JP2020516815A - Exhaust gas system - Google Patents

Exhaust gas system Download PDF

Info

Publication number
JP2020516815A
JP2020516815A JP2020504766A JP2020504766A JP2020516815A JP 2020516815 A JP2020516815 A JP 2020516815A JP 2020504766 A JP2020504766 A JP 2020504766A JP 2020504766 A JP2020504766 A JP 2020504766A JP 2020516815 A JP2020516815 A JP 2020516815A
Authority
JP
Japan
Prior art keywords
exhaust gas
scr catalyst
flow direction
particulate filter
viewed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2020504766A
Other languages
Japanese (ja)
Inventor
ロルフ ブリュック
ブリュック ロルフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of JP2020516815A publication Critical patent/JP2020516815A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/40Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/22Monitoring or diagnosing the deterioration of exhaust systems of electric heaters for exhaust systems or their power supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

本発明は、内燃機関の排ガスを後処理するための排ガスシステム(1)であって、排ガスの流れ方向(2)で見て連続して配置された、排ガスを酸化させるための触媒(3)および/または窒素酸化物を蓄えるための触媒と、還元剤供給用の導入箇所(4)と、窒素酸化物を選択的に触媒還元するためのSCR触媒(6)と、パティキュレートフィルタとを備えており、パティキュレートフィルタ(7)は、流れ方向(2)で見てSCR触媒(6)の下流側に配置されており、流れ方向(2)で見てパティキュレートフィルタ(7)の下流側には、第2のSCR触媒(8)および/またはアンモニアスリップ触媒が配置されている、排ガスシステム(1)に関する。The present invention relates to an exhaust gas system (1) for after-treatment of exhaust gas of an internal combustion engine, the catalyst (3) for oxidizing the exhaust gas, which is continuously arranged in the flow direction (2) of the exhaust gas. And/or a catalyst for storing nitrogen oxides, an introduction point (4) for supplying a reducing agent, an SCR catalyst (6) for selectively catalytically reducing nitrogen oxides, and a particulate filter The particulate filter (7) is arranged downstream of the SCR catalyst (6) when viewed in the flow direction (2), and is downstream of the particulate filter (7) when viewed in the flow direction (2). Relates to an exhaust gas system (1) in which a second SCR catalyst (8) and/or an ammonia slip catalyst is arranged.

Description

本発明は、内燃機関の排ガスを後処理するための排ガスシステムであって、排ガスの流れ方向で見て連続して配置された、排ガスを酸化させるための触媒および/または窒素酸化物を蓄えるための触媒と、還元剤供給用の導入箇所と、窒素酸化物を選択的に触媒還元するためのSCR触媒と、パティキュレートフィルタとを備えた排ガスシステムに関する。 The present invention relates to an exhaust gas system for after-treatment of exhaust gas of an internal combustion engine, for storing a catalyst and/or nitrogen oxides for oxidizing the exhaust gas, which are arranged continuously in a flow direction of the exhaust gas. The present invention relates to an exhaust gas system including the catalyst, the introduction point for supplying the reducing agent, the SCR catalyst for selectively catalytically reducing nitrogen oxides, and the particulate filter.

排ガス後処理システムでは、排ガス中に含まれる有害物質の可能な限り効率的で包括的な変換および除去を保証するために、様々な形式の触媒が使用される。特に例えば、窒素酸化物(NO)を吸収して結合させる触媒が用いられる。さらに、窒素酸化物の、有害性の低い反応生成物への変換を生ぜしめる触媒も知られている。さらに、排ガスから特定の大きさのパティキュレートを除去するフィルタも知られている。 Exhaust gas aftertreatment systems use various types of catalysts to ensure the most efficient and comprehensive conversion and removal of harmful substances contained in the exhaust gas. In particular, for example, a catalyst that absorbs nitrogen oxide (NO x ) and binds thereto is used. Furthermore, catalysts are known which cause the conversion of nitrogen oxides into less harmful reaction products. Furthermore, a filter that removes particulates of a specific size from exhaust gas is also known.

従来技術において周知の、内燃機関の排ガスを浄化するための装置における欠点は、排ガス系統内での個々の触媒の配置が最適ではなく、ひいては個々の触媒がその個々に応じた最適な効果を発揮しない点にある。特に、従来技術において周知の装置では、窒素酸化物を選択的に触媒還元するためのいわゆるSCR触媒が、パティキュレートフィルタの下流側に配置されていることが多い。その結果、SCR触媒をその最適な作動点で作動させることができなくなっている。 A disadvantage of the device for purifying the exhaust gas of an internal combustion engine, which is well known in the prior art, is that the placement of the individual catalysts in the exhaust gas system is not optimal, and thus the individual catalysts exhibit the optimal effect according to their individuality. There is no point. In particular, in the devices known in the prior art, a so-called SCR catalyst for selectively catalytically reducing nitrogen oxides is often arranged downstream of the particulate filter. As a result, it is no longer possible to operate the SCR catalyst at its optimum operating point.

よって、本発明の課題は、個々の触媒の最適化された配置と、さらに最適化された構成とを有する、内燃機関の排ガスを後処理するための排ガスシステムを提供することにある。 The object of the present invention is therefore to provide an exhaust gas system for the aftertreatment of the exhaust gas of an internal combustion engine, which system has an optimized arrangement of the individual catalysts and a further optimized configuration.

排ガスシステムに関する上記の課題は、請求項1に記載の特徴を有する排ガスシステムによって解決される。 The above-mentioned problems relating to an exhaust gas system are solved by an exhaust gas system having the features of claim 1.

本発明の1つの実施例は、内燃機関の排ガスを後処理するための排ガスシステムであって、排ガスの流れ方向で見て連続して配置された、排ガスを酸化させるための触媒および/または窒素酸化物を蓄えるための触媒と、還元剤供給用の導入箇所と、窒素酸化物を選択的に触媒還元するためのSCR触媒と、パティキュレートフィルタとを備えており、パティキュレートフィルタは、流れ方向で見てSCR触媒の下流側に配置されており、流れ方向で見てパティキュレートフィルタの下流側には、第2のSCR触媒および/またはアンモニアスリップ触媒が配置されている、排ガスシステムに関する。 One embodiment of the invention is an exhaust gas system for the aftertreatment of the exhaust gas of an internal combustion engine, wherein a catalyst for oxidizing the exhaust gas and/or nitrogen arranged consecutively in the flow direction of the exhaust gas. A catalyst for storing oxides, an introducing point for supplying a reducing agent, an SCR catalyst for selectively catalytically reducing nitrogen oxides, and a particulate filter are provided, and the particulate filter has a flow direction. And the second SCR catalyst and/or the ammonia slip catalyst are arranged on the downstream side of the SCR catalyst in the flow direction and on the downstream side of the particulate filter in the flow direction.

パティキュレートフィルタの上流側にSCR触媒を配置すると共に、パティキュレートフィルタの下流側にもSCR触媒を配置することにより、より良好に機能するユニットを提供することができる。特に、パティキュレートフィルタが通常有する大きな体積や、排ガスの十分な濾過を可能にするために必要とされるセル幾何学形状およびセル密度に基づき、パティキュレートフィルタの下流側のSCR触媒の作動条件は悪化する。 By arranging the SCR catalyst on the upstream side of the particulate filter and arranging the SCR catalyst on the downstream side of the particulate filter, it is possible to provide a unit that functions better. In particular, the operating conditions of the SCR catalyst downstream of the particulate filter are based on the large volume that the particulate filter usually has and the cell geometry and cell density required to enable sufficient filtration of the exhaust gas. Getting worse.

これは例えば、パティキュレートフィルタを通流した後の排ガスの温度が大幅に低下しており、これによりSCR触媒の効果がネガティブに損なわれることに起因する。さらに、パティキュレートフィルタによって大きな圧力損失が生じることがあり、この圧力損失により、排ガスは最早、最適な変換を保証するための、下流側に収容されたSCR触媒に対する十分に高い流速を有してはいない。例えば、パティキュレートフィルタの部分的なコーティングによる、パティキュレートフィルタ内へのSCR触媒の組込みは最適ではない。なぜなら、通常使用されるパティキュレートフィルタのハニカムボデーのセル密度およびセル幾何学形状は、SCR触媒における排ガスの選択的な触媒還元にとって最適ではないからである。 This is because, for example, the temperature of the exhaust gas after it has passed through the particulate filter is significantly reduced, which negatively impairs the effect of the SCR catalyst. In addition, the particulate filter can cause a large pressure drop, which causes the exhaust gas to no longer have a sufficiently high flow rate for the SCR catalyst housed downstream to ensure optimum conversion. There isn't. For example, the incorporation of the SCR catalyst into the particulate filter by partial coating of the particulate filter is not optimal. This is because the cell densities and cell geometries of the honeycomb bodies of commonly used particulate filters are not optimal for the selective catalytic reduction of exhaust gas in SCR catalysts.

上流側に収容されたSCR触媒により、排ガスの第1の後処理を実施することができ、特に、典型的には尿素水溶液により構成される、既に導入されて気化した還元剤を利用して、窒素酸化物を水と窒素とに変換することができる。 With the SCR catalyst housed upstream, a first aftertreatment of the exhaust gas can be carried out, in particular using the already introduced and vaporized reducing agent, which is typically composed of an aqueous urea solution, Nitrogen oxides can be converted into water and nitrogen.

後続のパティキュレートフィルタにより、排ガス流の浄化が達成される。次いで、パティキュレートフィルタの下流側に接続されたSCR触媒が、まだ排ガス中に含まれている窒素酸化物を変換することができる。特に有利には、第2のSCR触媒はこのために、第1のSCR触媒とは異なるセル幾何学形状および/またはセル密度を有していてよく、かつ化学的に異なる活性コーティングをも有していてよい。これにより、例えば窒素酸化物の変換を、比較的低い温度および流速でも達成することができる。 Purification of the exhaust gas stream is achieved by the subsequent particulate filter. Then, the SCR catalyst connected to the downstream side of the particulate filter can convert the nitrogen oxides still contained in the exhaust gas. Particularly advantageously, the second SCR catalyst may therefore have a different cell geometry and/or cell density than the first SCR catalyst and also have a chemically different active coating. You can stay. Thereby, for example, the conversion of nitrogen oxides can be achieved even at relatively low temperatures and flow rates.

特に有利なのは、流れ方向で見てパティキュレートフィルタの上流側に配置された第1のSCR触媒が、電気的に加熱可能な場合である。SCR触媒の電気的な加熱は、排ガスを可能な限り迅速に所要の作動温度に加熱して、選択的な触媒還元を実施することができるようにするために有利である。 It is particularly advantageous if the first SCR catalyst arranged upstream of the particulate filter in the flow direction is electrically heatable. Electrical heating of the SCR catalyst is advantageous in order to heat the exhaust gas to the required operating temperature as quickly as possible so that selective catalytic reduction can be carried out.

また、流れ方向で見て第1のSCR触媒が、流れ方向に沿って最大80mmの延在長さを有している場合も有利であり、第1のSCR触媒は、好適には50mm未満の延在長さを有しており、特に好適には40mm未満の延在長さを有している。第1のSCR触媒の、パティキュレートフィルタまたは第2のSCR触媒に対して比較的短い延在長さは、後続のパティキュレートフィルタへの流れに極僅かにしか影響を及ぼさず、ひいてはパティキュレートフィルタにおける良好な除去結果を保持するために、有利である。 It is also advantageous if the first SCR catalyst, viewed in the flow direction, has an extension length of up to 80 mm along the flow direction, the first SCR catalyst preferably being less than 50 mm. It has an extension length, particularly preferably an extension length of less than 40 mm. The relatively short extension length of the first SCR catalyst with respect to the particulate filter or the second SCR catalyst has a negligible effect on the flow to the subsequent particulate filter, and thus the particulate filter. It is advantageous to retain good removal results in.

1つの好適な実施例は、流れ方向で見て第1のSCR触媒がパティキュレートフィルタに対して、流れ方向に沿って最大20mm、好適には10mm未満および特に好適には5mm未満の間隔をあけて配置されていることを特徴とする。第1のSCR触媒およびパティキュレートフィルタに基づき生じる圧力損失をまとめることができるようにするために、可能な限り小さな間隔が有利である。これは、排ガスシステムの設計を容易にする。 In one preferred embodiment, the first SCR catalyst, viewed in the flow direction, is spaced from the particulate filter by a maximum of 20 mm along the flow direction, preferably less than 10 mm and particularly preferably less than 5 mm. It is characterized by being arranged. The smallest possible spacing is advantageous in order to be able to combine the pressure losses that occur due to the first SCR catalyst and the particulate filter. This facilitates the design of the exhaust system.

また、流れ方向で見て第1のSCR触媒と、流れ方向で見て第2のSCR触媒とが、パティキュレートフィルタと共にモジュールユニットとして形成されている場合も好適である。これは、取付けを容易にするために有利である。 It is also preferable that the first SCR catalyst as viewed in the flow direction and the second SCR catalyst as viewed in the flow direction are formed as a module unit together with the particulate filter. This is advantageous for ease of installation.

さらに、各SCR触媒とパティキュレートフィルタとが、1つの共通のハニカムボデーによって形成されていると有利である。これは、取り付けられる部材の数を可能な限り少なく保ち、これにより取付けを簡単にするために有利である。 Furthermore, it is advantageous if each SCR catalyst and the particulate filter are formed by one common honeycomb body. This is advantageous in that it keeps the number of mounted parts as small as possible, which simplifies the mounting.

さらに、パティキュレートフィルタのハニカムボデーが、流れ方向で見て第1のSCR触媒のハニカムボデーと、流れ方向で見て第2のSCR触媒のハニカムボデーとは異なるセル幾何学形状および/またはセル密度を有していると有利である。これは、個々のコンポーネントをそれぞれの用途に最適に適合させると共に、個々のコンポーネントにわたり、全体としては可能な限り小さな圧力損失を達成するために、特に有利である。さらに、セル幾何学形状により、例えばフィルタ特性および速度分布に影響を及ぼすことができる。 Further, the honeycomb body of the particulate filter has a different cell geometry and/or cell density from the honeycomb body of the first SCR catalyst when viewed in the flow direction and the honeycomb body of the second SCR catalyst when viewed in the flow direction. It is advantageous to have This is particularly advantageous in order to optimally adapt the individual components to their respective applications and to achieve a pressure drop across the individual components which is as low as possible overall. Furthermore, the cell geometry can influence, for example, filter characteristics and velocity distribution.

また、流れ方向で見て第1のSCR触媒のハニカムボデーのセル幾何学形状および/またはセル密度および/またはハニカムボデーの化学的に活性のコーティングおよび/またはハニカムボデーのコーティング量が、流れ方向で見て第2のSCR触媒のハニカムボデーのセル幾何学形状および/またはセル密度および/または化学的に活性のコーティングと異なっている場合も適切である。 Also, the cell geometry and/or cell density of the honeycomb body of the first SCR catalyst as viewed in the flow direction and/or the chemically active coating of the honeycomb body and/or the coating amount of the honeycomb body is It is also appropriate if the second SCR catalyst differs from the honeycomb body cell geometry and/or cell density and/or chemically active coating in view.

これは、例えば第2のSCR触媒の領域において変化した流速にハニカムボデーを適合させることができるようにするために、特に有利である。また、第2のSCR触媒の領域では排ガス組成の変化も考慮せねばならない。なぜなら、第2のSCR触媒はパティキュレートフィルタの下流側に収容されているからである。これにより、例えば比較的高いセル密度または縮小されたセル横断面を用いることができ、この場合にハニカムボデー内に形成された流れ通路の閉塞の危険が生じることはない。また、コーティングも有利には、通常は比較的低いアンモニア・窒素酸化物濃度に適合させることができ、それでもなお、可能な限り包括的な、窒素酸化物の変換を生ぜしめることができる。 This is particularly advantageous, for example in order to be able to adapt the honeycomb body to the changed flow rate in the region of the second SCR catalyst. Also, in the area of the second SCR catalyst, changes in the exhaust gas composition must be taken into consideration. This is because the second SCR catalyst is housed on the downstream side of the particulate filter. This makes it possible, for example, to use relatively high cell densities or reduced cell cross-sections, without the risk of blockage of the flow channels formed in the honeycomb body. The coatings can also advantageously be adapted to normally relatively low ammonia-nitrogen oxide concentrations, yet still result in the most comprehensive nitrogen oxide conversion possible.

好適には、流れ方向で見て第1のSCR触媒のコーティング量は、流れ方向で見て第2のSCR触媒のコーティング量よりも多くなっている。 Preferably, the coating amount of the first SCR catalyst in the flow direction is greater than the coating amount of the second SCR catalyst in the flow direction.

本発明の有利な改良は、各下位請求項および以下の図面の説明に記載されている。 Advantageous refinements of the invention are set out in the subclaims and in the description of the drawing below.

以下、図面を参照して本発明を1つの実施例に基づき詳しく説明する。 Hereinafter, the present invention will be described in detail based on an embodiment with reference to the drawings.

複数の触媒を備えた、例示的な排ガス系統の断面図である。1 is a cross-sectional view of an exemplary exhaust gas system with multiple catalysts.

図1には、排ガスシステム1の排ガス系統の断面図が示されている。排ガスシステム1は、ケーシング内に配置されておりかつ排ガスが触媒を通流することができるように導管によって互いに接続された、複数の触媒を有している。 FIG. 1 shows a cross-sectional view of the exhaust gas system of the exhaust gas system 1. The exhaust gas system 1 comprises a plurality of catalysts which are arranged in a casing and are connected to each other by conduits so that the exhaust gas can pass through the catalysts.

図1に示す実施例では、排ガスの流れ方向2で見てまず、排ガスを酸化させるための触媒3が配置されている。次に、例えば尿素水溶液等の還元剤を排ガス系統内へ導入することのできる導入箇所4が設けられている。この導入箇所4のすぐ隣には気化部材5が配置されており、気化部材5において還元剤を気化させ、次いでアンモニアとして、排ガス中の窒素酸化物と反応させることができる。 In the embodiment shown in FIG. 1, when viewed in the flow direction 2 of the exhaust gas, first, the catalyst 3 for oxidizing the exhaust gas is arranged. Next, an introduction point 4 is provided in which a reducing agent such as urea aqueous solution can be introduced into the exhaust gas system. A vaporizing member 5 is arranged immediately next to the introduction point 4, and the reducing agent can be vaporized in the vaporizing member 5 and then reacted as nitrogen with nitrogen oxide in the exhaust gas.

さらに下流側には第1のSCR触媒6が続いており、第1のSCR触媒6において、排ガス中の窒素酸化物が、アンモニアと、SCR触媒6の化学的に活性のコーティングとに反応して、窒素および水を形成する。 Further downstream is a first SCR catalyst 6 in which nitrogen oxides in the exhaust gas react with ammonia and the chemically active coating of the SCR catalyst 6. Forms nitrogen and water.

第1のSCR触媒6の下流側には、排ガスの濾過に用いられるパティキュレートフィルタ7が接続されており、パティキュレートフィルタ7は、排ガスから特にすすパティキュレートを除去する。 A particulate filter 7 used for filtering exhaust gas is connected to the downstream side of the first SCR catalyst 6, and the particulate filter 7 particularly removes soot particulates from the exhaust gas.

パティキュレートフィルタ7には、第2のSCR触媒8が続いている。第2のSCR触媒8内では、化学的に見て第1のSCR触媒6内と同様の反応が行われる。 A second SCR catalyst 8 follows the particulate filter 7. In the second SCR catalyst 8, the same reaction as in the first SCR catalyst 6 is chemically performed.

このような構成の利点は、排ガスがパティキュレートフィルタ内へ流入する前に、既に排ガス中の窒素酸化物の還元が行われている点にある。したがって、第1のSCR触媒内へ流入する排ガスはまだ、特に高い温度を有しており、流動区間の横断面にわたる排ガス分布もまだ、パティキュレートフィルタによってネガティブに損なわれてはいない。これにより、排ガス中の窒素酸化物の特に効果的な変換を行うことができる。大抵は大きな体積のパティキュレートフィルタは排ガスの温度を大幅に下げるので、下流側に収容されたSCR触媒内での化学反応は通常、最適には進行しない。第2のSCR触媒は実質的に、第1のSCR触媒内でまだ還元されていない窒素酸化物部分の還元に用いられる。 The advantage of such a configuration is that the nitrogen oxides in the exhaust gas have already been reduced before the exhaust gas flows into the particulate filter. Therefore, the exhaust gas flowing into the first SCR catalyst still has a particularly high temperature and the exhaust gas distribution over the cross section of the flow section has not yet been negatively impaired by the particulate filter. This allows a particularly effective conversion of nitrogen oxides in the exhaust gas. Often, large volume particulate filters significantly reduce the temperature of the exhaust gas, so that the chemical reactions within the SCR catalyst contained downstream do not usually proceed optimally. The second SCR catalyst is substantially used to reduce the nitrogen oxide moieties that have not yet been reduced in the first SCR catalyst.

第2のSCR触媒に代えてまたは加えて、排ガス中の窒素酸化物を還元する際に変換されなかった余剰のアンモニア(NH)を結合させることができる、アンモニアスリップ触媒が取り付けられてもよい。このようにして、例えばアンモニアが周辺環境に漏出し、臭気または環境汚染を招く恐れのある、排ガス中へのアンモニアの突破を回避することができる。 Instead of or in addition to the second SCR catalyst, an ammonia slip catalyst may be attached which is capable of binding excess ammonia (NH 3 ) that has not been converted when reducing the nitrogen oxides in the exhaust gas. . In this way, it is possible to avoid the breakthrough of ammonia into the exhaust gas, which can lead, for example, to ammonia leaking into the surrounding environment and causing odors or environmental pollution.

図1に示す実施例は、特に限定的な特徴を有しておらず、本発明の思想を明示するために用いられる。 The embodiment shown in FIG. 1 has no particular limiting features and is used to demonstrate the idea of the invention.

Claims (8)

内燃機関の排ガスを後処理するための排ガスシステム(1)であって、排ガスの流れ方向(2)で見て連続して配置された、排ガスを酸化させるための触媒(3)および/または窒素酸化物を蓄えるための触媒と、還元剤供給用の導入箇所(4)と、窒素酸化物を選択的に触媒還元するためのSCR触媒(6)と、パティキュレートフィルタとを備えた排ガスシステム(1)において、
前記パティキュレートフィルタ(7)は、前記流れ方向(2)で見て前記SCR触媒(6)の下流側に配置されており、前記流れ方向(2)で見て前記パティキュレートフィルタ(7)の下流側には、第2のSCR触媒(8)および/またはアンモニアスリップ触媒が配置されていることを特徴とする、排ガスシステム(1)。
An exhaust gas system (1) for after-treatment of exhaust gas of an internal combustion engine, wherein the catalyst (3) and/or nitrogen for oxidising the exhaust gas, which are arranged continuously in the flow direction (2) of the exhaust gas. An exhaust gas system including a catalyst for storing oxides, an introduction point (4) for supplying a reducing agent, an SCR catalyst (6) for selectively catalytically reducing nitrogen oxides, and a particulate filter ( In 1),
The particulate filter (7) is arranged on the downstream side of the SCR catalyst (6) when viewed in the flow direction (2), and the particulate filter (7) of the SCR catalyst (6) is viewed in the flow direction (2). The exhaust gas system (1), characterized in that a second SCR catalyst (8) and/or an ammonia slip catalyst is arranged downstream.
前記流れ方向(2)で見て前記パティキュレートフィルタ(7)の上流側に配置された第1の前記SCR触媒(6)は、電気的に加熱可能である、請求項1記載の排ガスシステム(1)。 The exhaust gas system (1) according to claim 1, wherein the first SCR catalyst (6) arranged upstream of the particulate filter (7) in the flow direction (2) is electrically heatable. 1). 前記流れ方向(2)で見て前記第1のSCR触媒(6)は、前記流れ方向(2)に沿って最大80mmの延在長さを有しており、前記第1のSCR触媒(6)は、好適には50mm未満の延在長さを有しており、特に好適には40mm未満の延在長さを有している、請求項1または2記載の排ガスシステム(1)。 The first SCR catalyst (6) when viewed in the flow direction (2) has a maximum extension length of 80 mm along the flow direction (2), and the first SCR catalyst (6) 3.) The exhaust gas system (1) according to claim 1 or 2, wherein) preferably has an extension length of less than 50 mm, particularly preferably less than 40 mm. 前記流れ方向(2)で見て前記第1のSCR触媒(6)は、前記パティキュレートフィルタ(7)に対して、前記流れ方向(2)に沿って最大20mm、好適には10mm未満および特に好適には5mm未満の間隔をあけて配置されている、請求項1から3までのいずれか1項記載の排ガスシステム(1)。 Viewed in the flow direction (2), the first SCR catalyst (6) with respect to the particulate filter (7) is at most 20 mm along the flow direction (2), preferably less than 10 mm and especially The exhaust gas system (1) according to any one of claims 1 to 3, which is preferably arranged with a spacing of less than 5 mm. 前記流れ方向(2)で見て前記第1のSCR触媒(6)と、前記流れ方向(2)で見て前記第2のSCR触媒(8)とは、前記パティキュレートフィルタ(7)と共にモジュールユニットとして形成されている、請求項1から4までのいずれか1項記載の排ガスシステム(1)。 The first SCR catalyst (6) viewed in the flow direction (2) and the second SCR catalyst (8) viewed in the flow direction (2) are modules together with the particulate filter (7). Exhaust gas system (1) according to any one of claims 1 to 4, which is formed as a unit. 前記SCR触媒(6,8)と前記パティキュレートフィルタ(7)とは、1つの共通のハニカムボデーにより形成されている、請求項1から5までのいずれか1項記載の排ガスシステム(1)。 The exhaust gas system (1) according to any one of claims 1 to 5, wherein the SCR catalyst (6, 8) and the particulate filter (7) are formed by one common honeycomb body. 前記パティキュレートフィルタ(7)の前記ハニカムボデーは、前記流れ方向(2)で見て前記第1のSCR触媒(6)の前記ハニカムボデーと、前記流れ方向(2)で見て前記第2のSCR触媒(8)の前記ハニカムボデーとは異なるセル幾何学形状および/またはセル密度を有している、請求項1から6までのいずれか1項記載の排ガスシステム(1)。 The honeycomb body of the particulate filter (7) is the same as the honeycomb body of the first SCR catalyst (6) when viewed in the flow direction (2), and the second body when viewed in the flow direction (2). Exhaust gas system (1) according to any one of claims 1 to 6, wherein the SCR catalyst (8) has a different cell geometry and/or cell density than the honeycomb body. 前記流れ方向(2)で見て前記第1のSCR触媒(6)の前記ハニカムボデーのセル幾何学形状および/またはセル密度および/または前記ハニカムボデーの化学的に活性のコーティングおよび/または前記ハニカムボデーのコーティング量が、前記流れ方向(2)で見て前記第2のSCR触媒(8)の前記ハニカムボデーのセル幾何学形状および/またはセル密度および/または化学的に活性のコーティングと異なっている、請求項1から7までのいずれか1項記載の排ガスシステム(1)。 Cell geometry and/or cell density of the honeycomb body and/or chemically active coating of the honeycomb body and/or the honeycomb of the first SCR catalyst (6) as viewed in the flow direction (2). The coating amount of the body differs from the cell geometry and/or cell density and/or the chemically active coating of the honeycomb body of the second SCR catalyst (8) when viewed in the flow direction (2). The exhaust gas system (1) according to any one of claims 1 to 7.
JP2020504766A 2017-04-13 2018-03-29 Exhaust gas system Withdrawn JP2020516815A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017206425.0A DE102017206425A1 (en) 2017-04-13 2017-04-13 exhaust system
DE102017206425.0 2017-04-13
PCT/EP2018/058157 WO2018188968A1 (en) 2017-04-13 2018-03-29 Exhaust gas system

Publications (1)

Publication Number Publication Date
JP2020516815A true JP2020516815A (en) 2020-06-11

Family

ID=61899250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020504766A Withdrawn JP2020516815A (en) 2017-04-13 2018-03-29 Exhaust gas system

Country Status (7)

Country Link
US (1) US20200040783A1 (en)
EP (1) EP3610141A1 (en)
JP (1) JP2020516815A (en)
KR (1) KR20190122259A (en)
CN (1) CN110537008A (en)
DE (1) DE102017206425A1 (en)
WO (1) WO2018188968A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019131829B3 (en) * 2019-11-25 2021-01-14 Volkswagen Aktiengesellschaft Process for exhaust aftertreatment of an internal combustion engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10023439A1 (en) * 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Process for removing nitrogen oxides and soot particles from the lean exhaust gas of an internal combustion engine and exhaust gas purification system therefor
US6823663B2 (en) * 2002-11-21 2004-11-30 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
DE102006009934A1 (en) * 2006-03-03 2007-09-06 Daimlerchrysler Ag Exhaust gas aftertreatment system and process for exhaust gas purification
US8122712B2 (en) * 2008-01-03 2012-02-28 GM Global Technology Operations LLC Exhaust system with improved NOX emission control
US9441517B2 (en) * 2010-09-02 2016-09-13 Ford Global Technologies, Llc Diesel engine exhaust treatment system
DE102012023049A1 (en) * 2012-11-26 2014-05-28 Volkswagen Aktiengesellschaft SCR exhaust aftertreatment device and motor vehicle with such
BR112016017572B1 (en) * 2014-02-28 2021-08-03 Scania Cv Ab METHOD AND SYSTEM FOR CONTROLLING NITROGEN OXIDE EMISSIONS FROM A COMBUSTION ENGINE
DE102014207530A1 (en) * 2014-04-22 2015-10-22 Bayerische Motoren Werke Aktiengesellschaft Catalyst assembly, the assembly containing apparatus for purifying exhaust gases of an internal combustion engine, assembly system for the assembly, and method for manufacturing the assembly
DE102014008056B4 (en) * 2014-05-28 2021-12-30 Daimler Ag Method for operating an exhaust system of an internal combustion engine, in particular for a motor vehicle
FR3029969A1 (en) * 2014-12-10 2016-06-17 Peugeot Citroen Automobiles Sa EXHAUST GAS POST-TREATMENT DEVICE OF A COMBUSTION ENGINE
FR3029968B1 (en) * 2014-12-10 2018-01-12 Psa Automobiles Sa. EXHAUST GAS POST-TREATMENT DEVICE OF A COMBUSTION ENGINE
DE202015104462U1 (en) * 2015-08-03 2015-09-08 Ford Global Technologies, Llc Exhaust after-treatment system for a diesel engine
DE102015214734A1 (en) * 2015-08-03 2017-02-09 Ford Global Technologies, Llc Exhaust after-treatment system for a diesel engine
CN105697106A (en) * 2016-02-05 2016-06-22 潍柴动力股份有限公司 Urea heating device for efficient SCR, and use method thereof

Also Published As

Publication number Publication date
CN110537008A (en) 2019-12-03
US20200040783A1 (en) 2020-02-06
EP3610141A1 (en) 2020-02-19
WO2018188968A1 (en) 2018-10-18
KR20190122259A (en) 2019-10-29
DE102017206425A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
US8627653B2 (en) Exhaust purification apparatus
US8679412B2 (en) Exhaust gas-purifying system
CN112901319B (en) Closely coupled single module aftertreatment system
JP6085316B2 (en) Use of catalytic converter parts and catalytic converter parts of automobile exhaust gas purification equipment
CN103089380A (en) Electronically heated nox adsorber catalyst
KR101546332B1 (en) Process for reducing no2 from combustion system exhaust
KR20140062899A (en) Exhaust gas purification system of vehicle
JP5057944B2 (en) Exhaust aftertreatment device
JP2020516815A (en) Exhaust gas system
RU2012121578A (en) METHOD AND APPARATUS FOR CLEANING EXHAUST GAS OF INTERNAL COMBUSTION ENGINE
JP6500422B2 (en) Exhaust gas purification device
US9261003B2 (en) System and method for treating exhaust pipe
US11846223B2 (en) Diesel exhaust treatement apparatus and methods
CN106150622B (en) Emission control system for vehicle
CN108699939B (en) Exhaust gas purification device for internal combustion engine
JP2017155695A (en) Exhaust emission control device of internal combustion engine
US20100154392A1 (en) Adjusting nitrogen oxide ratios in exhaust gas
JP6326580B2 (en) Exhaust gas purification apparatus equipped with NOx reduction catalyst means
JP2020204286A (en) Pipe heat insulation structure
JP2021080875A (en) Exhaust emission control device
JP2014202192A (en) Exhaust emission cleaning device
US20210146305A1 (en) Combined Soot Filter and Urea Hydrolysis
JP2021080876A (en) Exhaust emission control device
EP4320340A1 (en) Exhaust treatment method and apparatus having particulate filters and scr
JP2012159053A (en) Exhaust gas purification apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191009

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200701