JP2020518396A5 - - Google Patents

Download PDF

Info

Publication number
JP2020518396A5
JP2020518396A5 JP2019560392A JP2019560392A JP2020518396A5 JP 2020518396 A5 JP2020518396 A5 JP 2020518396A5 JP 2019560392 A JP2019560392 A JP 2019560392A JP 2019560392 A JP2019560392 A JP 2019560392A JP 2020518396 A5 JP2020518396 A5 JP 2020518396A5
Authority
JP
Japan
Prior art keywords
computed tomography
cteph
tomography images
person
automatically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019560392A
Other languages
English (en)
Japanese (ja)
Other versions
JP2020518396A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2018/060732 external-priority patent/WO2018202541A1/de
Publication of JP2020518396A publication Critical patent/JP2020518396A/ja
Publication of JP2020518396A5 publication Critical patent/JP2020518396A5/ja
Pending legal-status Critical Current

Links

JP2019560392A 2017-05-02 2018-04-26 慢性血栓塞栓性肺高血圧症の放射線学的特定における改善 Pending JP2020518396A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17169079 2017-05-02
EP17169079.5 2017-05-02
PCT/EP2018/060732 WO2018202541A1 (de) 2017-05-02 2018-04-26 Verbesserungen bei der radiologischen erkennung chronisch thromboembolischer pulmonaler hypertonie

Publications (2)

Publication Number Publication Date
JP2020518396A JP2020518396A (ja) 2020-06-25
JP2020518396A5 true JP2020518396A5 (enExample) 2021-05-13

Family

ID=58672386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019560392A Pending JP2020518396A (ja) 2017-05-02 2018-04-26 慢性血栓塞栓性肺高血圧症の放射線学的特定における改善

Country Status (6)

Country Link
US (1) US20200237331A1 (enExample)
EP (1) EP3619631A1 (enExample)
JP (1) JP2020518396A (enExample)
CN (1) CN110574070A (enExample)
CA (1) CA3061988A1 (enExample)
WO (1) WO2018202541A1 (enExample)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018222606A1 (de) * 2018-12-20 2020-06-25 Siemens Healthcare Gmbh Verfahren und Vorrichtung zur Detektion eines anatomischen Merkmals eines Blutgefäßabschnittes
EP3939003B1 (en) * 2019-03-12 2024-04-03 Bayer HealthCare, LLC Systems and methods for assessing a likelihood of cteph and identifying characteristics indicative thereof
CN113330483B (zh) 2019-09-18 2024-08-16 拜耳公司 由监督学习训练的预测模型预测磁共振成像图像
EP4031893B1 (de) 2019-09-18 2024-12-25 Bayer Aktiengesellschaft Erzeugung von mrt-aufnahmen der leber
AU2020349121A1 (en) 2019-09-18 2022-03-31 Bayer Aktiengesellschaft System, method, and computer program product for predicting, anticipating, and/or assessing tissue characteristics
EP3813017A1 (de) * 2019-10-21 2021-04-28 Bayer AG Segmentierung der herzregion in ct-aufnahmen
JP7394588B2 (ja) * 2019-11-07 2023-12-08 キヤノン株式会社 情報処理装置、情報処理方法、および撮像システム
EP4128261A1 (de) 2020-04-03 2023-02-08 Bayer Aktiengesellschaft Erzeugen von radiologischen aufnahmen
US20240005650A1 (en) 2020-11-20 2024-01-04 Bayer Aktiengesellschaft Representation learning
WO2022207443A1 (en) 2021-04-01 2022-10-06 Bayer Aktiengesellschaft Reinforced attention
US20240289637A1 (en) 2021-06-25 2024-08-29 Bayer Aktiengesellschaft Federated representation learning with consistency regularization
CN113702482B (zh) * 2021-08-30 2022-08-23 中国医学科学院北京协和医院 一种IgG N-糖链特征组合及其应用
EP4471710B1 (de) 2023-05-30 2025-12-17 Bayer Aktiengesellschaft Erkennen von artefakten in synthetischen medizinischen aufnahmen
EP4475070A1 (de) 2023-06-05 2024-12-11 Bayer AG Erkennen von artefakten in synthetischen medizinischen aufnahmen
EP4492324A1 (de) 2023-07-12 2025-01-15 Bayer AG Erkennen von artefakten in synthetischen medizinischen aufnahmen
US20250045926A1 (en) 2023-07-25 2025-02-06 Bayer Aktiengesellschaft Detection of artifacts in synthetic images
EP4560648A1 (en) 2023-11-22 2025-05-28 Bayer AG Generating synthetic training data
EP4567715A1 (en) 2023-12-06 2025-06-11 Bayer Aktiengesellschaft Generating synthetic representations
WO2025119803A1 (en) 2023-12-06 2025-06-12 Bayer Aktiengesellschaft Generating synthetic medical representations
EP4571650A1 (en) 2023-12-12 2025-06-18 Bayer AG Generating synthetic images
EP4575997A1 (en) 2023-12-18 2025-06-25 Bayer Aktiengesellschaft Generating synthetic images
WO2025190827A1 (en) 2024-03-15 2025-09-18 Bayer Aktiengesellschaft Generation of a synthetic medical image

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050010098A1 (en) * 2003-04-11 2005-01-13 Sigmund Frigstad Method and apparatus for knowledge based diagnostic imaging
US20090012382A1 (en) * 2007-07-02 2009-01-08 General Electric Company Method and system for detection of obstructions in vasculature
JP2010104581A (ja) * 2008-10-30 2010-05-13 Canon Inc X線撮影装置及びx線撮影方法
WO2013036842A2 (en) * 2011-09-08 2013-03-14 Radlogics, Inc. Methods and systems for analyzing and reporting medical images
RU2545927C1 (ru) * 2014-03-13 2015-04-10 Федеральное государственное бюджетное учреждение "Научно-исследовательский институт кардиологии" Сибирского отделения Российской академии медицинских наук Способ дифференциальной диагностики острой тромбоэмболии легочной артерии и хронической постэмболической легочной гипертензии
JP6188929B2 (ja) * 2014-04-22 2017-08-30 国立大学法人東北大学 肺高血圧症の検査方法

Similar Documents

Publication Publication Date Title
JP2020518396A5 (enExample)
Abdusalomov et al. Improved real-time fire warning system based on advanced technologies for visually impaired people
US10482603B1 (en) Medical image segmentation using an integrated edge guidance module and object segmentation network
CN112200081B (zh) 异常行为识别方法、装置、电子设备及存储介质
Hepworth et al. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data
McEvoy et al. Using machine learning to classify image features from canine pelvic radiographs: evaluation of partial least squares discriminant analysis and artificial neural network models
JP2020503603A5 (enExample)
JP2017534117A5 (enExample)
CN111770317B (zh) 用于智慧社区的视频监控方法、装置、设备及介质
CN109978078B (zh) 字体版权检测方法、介质、计算机设备及装置
JP2020537787A5 (enExample)
CN109492595B (zh) 适用于固定群体的行为预测方法和系统
CN108345641A (zh) 一种爬取网站数据的方法、存储介质和服务器
CN112132026B (zh) 动物识别方法及装置
US20160323281A1 (en) Filtering Content In An Online System Based On Text And Image Signals Extracted From The Content
Subramaniam et al. A comprehensive review of analyzing the chest X-ray images to detect COVID-19 infections using deep learning techniques
CN113312600B (zh) 生物关系认证处理方法及装置
CN112818946A (zh) 年龄识别模型的训练、年龄识别方法、装置及电子设备
EP4388507A1 (en) Training models for object detection
CN112634246A (zh) 一种口腔图像识别方法及相关设备
CN112053382A (zh) 出入口监测方法、设备及计算机可读存储介质
CN110008972A (zh) 用于数据增强的方法和装置
CN108229658A (zh) 基于有限样本的物体检测器的实现方法及装置
CN107451198A (zh) 灾情评估方法和灾情评估装置
CN104281842A (zh) 人脸图片人名识别方法和装置