した。そして、表1より建物の被災度を判定した。
図13A〜図13Cは、地表面最大速度と建物の被災度との関係を示す図である。図の横軸は、地面最大速度(m/s)である、縦軸は被災度である。なお、図13Aは1970年以前の建物の場合、図13Bは1971年〜1981年の建物の場合、図13Cは、1982年以降の建物の場合についてそれぞれ示したものである。各図において、1階建て〜15階建ての建物ごとに地面最大速度と被災度の関係を示している。
≪Relationship between maximum ground surface speed and damage level of buildings≫
The average value E [S] of the response deformation angle and the average value E [R j ] of the limit deformation angle were calculated using the above-described conditions. And the damage degree of the building was determined from Table 1.
13A to 13C are diagrams illustrating the relationship between the ground surface maximum speed and the damage level of a building. The horizontal axis in the figure is the maximum ground speed (m / s), and the vertical axis is the degree of damage. 13A shows a case of a building before 1970, FIG. 13B shows a case of a building from 1971 to 1981, and FIG. 13C shows a case of a building after 1982, respectively. In each figure, the relationship between the maximum ground speed and the degree of damage is shown for each of the 1-story to 15-story buildings.
≪計測震度と建物の被災度との関係について≫
地表面最大速度と計測震度には以下の関係式が成り立つ。
(出典 防災科学技術研究所:全国を対象とした確率論的地震動予測地図作成手法の検討,2005)
よって、計測震度と被災度との関係を求めることも可能である。
≪Relationship between measured seismic intensity and damage level of buildings≫
The following relational expression is established between the ground surface maximum velocity and the measured seismic intensity.
(Source: National Institute of Science and Technology for Disaster Prevention: Examination of Probabilistic Seismic Ground Motion Prediction Mapping Method for Japan, 2005)
Therefore, it is also possible to obtain the relationship between the measured seismic intensity and the degree of damage.
図14A〜図14Cは、計測震度と建物の被災度との関係を示す図である。図の横軸は、計測震度を示しており、縦軸は被災度を示している。なお、図14Aは、1970年以前の建物の場合、図14Bは、1971年〜1981年の建物の場合、図14Cは、1982年以降の建物の場合についてそれぞれ示したものである。各図において、1階建て〜15階建ての建物ごとに計測震度と被災度の関係を示している。
このような評価結果を例えば出力装置13に表示するようにすると、地震の大きさに応じた建物毎の被災度を容易に把握することができる。
なお、広域に分散した多数の建物についてそれぞれ本実施形態を適用して被害(被災度)の予測を行い、その結果を、例えば、被災度ごとに色分けした分布図として出力装置13に出力(表示)するようにしてもよい。こうすることで、地震の際の復旧の優先順位の初動対応を適切に決定することができる。
14A to 14C are diagrams illustrating the relationship between the measured seismic intensity and the damage level of a building. The horizontal axis of the figure shows the measured seismic intensity, and the vertical axis shows the degree of damage. 14A shows the case of a building before 1970, FIG. 14B shows the case of a building from 1971 to 1981, and FIG. 14C shows the case of a building after 1982, respectively. In each figure, the relationship between the measured seismic intensity and the degree of damage is shown for each of the 1-story to 15-story buildings.
If such an evaluation result is displayed on the output device 13, for example, it is possible to easily grasp the degree of damage for each building according to the magnitude of the earthquake.
Note that this embodiment is applied to each of a large number of buildings distributed over a wide area to predict damage (damage level), and the results are output (displayed) to the output device 13 as a distribution map color-coded according to the degree of damage, for example. ). By doing so, it is possible to appropriately determine the initial response of restoration priorities in the event of an earthquake.
以上説明したように、本実施形態では、建物を1自由度系に縮約して、地震時における1自由度弾塑性系の応答変位δeを等価線形化法によって評価している。なお、本実施形態では、等価線形化法を用いて応答変位δeを算出する際に、等価線形応答変位の修正係数、減衰補正係数の修正係数、及び履歴要素の等価減衰定数の低減係数をモデル化し、地震動特性や建物特性に伴うモデル不確定性を考慮している。そして、応答変位δeを用いて応答変形角Sを評価している。 As described above, in this embodiment, the building is reduced to a one-degree-of-freedom system, and the response displacement δe of the one-degree-of-freedom elastic-plastic system at the time of an earthquake is evaluated by the equivalent linearization method. In the present embodiment, when calculating the response displacement δe using the equivalent linearization method, the correction coefficient of the equivalent linear response displacement, the correction coefficient of the attenuation correction coefficient, and the reduction coefficient of the equivalent attenuation constant of the hysteresis element are modeled. Model uncertainties associated with earthquake motion characteristics and building characteristics. Then, the response deformation angle S is evaluated using the response displacement δe.
また、過去の地震被害データから求められた建物群の被害率に、建物群モデルを対象としたモンテカルロシュミレーションを新たに組み合わせて、地震被害結果を模擬できるように信頼性理論に基づき建物の限界変形角Rを評価している。
そして、応答変形角Sと限界変形角Rとの比較によって建物の被災度を評価している。
こうすることにより、不確定性を考慮した予測を行うことができるので、地震の際の建物の被災度を高い信頼性にて予測することが可能である。
In addition, the building deformation rate based on the reliability theory is used to simulate the earthquake damage result by combining the damage rate of the building group obtained from past earthquake damage data with Monte Carlo simulation for the building group model. The angle R is evaluated.
The damage degree of the building is evaluated by comparing the response deformation angle S and the limit deformation angle R.
By doing so, since it is possible to make a prediction in consideration of the uncertainty, it is possible to predict the damage level of the building at the time of the earthquake with high reliability.
上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはいうまでもない。 The above embodiment is for facilitating the understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and it is needless to say that the present invention includes equivalents thereof.
10 コンピュータ、11 記憶装置、12 入力装置、
13 出力装置、14 記録媒体
10 computers, 11 storage devices, 12 input devices,
13 output device, 14 recording medium
Claims (7)
前記建物を1自由度系に縮約した場合での地震に対する応答変位を等価線形化法によって算出する応答変位算出ステップであって、確率変数として定められた等価線形応答変位の修正係数および減衰補正係数の修正係数を用いて前記応答変位を算出する応答変位算出ステップと、
前記応答変位から前記建物の応答変形角を算出する応答変形角算出ステップと、
建物群を対象としたシミュレーションに基づいて、地震による応答層間変形角の確率分布を求める応答層間変形角算出ステップと、
過去の地震被害結果から地震の強さと建物の被害率との関係を求める被害率算出ステップと、
前記応答層間変形角の確率分布と前記被害率とに基づいて、前記建物の限界変形角を算出する限界変形角算出ステップと、
前記応答変形角と前記限界変形角とを比較することによって前記建物の被害の発生を予測する被害予測ステップと、
を有することを特徴とする地震被害予測方法。 An earthquake damage prediction method for predicting building damage caused by an earthquake,
A response displacement calculation step of calculating a response displacement with respect to an earthquake when the building is contracted to a one-degree-of-freedom system by an equivalent linearization method, and a correction coefficient and an attenuation correction of an equivalent linear response displacement determined as a random variable A response displacement calculating step of calculating the response displacement using a coefficient correction coefficient;
A response deformation angle calculating step of calculating a response deformation angle of the building from the response displacement;
A response interlayer deformation angle calculation step for obtaining a probability distribution of response interlayer deformation angles due to an earthquake based on a simulation for a building group;
A damage rate calculation step for determining the relationship between the strength of the earthquake and the damage rate of the building from past earthquake damage results;
Based on the probability distribution of the response interlayer deformation angle and the damage rate, a critical deformation angle calculating step for calculating a critical deformation angle of the building;
A damage prediction step for predicting the occurrence of damage to the building by comparing the response deformation angle and the limit deformation angle;
An earthquake damage prediction method characterized by comprising:
前記応答変位を算出する際に、確率変数として定められた履歴要素の等価減衰定数の低減係数をさらに用いることを特徴とする地震被害予測方法。 The earthquake damage prediction method according to claim 1,
An earthquake damage prediction method characterized by further using a reduction factor of an equivalent attenuation constant of a history element defined as a random variable when calculating the response displacement.
前記履歴要素の等価減衰定数の低減係数は、建物の復元力特性に応じて定められていることを特徴とする地震被害予測方法。 The earthquake damage prediction method according to claim 2,
A method for predicting earthquake damage, wherein a reduction coefficient of an equivalent attenuation constant of the history element is determined according to a restoring force characteristic of a building.
前記応答変形角及び前記限界変形角は、それぞれ対数正規分布として算出され、
前記被害予測ステップでは、前記応答変形角の平均値と、前記限界変形角の平均値とを比較することを特徴とする地震被害予測方法。 An earthquake damage prediction method according to any one of claims 1 to 3,
The response deformation angle and the limit deformation angle are each calculated as a lognormal distribution,
In the damage prediction step, an average value of the response deformation angles is compared with an average value of the limit deformation angles.
前記応答変形角及び前記限界変形角は、それぞれ対数正規分布として算出され、
前記被害予測ステップでは、前記応答変形角の平均値よりも高い所定値と、前記限界変形角の平均値とを比較することを特徴とする地震被害予測方法。 An earthquake damage prediction method according to any one of claims 1 to 3,
The response deformation angle and the limit deformation angle are each calculated as a lognormal distribution,
In the damage prediction step, a predetermined value higher than the average value of the response deformation angles is compared with the average value of the limit deformation angles.
前記限界変形角は、被害の大きさに応じて複数定められる
ことを特徴とする地震被害予測方法。 An earthquake damage prediction method according to any one of claims 1 to 5,
2. A method for predicting earthquake damage, wherein a plurality of said limit deformation angles are determined according to the magnitude of damage.
広域に分布した複数の建物についての被害をそれぞれ予測することを特徴とする地震被害予測方法。 An earthquake damage prediction method according to any one of claims 1 to 6,
An earthquake damage prediction method characterized by predicting damage to a plurality of buildings distributed over a wide area.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010131309A JP5488217B2 (en) | 2010-06-08 | 2010-06-08 | Earthquake damage prediction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010131309A JP5488217B2 (en) | 2010-06-08 | 2010-06-08 | Earthquake damage prediction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011257237A true JP2011257237A (en) | 2011-12-22 |
JP5488217B2 JP5488217B2 (en) | 2014-05-14 |
Family
ID=45473561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010131309A Active JP5488217B2 (en) | 2010-06-08 | 2010-06-08 | Earthquake damage prediction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5488217B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013254239A (en) * | 2012-06-05 | 2013-12-19 | Toda Constr Co Ltd | Building diagnosis monitoring system |
JP2017004425A (en) * | 2015-06-15 | 2017-01-05 | 日本電信電話株式会社 | Failure rate estimation device, failure rate estimation method, and program |
JP2017227507A (en) * | 2016-06-21 | 2017-12-28 | 株式会社Nttファシリティーズ | Building soundness evaluation system and building soundness evaluation method |
CN109672880A (en) * | 2018-12-29 | 2019-04-23 | 中国科学院长春光学精密机械与物理研究所 | A kind of grouping drift angle method of real-time adjustment of wide cut space camera |
JP2020522071A (en) * | 2018-02-12 | 2020-07-27 | 青▲島▼理工大学Qingdao University Of Technology | Multimodal performance oriented seismic design method based on performance bispectrum |
CN112464338A (en) * | 2020-11-20 | 2021-03-09 | 西安近代化学研究所 | Method for predicting bending response of simply supported reinforced concrete beam under near-field explosion |
CN114329974A (en) * | 2021-12-29 | 2022-04-12 | 武汉大学 | Monte Carlo simulation-based urban water supply pipe network earthquake damage assessment method |
CN117075192A (en) * | 2023-07-19 | 2023-11-17 | 西南交通大学 | Multi-parameter-based method for establishing earthquake slope permanent displacement prediction model |
CN117972437A (en) * | 2024-03-29 | 2024-05-03 | 四川省建筑设计研究院有限公司 | Regional building earthquake damage prediction method and system aiming at complex terrain geological conditions |
-
2010
- 2010-06-08 JP JP2010131309A patent/JP5488217B2/en active Active
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013254239A (en) * | 2012-06-05 | 2013-12-19 | Toda Constr Co Ltd | Building diagnosis monitoring system |
JP2017004425A (en) * | 2015-06-15 | 2017-01-05 | 日本電信電話株式会社 | Failure rate estimation device, failure rate estimation method, and program |
JP2017227507A (en) * | 2016-06-21 | 2017-12-28 | 株式会社Nttファシリティーズ | Building soundness evaluation system and building soundness evaluation method |
JP2020522071A (en) * | 2018-02-12 | 2020-07-27 | 青▲島▼理工大学Qingdao University Of Technology | Multimodal performance oriented seismic design method based on performance bispectrum |
CN109672880A (en) * | 2018-12-29 | 2019-04-23 | 中国科学院长春光学精密机械与物理研究所 | A kind of grouping drift angle method of real-time adjustment of wide cut space camera |
CN109672880B (en) * | 2018-12-29 | 2020-02-14 | 中国科学院长春光学精密机械与物理研究所 | Grouping drift angle real-time adjusting method of wide-width space camera |
CN112464338A (en) * | 2020-11-20 | 2021-03-09 | 西安近代化学研究所 | Method for predicting bending response of simply supported reinforced concrete beam under near-field explosion |
CN112464338B (en) * | 2020-11-20 | 2023-09-12 | 西安近代化学研究所 | Method for predicting bending response of simply supported reinforced concrete beam under near field explosion |
CN114329974A (en) * | 2021-12-29 | 2022-04-12 | 武汉大学 | Monte Carlo simulation-based urban water supply pipe network earthquake damage assessment method |
CN117075192A (en) * | 2023-07-19 | 2023-11-17 | 西南交通大学 | Multi-parameter-based method for establishing earthquake slope permanent displacement prediction model |
CN117075192B (en) * | 2023-07-19 | 2024-04-12 | 西南交通大学 | Multi-parameter-based method for establishing earthquake slope permanent displacement prediction model |
CN117972437A (en) * | 2024-03-29 | 2024-05-03 | 四川省建筑设计研究院有限公司 | Regional building earthquake damage prediction method and system aiming at complex terrain geological conditions |
Also Published As
Publication number | Publication date |
---|---|
JP5488217B2 (en) | 2014-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5488217B2 (en) | Earthquake damage prediction method | |
Giaralis et al. | Optimal tuned mass‐damper‐inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria | |
Polycarpou et al. | Earthquake-induced poundings of a seismically isolated building with adjacent structures | |
Marano et al. | A comparison between different robust optimum design approaches: application to tuned mass dampers | |
Pirizadeh et al. | Probabilistic seismic performance evaluation of non-geometric vertically irregular steel buildings | |
JP5838561B2 (en) | Earthquake damage judgment system, structure equipped with earthquake damage judgment system, and earthquake damage judgment program | |
Bakhtiary et al. | Probabilistic seismic demand model and fragility estimates for rocking symmetric blocks | |
Alhan et al. | Significance of stiffening of high damping rubber bearings on the response of base-isolated buildings under near-fault earthquakes | |
Gong et al. | Optimal capacity design of eccentrically braced steel frameworks using nonlinear response history analysis | |
JP4005004B2 (en) | Earthquake damage prediction apparatus, earthquake damage prediction method, and earthquake damage prediction program | |
Liu et al. | AP/VP specific equivalent viscous damping model for base-isolated buildings characterized by SDOF systems | |
JP2012013521A (en) | Earthquake damage prediction device and program | |
Choinière et al. | Influence of soil-structure interaction on seismic demands in shear wall building gravity load frames | |
Sani et al. | Seismic performance assessment of isolated low-rise steel structures based on loss estimation | |
Banazadeh et al. | Cost-benefit analysis of seismic-isolated structures with viscous damper based on loss estimation | |
Liu et al. | Multidimensional performance limit state for probabilistic seismic demand analysis | |
Ahmadie Amiri et al. | Efficient seismic risk assessment of irregular steel‐framed buildings through endurance time analysis of consistent fish‐bone model | |
Öncü-Davas et al. | Comparison of meta-heuristic approaches for the optimization of non-linear base-isolation systems considering the influence of superstructure flexibility | |
Lin et al. | Shape function-based multi-objective optimizations of seismic design of buildings with elastoplastic and self-centering components | |
Maleki-Amin et al. | Damage estimation of steel moment-resisting frames by endurance time method using damage-based target time | |
Casarotti et al. | Verification of spectral reduction factors for seismic assessment of bridges | |
JP2020004052A (en) | Earthquake analysis device, earthquake analysis system, and earthquake analysis method | |
Hareendran et al. | Characterizing wind-structure interaction for performance-based wind design of tall buildings | |
JP5418038B2 (en) | Seismic risk assessment method | |
Pourgharibshahi et al. | Reliability-based assessment of deteriorating steel moment resisting frames |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5488217 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |