JP2014202192A - Exhaust emission cleaning device - Google Patents

Exhaust emission cleaning device Download PDF

Info

Publication number
JP2014202192A
JP2014202192A JP2013081712A JP2013081712A JP2014202192A JP 2014202192 A JP2014202192 A JP 2014202192A JP 2013081712 A JP2013081712 A JP 2013081712A JP 2013081712 A JP2013081712 A JP 2013081712A JP 2014202192 A JP2014202192 A JP 2014202192A
Authority
JP
Japan
Prior art keywords
reduction catalyst
ammonia
selective reduction
exhaust
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013081712A
Other languages
Japanese (ja)
Inventor
中野 康夫
Yasuo Nakano
康夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2013081712A priority Critical patent/JP2014202192A/en
Publication of JP2014202192A publication Critical patent/JP2014202192A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To optionally select an element such as copper, which cannot be conventionally used as metal active species, as the metal active species of a selective reduction type catalyst.SOLUTION: An exhaust emission cleaning device includes a selective reduction type catalyst 4 selectively reacting NOx with ammonia even under the coexistence of oxygen, in the terminal part of an exhaust tube 2 (an exhaust flow passage), and can add urea water as reductant on the upstream side with respect to the selective reduction type catalyst 4. On the downstream side with respect to the selective reduction type catalyst 4, a wall-through type filter 11 capable of catching a metal active species separated from the selective reduction type catalyst 4 is arranged.

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

近年、排気管の途中に排気ガス中のパティキュレートを捕集するパティキュレートフィルタを備えると共に、該パティキュレートフィルタの下流側に酸素共存下でも選択的にNOxをアンモニアと反応させ得る選択還元型触媒を備え、該選択還元型触媒と前記パティキュレートフィルタとの間に還元剤として尿素水を添加してパティキュレートとNOxの同時低減を図ることが考えられている。   2. Description of the Related Art In recent years, a selective reduction catalyst that includes a particulate filter that collects particulates in exhaust gas in the middle of an exhaust pipe, and that can selectively react NOx with ammonia even in the presence of oxygen on the downstream side of the particulate filter. It is considered that urea water is added as a reducing agent between the selective reduction catalyst and the particulate filter to simultaneously reduce particulates and NOx.

このようにする場合、選択還元型触媒への尿素水の添加がパティキュレートフィルタと選択還元型触媒との間で行われることになるため、排気ガス中に添加された尿素水がアンモニアと炭酸ガスに熱分解されるまでの十分な反応時間を確保しようとすれば、尿素水の添加位置から選択還元型触媒までの距離を長くする必要があるが、パティキュレートフィルタと選択還元型触媒とを十分な距離を隔てて離間配置させてしまうと、車両への搭載性が著しく損なわれるという不具合がある。   In this case, since urea water is added to the selective reduction catalyst between the particulate filter and the selective reduction catalyst, the urea water added to the exhaust gas is ammonia and carbon dioxide. In order to secure a sufficient reaction time until thermal decomposition, it is necessary to increase the distance from the urea water addition position to the selective catalytic reduction catalyst. If they are spaced apart from each other by a large distance, there is a problem that the mountability on the vehicle is significantly impaired.

そこで、図3に示す如く、エンジンからの排気ガス1が流通する排気管2(排気流路)の終端部に、排気ガス1中のパティキュレートを捕集するパティキュレートフィルタ3と、該パティキュレートフィルタ3の下流側に酸素共存下でも選択的にNOxをアンモニアと反応させ得る性質を備えた選択還元型触媒4とをケーシング5,6により夫々抱持して並列に配置し、パティキュレートフィルタ3の出側端部と選択還元型触媒4の入側端部との間をS字構造の連絡流路7により接続し、パティキュレートフィルタ3の出側端部から排出された排気ガス1が逆向きに折り返されて隣の選択還元型触媒4の入側端部に導入されるようにした排気浄化装置が創案されるに到った。   Therefore, as shown in FIG. 3, a particulate filter 3 for collecting particulates in the exhaust gas 1 at the end of an exhaust pipe 2 (exhaust flow path) through which the exhaust gas 1 from the engine flows, and the particulates The selective reduction catalyst 4 having the property of allowing NOx to react selectively with ammonia even in the presence of oxygen is disposed downstream of the filter 3 by the casings 5 and 6 and arranged in parallel. Is connected to the inlet end of the selective catalytic reduction catalyst 4 by an S-shaped connecting flow path 7 so that the exhaust gas 1 discharged from the outlet end of the particulate filter 3 is reversed. An exhaust purification device has been devised that is folded back and introduced into the inlet end of the adjacent selective catalytic reduction catalyst 4.

ここで、前記連絡流路7は、パティキュレートフィルタ3の出側端部を包囲し且つ該出側端部から出た直後の排気ガス1を略直角な向きに方向転換させつつ集合せしめるガス集合室7Aと、該ガス集合室7Aで集められた排気ガス1をパティキュレートフィルタ3の排気流れと逆向きに抜き出すミキシングパイプ7Bと、該ミキシングパイプ7Bにより導かれた排気ガス1を略直角な向きに方向転換させつつ分散せしめ且つその分散された排気ガス1を選択還元型触媒4の入側端部に導入し得るよう該入側端部を包囲するガス分散室7CとによりS字構造を成すように構成されており、前記ミキシングパイプ7Bの入側端部の中心位置には、該ミキシングパイプ7B内に尿素水を添加するための尿素水添加用インジェクタ8(尿素水添加手段)が前記ミキシングパイプ7Bの出側端部側へ向けて装備されている。   Here, the communication channel 7 surrounds the outlet side end of the particulate filter 3 and collects the exhaust gas 1 immediately after exiting from the outlet side end while changing the direction in a substantially perpendicular direction. A chamber 7A, a mixing pipe 7B for extracting the exhaust gas 1 collected in the gas collecting chamber 7A in a direction opposite to the exhaust flow of the particulate filter 3, and a direction in which the exhaust gas 1 guided by the mixing pipe 7B is substantially perpendicular The S-shaped structure is formed by the gas dispersion chamber 7C surrounding the inlet side end so that the dispersed exhaust gas 1 can be introduced into the inlet side end of the selective catalytic reduction catalyst 4 while being dispersed. In the center position of the inlet end of the mixing pipe 7B, a urea water addition injector 8 (urea water addition means) for adding urea water into the mixing pipe 7B There is equipped toward the outlet end side of the mixing pipe 7B.

尚、ここに図示している例では、パティキュレートフィルタ3が抱持されているケーシング5内の前段に、排気ガス1中の未燃燃料分を酸化処理する酸化触媒9が装備されており、また、選択還元型触媒4が抱持されているケーシング6内の後段には、余剰のアンモニアを酸化処理するアンモニア低減触媒10が装備されている。   In the example shown here, an oxidation catalyst 9 that oxidizes unburned fuel in the exhaust gas 1 is provided in the front stage in the casing 5 in which the particulate filter 3 is held, In addition, an ammonia reduction catalyst 10 that oxidizes surplus ammonia is provided at the rear stage in the casing 6 in which the selective catalytic reduction catalyst 4 is held.

そして、このような構成を採用すれば、パティキュレートフィルタ3により排気ガス1中のパティキュレートが捕集されると共に、その下流側のミキシングパイプ7Bの途中で尿素水添加用インジェクタ8から尿素水が排気ガス1中に添加されてアンモニアと炭酸ガスに熱分解され、選択還元型触媒4上で排気ガス1中のNOxがアンモニアにより良好に還元浄化される結果、排気ガス1中のパティキュレートとNOxの同時低減が図られることになる。   If such a configuration is adopted, particulates in the exhaust gas 1 are collected by the particulate filter 3, and urea water is supplied from the urea water addition injector 8 in the middle of the mixing pipe 7B on the downstream side thereof. As a result of being added to the exhaust gas 1 and thermally decomposed into ammonia and carbon dioxide gas, the NOx in the exhaust gas 1 is reduced and purified well by ammonia on the selective catalytic reduction catalyst 4, so that the particulates and NOx in the exhaust gas 1 are reduced. Are simultaneously reduced.

この際、パティキュレートフィルタ3の出側端部から排出された排気ガス1が連絡流路7により逆向きに折り返されてから隣の選択還元型触媒4の入側端部に導入されるようになっているので、尿素水の添加位置から選択還元型触媒4までの距離が長く確保され、尿素水からアンモニアが生成されるのに十分な反応時間が確保される。   At this time, the exhaust gas 1 discharged from the outlet end portion of the particulate filter 3 is folded in the reverse direction by the connecting flow path 7 and then introduced into the inlet end portion of the adjacent selective catalytic reduction catalyst 4. Therefore, a long distance from the urea water addition position to the selective catalytic reduction catalyst 4 is secured, and a sufficient reaction time is secured for ammonia to be generated from the urea water.

しかも、パティキュレートフィルタ3と選択還元型触媒4とが並列に配置され、これらパティキュレートフィルタ3と選択還元型触媒4との間に沿うように連絡流路7が配置されているので、その全体構成がコンパクトなものとなって車両への搭載性が大幅に向上されることになる。   In addition, the particulate filter 3 and the selective catalytic reduction catalyst 4 are arranged in parallel, and the communication flow path 7 is arranged between the particulate filter 3 and the selective catalytic reduction catalyst 4, so that the whole The configuration becomes compact, and the mountability to the vehicle is greatly improved.

尚、この種のパティキュレートフィルタ3と選択還元型触媒4とを並列に配置してS字構造の連絡流路7により連結した排気浄化装置に関連する先行技術文献情報としては下記の特許文献1等がある。   Prior art document information relating to an exhaust gas purification apparatus in which this type of particulate filter 3 and selective reduction catalyst 4 are arranged in parallel and connected by an S-shaped connecting flow path 7 is disclosed in Patent Document 1 below. Etc.

特開2008−196328号公報JP 2008-196328 A

しかしながら、図3に一例を示す如き排気浄化装置に用いられている選択還元型触媒4にあっては、その性能が金属活性種によって大きく変わることが知られており、例えば、図4に縦軸をNOx浄化率とし且つ横軸を前段の酸化触媒9におけるPt/Pd量としたグラフで鉄の場合(Fe系触媒)と銅の場合(Cu系触媒)とを比較して示している通り、一般的な金属活性種として用いられている鉄よりも、銅を金属活性種として用いた場合の方が性能(NOx浄化率)が高いことが既に判っているが、現在の日本の法規では、選択還元型触媒を用いて排気浄化を行うシステムを備えた自動車に関して、バナジウム、クロム、マンガン、コバルト、ニッケル、銅の指定6元素を大気放出しないことが定められており、高い性能が得られることが判っている銅を金属活性種として用いることができないという問題があった。   However, it is known that the performance of the selective catalytic reduction catalyst 4 used in the exhaust gas purification apparatus as shown in FIG. 3 varies greatly depending on the metal active species. Is a NOx purification rate and the horizontal axis is the amount of Pt / Pd in the oxidation catalyst 9 in the previous stage, as compared with the case of iron (Fe-based catalyst) and the case of copper (Cu-based catalyst), It is already known that the performance (NOx purification rate) is higher when copper is used as the metal active species than the iron used as a general metal active species. For automobiles equipped with a system that performs exhaust purification using a selective catalytic reduction catalyst, it is stipulated that the specified six elements of vanadium, chromium, manganese, cobalt, nickel, and copper are not released into the atmosphere, and high performance is obtained. The known copper has a problem that it can not be used as a metal active species.

本発明は、上述の実情に鑑みてなしたもので、これまで金属活性種として使用できなかった銅等の元素を任意に選択還元型触媒の金属活性種として選択し得るようにすることを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to allow an element such as copper that could not be used as a metal active species so far to be arbitrarily selected as a metal active species of a selective catalytic reduction catalyst. And

本発明は、排気流路の途中に酸素共存下でも選択的にNOxをアンモニアと反応せしめる選択還元型触媒を装備し、該選択還元型触媒より上流側に還元剤として尿素水を添加し得るように構成した排気浄化装置であって、前記選択還元型触媒より下流側に、該選択還元型触媒から脱離した金属活性種を捕捉することが可能なウォールスルー型式のフィルタを配置したことを特徴とするものである。   The present invention is equipped with a selective catalytic reduction catalyst that selectively reacts NOx with ammonia even in the presence of oxygen in the middle of the exhaust flow path, so that urea water can be added as a reducing agent upstream of the selective catalytic reduction catalyst. An exhaust purification device configured as described above, wherein a wall-through type filter capable of capturing active metal species desorbed from the selective catalytic reduction catalyst is disposed downstream of the selective catalytic reduction catalyst. It is what.

而して、このようにすれば、選択還元型触媒から金属活性種が脱離して下流側へ飛散するような事態が生じても、その飛散した金属活性種がウォールスルー型式のフィルタを通過する間に捕捉されて前記金属活性種の大気放出が防止されるので、前記選択還元型触媒の金属活性種を任意に選択することが可能となる。   Thus, even if a situation occurs in which the active metal species are desorbed from the selective catalytic reduction catalyst and scattered downstream, the scattered active metal species pass through the wall-through filter. Since it is trapped in the middle and the release of the active metal species into the atmosphere is prevented, the active metal species of the selective catalytic reduction catalyst can be arbitrarily selected.

また、本発明においては、選択還元型触媒の金属活性種として銅が採用されていることが好ましく、このようにすれば、これまで金属活性種として一般的に用いられてきた鉄の場合と比較して大幅な性能向上を図ることが可能となる。   Further, in the present invention, it is preferable that copper is employed as the metal active species of the selective catalytic reduction catalyst. In this way, compared with the case of iron generally used as the metal active species so far. As a result, significant performance improvement can be achieved.

尚、本発明をより具体的に実施するにあたっては、ウォールスルー型式のフィルタに、余剰のアンモニアを酸化処理するアンモニア低減触媒を担持させるようにしても良いし、選択還元型触媒とウォールスルー型式のフィルタとの間に、余剰のアンモニアを酸化処理するアンモニア低減触媒を配置するようにしても良い。   In more specific implementation of the present invention, the wall-through type filter may be loaded with an ammonia reducing catalyst for oxidizing excess ammonia, or the selective reduction type catalyst and the wall-through type filter may be supported. You may make it arrange | position the ammonia reduction catalyst which oxidizes surplus ammonia between filters.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1、2に記載の発明によれば、選択還元型触媒から離脱した金属活性種の大気放出を防止することができるので、これまで金属活性種として使用できなかった銅等の元素を任意に選択還元型触媒の金属活性種として選択することができ、選択還元型触媒の大幅な性能向上を図ることができる。   (I) According to the first and second aspects of the present invention, since the release of the active metal species separated from the selective catalytic reduction catalyst into the atmosphere can be prevented, it has not been possible to use as the active metal species until now. An element such as copper can be arbitrarily selected as the metal active species of the selective catalytic reduction, and the performance of the selective catalytic reduction can be greatly improved.

(II)本発明の請求項3、4に記載の発明によれば、選択還元型触媒を未反応のまま通過した余剰のアンモニアをアンモニア低減触媒により酸化処理することができるので、余剰のアンモニアの大気放出を著しく抑制することができ、特にウォールスルー型式のフィルタにアンモニア低減触媒を担持させた場合には、フィルタとアンモニア低減触媒の配置スペースを個別に確保しなくて済むことによりコンパクトな配置を実現することができる。   (II) According to the invention described in claims 3 and 4 of the present invention, surplus ammonia that has passed through the selective catalytic reduction catalyst without being reacted can be oxidized by the ammonia reducing catalyst. Release to the atmosphere can be remarkably suppressed. In particular, when an ammonia reduction catalyst is supported on a wall-through filter, a compact arrangement can be achieved by eliminating the need for separate arrangement spaces for the filter and the ammonia reduction catalyst. Can be realized.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 本発明の別の形態例を示す概略図である。It is the schematic which shows another form example of this invention. 従来例を示す概略図である。It is the schematic which shows a prior art example. 金属活性種が鉄の場合と銅の場合での性能を比較したグラフである。It is the graph which compared the performance in case the metal active species is iron and copper.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、図3と同一の符号を付した部分は同一物を表わしている。   FIG. 1 shows an example of an embodiment for carrying out the present invention, and the parts denoted by the same reference numerals as those in FIG. 3 represent the same items.

図1に示す如く、本形態例においては、先に図3で説明したものと同様に構成した排気浄化装置における選択還元型触媒4の金属活性種として銅を採用し、この選択還元型触媒4より下流の排気管2に、前記選択還元型触媒4から離脱した金属活性種としての銅を捕捉することが可能なウォールスルー型式のフィルタ11を配置したところを特徴としている。   As shown in FIG. 1, in this embodiment, copper is employed as the metal active species of the selective catalytic reduction catalyst 4 in the exhaust purification apparatus configured in the same manner as described above with reference to FIG. 3, and this selective catalytic reduction catalyst 4 A wall-through type filter 11 capable of capturing copper as a metal active species separated from the selective catalytic reduction catalyst 4 is disposed in the exhaust pipe 2 further downstream.

ここで、ウォールスルー型式のフィルタ11は、実質的に上流側に配置されているパティキュレートフィルタ3と略同様の構造を成すものであり、より具体的には、コージェライト等のセラミックから成る多孔質のハニカム構造を成し、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガス1のみが下流側へ排出され、前記選択還元型触媒4から離脱した銅が前記多孔質薄壁により捕捉されるようになっている。   Here, the wall-through type filter 11 has substantially the same structure as the particulate filter 3 disposed on the upstream side. More specifically, the wall-through type filter 11 is a porous material made of a ceramic such as cordierite. It has a quality honeycomb structure, and the inlets of each flow path partitioned in a lattice pattern are alternately sealed, and the outlets of the flow paths that are not sealed are sealed. Only the exhaust gas 1 that has permeated through the porous thin wall partitioning each flow path is discharged to the downstream side, and the copper released from the selective catalytic reduction catalyst 4 is captured by the porous thin wall. .

また、特に本形態例においては、ウォールスルー型式のフィルタ11に、余剰のアンモニアを酸化処理するアンモニア低減触媒を担持させるようにしており、ウォールフロー型式(格子状に区画された各流路をストレートに流れ抜ける型式)となっていた既存のアンモニア低減触媒10(図3参照)の配置スペースをそのまま利用して前記フィルタ11を配置するようにしている。   Particularly in this embodiment, the wall-through type filter 11 is loaded with an ammonia reducing catalyst that oxidizes surplus ammonia, and the wall flow type (each channel partitioned in a grid pattern is straightened). The filter 11 is arranged using the arrangement space of the existing ammonia reduction catalyst 10 (see FIG. 3) as it is.

而して、このようにすれば、選択還元型触媒4から銅が脱離して下流側へ飛散するような事態が生じても、その飛散した銅がウォールスルー型式のフィルタ11を通過する間に捕捉されて前記銅の大気放出が防止されるので、前記選択還元型触媒4の金属活性種に、これまで使用できなかった銅を選択することが可能となり、一般的な金属活性種として用いられてきた鉄の場合と比較して大幅な性能向上を図ることができる。   Thus, in this way, even if a situation occurs in which copper is desorbed from the selective catalytic reduction catalyst 4 and scattered downstream, the scattered copper passes through the wall-through type filter 11. Since it is captured and the release of the copper into the atmosphere is prevented, it becomes possible to select copper that could not be used as the metal active species of the selective catalytic reduction catalyst 4 and used as a general metal active species. The performance can be greatly improved compared with the case of iron.

しかも、ウォールスルー型式のフィルタ11に、余剰のアンモニアを酸化処理するアンモニア低減触媒を担持させるようにしているので、選択還元型触媒4を未反応のまま通過した余剰のアンモニアをアンモニア低減触媒により酸化処理することができ、余剰のアンモニアの大気放出を著しく抑制することができると共に、フィルタ11とアンモニア低減触媒10(図3参照)の配置スペースを個別に確保しなくて済むことによりコンパクトな配置を実現することができる。   In addition, since the ammonia reduction catalyst that oxidizes excess ammonia is supported on the wall-through filter 11, excess ammonia that has passed through the selective reduction catalyst 4 without being reacted is oxidized by the ammonia reduction catalyst. It can be processed, and the release of surplus ammonia into the atmosphere can be remarkably suppressed, and a compact arrangement can be achieved by eliminating the need for separate arrangement spaces for the filter 11 and the ammonia reduction catalyst 10 (see FIG. 3). Can be realized.

また、図2は本発明の別の形態例を示すもので、先の図1の形態例でウォールスルー型式のフィルタ11にアンモニア低減触媒を担持させていたことに替え、選択還元型触媒4とウォールスルー型式のフィルタ11との間に、余剰のアンモニアを酸化処理するアンモニア低減触媒10を別個に配置したものである。   FIG. 2 shows another embodiment of the present invention. In place of the ammonia reduction catalyst supported on the wall-through filter 11 in the embodiment of FIG. 1, the selective reduction catalyst 4 and Between the wall-through type filter 11, an ammonia reducing catalyst 10 for oxidizing excess ammonia is separately arranged.

このようにした場合にも、選択還元型触媒4から脱離して下流側へ飛散した銅をウォールスルー型式のフィルタ11により捕捉して前記銅の大気放出を防止することができるので、前記選択還元型触媒4の金属活性種に、これまで使用できなかった銅を選択することができ、一般的な金属活性種として用いられてきた鉄の場合と比較して大幅な性能向上を図ることができる。   Even in this case, the copper desorbed from the selective catalytic reduction catalyst 4 and scattered downstream can be captured by the wall-through filter 11 to prevent the copper from being released into the atmosphere. Copper that could not be used so far can be selected as the metal active species of the type catalyst 4, and a significant performance improvement can be achieved compared to the case of iron that has been used as a general metal active species. .

しかも、選択還元型触媒4とウォールスルー型式のフィルタ11との間にアンモニア低減触媒10を別個に配置しているので、選択還元型触媒4を未反応のまま通過した余剰のアンモニアをアンモニア低減触媒10により酸化処理することができ、余剰のアンモニアの大気放出を著しく抑制することができる。   In addition, since the ammonia reduction catalyst 10 is disposed separately between the selective reduction catalyst 4 and the wall-through type filter 11, the excess ammonia that has passed through the selective reduction catalyst 4 while remaining unreacted is removed from the ammonia reduction catalyst. 10 can be oxidized, and the release of excess ammonia into the atmosphere can be remarkably suppressed.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、選択還元型触媒の金属活性種として銅を採用する場合を好適な例として説明しているが、選択還元型触媒の金属活性種として採用し得る元素は銅に限定されるものではなく、任意な元素を選択することが可能であること、また、パティキュレートフィルタとの併用は任意に選択して良いものであり、その配置形式についても図示例の如き並列配置に限定されるものではないこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust emission control device of the present invention is not limited to the above-described embodiment example, but a case where copper is employed as a metal active species of the selective catalytic reduction catalyst is described as a preferred example. The element that can be adopted as the metal active species of the type catalyst is not limited to copper, it is possible to select any element, and the combination with the particulate filter may be arbitrarily selected Of course, the arrangement form is not limited to the parallel arrangement as shown in the drawings, and various changes can be made without departing from the scope of the present invention.

1 排気ガス
2 排気管(排気流路)
4 選択還元型触媒
8 尿素水添加用インジェクタ
10 アンモニア低減触媒
11 ウォールスルー型式のフィルタ
1 Exhaust gas 2 Exhaust pipe (exhaust flow path)
4 Selective reduction catalyst 8 Injector for urea solution addition 10 Ammonia reduction catalyst 11 Wall-through filter

Claims (4)

排気流路の途中に酸素共存下でも選択的にNOxをアンモニアと反応せしめる選択還元型触媒を装備し、該選択還元型触媒より上流側に還元剤として尿素水を添加し得るように構成した排気浄化装置であって、前記選択還元型触媒より下流側に、該選択還元型触媒から脱離した金属活性種を捕捉することが可能なウォールスルー型式のフィルタを配置したことを特徴とする排気浄化装置。   Equipped with a selective reduction catalyst that selectively reacts NOx with ammonia even in the presence of oxygen in the middle of the exhaust flow path, and configured to be able to add urea water as a reducing agent upstream of the selective reduction catalyst An exhaust gas purification apparatus comprising a wall-through type filter capable of capturing active metal species desorbed from a selective reduction catalyst downstream of the selective reduction catalyst. apparatus. 選択還元型触媒の金属活性種として銅が採用されていることを特徴とする請求項1に記載の排気浄化装置。   The exhaust emission control device according to claim 1, wherein copper is adopted as a metal active species of the selective catalytic reduction catalyst. ウォールスルー型式のフィルタに、余剰のアンモニアを酸化処理するアンモニア低減触媒が担持されていることを特徴とする請求項1又は2に記載の排気浄化装置。   The exhaust purification apparatus according to claim 1 or 2, wherein an ammonia reduction catalyst for oxidizing surplus ammonia is supported on the wall-through type filter. 選択還元型触媒とウォールスルー型式のフィルタとの間に、余剰のアンモニアを酸化処理するアンモニア低減触媒が配置されていることを特徴とする請求項1又は2に記載の排気浄化装置。   The exhaust emission control device according to claim 1 or 2, wherein an ammonia reduction catalyst that oxidizes excess ammonia is disposed between the selective reduction catalyst and the wall-through type filter.
JP2013081712A 2013-04-10 2013-04-10 Exhaust emission cleaning device Pending JP2014202192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013081712A JP2014202192A (en) 2013-04-10 2013-04-10 Exhaust emission cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081712A JP2014202192A (en) 2013-04-10 2013-04-10 Exhaust emission cleaning device

Publications (1)

Publication Number Publication Date
JP2014202192A true JP2014202192A (en) 2014-10-27

Family

ID=52352842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081712A Pending JP2014202192A (en) 2013-04-10 2013-04-10 Exhaust emission cleaning device

Country Status (1)

Country Link
JP (1) JP2014202192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118182A (en) * 2014-12-22 2016-06-30 トヨタ自動車株式会社 Failure diagnosis device of filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328724A (en) * 2002-05-15 2003-11-19 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
WO2011162030A1 (en) * 2010-06-24 2011-12-29 エヌ・イー ケムキャット株式会社 Exhaust gas catalytic purging unit using selective reduction catalyst, exhaust gas purging method, and diesel automobile equipped with exhaust gas catalytic purging unit
JP2012522636A (en) * 2009-04-03 2012-09-27 ビーエーエスエフ コーポレーション Emission treatment system comprising an ammonia generation catalyst and an SCR catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328724A (en) * 2002-05-15 2003-11-19 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP2012522636A (en) * 2009-04-03 2012-09-27 ビーエーエスエフ コーポレーション Emission treatment system comprising an ammonia generation catalyst and an SCR catalyst
WO2011162030A1 (en) * 2010-06-24 2011-12-29 エヌ・イー ケムキャット株式会社 Exhaust gas catalytic purging unit using selective reduction catalyst, exhaust gas purging method, and diesel automobile equipped with exhaust gas catalytic purging unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118182A (en) * 2014-12-22 2016-06-30 トヨタ自動車株式会社 Failure diagnosis device of filter

Similar Documents

Publication Publication Date Title
JP4886547B2 (en) Exhaust purification device
JP5173308B2 (en) Exhaust purification device
CN112901319B (en) Closely coupled single module aftertreatment system
JP4995689B2 (en) Exhaust purification device
JP4920532B2 (en) Exhaust purification device
JP4881213B2 (en) Exhaust purification device
CN102762828B (en) Exhaust purification device
KR101292627B1 (en) Exhaust purification apparatus
EP2128398A1 (en) Exhaust gas purification device
JP5890661B2 (en) Exhaust purification equipment
JP2008138654A (en) Exhaust emission control device
JP2007040149A (en) Exhaust emission control device of internal combustion engine
JP2011149401A (en) Exhaust emission control device and exhaust emission control method for diesel engine
CN101900015A (en) Exhaust after treatment system
JP5057944B2 (en) Exhaust aftertreatment device
KR20140062899A (en) Exhaust gas purification system of vehicle
RU2012121578A (en) METHOD AND APPARATUS FOR CLEANING EXHAUST GAS OF INTERNAL COMBUSTION ENGINE
JP2014202192A (en) Exhaust emission cleaning device
JP5950631B2 (en) Exhaust purification device
JP2020516815A (en) Exhaust gas system
JP2007117864A (en) Particulate filter
CN108699939B (en) Exhaust gas purification device for internal combustion engine
JP2017218916A (en) Mixing structure
JP2017155695A (en) Exhaust emission control device of internal combustion engine
JP2015197084A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170711