JP5890661B2 - Exhaust purification equipment - Google Patents

Exhaust purification equipment Download PDF

Info

Publication number
JP5890661B2
JP5890661B2 JP2011250291A JP2011250291A JP5890661B2 JP 5890661 B2 JP5890661 B2 JP 5890661B2 JP 2011250291 A JP2011250291 A JP 2011250291A JP 2011250291 A JP2011250291 A JP 2011250291A JP 5890661 B2 JP5890661 B2 JP 5890661B2
Authority
JP
Japan
Prior art keywords
exhaust gas
reduction catalyst
gas
dispersion chamber
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011250291A
Other languages
Japanese (ja)
Other versions
JP2013104395A (en
Inventor
浩史 遠藤
浩史 遠藤
宏 築坂
宏 築坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2011250291A priority Critical patent/JP5890661B2/en
Publication of JP2013104395A publication Critical patent/JP2013104395A/en
Application granted granted Critical
Publication of JP5890661B2 publication Critical patent/JP5890661B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

近年、エンジンの排気管の途中に排気ガス中のパティキュレートを捕集するパティキュレートフィルタを備えると共に、該パティキュレートフィルタの下流側に酸素共存下でも選択的にNOxをアンモニアと反応させ得る後処理装置としての選択還元型触媒を備え、該選択還元型触媒と前記パティキュレートフィルタとの間に還元剤として尿素水を添加してパティキュレートとNOxの同時低減を図ることが提案されている。   In recent years, a particulate filter that collects particulates in exhaust gas is provided in the middle of an exhaust pipe of an engine, and post-treatment that can selectively react NOx with ammonia even in the presence of oxygen on the downstream side of the particulate filter It has been proposed that a selective reduction catalyst as an apparatus is provided, and urea water is added as a reducing agent between the selective reduction catalyst and the particulate filter to simultaneously reduce particulates and NOx.

この場合、選択還元型触媒への尿素水の添加は、パティキュレートフィルタと選択還元型触媒との間で行われることになるため、排気ガス中に添加された尿素水がアンモニアと炭酸ガスに熱分解されるまでの充分な反応時間を確保しようとすれば、尿素水の添加位置から選択還元型触媒までの距離を長くする必要があるが、パティキュレートフィルタと選択還元型触媒とを充分な距離を隔てて離間配置させてしまうと、車両への搭載性が著しく損なわれてしまう。   In this case, since the urea water is added to the selective reduction catalyst between the particulate filter and the selective reduction catalyst, the urea water added in the exhaust gas is heated to ammonia and carbon dioxide. In order to secure sufficient reaction time until decomposition, it is necessary to increase the distance from the urea water addition position to the selective catalytic reduction catalyst. However, there is a sufficient distance between the particulate filter and the selective catalytic reduction catalyst. If they are spaced apart from each other, the mountability on the vehicle is significantly impaired.

このため、本発明と同じ出願人により図2に示す如きコンパクトな排気浄化装置が既に提案されており、ここに図示している排気浄化装置では、エンジンからの排気ガス1が流通する排気管2の途中に、排気ガス1中のパティキュレートを捕集するパティキュレートフィルタ3と、該パティキュレートフィルタ3の下流側に酸素共存下でも選択的にNOxをアンモニアと反応させ得る性質を備えた選択還元型触媒4とをケーシング5,6により夫々抱持して並列に配置し、パティキュレートフィルタ3の出側端部と選択還元型触媒4の入側端部との間をS字構造の連絡流路7により接続し、パティキュレートフィルタ3の出側端部から排出された排気ガス1が逆向きに折り返されて隣の選択還元型触媒4の入側端部に導入されるようになっている。   For this reason, a compact exhaust gas purification device as shown in FIG. 2 has already been proposed by the same applicant as the present invention. In the exhaust gas purification device shown here, an exhaust pipe 2 through which exhaust gas 1 from the engine flows is provided. In the middle of the process, a particulate filter 3 for collecting particulates in the exhaust gas 1 and selective reduction having the property of allowing NOx to selectively react with ammonia even in the presence of oxygen on the downstream side of the particulate filter 3. The catalyst 4 is held in parallel by the casings 5 and 6 and arranged in parallel, and the S-structured communication flow is provided between the outlet end of the particulate filter 3 and the inlet end of the selective catalytic reduction catalyst 4. The exhaust gas 1 connected through the passage 7 and exhausted from the outlet end of the particulate filter 3 is folded in the reverse direction and introduced into the inlet end of the adjacent selective catalytic reduction catalyst 4. The

ここで、前記連絡流路7は、パティキュレートフィルタ3の出側端部を包囲し且つ該出側端部から出た直後の排気ガス1を略直角な向きに方向転換させつつ集合せしめるガス集合室7Aと、該ガス集合室7Aで集められた排気ガス1をパティキュレートフィルタ3の排気流れと逆向きに抜き出すミキシングパイプ7Bと、該ミキシングパイプ7Bにより導かれた排気ガス1を略直角な向きに方向転換させつつ分散せしめ且つその分散された排気ガス1を選択還元型触媒4の入側端部に導入し得るよう該入側端部を包囲するガス分散室7CとによりS字構造を成すように構成されており、前記ミキシングパイプ7Bの入側端部の中心位置には、該ミキシングパイプ7B内に尿素水を添加するためのインジェクタ8が前記ミキシングパイプ7Bの出側端部側へ向けて装備されている。   Here, the communication channel 7 surrounds the outlet side end of the particulate filter 3 and collects the exhaust gas 1 immediately after exiting from the outlet side end while changing the direction in a substantially perpendicular direction. A chamber 7A, a mixing pipe 7B for extracting the exhaust gas 1 collected in the gas collecting chamber 7A in a direction opposite to the exhaust flow of the particulate filter 3, and a direction in which the exhaust gas 1 guided by the mixing pipe 7B is substantially perpendicular The S-shaped structure is formed by the gas dispersion chamber 7C surrounding the inlet side end so that the dispersed exhaust gas 1 can be introduced into the inlet side end of the selective catalytic reduction catalyst 4 while being dispersed. The injector 8 for adding urea water into the mixing pipe 7B is provided at the central position of the inlet side end of the mixing pipe 7B. It is equipped toward the side end portion side.

尚、ここに図示している例では、パティキュレートフィルタ3が抱持されているケーシング5内の前段に、排気ガス1中の未燃燃料分を酸化処理する酸化触媒9が装備されており、又、選択還元型触媒4が抱持されているケーシング6内の後段には、余剰のアンモニアを酸化処理する後処理装置としてのアンモニア低減触媒10が装備され、ケーシング6の下流端にはリアチャンバ11が接続されている。   In the example shown here, an oxidation catalyst 9 that oxidizes unburned fuel in the exhaust gas 1 is provided in the front stage in the casing 5 in which the particulate filter 3 is held, Further, an ammonia reduction catalyst 10 as a post-treatment device that oxidizes surplus ammonia is provided at the rear stage in the casing 6 in which the selective catalytic reduction catalyst 4 is held, and a rear chamber is provided at the downstream end of the casing 6. 11 is connected.

そして、このような構成を採用すれば、パティキュレートフィルタ3により排気ガス1中のパティキュレートが捕集されると共に、その下流側のミキシングパイプ7Bの途中でインジェクタ8から尿素水が排気ガス1中に添加されてアンモニアと炭酸ガスに熱分解され、選択還元型触媒4上で排気ガス1中のNOxがアンモニアにより良好に還元浄化される結果、排気ガス1中のパティキュレートとNOxの同時低減が図られることになる。   If such a configuration is adopted, particulates in the exhaust gas 1 are collected by the particulate filter 3, and urea water is fed from the injector 8 into the exhaust gas 1 in the middle of the mixing pipe 7 B on the downstream side. Is added to the catalyst and thermally decomposed into ammonia and carbon dioxide, and the NOx in the exhaust gas 1 is reduced and purified well by the ammonia on the selective catalytic reduction catalyst 4, so that simultaneous reduction of particulates and NOx in the exhaust gas 1 is achieved. It will be illustrated.

この際、パティキュレートフィルタ3の出側端部から排出された排気ガス1が連絡流路7により逆向きに折り返されてから隣の選択還元型触媒4の入側端部に導入されるようになっているので、尿素水の添加位置から選択還元型触媒4までの距離が長く確保され、尿素水からアンモニアが生成されるのに充分な反応時間が確保される。   At this time, the exhaust gas 1 discharged from the outlet end portion of the particulate filter 3 is folded in the reverse direction by the connecting flow path 7 and then introduced into the inlet end portion of the adjacent selective catalytic reduction catalyst 4. Therefore, a long distance from the urea water addition position to the selective catalytic reduction catalyst 4 is secured, and a sufficient reaction time is secured for ammonia to be generated from the urea water.

しかも、パティキュレートフィルタ3と選択還元型触媒4とが並列に配置され、これらパティキュレートフィルタ3と選択還元型触媒4との間に沿うように連絡流路7が配置されているので、その全体構成がコンパクトなものとなって車両への搭載性が大幅に向上されることになる。   In addition, the particulate filter 3 and the selective catalytic reduction catalyst 4 are arranged in parallel, and the communication flow path 7 is arranged between the particulate filter 3 and the selective catalytic reduction catalyst 4, so that the whole The configuration becomes compact, and the mountability to the vehicle is greatly improved.

但し、図2に示す如き構造を採用することで選択還元型触媒4に対し排気ガス1を反転させて導入する形式を採らざるを得なくなり、より具体的には、連絡流路7の下流部分を成すガス分散室7Cを、選択還元型触媒4の軸心O方向と略直交する向きから排気導入口12を介して排気ガス1を導き入れるように形成すると共に、選択還元型触媒4の軸心方向に延びるミキシングパイプ7Bの出側端部を、略直角な向きに屈曲させて前記排気導入口12に接続するように形成している。   However, by adopting a structure as shown in FIG. 2, the exhaust gas 1 must be reversed and introduced into the selective catalytic reduction catalyst 4, and more specifically, the downstream portion of the connecting flow path 7. Is formed so that the exhaust gas 1 is introduced through the exhaust inlet 12 from a direction substantially orthogonal to the direction of the axis O of the selective catalytic reduction catalyst 4, and the axial axis of the selective catalytic reduction catalyst 4 is formed. The outlet end portion of the mixing pipe 7B extending in the center direction is formed so as to be bent in a substantially perpendicular direction and connected to the exhaust inlet 12.

このように選択還元型触媒4に対し排気ガス1を反転させて導入する形式では、排気ガス1が反転する際に、その曲がり方向の外側に排気ガス1が偏って流れ易くなり、選択還元型触媒4に対し排気ガス1が不均一に導入されて、本来発揮されるべき触媒性能が充分に引き出されない懸念があるため、前記ガス分散室7Cには、選択還元型触媒4の入側端面に対し離間する方向へ反り且つ排気導入口12から排気ガス1の導入方向へ離れるに従い選択還元型触媒4の入側端面に近接するようにした窪み部13が形成されており、この窪み部13により排気ガス1の流れが抑え込まれ、曲がり方向の外側に相対的に多くの排気ガス1が偏って流れてしまう傾向が是正されるようにしてある。   In this way, the exhaust gas 1 is inverted and introduced to the selective catalytic reduction catalyst 4 so that when the exhaust gas 1 is inverted, the exhaust gas 1 tends to be biased to flow outwardly in the bending direction. Since there is a concern that the exhaust gas 1 is introduced non-uniformly with respect to the catalyst 4 and the catalyst performance that should be originally exhibited may not be sufficiently extracted, the gas dispersion chamber 7C has an inlet side end face of the selective catalytic reduction catalyst 4. The depression 13 is formed so as to warp in the direction away from the exhaust gas inlet 12 and move closer to the inlet side end face of the selective catalytic reduction catalyst 4 as the exhaust gas 1 is introduced from the exhaust inlet 12. As a result, the flow of the exhaust gas 1 is suppressed, and the tendency that a relatively large amount of the exhaust gas 1 flows to the outside in the bending direction is corrected.

又、ミキシングパイプ7Bと排気導入口12とが成す屈曲部分の直前位置に曲がり方向内側の排気ガス1の流れを外側に導く窪み部14が形成されており、この窪み部14により屈曲部分の直前位置で曲がり方向内側の部分を一旦外側に振ることで前記屈曲部分の曲率を小さくして曲がり具合を緩やかなものとし、排気ガス1の流れを極力円滑に曲げて排気導入口12に導けるようにしてある。   Further, a recess 14 is formed at the position immediately before the bent portion formed by the mixing pipe 7B and the exhaust inlet 12 to guide the flow of the exhaust gas 1 inside in the bending direction to the outside. The recess 14 immediately before the bent portion. By swinging the inner portion in the bending direction to the outside once at a position, the curvature of the bent portion is reduced to make the bending state gentle, and the flow of the exhaust gas 1 can be bent as smoothly as possible to be led to the exhaust inlet 12. It is.

尚、この種の排気浄化装置と関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。   For example, Patent Document 1 shows a general technical level related to this type of exhaust purification device.

特開2009−68415号公報JP 2009-68415 A

ところで、図2に示されるような排気浄化装置の後処理装置としての選択還元型触媒4及びアンモニア低減触媒10を大径化してNOxの処理能力を高める要求があった場合、費用削減のために既存のガス分散室7C及びリアチャンバ11をそのまま利用しようとすると、図3(a)及び図3(b)に示される如く、ガス分散室7C及びリアチャンバ11に対し、大径化した選択還元型触媒4及びアンモニア低減触媒10のケーシング6が同心状に配置されるよう組み付けることが考えられる。   By the way, when there is a demand to increase the NOx treatment capacity by increasing the diameter of the selective catalytic reduction catalyst 4 and the ammonia reduction catalyst 10 as the aftertreatment device of the exhaust gas purification device as shown in FIG. If the existing gas dispersion chamber 7C and the rear chamber 11 are to be used as they are, the selective reduction in which the diameter of the gas dispersion chamber 7C and the rear chamber 11 is increased as shown in FIGS. 3 (a) and 3 (b). It is conceivable that the mold catalyst 4 and the casing 6 of the ammonia reduction catalyst 10 are assembled so as to be arranged concentrically.

しかしながら、前述の如く、ガス分散室7C及びリアチャンバ11と、大径化した選択還元型触媒4及びアンモニア低減触媒10のケーシング6とを同心状に配置した場合、該ケーシング6がガス分散室7Cの外周から均等に膨らむ形となるため、特にエンジンの高負荷時に、ミキシングパイプ7Bを通過した排気ガス1が反転する曲がり方向の内側に対応するケーシング6の内部領域(図3(a)中、仮想線で囲んだ領域)に排気ガス1が行き渡りにくくなり、該ケーシング6の内部領域に位置する選択還元型触媒4及びアンモニア低減触媒10が充分に機能しなくなる虞があった。   However, as described above, when the gas dispersion chamber 7C and the rear chamber 11 and the casing 6 of the selective catalytic reduction catalyst 4 and the ammonia reduction catalyst 10 whose diameters are increased are arranged concentrically, the casing 6 is formed in the gas dispersion chamber 7C. The inner region of the casing 6 corresponding to the inner side of the bending direction in which the exhaust gas 1 that has passed through the mixing pipe 7B is reversed, particularly when the engine is heavily loaded (in FIG. 3 (a), The exhaust gas 1 is less likely to reach the area surrounded by the phantom line, and the selective reduction catalyst 4 and the ammonia reduction catalyst 10 located in the inner area of the casing 6 may not function sufficiently.

本発明は、斯かる実情に鑑み、排気ガスが行き渡りにくくなる領域をなくすことができ、後処理装置を大径化しても充分に機能させ得る排気浄化装置を提供しようとするものである。   In view of such circumstances, the present invention is intended to provide an exhaust emission control device that can eliminate an area in which exhaust gas is difficult to spread and can function sufficiently even if the post-treatment device has a large diameter.

本発明は、排気ガスを通過させて浄化する後処理装置と、該後処理装置を抱持するケーシングと、前記後処理装置の入側端面を被包し且つ該後処理装置の軸心と交差する方向から排気ガスを導き入れるガス分散室とを排気系に備え、前記後処理装置に対し排気ガスを折り返すように反転させ前記ガス分散室を介して導入するレイアウトが採用された排気浄化装置において、
前記後処理装置がガス分散室より大径の選択還元型触媒及びアンモニア低減触媒であり、前記ケーシングの入側端部の径はガス分散室に向かって漸次縮小されるようにし、前記ケーシングを前記ガス分散室の外周に対して排気ガスが反転する曲がり方向の外側に膨らむ形になるように配置し、前記排気ガスが反転する曲がり方向の外側に向け後処理装置の軸心をガス分散室の軸心から偏心させたことを特徴とする排気浄化装置にかかるものである。
The present invention relates to a post-processing device that allows exhaust gas to pass through and purifies, a casing that holds the post-processing device, an inlet side end surface of the post-processing device, and intersects with the axis of the post-processing device. An exhaust gas purifying apparatus having a gas dispersion chamber for introducing exhaust gas from a direction in which the exhaust system is disposed, and having a layout in which the exhaust gas is reversed so as to be folded back into the aftertreatment device and introduced through the gas dispersion chamber. ,
The post-treatment device is a selective reduction catalyst and an ammonia reduction catalyst having a larger diameter than the gas dispersion chamber, and the diameter of the inlet end of the casing is gradually reduced toward the gas dispersion chamber, and the casing is The exhaust gas is arranged so as to swell outward in the bending direction in which the exhaust gas is reversed with respect to the outer periphery of the gas dispersion chamber, and the axial center of the aftertreatment device is directed outward in the bending direction in which the exhaust gas is reversed. The present invention relates to an exhaust emission control device characterized by being eccentric from an axial center.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

排気浄化装置の後処理装置としての選択還元型触媒及びアンモニア低減触媒を大径化してNOxの処理能力を高める要求があった場合、費用削減のために既存のガス分散室をそのまま利用しようとする際、前述の如く、排気ガスが反転する曲がり方向の外側に向け後処理装置としての選択還元型触媒及びアンモニア低減触媒の軸心をガス分散室の軸心から偏心させると、反転に伴う遠心力により曲がり方向の外側に向かおうとする排気ガスが後処理装置としての選択還元型触媒及びアンモニア低減触媒の軸心から全体に分散されやすくなる。   When there is a demand to increase the NOx treatment capacity by increasing the diameter of the selective reduction catalyst and ammonia reduction catalyst as the aftertreatment device of the exhaust gas purification device, the existing gas dispersion chamber is used as it is for cost reduction. When the axis of the selective reduction catalyst and the ammonia reduction catalyst as the aftertreatment device is decentered from the axis of the gas dispersion chamber toward the outside in the bending direction where the exhaust gas is reversed as described above, the centrifugal force accompanying the reversal As a result, the exhaust gas that tends to go outward in the bending direction is easily dispersed from the axial center of the selective reduction catalyst and the ammonia reduction catalyst as the aftertreatment device.

この結果、ガス分散室と、大径化した後処理装置としての選択還元型触媒及びアンモニア低減触媒とを同心状に配置するのとは異なり、該後処理装置としての選択還元型触媒及びアンモニア低減触媒は、ガス分散室の外周から均等に膨らむ形とはならずに、排気ガスが反転する曲がり方向の外側に膨らむ形となるため、エンジンの高負荷時にも、排気ガスが反転する曲がり方向の内側に対応する領域に対して排気ガスが行き渡りにくくなることが避けられ、該後処理装置としての選択還元型触媒及びアンモニア低減触媒全体が充分に機能することとなる。   As a result, the selective reduction catalyst and ammonia reduction as the post-treatment device are different from the concentrically arranging the gas dispersion chamber and the selective reduction catalyst and ammonia reduction catalyst as the post-treatment device having an enlarged diameter. The catalyst does not swell evenly from the outer periphery of the gas dispersion chamber, but swells outward in the bending direction where the exhaust gas reverses. Therefore, even when the engine is under heavy load, the catalyst is bent in the bending direction. It is avoided that the exhaust gas hardly spreads to the region corresponding to the inner side, and the selective reduction catalyst and the ammonia reduction catalyst as the aftertreatment device function sufficiently.

本発明の排気浄化装置によれば、排気ガスが行き渡りにくくなる領域をなくすことができ、後処理装置を大径化しても充分に機能させ得るという優れた効果を奏し得る。   According to the exhaust emission control device of the present invention, it is possible to eliminate the region where the exhaust gas hardly spreads, and it is possible to obtain an excellent effect that it can function sufficiently even if the post-treatment device is enlarged in diameter.

本発明の排気浄化装置の実施例を示す概略図であって、(a)は概略側断面図、(b)は概略正面図である。It is the schematic which shows the Example of the exhaust gas purification apparatus of this invention, Comprising: (a) is a schematic sectional side view, (b) is a schematic front view. 従来の排気浄化装置の一例を示す概要構成断面図である。It is a general | schematic structure sectional drawing which shows an example of the conventional exhaust gas purification apparatus. 従来の排気浄化装置の一例における後処理装置としての選択還元型触媒を大径化した場合を示す概略図であって、(a)は概略側断面図、(b)は概略正面図である。It is the schematic which shows the case where the selective reduction type | mold catalyst as an aftertreatment apparatus in an example of the conventional exhaust gas purification apparatus is enlarged, (a) is a schematic sectional side view, (b) is a schematic front view.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明の排気浄化装置の実施例であって、図中、図2及び図3と同一の符号を付した部分は同一物を表わしており、基本的な構成は図2及び図3に示す従来のものと同様であるが、本実施例の特徴とするところは、図1に示す如く、ミキシングパイプ7Bを通過した排気ガス1が反転する曲がり方向の外側に向け後処理装置としての選択還元型触媒4及びアンモニア低減触媒10の軸心O´をガス分散室7Cの軸心Oから偏心させた点にある。   FIG. 1 shows an embodiment of an exhaust emission control device according to the present invention. In the figure, the same reference numerals as those in FIGS. 2 and 3 denote the same components, and the basic configuration is shown in FIGS. However, the feature of this embodiment is that the exhaust gas 1 passing through the mixing pipe 7B is directed to the outside in the bending direction in which the exhaust gas 1 is reversed, as shown in FIG. The center O ′ of the selective reduction catalyst 4 and the ammonia reduction catalyst 10 is eccentric from the axis O of the gas dispersion chamber 7C.

本実施例の場合、前記後処理装置としての選択還元型触媒4及びアンモニア低減触媒10はガス分散室7Cより大径であるため、円筒状のケーシング6内に選択還元型触媒4及びアンモニア低減触媒10を挿入した後、該円筒状のケーシング6の入側端部及び出側端部をヘラ絞り等の機械加工により絞り、ガス分散室7C及びリアチャンバ11に接続したり、或いは、前記選択還元型触媒4及びアンモニア低減触媒10を挿入した円筒状のケーシング6の入側端部及び出側端部に対し、別体として形成され且つ径が漸次縮小されるレデューサ部材を溶接等で接合し、該レデューサ部材の開口端をガス分散室7C及びリアチャンバ11に接続したりすることができる。   In the case of the present embodiment, the selective reduction catalyst 4 and the ammonia reduction catalyst 10 as the post-treatment device have a larger diameter than the gas dispersion chamber 7C, and therefore the selective reduction catalyst 4 and the ammonia reduction catalyst in the cylindrical casing 6. 10 is inserted, the inlet end and the outlet end of the cylindrical casing 6 are throttled by machining such as a spatula throttle and connected to the gas dispersion chamber 7C and the rear chamber 11, or the selective reduction A reducer member that is formed as a separate body and whose diameter is gradually reduced is joined by welding or the like to the inlet side end portion and the outlet side end portion of the cylindrical casing 6 in which the mold catalyst 4 and the ammonia reducing catalyst 10 are inserted, The open end of the reducer member can be connected to the gas dispersion chamber 7C and the rear chamber 11.

次に、上記実施例の作用を説明する。   Next, the operation of the above embodiment will be described.

図2に示されるような排気浄化装置の後処理装置としての選択還元型触媒4及びアンモニア低減触媒10を大径化してNOxの処理能力を高める要求があった場合、費用削減のために既存のガス分散室7C及びリアチャンバ11をそのまま利用しようとする際、前述の如く、ミキシングパイプ7Bを通過した排気ガス1が反転する曲がり方向の外側に向け後処理装置としての選択還元型触媒4及びアンモニア低減触媒10の軸心O´をガス分散室7Cの軸心Oから偏心させると、反転に伴う遠心力により曲がり方向の外側に向かおうとする排気ガス1が後処理装置としての選択還元型触媒4及びアンモニア低減触媒10の軸心O´から全体に分散されやすくなる。   When there is a demand to increase the NOx treatment capacity by increasing the diameter of the selective catalytic reduction catalyst 4 and the ammonia reduction catalyst 10 as the after-treatment device of the exhaust gas purification device as shown in FIG. When the gas dispersion chamber 7C and the rear chamber 11 are used as they are, as described above, the selective reduction catalyst 4 and ammonia as the aftertreatment device are directed to the outside in the bending direction in which the exhaust gas 1 that has passed through the mixing pipe 7B is reversed. When the axial center O ′ of the reduction catalyst 10 is decentered from the axial center O of the gas dispersion chamber 7C, the exhaust gas 1 that tends to move outward in the bending direction due to the centrifugal force accompanying reversal is a selective reduction catalyst as a post-processing device. 4 and the axis O ′ of the ammonia reduction catalyst 10 are easily dispersed throughout.

この結果、図3(a)及び図3(b)に示される如く、ガス分散室7C及びリアチャンバ11と、大径化した選択還元型触媒4及びアンモニア低減触媒10のケーシング6とを同心状に配置するのとは異なり、該ケーシング6は、ガス分散室7Cの外周から均等に膨らむ形とはならずに、ミキシングパイプ7Bを通過した排気ガス1が反転する曲がり方向の外側に膨らむ形となるため、エンジンの高負荷時にも、ミキシングパイプ7Bを通過した排気ガス1が反転する曲がり方向の内側に対応するケーシング6の内部領域に対して排気ガス1が行き渡りにくくなることが避けられ、該選択還元型触媒4及びアンモニア低減触媒10全体が充分に機能することとなる。   As a result, as shown in FIGS. 3 (a) and 3 (b), the gas dispersion chamber 7C and the rear chamber 11, and the casing 6 of the selective reduction catalyst 4 and the ammonia reduction catalyst 10 whose diameters are increased are concentric. Unlike the arrangement in FIG. 2, the casing 6 does not swell evenly from the outer periphery of the gas dispersion chamber 7C, but swells outward in the bending direction in which the exhaust gas 1 that has passed through the mixing pipe 7B is reversed. Therefore, even when the engine is heavily loaded, it is avoided that the exhaust gas 1 hardly spreads to the inner region of the casing 6 corresponding to the inside of the bending direction in which the exhaust gas 1 that has passed through the mixing pipe 7B is reversed. The selective catalytic reduction catalyst 4 and the ammonia reduction catalyst 10 as a whole function sufficiently.

こうして、排気ガスが行き渡りにくくなる領域をなくすことができ、後処理装置を大径化しても充分に機能させ得る。   In this way, it is possible to eliminate the region where the exhaust gas is difficult to spread, and even if the post-treatment device is enlarged, it can function sufficiently.

尚、本発明の排気浄化装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust emission control device of the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.

1 排気ガス
2 排気管
3 パティキュレートフィルタ
4 選択還元型触媒(後処理装置)
6 ケーシング
7C ガス分散室
10 アンモニア低減触媒(後処理装置)
O 軸心
O´ 軸心
1 exhaust gas 2 exhaust pipe 3 particulate filter 4 selective reduction catalyst (post-treatment device)
6 Casing 7C Gas dispersion chamber 10 Ammonia reduction catalyst (post-treatment device)
O axis center O 'axis center

Claims (1)

排気ガスを通過させて浄化する後処理装置と、該後処理装置を抱持するケーシングと、前記後処理装置の入側端面を被包し且つ該後処理装置の軸心と交差する方向から排気ガスを導き入れるガス分散室とを排気系に備え、前記後処理装置に対し排気ガスを折り返すように反転させ前記ガス分散室を介して導入するレイアウトが採用された排気浄化装置において、
前記後処理装置がガス分散室より大径の選択還元型触媒及びアンモニア低減触媒であり、前記ケーシングの入側端部の径はガス分散室に向かって漸次縮小されるようにし、前記ケーシングを前記ガス分散室の外周に対して排気ガスが反転する曲がり方向の外側に膨らむ形になるように配置し、前記排気ガスが反転する曲がり方向の外側に向け後処理装置の軸心をガス分散室の軸心から偏心させたことを特徴とする排気浄化装置。
An aftertreatment device that purifies the exhaust gas by passing it through, a casing that holds the aftertreatment device, and an inlet side end face of the aftertreatment device that encloses and exhausts from a direction that intersects the axis of the aftertreatment device In the exhaust gas purification apparatus adopting a layout in which an exhaust system is provided with a gas dispersion chamber for introducing gas, and the exhaust gas is reversed so as to be folded back to the aftertreatment device and introduced through the gas dispersion chamber.
The post-treatment device is a selective reduction catalyst and an ammonia reduction catalyst having a larger diameter than the gas dispersion chamber, and the diameter of the inlet end of the casing is gradually reduced toward the gas dispersion chamber, and the casing is The exhaust gas is arranged so as to swell outward in the bending direction in which the exhaust gas is reversed with respect to the outer periphery of the gas dispersion chamber, and the axial center of the aftertreatment device is directed outward in the bending direction in which the exhaust gas is reversed. An exhaust emission control device characterized by being eccentric from a shaft center.
JP2011250291A 2011-11-16 2011-11-16 Exhaust purification equipment Expired - Fee Related JP5890661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011250291A JP5890661B2 (en) 2011-11-16 2011-11-16 Exhaust purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011250291A JP5890661B2 (en) 2011-11-16 2011-11-16 Exhaust purification equipment

Publications (2)

Publication Number Publication Date
JP2013104395A JP2013104395A (en) 2013-05-30
JP5890661B2 true JP5890661B2 (en) 2016-03-22

Family

ID=48624135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011250291A Expired - Fee Related JP5890661B2 (en) 2011-11-16 2011-11-16 Exhaust purification equipment

Country Status (1)

Country Link
JP (1) JP5890661B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252066B2 (en) * 2013-09-20 2017-12-27 マツダ株式会社 Engine exhaust system
JP6168304B2 (en) * 2014-02-21 2017-07-26 マツダ株式会社 Engine exhaust gas purification device
KR101675461B1 (en) * 2015-04-30 2016-11-11 대지금속 주식회사 Multi-filtering apparatus of engine-exhaust gas for agricultural machinery
JP2018040370A (en) * 2017-11-30 2018-03-15 マツダ株式会社 Engine exhaust device
JP6508300B2 (en) * 2017-11-30 2019-05-08 マツダ株式会社 Engine exhaust system
JP6508301B2 (en) * 2017-11-30 2019-05-08 マツダ株式会社 Engine exhaust system
DE102019104940A1 (en) * 2019-02-27 2020-08-27 Eberspächer Exhaust Technology GmbH & Co. KG Exhaust converter housing structure
CN111992027B (en) * 2020-08-17 2022-06-14 无锡能电动力科技有限公司 Exhaust treatment device for diesel generator
CN112275112B (en) * 2020-10-12 2022-08-05 亳州洁能电力有限公司 Waste incineration power generation flue gas processing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017018A (en) * 2004-06-30 2006-01-19 Toyota Motor Corp Exhaust pipe line structure for vehicle
JP2008248814A (en) * 2007-03-30 2008-10-16 Nissan Motor Co Ltd Exhaust gas passage structure
JP4920532B2 (en) * 2007-09-13 2012-04-18 日野自動車株式会社 Exhaust purification device

Also Published As

Publication number Publication date
JP2013104395A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5890661B2 (en) Exhaust purification equipment
JP5114219B2 (en) Exhaust gas purification device for internal combustion engine
JP6053096B2 (en) Exhaust purification device
JP4920532B2 (en) Exhaust purification device
JP5985822B2 (en) Exhaust purification device
JP4886547B2 (en) Exhaust purification device
JP4823944B2 (en) Exhaust purification device
JP4286887B2 (en) Exhaust purification equipment
WO2011077703A9 (en) Exhaust purification device
US10092879B2 (en) Single module integrated aftertreatment module
JP2009085065A (en) Exhaust emission control device
JP2009036041A (en) Exhaust emission purifier
EP3093463B1 (en) Exhaust purification device
JP2009091984A (en) Exhaust emission control device
JP5057944B2 (en) Exhaust aftertreatment device
JP2015048715A (en) Urea water mixing structure
JP5166848B2 (en) Exhaust purification device
JP6620639B2 (en) Diesel engine exhaust treatment system
JP2018173018A (en) Reactor
JP2013104396A (en) Urea water mixing structure
JP2008267225A (en) Exhaust emission control device
JP5950631B2 (en) Exhaust purification device
JP6285255B2 (en) Exhaust purification device
JP2007303398A (en) Exhaust emission control device for internal combustion engine
JP5855430B2 (en) Exhaust purification equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160219

R150 Certificate of patent or registration of utility model

Ref document number: 5890661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees