JP2020513248A - Affinity cell extraction by sound - Google Patents
Affinity cell extraction by sound Download PDFInfo
- Publication number
- JP2020513248A JP2020513248A JP2019543176A JP2019543176A JP2020513248A JP 2020513248 A JP2020513248 A JP 2020513248A JP 2019543176 A JP2019543176 A JP 2019543176A JP 2019543176 A JP2019543176 A JP 2019543176A JP 2020513248 A JP2020513248 A JP 2020513248A
- Authority
- JP
- Japan
- Prior art keywords
- beads
- acoustic
- cells
- affinity
- ligand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000605 extraction Methods 0.000 title description 2
- 239000011324 bead Substances 0.000 claims abstract description 103
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000000126 substance Substances 0.000 claims abstract description 17
- 239000003302 ferromagnetic material Substances 0.000 claims abstract 2
- 238000000926 separation method Methods 0.000 claims description 15
- 239000012620 biological material Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 10
- 239000000203 mixture Substances 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 5
- 239000002872 contrast media Substances 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 32
- 239000003446 ligand Substances 0.000 description 18
- 210000001744 T-lymphocyte Anatomy 0.000 description 17
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 16
- 239000011616 biotin Substances 0.000 description 11
- 229960002685 biotin Drugs 0.000 description 11
- 108010090804 Streptavidin Proteins 0.000 description 9
- 230000005291 magnetic effect Effects 0.000 description 9
- 229920000936 Agarose Polymers 0.000 description 8
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 8
- 235000020958 biotin Nutrition 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 6
- 230000005298 paramagnetic effect Effects 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000006461 physiological response Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- 239000000556 agonist Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 108091023037 Aptamer Proteins 0.000 description 2
- 108010041397 CD4 Antigens Proteins 0.000 description 2
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 210000005208 blood dendritic cell Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000011325 microbead Substances 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 108010032795 CD8 receptor Proteins 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000007886 magnetic bead extraction Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/38—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
- B01D15/3804—Affinity chromatography
- B01D15/3828—Ligand exchange chromatography, e.g. complexation, chelation or metal interaction chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/28—Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
- B01D21/283—Settling tanks provided with vibrators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K17/00—Carrier-bound or immobilised peptides; Preparation thereof
- C07K17/02—Peptides being immobilised on, or in, an organic carrier
- C07K17/10—Peptides being immobilised on, or in, an organic carrier the carrier being a carbohydrate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/02—Separating microorganisms from the culture medium; Concentration of biomass
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/04—Cell isolation or sorting
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/10—Separation or concentration of fermentation products
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/02—Separating microorganisms from their culture media
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N13/00—Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
機能性物質が塗工されたビーズは、そのビーズを捕捉または通過させる音響場にさらされる。ビーズは、強磁性物質を含んでも含まなくてもよい。ビーズは、ホストに対して生体適合性があってもよく、生分解性があってもよい。ビーズのサイズはある範囲にわたって変化してもよく、および/または、不均一または均一であってもよい。ビーズの組成は、高、中または低の音響コントラスト物質を含んでもよい。機能性物質の化学的性質は、既存のプロセスと互換性があってもよい。The beads coated with the functional substance are exposed to an acoustic field that captures or passes the beads. The beads may or may not include a ferromagnetic material. The beads may be biocompatible with the host or biodegradable. The size of the beads may vary over a range and / or may be non-uniform or uniform. The composition of the beads may include high, medium or low acoustic contrast material. The chemistry of the functional material may be compatible with existing processes.
Description
生体物質の分離は様々な状況で適用されてきた。例えば、タンパク質を他の生体物質から分離するための分離技術は、多くの分析プロセスにおいて使用されている。 Separation of biological materials has been applied in various situations. For example, separation techniques for separating proteins from other biological materials are used in many analytical processes.
生体物質の分離は、流体チャンバ内に分散されて組換えタンパク質、モノクローナル抗体または細胞などの特定のターゲット物質と結合する機能性物質によって達成することができる。親和性タンパク質でコーティングされたマイクロキャリアなどの機能性物質は、音響定在波の節および腹で捕捉される。このアプローチにおいて、機能性物質は非接触で(例えば、機械的なチャネル、導管、ピンセットなどを使用しないで)捕捉される。 Separation of biological materials can be achieved by functional materials that are dispersed within the fluid chamber and that bind specific target materials such as recombinant proteins, monoclonal antibodies or cells. Functional substances such as microcarriers coated with affinity proteins are trapped in the nodes of the acoustic standing wave and the abdomen. In this approach, the functional material is captured contactlessly (eg, without the use of mechanical channels, conduits, tweezers, etc.).
添付の図面を参照して、図面を以下でより詳細に説明する。 The drawings are described in more detail below with reference to the accompanying drawings.
タンパク質または細胞などの生物学的物質の親和性分離は、マイクロビーズなどの表面に共有結合したリガンド(配位子)を使用することによって達成される。このリガンドは、タンパク質または細胞がマイクロビーズ上のリガンドに結合するようにタンパク質または細胞と相互作用するものである。 Affinity separation of biological substances such as proteins or cells is achieved by using ligands covalently bound to the surface such as microbeads. The ligand is one that interacts with the protein or cell such that the protein or cell binds to the ligand on the microbead.
リガンドは、生体分子とともに複合体を形成する物質である。タンパク質−リガンドの結合において、リガンドは通常、対象のタンパク質上のサイトに結合することによってシグナルを生成する分子であり、その結合は典型的にはターゲットタンパク質の評価に変化をもたらす。リガンドは、タンパク質物質に結合する小さな分子、イオンまたはタンパク質であってもよい。リガンドと結合相手との間の関係は、電荷、疎水性および分子構造の関数である。結合は、イオン結合、水素結合、ファンデルワールス力などの分子間力によって起こる。そのドッキングの会合は、実際には解離によって元に戻すことができる。リガンドとターゲット分子との間の測定できる程度の不可逆的な共有結合は、生物学的システムにおいて例外的である。 A ligand is a substance that forms a complex with a biomolecule. In protein-ligand binding, a ligand is usually a molecule that produces a signal by binding to a site on the protein of interest, which binding typically results in an altered assessment of the target protein. The ligand may be a small molecule, ion or protein that binds to proteinaceous material. The relationship between ligand and binding partner is a function of charge, hydrophobicity and molecular structure. Bonding occurs by intermolecular forces such as ionic bonds, hydrogen bonds, and van der Waals forces. The docking association can actually be reversed by dissociation. The measurable irreversible covalent bond between the ligand and the target molecule is exceptional in biological systems.
受容体に結合し、その受容体の機能を変えて生理学的応答を引き起こすことができるリガンドは、受容体に対するアゴニストと呼ばれる。受容体に結合したアゴニストは、どの程度の生理学的応答を引き起こすことができるかという観点と、生理学的応答を生じさせるために必要なアゴニストの濃度の観点の両方の観点から特徴付けることができる。高親和性のリガンド結合は、リガンド−結合サイトを最大限に占有して生理学的応答を引き起こすには比較的低濃度のリガンドで十分であることを意味する。Kiレベルが低いほど、未結合のリガンドと受容性の抗原との間に化学反応が発生しやすい。低親和性の結合(高Kiレベル)は、結合サイトを最大限に占有してリガンドに対する最大の生理学的応答が達成されるためには比較的高濃度のリガンドが必要とされることを意味する。二価のリガンドは、2つの連結したリガンドとしての分子からなり、科学的研究において受容体タイマーを検出したり、その性質を調べたりするために用いられる。 A ligand that can bind to a receptor and alter the function of that receptor to elicit a physiological response is called an agonist for the receptor. Agonists bound to the receptor can be characterized both in terms of how much physiological response can be evoked and in terms of the concentration of agonist required to elicit the physiological response. High affinity ligand binding means that relatively low concentrations of ligand are sufficient to maximally occupy the ligand-binding site and elicit a physiological response. The lower the K i level, the more likely a chemical reaction will occur between the unbound ligand and the receptive antigen. Low affinity binding (high K i levels) means that relatively high concentrations of ligand are required to maximally occupy the binding site and achieve maximal physiological response to the ligand. To do. Bivalent ligands consist of molecules as two linked ligands and are used in scientific studies to detect and characterize the receptor timer.
T細胞受容体またはTCRは、T細胞またはTリンパ球の表面上に見られる分子であり、主要組織適合遺伝子複合体(MHC)の分子に結合したペプチドとしての抗原の断片を認識する役割を有する。TCRと抗原ペプチドとの間の結合は、比較的親和性が低く、変性的である。 The T cell receptor or TCR is a molecule found on the surface of T cells or T lymphocytes and has a role of recognizing a fragment of an antigen as a peptide bound to a molecule of major histocompatibility complex (MHC). .. The binding between the TCR and the antigenic peptide is relatively low affinity and degenerate.
図1を参照すると、ダイナビーズ(Dynabeads)の名称で販売されている鉄または強磁性ビーズなどの常磁性ビーズは、親和性抽出を達成するために使用されてきた。機能性物質でコーティングされた磁性ビーズは、磁場を用いてターゲット物質を複雑な混合物から分離できるように、複雑な混合物中の生物学的なターゲットに結合する。ビーズは、様々なターゲットに高い特異性で親和性結合するための分子を担持する。このビーズを複雑な混合物に注入し、培養してターゲットと結合させる。ビーズは、そのビーズに付着したターゲットと共に磁石によって抽出される。 Referring to FIG. 1, paramagnetic beads such as iron or ferromagnetic beads sold under the name Dynabeads have been used to achieve affinity extraction. The magnetic beads coated with the functional substance bind to the biological target in the complex mixture so that the target substance can be separated from the complex mixture using a magnetic field. The beads carry molecules for high specific affinity binding to various targets. The beads are injected into a complex mixture, incubated and allowed to bind to the target. The beads are extracted by the magnet with the target attached to the beads.
例えばダイナビーズ(Dynabeads)のようなミクロサイズのビーズが利用可能であり、そのサイズは4.5μm程度である。また、例えばミルテニー(Myltenyi)のようなナノサイズのビーズを使用してもよく、そのサイズは50nm程度である。使用可能な親和性分子のいくつかとしては、抗体、アプタマー、オリゴヌクレオチド、受容体などが挙げられる。親和性結合のターゲットとしては、生体分子、細胞、エキソソーム、薬物などが挙げられる。 For example, micro-sized beads such as Dynabeads can be used, and the size thereof is about 4.5 μm. In addition, nano-sized beads such as Milltenyi may be used, and the size thereof is about 50 nm. Some of the affinity molecules that can be used include antibodies, aptamers, oligonucleotides, receptors and the like. Affinity binding targets include biomolecules, cells, exosomes, drugs, and the like.
図2を参照すると、音響コントラストおよび親和性が高い化学的性質を有するビーズが図示されている。これらの音響ビーズは、機能性物質のコーティングまたは親和性結合用の組成物を有することに関して、磁性ビーズと全く同じ方法で使用することができる。音響ビーズは、音響場で複雑な混合物または流体から抽出されるように設計されている。音響ビーズは、磁性ビーズを使用する細胞製造、生化学、診断、センサーなどにおいて開発された全ての用途に直接使用することができる。 Referring to FIG. 2, beads having chemistry with high acoustic contrast and affinity are illustrated. These acoustic beads can be used in exactly the same way as magnetic beads with respect to having a coating for functional substances or a composition for affinity binding. Acoustic beads are designed to be extracted from a complex mixture or fluid in an acoustic field. The acoustic beads can be directly used for all applications developed in cell manufacturing, biochemistry, diagnostics, sensors, etc. using magnetic beads.
音響ビーズは、磁性ビーズで使用されるのと同じ表面および親和性の化学的性質を使用することができる。磁性ビーズから音響ビーズに容易に置き換えできるため、応用が簡易になるだけでなく、その応用の承認が簡易になるなど、多くの利点を有する。 Acoustic beads can use the same surface and affinity chemistries used in magnetic beads. Since magnetic beads can be easily replaced with acoustic beads, there are many advantages such as not only simplification of application but also simplification of approval of the application.
音響ビーズは生体適合性を有してもよい。そのようなビーズは様々に異なるサイズで製造することができるので、傾斜場(angled−field)分別技術を用いて提供され得るような、サイズを区別する音響場におけるサイズに基づく連続的な分離が可能になる。音響ビーズは密閉型の音響ベースシステムと組み合わせることができ、この組み合わせにより、治療用細胞の製造の最初から最後まで連続したサイクルを行うことができる。この機能は、現存する親和性の化学的性質の使用をそのまま維持しながら音響ビーズに直接移すことができ、磁性ビーズによる抽出に代わる代替手段を提供する。音響ビーズは、分離工程における消耗品であってもよい。 The acoustic beads may be biocompatible. Since such beads can be manufactured in a variety of different sizes, there is a continuous size-based separation in size-sensitive acoustic fields, such as can be provided using angled-field fractionation techniques. It will be possible. The acoustic beads can be combined with a closed acoustic base system, which allows a continuous cycle from the beginning to the end of therapeutic cell production. This feature can be transferred directly to acoustic beads while preserving the use of existing affinity chemistries, providing an alternative to magnetic bead extraction. The acoustic beads may be consumables in the separation process.
一例では、患者の血液からCD3+T細胞を抽出するために、公表済みのメモリアル・スローンケタリングがんセンター(MSKCC)プロトコルを使用して概念実証(Proof of Concept)試験が行われた。この試験では、常磁性ビーズが使用され、磁場が音響場に置き換えられた。患者の血液からCD3+T細胞を抽出するプロセスは、CAR(キメラ抗原受容体)T細胞の製造に不可欠な部分である。現在のプロセスは市販のCD3ダイナビーズ(Dynabeads)に基づいている。この試験では、血液ではなく培養液で実験を行うなど、プロトコルの違いを最小限に抑えるための努力が払われた。CART細胞製造におけるいくつかの工程は培養液から行われるので、差異は減少したと考えられる。T細胞を「音響的に見えない」ようにするか、または音響場の影響を受けにくくするために、溶媒密度を高めた。ダイナビーズ(Dynabeads)のサイズが小さいと、細胞と同様の音響コントラストが得られるため、分離の許容誤差が小さくなる。試験では、ジャーカット(Jurkat)CD3+およびCD3−T細胞株を、典型的な例として用いた。CD3−細胞は、非特異的な捕捉に対応する対照として用いた。 In one example, a Proof of Concept test was performed using the published Memorial Sloan-Kettering Cancer Center (MSKCC) protocol to extract CD3 + T cells from patient blood. In this test, paramagnetic beads were used and the magnetic field was replaced by an acoustic field. The process of extracting CD3 + T cells from a patient's blood is an integral part of the production of CAR (chimeric antigen receptor) T cells. The current process is based on the commercially available CD3 Dynabeads. In this test, efforts were made to minimize protocol differences, such as conducting experiments in culture rather than blood. Differences are believed to have diminished, as some steps in CART cell production are performed from culture. Solvent densities were increased to make the T cells "acoustic invisible" or less susceptible to acoustic fields. If the size of the Dynabeads is small, the same acoustic contrast as that of cells can be obtained, so that the separation tolerance is small. In the study, Jurkat CD3 + and CD3-T cell lines were used as a typical example. CD3-cells were used as a control for non-specific capture.
ここで図3および図4を参照すると、前記試験の結果の画像が示されている。細胞懸濁液は、CD3+細胞と結合するCD3ダイナビーズと共に培養した。この混合物が音響システムを通過することで、(細胞を含むまたは含まない)磁性ビーズを捕捉した。集めた細胞は培養中でうまく増殖した。図3および図4の画像は、明視野像と蛍光像とを重ね合わせて得られる。ビーズはわずかに赤みを帯びた自己蛍光を有する黒色である。生きている細胞は蛍光赤色である。ビーズの直径は4.5ミクロンである。図3は、ビーズとCD3+T細胞複合体を示し、この技術の効率を実証している。図4は、CD3−T細胞が抽出されていないことを示し、この技術の特異性および選択性を実証している。 Referring now to Figures 3 and 4, an image of the results of the test is shown. The cell suspension was incubated with CD3 Dynabeads that bind to CD3 + cells. The magnetic beads (with or without cells) were captured as the mixture passed through the acoustic system. The collected cells grew well in culture. The images of FIGS. 3 and 4 are obtained by superimposing the bright field image and the fluorescent image. The beads are black with a slight reddish autofluorescence. Living cells are fluorescent red. The beads have a diameter of 4.5 microns. Figure 3 shows beads and CD3 + T cell complexes, demonstrating the efficiency of this technique. FIG. 4 shows that CD3-T cells were not extracted, demonstrating the specificity and selectivity of this technique.
ここで図5および図6を参照すると、音響ビーズを用いた試験の結果が示されている。この試験では、アガロースビーズを音響ビーズとして使用した。これらのビーズは、いくつかの製造業者から市販されており、常磁性ではないか、または、鉄や強磁性体をほとんど含有していない。あるアガロースビーズでは、抗体が付着しやすくなるように表面が改変されている。それらはまた、治療のソルーションにとって重要な生体適合性物質で構成されている。図5は、ストレプトアビジンとビオチンの共役結合体で利用可能な、比較的安価で不均一(20〜150μm)な市販のABTビーズを示している。図6は、セルモザイク(CellMosaic)アガロースビーズを示している。これは比較的高価で均一(20〜40μm)になる傾向があり、オーダーによって任意に改変させて構成することができる。 Referring now to Figures 5 and 6, the results of tests with acoustic beads are shown. In this test, agarose beads were used as acoustic beads. These beads are commercially available from several manufacturers and are not paramagnetic or contain little iron or ferromagnets. The surface of some agarose beads has been modified to facilitate attachment of antibodies. They are also composed of biocompatible substances important for therapeutic solutions. FIG. 5 shows relatively inexpensive and heterogeneous (20-150 μm) commercially available ABT beads that can be used in a conjugated conjugate of streptavidin and biotin. FIG. 6 shows Cell Mosaic agarose beads. This tends to be relatively expensive and uniform (20 to 40 μm), and can be arbitrarily modified and configured according to the order.
音響ビーズは、多次元音響定在波などの音響場内に捕捉することができる。図7を参照すると、音響の応用のために開発された小型音響システムが示されており、このシステムは音響ビーズを捕捉するために使用される。前記システムをより小さいサイズにすることにより、大量の高価な試薬の必要性を減らすことができ、少量のサンプルの処理が可能になる。 Acoustic beads can be trapped within an acoustic field such as a multidimensional acoustic standing wave. Referring to FIG. 7, there is shown a miniature acoustic system developed for acoustic applications, which system is used to capture acoustic beads. The smaller size of the system reduces the need for large volumes of expensive reagents and allows the processing of small sample volumes.
図8を参照すると、音響システム内で捕捉されていない(左チューブ)および捕捉された(右)セルモザイク(CellMosaic)アガロースビーズが示されている。音響システムの捕捉効率は90%以上になる。 Referring to FIG. 8, uncaptured (left tube) and captured (right) Cell Mosaic agarose beads in the acoustic system are shown. The acquisition efficiency of the acoustic system is over 90%.
図9を参照すると、音響ビーズの活性化に対する柔軟なアプローチが示されている。このアプローチでは、ストレプトアビジン−ビオチン複合体を用いて抗体をアガロースビーズに結合させる。この複合体は生化学で広く使用されており、非常に安定している。共役結合ストレプトアビジンを有するアガロースビーズは、抗体−ビオチン共役結合体と同様に市販されている。 Referring to FIG. 9, a flexible approach to acoustic bead activation is shown. In this approach, a streptavidin-biotin complex is used to attach the antibody to agarose beads. This complex is widely used in biochemistry and is very stable. Agarose beads with conjugated streptavidin are commercially available as are antibody-biotin conjugated conjugates.
ストレプトアビジンビーズおよびビオチンビーズの機能性を評価した。図10〜図12を参照すると、予想通り、混合時に互いに複合体を形成するストレプトアビジン共役結合ビーズおよびビオチン共役結合ビーズが示されている。 The functionality of streptavidin beads and biotin beads was evaluated. Referring to Figures 10-12, streptavidin-conjugated and biotin-conjugated beads that complex with each other upon mixing are shown, as expected.
懸濁液からCD4+およびCD8+(それぞれ「ヘルパー」T細胞および「キラー」T細胞)を独立して単離し、それらを効果的な治療の観点から所望の比率で混合することが望ましい場合がある。この目的のために、CD4受容体およびCD8受容体に対する親和性を有する音響ビーズを提供することができる。一実施例を得るための試験は、マウスの脾臓から調製した細胞懸濁液を用いて行った。図13を参照すると、赤血球、樹状細胞およびT細胞が同定されている。インビトロジェン除去キットを使用して、約2000万(20 million(M))および1800万(18M)のCD4+T細胞およびCD8+T細胞がそれぞれ4つの脾臓から単離された。両方の細胞株は増殖することができ、CD4およびCD8のT細胞は両方とも約8.2〜8.6μmである。 It may be desirable to independently isolate CD4 + and CD8 + (“helper” T cells and “killer” T cells, respectively) from the suspension and mix them in the desired ratios in terms of effective therapy. To this end, acoustic beads can be provided that have an affinity for the CD4 and CD8 receptors. The test for obtaining one example was carried out using a cell suspension prepared from mouse spleen. Referring to FIG. 13, red blood cells, dendritic cells and T cells have been identified. Using the Invitrogen Depletion Kit, approximately 20 million (20 million (M)) and 18 million (18M) CD4 + and CD8 + T cells were isolated from four spleens, respectively. Both cell lines are capable of expansion, both CD4 and CD8 T cells are approximately 8.2-8.6 μm.
この試験では、CD4+およびCD8+の単離細胞を免疫学的に検証した。図14および図15を参照すると、CD4受容体の存在を確認できる。マウスの脾臓から精製した後に単離されたCD4のT細胞の量を推定するために、アレクサ488抗CD4抗体が使用された。図14は、焦点面内に細胞の小円を有する明視野像を示す。図15は、細胞に結合した抗CD4抗体の蛍光を示す。図16は、焦点面内に細胞の小円を有する明視野像を示す。図17は、細胞に結合した抗CD4抗体の蛍光を示す。図15及び図17それぞれにおける緑及びマゼンタの互いに異なる色により、結果の多重分析、たとえばCD4/CD8比分析ができる。 In this study, CD4 + and CD8 + isolated cells were immunologically validated. With reference to FIGS. 14 and 15, the presence of the CD4 receptor can be confirmed. The Alexa488 anti-CD4 antibody was used to estimate the amount of CD4 T cells isolated after purification from mouse spleen. FIG. 14 shows a bright field image with small circles of cells in the focal plane. Figure 15 shows the fluorescence of anti-CD4 antibody bound to cells. FIG. 16 shows a bright field image with small circles of cells in the focal plane. FIG. 17 shows the fluorescence of anti-CD4 antibody bound to cells. The different colors of green and magenta in FIGS. 15 and 17, respectively, allow for a multiple analysis of the results, eg a CD4 / CD8 ratio analysis.
ここで図18を参照すると、ストレプトアビジン共役結合アガロースビーズをビオチン共役結合の抗CD3抗体およびCD3+ジャーカット(Jurkat)T細胞と共に用いた試験の結果が示されている。ビーズと細胞の親和性の組み合わせが明確に図示されている。混合物から細胞を抽出するために、ビーズを音響場で分離することができる。 Referring now to FIG. 18, the results of tests using streptavidin-conjugated agarose beads with biotin-conjugated anti-CD3 antibody and CD3 + Jurkat T cells are shown. The bead-cell affinity combination is clearly illustrated. The beads can be separated in an acoustic field to extract cells from the mixture.
音響システムにおける音響親和性ビーズを使用した概念実証および性能の検証が示されている。開示された方法およびシステムでは、市販の試薬および現在利用可能な音響システムが使用できる。親和性は、任意のタイプの所望のT細胞またはマーカーをターゲットとすることができ、そのT細胞またはマーカーとしては、CD3+、CD4+、CD8+が挙げられる。音響ビーズは、高、中または低のコントラスト係数を有してもよく、このコントラスト係数は、例えばビーズが音響の節または腹に向かって促されるか、または、ビーズが音響場を通過するかなど、ビーズが音響場にどのように応答するかについて影響を及ぼし得るものである。 Proof of concept and verification of performance using acoustically compatible beads in an acoustic system is shown. The disclosed methods and systems can use commercially available reagents and currently available acoustic systems. The affinity can be targeted to any type of desired T cell or marker, including T3 cells, CD4 +, CD8 +. The acoustic beads may have a high, medium or low contrast coefficient, such as whether the beads are encouraged towards the acoustic node or antinode, or whether the beads pass through an acoustic field. , Which can influence how the beads respond to the acoustic field.
ビーズは、様々な物質および組み合わせから構成し、音響性能および生体適合性との最適な相性について開発できるようにしてもよい。ビーズは、分離、選別、または、分離プロセスにおいて有用な他の任意の機能のために、処理してもよい。調整された音響システムと共に使用されるとき、特別に設計された音響ビーズの性能は、常磁性ビーズの性能に匹敵するか、または、その常磁性ビーズの性能を超えることができる。 The beads may be composed of various materials and combinations, allowing them to be developed for optimal compatibility with acoustic performance and biocompatibility. The beads may be treated for separation, sorting, or any other function useful in the separation process. When used with a tuned acoustic system, the performance of specially designed acoustic beads can be comparable to, or exceed, that of paramagnetic beads.
既存の化学物質を音響ビーズと共に使用し、更にサイズおよび構造の均一性の仕様と組み合わせて使用し、音響性能および分離性能に関して所望の結果が得られるようにしてもよい。ビーズは、音響効率を高めるために複合構造物から構成してもよい。音響システムは、熱管理とともに、常磁性ビーズ単独では不可能な結果を得るための流体工学の使用により、小さいサイズを管理できる柔軟性を有する。音響ビーズ及び単純化された処理それぞれの生体適合性および/または生分解性により、CART細胞の製造のための既存のハードウェアとの統合が可能になる。親和性音響ビーズは様々な環境で使用することができ、その環境としては、例えば、ターゲット細胞を混入した動物の血液およびマウスの脾臓抽出物などのモデル環境が挙げられる。音響ビーズは、このように既存のシステムと協働して使用してもよく、目的の用途向けに設計および製造してもよい。ビーズは、音響的に活性または不活性のコアを有してもよく、ビーズ自体は、高、中または低の音響コントラスト用に構成してもよい。ビーズのサイズは、分離性と親和性との組み合わせに対して構成してもよく、例えば、特定のサイズのビーズは特定の生体物質をターゲットとする機能性物質を含んでもよく、別のサイズのビーズは別の生体物質をターゲットとするように機能化されてもよく、それぞれのサイズのビーズは閉鎖系または流動系において同時にかつ連続的に分離できるようにしてもよい。ビーズは、狭い範囲または比較的広い範囲で均一なサイズ分布になるように設計してもよい。また、様々な親和性化学物質を使用してもよく、その親和性化学物質としてはストレプトアビジン−ビオチン複合体、免疫グロブリンまたはアプタマーが挙げられる。ビーズは製造容易性および/または保存期間のために設計してもよい。ビーズは、承認済みの化学物質を使用する既知のシステムに容易に統合できるように、承認済みの化学物質と共に使用してもよい。 Existing chemistries may be used with acoustic beads and in combination with size and structural uniformity specifications to achieve desired results with respect to acoustic and separation performance. The beads may be composed of composite structures to enhance acoustic efficiency. Acoustic systems have the flexibility to manage small sizes through the use of fluid engineering to achieve results not possible with paramagnetic beads alone, as well as thermal management. The biocompatibility and / or biodegradability of each of the acoustic beads and the simplified process allows integration with existing hardware for the production of CART cells. Affinity acoustic beads can be used in a variety of environments, including, for example, model environments such as target blood-contaminated animal blood and mouse spleen extracts. The acoustic beads may thus be used in cooperation with existing systems and may be designed and manufactured for the intended application. The beads may have an acoustically active or inactive core, and the beads themselves may be configured for high, medium or low acoustic contrast. The size of the beads may be configured for a combination of separability and affinity, for example, beads of a particular size may contain a functional material that targets a particular biological material, and beads of a different size. The beads may be functionalized to target different biological materials, and beads of each size may be capable of simultaneous and sequential separation in closed or flow systems. The beads may be designed to have a uniform size distribution over a narrow or relatively wide range. Also, a variety of affinity chemistries may be used, including streptavidin-biotin complex, immunoglobulins or aptamers. The beads may be designed for manufacturability and / or shelf life. The beads may be used with approved chemicals so that they can be easily integrated into known systems that use approved chemicals.
図19を参照すると、活性化の化学反応を例示する図が示されている。この図示された活性化の化学反応は、本明細書に記載された音響親和性ビーズに適用できる。 Referring to FIG. 19, a diagram illustrating the activation chemistry is shown. This illustrated activation chemistry is applicable to the acoustic affinity beads described herein.
上述の方法、システム、および装置は例である。様々な構成は、必要に応じて様々な手順または構成要素を省略、置換、または追加してもよい。例えば、代替構成においては、方法は説明されたものとは異なる順序で実行されてもよく、様々なステップが追加、省略、または組み合わされてもよい。また、特定の構成に関して説明された特徴は、他の様々な構成において組み合わされてもよい。構成の異なる態様および要素は同様の方法で組み合わされてもよい。また、技術は進化しており、したがって、要素の多くは例であり、本開示または特許請求の範囲を限定するものではない。 The methods, systems, and devices described above are examples. Various configurations may omit, replace, or add various procedures or components as desired. For example, in alternative configurations, the methods may be performed in a different order than those described, and various steps may be added, omitted, or combined. Also, the features described with respect to particular configurations may be combined in various other configurations. Different aspects and elements of construction may be combined in a similar fashion. Also, the technology is evolving and, thus, many of the elements are examples and do not limit the disclosure or claims.
例示的な構成(実施形態を含む)の完全な理解を提供するために、本明細書の説明において具体的な詳細が与えられる。しかしながら、構成はこれらの具体的な詳細なしで実施されてもよい。例えば、構成を不明瞭にすることを避けるために、不必要な詳細なしに、周知のプロセス、構造、および技術が示されている。この説明は例示的な構成のみを提供するものであり、特許請求の範囲、適用性または構成を限定するものではない。むしろ、前述の構成の説明は、説明された技法を実施するための説明を提供する。本開示の趣旨または範囲から逸脱することなく、要素の機能および配置に様々な変更を加えてもよい。 Specific details are given in the description herein to provide a thorough understanding of the exemplary configurations (including the embodiments). However, the configuration may be implemented without these specific details. For example, well-known processes, structures, and techniques are shown without unnecessary detail in order to avoid obscuring the configuration. This description provides example configurations only, and does not limit the scope, applicability, or configurations of the claims. Rather, the foregoing configuration description provides a description for implementing the described techniques. Various changes may be made in the function and arrangement of elements without departing from the spirit or scope of the disclosure.
また、構成は、フロー図またはブロック図として示されるプロセスとして説明されてもよい。それぞれが動作を逐次プロセスとして説明することがあるが、動作の多くは並行してまたは同時に実行することができる。さらに、動作の順序は並べ替えられてもよい。プロセスは、図に含まれていない追加のステージまたは機能を有してもよい。 Also, the configuration may be described as a process shown as a flow diagram or block diagram. Although each describes an operation as a sequential process, many of the operations can be performed in parallel or simultaneously. Further, the order of operations may be rearranged. The process may have additional stages or functionality not included in the figure.
いくつかの構成例を説明してきたが、本開示の趣旨から逸脱することなく、様々な修正形態、代替構成、および等価物を使用してもよい。例えば、上記の要素は、より大きなシステムの構成要素としてもよく、その場合、他の構造またはプロセスが、本発明の適用より優先されるか、またはそうでなければ本発明の適用を修正してもよい。また、上記の要素が考慮される前、その間、またはその後に、いくつかの操作を行ってもよい。したがって、上記の説明は特許請求の範囲を限定するものではない。 Although a number of example configurations have been described, various modifications, alternative configurations, and equivalents may be used without departing from the spirit of the present disclosure. For example, the elements described above may be components of a larger system, in which case other structures or processes may supersede or otherwise modify the application of the invention. Good. Also, some operations may be performed before, during, or after the above factors are considered. Therefore, the above description does not limit the scope of the claims.
Claims (3)
強磁性物質を含まないビーズと、
ターゲット生体物質を引き付けるための前記ビーズ上の機能性物質と、を備える物質。 A substance used in the separation process,
Beads containing no ferromagnetic material,
A functional substance on the beads for attracting a target biological substance.
音響場を生成するためのデバイスと、
複数のビーズと、を備え、前記複数のビーズはそれぞれ、前記ビーズに結合した生体物質を含み、前記音響場に存在するときに捕捉され、または、通過するシステム。 A system for separating substances,
A device for generating an acoustic field,
A plurality of beads, each of which includes a biological material bound to the beads and is captured or passed through when present in the acoustic field.
機能性物質を複数のビーズに塗工することと、
前記機能性物質に対して親和性を有する生体物質に前記ビーズをさらし、前記生体物質を前記ビーズに結合させることと、
前記ビーズを音響場にさらして、前記ビーズを捕捉し、または、通過させることと、を含む方法。 A method for separating substances,
Coating functional beads on multiple beads,
Exposing the beads to a biological substance having an affinity for the functional substance, and binding the biological substance to the beads;
Exposing the beads to an acoustic field to capture or pass the beads.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662410312P | 2016-10-19 | 2016-10-19 | |
US62/410,312 | 2016-10-19 | ||
PCT/US2017/057485 WO2018075830A1 (en) | 2016-10-19 | 2017-10-19 | Affinity cell extraction by acoustics |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020513248A true JP2020513248A (en) | 2020-05-14 |
Family
ID=60452721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019543176A Pending JP2020513248A (en) | 2016-10-19 | 2017-10-19 | Affinity cell extraction by sound |
Country Status (7)
Country | Link |
---|---|
US (1) | US11420136B2 (en) |
EP (1) | EP3529347A1 (en) |
JP (1) | JP2020513248A (en) |
KR (1) | KR20190127655A (en) |
CN (1) | CN110494543A (en) |
CA (1) | CA3041517A1 (en) |
WO (1) | WO2018075830A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022545485A (en) * | 2019-08-30 | 2022-10-27 | フロデザイン ソニックス, インク. | Selection of sonoaffinity cells for multiple target receptors |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11708572B2 (en) | 2015-04-29 | 2023-07-25 | Flodesign Sonics, Inc. | Acoustic cell separation techniques and processes |
US11214789B2 (en) | 2016-05-03 | 2022-01-04 | Flodesign Sonics, Inc. | Concentration and washing of particles with acoustics |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7081192B1 (en) * | 2000-08-08 | 2006-07-25 | Aviva Biosciences Corporation | Methods for manipulating moieties in microfluidic systems |
WO2013187382A1 (en) * | 2012-06-15 | 2013-12-19 | 株式会社日立ハイテクノロジーズ | Sample isolation particle, sample isolation device and sample isolation method |
WO2015102528A1 (en) * | 2013-12-30 | 2015-07-09 | Ge Healthcare Bio-Sciences Corp. | Apparatus for cell cultivation |
Family Cites Families (502)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2473971A (en) | 1944-02-25 | 1949-06-21 | Donald E Ross | Underwater transducer |
US2667944A (en) | 1949-12-10 | 1954-02-02 | Combustion Eng | Cyclone separator |
US3372370A (en) | 1965-09-22 | 1968-03-05 | Aquasonics Engineering Company | Electroacoustic transducer |
US3555311A (en) | 1969-01-23 | 1971-01-12 | Marquardt Corp | High pressure piezoelectric transducer |
US4158629A (en) | 1974-08-12 | 1979-06-19 | Vernon D. Beehler | Dynamic self-cleaning filter for liquids |
US4204096A (en) | 1974-12-02 | 1980-05-20 | Barcus Lester M | Sonic transducer mounting |
US4055491A (en) | 1976-06-02 | 1977-10-25 | Porath Furedi Asher | Apparatus and method for removing fine particles from a liquid medium by ultrasonic waves |
SU629496A1 (en) | 1976-08-01 | 1978-10-25 | Институт Радиофизики И Электроники Ан Украинской Сср | Acousto-electric ultrasound transducer |
US4065875A (en) | 1976-09-17 | 1978-01-03 | University Of Delaware | Selective destruction of certain algae |
JPS6034433B2 (en) | 1977-03-07 | 1985-08-08 | 株式会社豊田中央研究所 | ultrasonic transducer |
US4118649A (en) | 1977-05-25 | 1978-10-03 | Rca Corporation | Transducer assembly for megasonic cleaning |
US4165273A (en) | 1977-12-20 | 1979-08-21 | Azarov Nikolai N | Device for producing deeply desalted water |
US4320659A (en) | 1978-02-27 | 1982-03-23 | Panametrics, Inc. | Ultrasonic system for measuring fluid impedance or liquid level |
AU529113B2 (en) | 1978-04-19 | 1983-05-26 | Commonwealth Of Australia, The | Ultrasonic transducer array |
CA1141629A (en) | 1979-07-31 | 1983-02-22 | Roger F. Potts | Machine for cleaning plastic containers |
FR2485858B1 (en) | 1980-06-25 | 1986-04-11 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING ULTRASONIC TRANSDUCERS OF COMPLEX SHAPES AND APPLICATION TO OBTAINING ANNULAR TRANSDUCERS |
DE3027433A1 (en) | 1980-07-19 | 1982-02-18 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Pressure diffusion sepn. method for mixts. - uses perpendicular identical frequency wave fields with differing phases |
US5834871A (en) | 1996-08-05 | 1998-11-10 | Puskas; William L. | Apparatus and methods for cleaning and/or processing delicate parts |
DE3218488A1 (en) | 1982-05-15 | 1983-11-17 | Battelle-Institut E.V., 6000 Frankfurt | Process and apparatus for sorting particles according to different density ranges |
US4552669A (en) | 1983-04-18 | 1985-11-12 | Mott Metallurgical Corporation | Pneumatic hydro-pulse filter system and method of operation |
US4484907A (en) | 1983-10-20 | 1984-11-27 | E. I. Du Pont De Nemours And Company | Microtube adapter having a holding and uncapping apparatus |
JPH0679682B2 (en) | 1983-10-31 | 1994-10-12 | ブリティッシュ・テクノロジー・グループ・リミテッド | Method and apparatus for separating particulate matter in a liquid medium |
GB8417240D0 (en) | 1984-07-06 | 1984-08-08 | Unilever Plc | Particle separation |
EP0278108B1 (en) | 1984-07-18 | 1989-08-16 | Schenck Auto-Service-Geräte GmbH | Process and device for arresting a turning object |
CN85100483B (en) | 1985-04-01 | 1988-10-19 | 上海灯泡厂 | Material for utrasonic transducer |
US4666595A (en) | 1985-09-16 | 1987-05-19 | Coulter Electronics, Inc. | Apparatus for acoustically removing particles from a magnetic separation matrix |
US4983189A (en) | 1986-02-21 | 1991-01-08 | Technical Research Associates, Inc. | Methods and apparatus for moving and separating materials exhibiting different physical properties |
US4759775A (en) | 1986-02-21 | 1988-07-26 | Utah Bioresearch, Inc. | Methods and apparatus for moving and separating materials exhibiting different physical properties |
US4699588A (en) | 1986-03-06 | 1987-10-13 | Sonotech, Inc. | Method and apparatus for conducting a process in a pulsating environment |
GB8612759D0 (en) | 1986-05-27 | 1986-07-02 | Unilever Plc | Manipulating particulate matter |
BE905707A (en) | 1986-11-06 | 1987-03-02 | Poppe Willy | QUILT. |
AT389235B (en) | 1987-05-19 | 1989-11-10 | Stuckart Wolfgang | METHOD FOR CLEANING LIQUIDS BY MEANS OF ULTRASOUND AND DEVICES FOR CARRYING OUT THIS METHOD |
US4821838A (en) | 1987-10-30 | 1989-04-18 | Hewlett-Packard Company | Acoustic damper |
JPH01134216A (en) | 1987-11-19 | 1989-05-26 | Agency Of Ind Science & Technol | Visualizing method for three-dimensional standing wave sound field |
US4860993A (en) | 1988-01-14 | 1989-08-29 | Teledyne Industries, Inc. | Valve design to reduce cavitation and noise |
US4836684A (en) | 1988-02-18 | 1989-06-06 | Ultrasonic Power Corporation | Ultrasonic cleaning apparatus with phase diversifier |
WO1989011899A1 (en) | 1988-06-08 | 1989-12-14 | Invitron Corporation | Tandem hollow fiber cell culture product harvest system |
AT390739B (en) | 1988-11-03 | 1990-06-25 | Ewald Dipl Ing Dr Benes | METHOD AND DEVICE FOR SEPARATING PARTICLES DISPERSED IN A DISPERSION AGENT |
FR2638659B1 (en) | 1988-11-07 | 1992-06-12 | Framatome Sa | FILTRATION APPARATUS COMPRISING AN ULTRASONIC DECOLMATION DEVICE AND CORRESPONDING DECOLMATION METHOD |
GB9005705D0 (en) | 1990-03-14 | 1990-05-09 | Health Lab Service Board | Particle manipulation |
US5085783A (en) | 1990-08-16 | 1992-02-04 | Case Western Reserve University | Acoustically driven particle separation method and apparatus |
US5059811A (en) | 1990-08-30 | 1991-10-22 | Great Lakes Instruments, Inc. | Turbidimeter having a baffle assembly for removing entrained gas |
RU2085933C1 (en) | 1991-08-14 | 1997-07-27 | Кирпиченко Борис Иванович | Device for ultrasonic inspection of solution density |
RU2037327C1 (en) | 1991-12-09 | 1995-06-19 | Александр Александрович Ковалев | Ultrasonic filter |
GB2265004B (en) | 1992-03-10 | 1996-01-10 | Univ Cardiff | Immuno-agglutination assay using ultrasonic standing wave field |
EP0634961A1 (en) | 1992-04-06 | 1995-01-25 | MOUNTFORD, Norman Duncan Gerard | Ultrasonic treatment of liquids in particular metal melts |
US6216538B1 (en) | 1992-12-02 | 2001-04-17 | Hitachi, Ltd. | Particle handling apparatus for handling particles in fluid by acoustic radiation pressure |
CA2137699A1 (en) | 1993-05-11 | 1994-11-24 | Felix Trampler | Multi-layered piezoelectric resonator for the separation of suspended particles |
AT398707B (en) | 1993-05-11 | 1995-01-25 | Trampler Felix | MULTILAYER PIEZOELECTRIC RESONATOR FOR THE SEPARATION OF SUSPENDED PARTICLES |
US5626767A (en) | 1993-07-02 | 1997-05-06 | Sonosep Biotech Inc. | Acoustic filter for separating and recycling suspended particles |
US5443985A (en) | 1993-07-22 | 1995-08-22 | Alberta Research Council | Cell culture bioreactor |
AU688334B2 (en) | 1993-09-07 | 1998-03-12 | Siemens Medical Solutions Usa, Inc. | Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof |
US5431817A (en) | 1993-09-13 | 1995-07-11 | W. R. Grace & Co.-Conn. | Bleach resistant polysulfone/polyurethane composite membranes |
US5371429A (en) | 1993-09-28 | 1994-12-06 | Misonix, Inc. | Electromechanical transducer device |
US5395592A (en) | 1993-10-04 | 1995-03-07 | Bolleman; Brent | Acoustic liquid processing device |
US5452267A (en) | 1994-01-27 | 1995-09-19 | Magnetrol International, Inc. | Midrange ultrasonic transducer |
US5562823A (en) | 1994-04-25 | 1996-10-08 | Reeves; William | Combination centrifugal and sonic device for separating components within a solution |
AU2817895A (en) | 1994-06-07 | 1996-01-04 | Trustees Of Boston University | Acoustic detection of particles |
US5560362A (en) | 1994-06-13 | 1996-10-01 | Acuson Corporation | Active thermal control of ultrasound transducers |
US5475486A (en) | 1994-10-21 | 1995-12-12 | Hach Company | Flow cell system for turbidimeter |
JP3487699B2 (en) | 1995-11-08 | 2004-01-19 | 株式会社日立製作所 | Ultrasonic treatment method and apparatus |
JP3875736B2 (en) | 1995-11-14 | 2007-01-31 | 株式会社協和エクシオ | Wastewater treatment method and apparatus |
JP2700058B2 (en) | 1996-01-23 | 1998-01-19 | 工業技術院長 | Non-contact micromanipulation method using ultrasonic waves |
US6641708B1 (en) | 1996-01-31 | 2003-11-04 | Board Of Regents, The University Of Texas System | Method and apparatus for fractionation using conventional dielectrophoresis and field flow fractionation |
US5688405A (en) | 1996-02-28 | 1997-11-18 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for separating particulate matter from a fluid |
WO1997034643A1 (en) | 1996-03-19 | 1997-09-25 | Ozone Sterilization Products, Inc. | Ozone sterilizer and generator |
NL1003595C2 (en) | 1996-04-10 | 1997-10-14 | Tno | Method and device for characterizing suspensions. |
MX9604952A (en) | 1996-10-18 | 1998-04-30 | Servicios Condumex Sa | Solid particles hydraulic classifier and reactor with ultrasound application. |
GB9621832D0 (en) | 1996-10-19 | 1996-12-11 | Univ Cardiff | Removing partiles from suspension |
DE19648519C2 (en) | 1996-11-23 | 2000-11-16 | Preussag Wassertechnik Gmbh | Process and system for material separation by means of membrane filtration |
GB9708984D0 (en) | 1997-05-03 | 1997-06-25 | Univ Cardiff | Particle manipulation |
US5951456A (en) | 1997-05-16 | 1999-09-14 | Scott; Harold W. | Ultrasonic methods and apparatus for separating materials in a fluid mixture |
US6280388B1 (en) | 1997-11-19 | 2001-08-28 | Boston Scientific Technology, Inc. | Aerogel backed ultrasound transducer |
US6326213B1 (en) | 1998-02-09 | 2001-12-04 | The Boards Of Govenors For Higher Education, State Of Rhode Island And Providence Plantations | Acoustic standing-wave enhancement of a fiber-optic Salmonella biosensor |
DE19815882A1 (en) | 1998-04-08 | 1999-10-14 | Fuhr Guenther | Method and device for manipulating microparticles in fluid flows |
DE19820466C2 (en) | 1998-05-07 | 2002-06-13 | Fraunhofer Ges Forschung | Device and method for the targeted exposure of a biological sample to sound waves |
JP2000024431A (en) | 1998-07-14 | 2000-01-25 | Hitachi Ltd | Fine particle treating device |
US6090295A (en) | 1998-08-11 | 2000-07-18 | University Technology Corporation | Method and apparatus for acoustically demixing aqueous solutions |
US7981368B2 (en) | 1998-10-28 | 2011-07-19 | Covaris, Inc. | Method and apparatus for acoustically controlling liquid solutions in microfluidic devices |
CA2316160A1 (en) | 1998-11-20 | 2000-06-02 | Proudo Co., Ltd. | Liquid treating process and apparatus, as well as liquid treating system |
US6166231A (en) | 1998-12-15 | 2000-12-26 | Martek Biosciences Corporation | Two phase extraction of oil from biomass |
WO2000041794A1 (en) | 1999-01-15 | 2000-07-20 | University College Cardiff Consultants Ltd. | Particle manipulation |
US6592821B1 (en) | 1999-05-17 | 2003-07-15 | Caliper Technologies Corp. | Focusing of microparticles in microfluidic systems |
US6314974B1 (en) | 1999-06-28 | 2001-11-13 | Fairchild Semiconductor Corporation | Potted transducer array with matching network in a multiple pass configuration |
GB9916851D0 (en) | 1999-07-20 | 1999-09-22 | Univ Wales Bangor | Manipulation of particles in liquid media |
US20030119185A1 (en) | 2000-02-24 | 2003-06-26 | Xcyte Therapies, Inc. | Activation and expansion of cells |
AUPQ629100A0 (en) | 2000-03-16 | 2000-04-15 | Btf Pty Ltd | Process for preparing controlled samples of particles such as microorganisms and cells |
AU6321301A (en) | 2000-05-16 | 2001-11-26 | Atrionix Inc | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
US6395186B1 (en) | 2000-06-20 | 2002-05-28 | Delaware Capital Formation, Inc. | Pressure liquid filtration with ultrasonic bridging prevention |
EP1175931A1 (en) | 2000-07-25 | 2002-01-30 | Computer Cell Culture Center S.A. | Integration of high cell density bioreactor operation with ultra fast on-line downstream processing |
US20020134734A1 (en) | 2000-08-28 | 2002-09-26 | Ocean Power Corporation | Method for pretreating water for desalination |
CN100495030C (en) * | 2000-09-30 | 2009-06-03 | 清华大学 | Multi-force operator and use thereof |
WO2002050511A2 (en) | 2000-12-18 | 2002-06-27 | E.I. Du Pont De Nemours And Company | Method and apparatus for ultrasonic sizing of particles in suspensions |
SE522801C2 (en) | 2001-03-09 | 2004-03-09 | Erysave Ab | Apparatus for separating suspended particles from an ultrasonic fluid and method for such separation |
SE0103013D0 (en) | 2001-03-09 | 2001-09-12 | Erysave Ab Ideon | System and method of treatment of whole blood |
SE0100820D0 (en) | 2001-03-09 | 2001-03-09 | Erysave Ab Ideon | Particle separation using an acoustic filter |
US6467350B1 (en) | 2001-03-15 | 2002-10-22 | The Regents Of The University Of California | Cylindrical acoustic levitator/concentrator |
US6770248B2 (en) | 2001-05-04 | 2004-08-03 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government | Flowthrough device for the ultrasonic destruction of microorganisms in fluids |
US6763722B2 (en) | 2001-07-13 | 2004-07-20 | Transurgical, Inc. | Ultrasonic transducers |
US6551248B2 (en) | 2001-07-31 | 2003-04-22 | Koninklijke Philips Electronics N.V. | System for attaching an acoustic element to an integrated circuit |
DE10148916A1 (en) | 2001-10-04 | 2003-04-17 | Beatrix Christa Meier | Ultrasonic head assembly, to break down cells, comprises a piezo element to generate ultrasonic waves which are carried through intermediate elements to a sonotrode for direct delivery into the samples in a micro-titration plate |
US6487095B1 (en) | 2001-10-31 | 2002-11-26 | International Business Machines Corporation | Multiphase zero-volt-switching resonant DC-DC regulator |
US7470545B2 (en) | 2001-11-05 | 2008-12-30 | Rohm And Haas Company | Buccal dissolution of active substances |
US6649069B2 (en) | 2002-01-23 | 2003-11-18 | Bae Systems Information And Electronic Systems Integration Inc | Active acoustic piping |
CN1318824C (en) | 2002-01-28 | 2007-05-30 | 松下电器产业株式会社 | Ultrasonic transmitter-receiver and ultrasonic flowmeter |
EP1354941A1 (en) | 2002-04-19 | 2003-10-22 | Computer Cell Culture Center S.A. | Apparatus and method for a cell culture in a bioreactor at high cell concentration |
US6749666B2 (en) | 2002-04-26 | 2004-06-15 | Board Of Regents, The University Of Texas System | Modulated acoustic aggiomeration system and method |
KR100571803B1 (en) | 2002-05-03 | 2006-04-17 | 삼성전자주식회사 | Semiconductor carbon nano tube functionalized by hydrogen, electronic device and method of fabrication thereof |
US20030230535A1 (en) | 2002-06-03 | 2003-12-18 | Affeld Christian Jeremy | Downhole desalination of aquifer water |
US7846382B2 (en) | 2002-06-04 | 2010-12-07 | Protasis Corporation | Method and device for ultrasonically manipulating particles within a fluid |
US20040016699A1 (en) | 2002-07-29 | 2004-01-29 | Michael Bayevsky | Systems and methods for ultrasonic cleaning of cross-flow membrane filters |
US6938488B2 (en) | 2002-08-21 | 2005-09-06 | Battelle Memorial Institute | Acoustic inspection device |
GB0221391D0 (en) | 2002-09-16 | 2002-10-23 | Secr Defence | Apparatus for directing particles in a fluid |
US6881389B2 (en) | 2002-09-24 | 2005-04-19 | Edg, Inc. | Removal of H2S and CO2 from a hydrocarbon fluid stream |
GB0222421D0 (en) | 2002-09-27 | 2002-11-06 | Ratcliff Henry K | Advanced ultrasonic processor |
US7108137B2 (en) | 2002-10-02 | 2006-09-19 | Wisconsin Alumni Research Foundation | Method and apparatus for separating particles by size |
US7238223B2 (en) | 2002-11-01 | 2007-07-03 | Board Of The Regents, The University Of Texas System | Acoustical stimulation of vapor diffusion system and method |
US6878288B2 (en) | 2002-12-17 | 2005-04-12 | Harold W. Scott | System and apparatus for removing dissolved and suspended solids from a fluid stream |
US7191787B1 (en) | 2003-02-03 | 2007-03-20 | Lam Research Corporation | Method and apparatus for semiconductor wafer cleaning using high-frequency acoustic energy with supercritical fluid |
SE0300290D0 (en) | 2003-02-05 | 2003-02-05 | Siemens Elema Ab | Acoustic meter assembly |
WO2004079716A1 (en) | 2003-03-06 | 2004-09-16 | Oberti, Stefano | Method for positioning small particles in a fluid |
US7008540B1 (en) | 2003-04-07 | 2006-03-07 | The Ohio State University | Ultrasonically cleaned membrane filtration system |
DE10319467B3 (en) | 2003-04-29 | 2004-07-22 | Miele & Cie. Kg | Device for preventing foam or air bubbles in measuring zone of turbidity sensor for dishwasher or laundry machine with turbulence region incorporated in bypass line across main flow line |
US6990852B2 (en) | 2003-07-28 | 2006-01-31 | Becton Dickinson & Company | System and method for detecting particles |
US8409861B2 (en) | 2003-08-08 | 2013-04-02 | Sangamo Biosciences, Inc. | Targeted deletion of cellular DNA sequences |
CN1245231C (en) | 2003-08-27 | 2006-03-15 | 中国石油化工股份有限公司 | Method and device for breaking oil water emulsion using combined action of forward current and countercurrent flow ultrasonic wave |
US7541166B2 (en) | 2003-09-19 | 2009-06-02 | Microfluidic Systems, Inc. | Sonication to selectively lyse different cell types |
US7232016B2 (en) | 2003-12-08 | 2007-06-19 | General Motors Corporation | Fluid damper having continuously variable damping response |
US7445716B2 (en) | 2004-01-05 | 2008-11-04 | Eaton Lp | Crossflow pressure liquid filtration with ultrasonic enhancement |
US8012355B2 (en) | 2004-01-30 | 2011-09-06 | Pss Acquisitionco Llc | Molecular separator |
US7044737B2 (en) | 2004-03-05 | 2006-05-16 | Liang Fu | Ultrasound oral hygiene and therapeutic device |
WO2005122139A2 (en) | 2004-06-07 | 2005-12-22 | Koninklijke Philips Electronics N.V. | Acoustic device with variable focal length |
US7340957B2 (en) | 2004-07-29 | 2008-03-11 | Los Alamos National Security, Llc | Ultrasonic analyte concentration and application in flow cytometry |
US20080272034A1 (en) | 2004-08-16 | 2008-11-06 | Searete Llc, | Separation of particles from a fluid by wave action |
AT413655B (en) | 2004-08-19 | 2006-04-15 | Felix Dipl Ing Dr Trampler | DEVICE FOR DISPERSING DISPERSED PARTICLES |
US7230882B2 (en) | 2004-09-03 | 2007-06-12 | Lowrance Electronics, Inc. | Transducer support and associated lock |
SE528313C2 (en) | 2004-09-24 | 2006-10-17 | Spectronic Ab | Method and apparatus for separating particles using ultrasonic waves |
GB2420510B (en) | 2004-11-25 | 2010-10-06 | Cyclotech Ltd | Methods and apparatus for conditioning and degassing liquids and gases in suspension |
DK2377546T3 (en) | 2004-12-21 | 2017-02-13 | Musc Found For Res Dev | Compositions and Methods to Promote Wound Healing and Tissue Regeneration |
JP2008526203A (en) | 2004-12-29 | 2008-07-24 | バイオジェン・アイデック・エムエイ・インコーポレイテッド | Bioreactor process control system and method |
FR2882939B1 (en) | 2005-03-11 | 2007-06-08 | Centre Nat Rech Scient | FLUIDIC SEPARATION DEVICE |
US7704743B2 (en) | 2005-03-30 | 2010-04-27 | Georgia Tech Research Corporation | Electrosonic cell manipulation device and method of use thereof |
JP4770251B2 (en) | 2005-04-25 | 2011-09-14 | パナソニック株式会社 | Component separation device and component separation method using the same |
US7757561B2 (en) | 2005-08-01 | 2010-07-20 | Covaris, Inc. | Methods and systems for processing samples using acoustic energy |
US20110033922A1 (en) * | 2005-10-04 | 2011-02-10 | Landers James P | Microchip-based acoustic trapping or capture of cells for forensic analysis and related method thereof |
DE102005050167B4 (en) | 2005-10-19 | 2009-02-19 | Advalytix Ag | Concentration method, concentration apparatus and reaction method |
US7766121B2 (en) | 2005-12-20 | 2010-08-03 | Cyclotech Limited | Methods and apparatus for conditioning and degassing liquids and gases in suspension |
WO2007083295A2 (en) | 2006-01-19 | 2007-07-26 | Yeda Research And Development Co. Ltd. | Device and method for particle manipulation in fluid |
CN101453986A (en) | 2006-03-14 | 2009-06-10 | 默克公司 | Processes and apparatuses for the production of crystalline organic microparticle compositions by micro-milling and crystallization on micro-seed and their use |
US20070224676A1 (en) | 2006-03-21 | 2007-09-27 | Becton, Dickinson And Company | Expandable culture roller bottle |
CN1843945A (en) | 2006-05-16 | 2006-10-11 | 徐小宁 | Seawater desalination treatment system utilizing jet-flow technology |
US20070267351A1 (en) | 2006-05-22 | 2007-11-22 | Traceguard Technologies Inc. | Low-frequency acoustic waves for collecting and/or moving particles inside articles |
US20080011693A1 (en) | 2006-07-12 | 2008-01-17 | Ming Li | Self-cleaning waste-water device and method |
US8075786B2 (en) | 2006-09-05 | 2011-12-13 | The Board Of Regents Of The University Of Oklahoma | Acoustic/pressure wave-driven separation device |
GB0619016D0 (en) * | 2006-09-27 | 2006-11-08 | Secr Defence | Ultrasound method |
US7763177B2 (en) | 2006-10-26 | 2010-07-27 | Atlantium Technologies Ltd. | System and method for ultrasonic cleaning of ultraviolet disinfection system |
JP4984849B2 (en) | 2006-11-27 | 2012-07-25 | パナソニック株式会社 | Component separation device and chemical analysis device using the component separation device |
US7673516B2 (en) | 2006-12-28 | 2010-03-09 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
JP5243456B2 (en) | 2007-03-02 | 2013-07-24 | スミス アンド ネフュー ピーエルシー | Filter cleaning apparatus and method with ultrasonic, backwash and filter motion during biological sample filtration |
DE102008006501B4 (en) | 2007-03-19 | 2013-05-16 | Sonja Lauterborn | Combined ultrasonic air backwashing process for the chemical-free in-situ cleaning of submerged membranes during backwashing during operation |
ATE538377T1 (en) | 2007-04-02 | 2012-01-15 | Acoustic Cytometry Systems Inc | METHOD FOR IMPROVED ANALYSIS OF CELLS AND PARTICLES FOCUSED IN AN ACOUSTIC FIELD |
US7837040B2 (en) | 2007-04-09 | 2010-11-23 | Los Alamos National Security, Llc | Acoustic concentration of particles in fluid flow |
US8083068B2 (en) | 2007-04-09 | 2011-12-27 | Los Alamos National Security, Llc | Apparatus for separating particles utilizing engineered acoustic contrast capture particles |
WO2008142850A1 (en) | 2007-05-15 | 2008-11-27 | Panasonic Corporation | Component separation device and method of component separation therewith |
US20080302732A1 (en) * | 2007-05-24 | 2008-12-11 | Hyongsok Soh | Integrated fluidics devices with magnetic sorting |
US7889601B2 (en) | 2007-06-19 | 2011-02-15 | Lockheed Martin Corporation | Lightweight acoustic array |
DE102007030904A1 (en) | 2007-07-03 | 2009-02-05 | Pharis Biotec Gmbh | Human circulating antiviral albumin fragment (ALB-408) and its use |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8882791B2 (en) | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
GB0716047D0 (en) | 2007-08-16 | 2007-09-26 | Welding Inst | Acoustic transducer assembley |
WO2009046234A2 (en) | 2007-10-05 | 2009-04-09 | Ethicon Endo-Surgery, Inc | Ergonomic surgical instruments |
JP5119848B2 (en) | 2007-10-12 | 2013-01-16 | 富士ゼロックス株式会社 | Microreactor device |
WO2009063198A2 (en) | 2007-11-14 | 2009-05-22 | Prokyma Technologies Limited | Extraction and purification of biological cells using ultrasound |
US8096177B2 (en) | 2007-11-19 | 2012-01-17 | Petroleum Recovery Services Llc | Fuel inventory monitoring system |
ES2326109B1 (en) | 2007-12-05 | 2010-06-25 | Consejo Superior De Investigaciones Cientificas | SELECTIVE AND NON INVASIVE SEPARATION AND EXTRACTION MICRODISPOSITIVE OF PARTICLES IN POLIDISPERSE SUSPENSIONS, MANUFACTURING PROCEDURE AND ITS APPLICATIONS. |
US8030290B2 (en) | 2007-12-07 | 2011-10-04 | City Of Hope | Cell-type specific aptamer-siRNA delivery system for HIV-1 Therapy |
US8266950B2 (en) | 2007-12-19 | 2012-09-18 | Los Alamos National Security, LLP | Particle analysis in an acoustic cytometer |
US8714014B2 (en) | 2008-01-16 | 2014-05-06 | Life Technologies Corporation | System and method for acoustic focusing hardware and implementations |
US9480935B2 (en) | 2008-02-01 | 2016-11-01 | Lawrence Livermore National Security, Llc | Systems and methods for separating particles and/or substances from a sample fluid |
EP2272061A1 (en) | 2008-03-03 | 2011-01-12 | 3M Innovative Properties Company | Process for audible acoustic frequency management in gas flow systems |
EP2274924B1 (en) | 2008-04-04 | 2017-12-13 | Microsonic Systems Inc. | Methods and systems to form high efficiency and uniform fresnel lens arrays for ultrasonic liquid manipulation |
US8054145B2 (en) | 2008-04-30 | 2011-11-08 | Georgia Tech Research Corporation | Phononic crystal wave structures |
WO2009144709A1 (en) | 2008-05-27 | 2009-12-03 | Kolmir Water Tech Ltd. | Apparatus and method for treatment of a contaminated water-based fluid |
DE102008002210A1 (en) | 2008-06-04 | 2009-12-10 | Evonik Degussa Gmbh | Process for the fermentative production of erythropoietin |
WO2009149519A1 (en) | 2008-06-12 | 2009-12-17 | Winwick Business Solutions Pty Ltd | System for cultivation and processing of microorganisms and products therefrom |
US7935259B2 (en) | 2008-07-03 | 2011-05-03 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Filtering apparatus and method of use |
CA2730528C (en) | 2008-07-16 | 2018-06-12 | Kbi Biopharma, Inc. | Methods and systems for manipulating particles using a fluidized bed |
EP3090792A1 (en) | 2008-07-18 | 2016-11-09 | Prosonix Limited | Process for improving crystallinity |
US8387803B2 (en) | 2008-08-26 | 2013-03-05 | Ge Healthcare Bio-Sciences Ab | Particle sorting |
WO2010030589A2 (en) | 2008-09-11 | 2010-03-18 | Luna Innovations Incorporation | Method and apparatus for acoustically enhanced removal of bubbles from a fluid |
US8865003B2 (en) | 2008-09-26 | 2014-10-21 | Abbott Laboratories | Apparatus and method for separation of particles suspended in a liquid from the liquid in which they are suspended |
EP2331230A1 (en) | 2008-10-08 | 2011-06-15 | FOSS Analytical A/S | Separation of particles in liquids by use of a standing ultrasonic wave |
US20100140185A1 (en) | 2008-12-05 | 2010-06-10 | John Hill | Wastewater treatment |
US20100206818A1 (en) | 2009-02-19 | 2010-08-19 | Chartered Semiconductor Manufacturing, Ltd. | Ultrasonic filtration for cmp slurry |
JP2010252785A (en) | 2009-03-31 | 2010-11-11 | Kanagawa Acad Of Sci & Technol | Device for concentrating and separating cell |
JP6215533B2 (en) | 2009-04-09 | 2017-10-18 | サンガモ セラピューティクス, インコーポレイテッド | Targeted integration into stem cells |
US8476060B2 (en) | 2009-04-13 | 2013-07-02 | Board Of Regents, The University Of Texas System | Process for separating lipids from a biomass |
US20110095225A1 (en) | 2009-04-20 | 2011-04-28 | Origin Oil, Inc. | Systems, apparatuses, and methods for extracting non-polar lipids from an aqueous algae slurry and lipids produced therefrom |
JP5645816B2 (en) | 2009-05-25 | 2014-12-24 | 国立大学法人東京工業大学 | Pharmaceutical composition comprising core factor related to proliferation and differentiation of central nerve cell |
US8865452B2 (en) | 2009-06-15 | 2014-10-21 | Aurora Algae, Inc. | Systems and methods for extracting lipids from wet algal biomass |
US8772004B2 (en) | 2009-06-25 | 2014-07-08 | Old Dominion University Research Foundation | System and method for high-voltage pulse assisted aggregation of algae |
RU2011153546A (en) | 2009-06-26 | 2013-08-10 | Кобальт Текнолоджиз, Инк. | METHOD AND INTEGRATED SYSTEM FOR PRODUCING BIOPRODUCT |
GB0914762D0 (en) | 2009-08-24 | 2009-09-30 | Univ Glasgow | Fluidics apparatus and fluidics substrate |
SG178548A1 (en) | 2009-08-26 | 2012-03-29 | Xcellerex Inc | Continuous recovery harvest bag |
GB0915072D0 (en) | 2009-09-01 | 2009-09-30 | Prokyma Technologies Ltd | Ultrasound & magnetic method |
CA2773181C (en) | 2009-09-04 | 2018-02-27 | The University Of North Carolina At Chapel Hill | Systems, methods, and computer readable media for high-frequency contrast imaging and image-guided therapeutics |
DE102009046145A1 (en) | 2009-10-29 | 2011-05-12 | Robert Bosch Gmbh | Ultrasonic transducer for use in a fluid medium |
US8691145B2 (en) | 2009-11-16 | 2014-04-08 | Flodesign Sonics, Inc. | Ultrasound and acoustophoresis for water purification |
EP3255153A1 (en) | 2009-11-17 | 2017-12-13 | E. R. Squibb & Sons, L.L.C. | Methods for enhanced protein production |
CA2819583A1 (en) | 2009-12-03 | 2011-06-09 | Bard Holding, Inc. | Process and system for producing algal oil |
US8518681B2 (en) | 2009-12-04 | 2013-08-27 | Sound Surgical Technologies Llc | Selective lysing of cells using ultrasound |
WO2011068764A2 (en) | 2009-12-04 | 2011-06-09 | Life Technologies Corporation | Apparatuses, systems, methods, and computer readable media for acoustic flow cytometry |
US8591459B2 (en) | 2009-12-21 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Use of biomarkers and therapeutic agents with surgical devices |
EP2545068B8 (en) | 2010-03-11 | 2018-03-21 | GlaxoSmithKline Biologicals S.A. | Immunogenic composition or vaccine against gram-negative bacterial, for example neiserial, infection or disease |
US9199217B2 (en) | 2010-03-12 | 2015-12-01 | Los Alamos National Security, Llc | Material fabrication using acoustic radiation forces |
CA2796117C (en) | 2010-04-12 | 2018-10-02 | Jason Dionne | Ultrasound and acoustophoresis technology for separation of oil and water, with application to produce water |
PT105058B (en) | 2010-04-21 | 2013-04-17 | Hovione Farmaciencia S A | PROCESS FOR PROCESSING OF PARTICLES OF PHARMACEUTICAL ACTIVE INGREDIENTS |
US8889388B2 (en) | 2010-04-21 | 2014-11-18 | Zhaowei Wang | Acoustic device and methods thereof for separation and concentration |
US8714360B2 (en) | 2010-05-12 | 2014-05-06 | Ethicon Endo-Surgery, Inc. | Tissue processing device with ultrasonic tissue particle separator |
CN102933280B (en) | 2010-06-04 | 2016-11-02 | 英派尔科技开发有限公司 | Sound-driving nanoparticle concentrator |
WO2011159957A2 (en) | 2010-06-16 | 2011-12-22 | Flodesign Sonics, Inc. | Phononic crystal desalination system and method of use |
GB201010724D0 (en) | 2010-06-25 | 2010-08-11 | Isis Innovation | Acoustic separators |
WO2012009320A2 (en) | 2010-07-15 | 2012-01-19 | Advanced Liquid Logic, Inc. | Systems for and methods of promoting cell lysis in droplet actuators |
KR101847405B1 (en) | 2010-07-30 | 2018-04-10 | 이엠디 밀리포어 코포레이션 | Chromatogrphy media and method |
MX338953B (en) | 2010-08-16 | 2016-05-06 | Novimmune Sa | Methods for the generation of multispecific and multivalent antibodies. |
US8592204B2 (en) | 2010-08-23 | 2013-11-26 | Flodesign Sonics, Inc. | Ultrasound and acoustophoresis for collection and processing of oleaginous microorganisms |
US9011699B2 (en) | 2010-08-23 | 2015-04-21 | Flodesign Sonics, Inc. | Ultrasonic agglomeration of microalgae |
US9421553B2 (en) | 2010-08-23 | 2016-08-23 | Flodesign Sonics, Inc. | High-volume fast separation of multi-phase components in fluid suspensions |
US8679338B2 (en) | 2010-08-23 | 2014-03-25 | Flodesign Sonics, Inc. | Combined acoustic micro filtration and phononic crystal membrane particle separation |
EP2622090B1 (en) | 2010-09-27 | 2019-06-19 | Sangamo Therapeutics, Inc. | Compositions for inhibiting viral entry into cells |
CN103209749B (en) | 2010-11-26 | 2015-04-22 | 英派尔科技开发有限公司 | Air purification system and method using an ultrasonic wave |
RU2013125923A (en) | 2010-11-30 | 2015-01-10 | Орфазиме Апс | METHODS FOR INCREASING THE EXTRACELLULAR ACTIVITY OF HSP70 |
US8895279B2 (en) | 2010-12-02 | 2014-11-25 | Dennis A. Burke | Applications of the rotating photobioreactor |
EP2675540B1 (en) | 2010-12-03 | 2018-03-21 | GE Healthcare Bio-Sciences AB | System and process for biopolymer chromatography |
US20120145633A1 (en) | 2010-12-09 | 2012-06-14 | General Electric Company | Ultra-sound enhanced centrifugal separation of oil from oily solids in water and wastewater |
GB2486680A (en) | 2010-12-22 | 2012-06-27 | Morgan Electro Ceramics Ltd | Ultrasonic or acoustic transducer that supports two or more frequencies |
US9314751B2 (en) | 2011-01-07 | 2016-04-19 | Life Technologies Corporation | Methods and apparatus for mixing and shipping fluids |
US9833763B2 (en) | 2011-02-04 | 2017-12-05 | Cidra Corporate Services, Inc. | Optimizing acoustic efficiency of a sonic filter or separator |
WO2012154238A1 (en) | 2011-02-04 | 2012-11-15 | Cidra Corporate Services Inc. | Sonic filter for measuring and capturing particles having a particular particle size in a fluid, mixture or process flow |
US9480375B2 (en) | 2011-02-09 | 2016-11-01 | The University Of Vermont & State Agricultural College | Aeroacoustic duster |
EP3603662B1 (en) | 2011-02-28 | 2022-01-19 | Seattle Children's Research Institute | Coupling endonucleases with end-processing enzymes drive high efficiency gene disruption |
WO2012129242A2 (en) * | 2011-03-23 | 2012-09-27 | Pacific Biosciences Of California, Inc. | Isolation of polymerase-nucleic acid complexes and loading onto substrates |
US8668886B2 (en) | 2011-04-24 | 2014-03-11 | Therapeutic Proteins International, LLC | Separative bioreactor |
EP2723769B2 (en) | 2011-06-23 | 2022-06-15 | Ablynx NV | Techniques for predicting, detecting and reducing aspecific protein interference in assays involving immunoglobulin single variable domains |
US8932586B2 (en) | 2011-09-06 | 2015-01-13 | Intrexon Corporation | Modified forms of Pseudomonas exotoxin A |
NL1039053C2 (en) | 2011-09-19 | 2013-03-21 | Stichting Wetsus Ct Excellence Sustainable Water Technology | Device and method for a bioreactor, catalysis reactor or crystallizer without internals. |
US9656263B2 (en) | 2011-09-28 | 2017-05-23 | Acousort Ab | System and method to separate cells and/or particles |
US9175535B2 (en) | 2011-09-29 | 2015-11-03 | Coil Solutions, Inc. | Propulsion generator and method |
US9376655B2 (en) | 2011-09-29 | 2016-06-28 | Life Technologies Corporation | Filter systems for separating microcarriers from cell culture solutions |
WO2013049623A1 (en) | 2011-09-30 | 2013-04-04 | Brian David Warner | Fluid exchange methods and devices |
EP4176871A1 (en) | 2011-10-03 | 2023-05-10 | Canqura Oncology Ab | Nanoparticles, process for preparation and use thereof as carrier for amphipatic of hydrphobic molecules in fields of medicine including cancer treatment and food related compounds |
GB201119192D0 (en) | 2011-11-07 | 2011-12-21 | Ucl Business Plc | Chromatography medium |
JP6057251B2 (en) | 2011-11-11 | 2017-01-11 | 国立研究開発法人産業技術総合研究所 | Particle sorting apparatus and particle sorting method |
US8256076B1 (en) | 2011-11-19 | 2012-09-04 | Murray F Feller | Method of making an ultrasonic transducer |
GB201120143D0 (en) | 2011-11-22 | 2012-01-04 | Micromass Ltd | Droplet manipulation using gas-phase standing-wave ultrasound fields in MS sources |
WO2013082366A1 (en) | 2011-12-01 | 2013-06-06 | The Brigham And Women's Hospital, Inc. | Anti-ceacam1 recombinant antibodies for cancer therapy |
GB201120887D0 (en) | 2011-12-06 | 2012-01-18 | The Technology Partnership Plc | Acoustic sensor |
US9943599B2 (en) | 2011-12-22 | 2018-04-17 | Herlev Hospital | Therapeutic applications of calcium electroporation to effectively induce tumor necrosis |
JP2015512766A (en) | 2012-01-31 | 2015-04-30 | ザ・ペン・ステート・リサーチ・ファンデーション | Microfluidic manipulation and particle classification using variable stationary surface acoustic waves |
WO2013119880A1 (en) | 2012-02-07 | 2013-08-15 | Global Bio Therapeutics Usa, Inc. | Compartmentalized method of nucleic acid delivery and compositions and uses thereof |
CN104066990B (en) | 2012-03-07 | 2017-02-22 | 凯希特许有限公司 | Disc pump with advanced actuator |
CA2867129C (en) | 2012-03-13 | 2023-11-21 | Salk Institute For Biological Studies | Selective cell targeting using adenovirus and chemical dimers |
JP6329936B2 (en) | 2012-03-14 | 2018-05-23 | ソーク インスティテュート フォー バイオロジカル スタディーズ | Adenovirus tumor diagnosis |
US10040011B2 (en) | 2012-03-15 | 2018-08-07 | Flodesign Sonics, Inc. | Acoustophoretic multi-component separation technology platform |
US9688958B2 (en) | 2012-03-15 | 2017-06-27 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
US9745548B2 (en) | 2012-03-15 | 2017-08-29 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9567559B2 (en) | 2012-03-15 | 2017-02-14 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US9340435B2 (en) | 2012-03-15 | 2016-05-17 | Flodesign Sonics, Inc. | Separation of multi-component fluid through ultrasonic acoustophoresis |
US9738866B2 (en) | 2012-03-15 | 2017-08-22 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9783775B2 (en) | 2012-03-15 | 2017-10-10 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US10953436B2 (en) | 2012-03-15 | 2021-03-23 | Flodesign Sonics, Inc. | Acoustophoretic device with piezoelectric transducer array |
US9822333B2 (en) | 2012-03-15 | 2017-11-21 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US20170191022A1 (en) | 2012-03-15 | 2017-07-06 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US9416344B2 (en) | 2012-03-15 | 2016-08-16 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US9458450B2 (en) | 2012-03-15 | 2016-10-04 | Flodesign Sonics, Inc. | Acoustophoretic separation technology using multi-dimensional standing waves |
KR20140139548A (en) | 2012-03-15 | 2014-12-05 | 프로디자인 소닉스, 인크. | Acoustophoretic multi-component separation technology platform |
US9422328B2 (en) | 2012-03-15 | 2016-08-23 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
US9796956B2 (en) | 2013-11-06 | 2017-10-24 | Flodesign Sonics, Inc. | Multi-stage acoustophoresis device |
US9272234B2 (en) | 2012-03-15 | 2016-03-01 | Flodesign Sonics, Inc. | Separation of multi-component fluid through ultrasonic acoustophoresis |
US9752113B2 (en) | 2012-03-15 | 2017-09-05 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9752114B2 (en) | 2012-03-15 | 2017-09-05 | Flodesign Sonics, Inc | Bioreactor using acoustic standing waves |
US9623348B2 (en) | 2012-03-15 | 2017-04-18 | Flodesign Sonics, Inc. | Reflector for an acoustophoretic device |
WO2013148376A1 (en) | 2012-03-26 | 2013-10-03 | Duke University | Acoustically responsive particles |
PT106237B (en) | 2012-03-30 | 2015-03-19 | Hovione Farmaci Ncia S A | PRODUCTION OF SUBSTANCIALLY MONO-BUILT PARTICLES USING GRINDING AND MEMBRANE SEPARATION |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
EP2833923A4 (en) | 2012-04-02 | 2016-02-24 | Moderna Therapeutics Inc | Modified polynucleotides for the production of proteins |
US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
US11324873B2 (en) | 2012-04-20 | 2022-05-10 | Flodesign Sonics, Inc. | Acoustic blood separation processes and devices |
RU2618890C2 (en) | 2012-04-20 | 2017-05-11 | Флоудизайн Соникс Инк. | Acoustophoretic separation of lipid particles from erythrocytes |
EP2838635A2 (en) | 2012-04-20 | 2015-02-25 | Flodesign Sonics Inc. | Acoustophoretic enhanced system for use in tanks |
US9357293B2 (en) | 2012-05-16 | 2016-05-31 | Siemens Aktiengesellschaft | Methods and systems for Doppler recognition aided method (DREAM) for source localization and separation |
US9517474B2 (en) | 2012-05-18 | 2016-12-13 | University Of Georgia Research Foundation, Inc. | Devices and methods for separating particles |
CN104718284A (en) | 2012-05-25 | 2015-06-17 | 塞勒克提斯公司 | Methods for engineering allogeneic and immunosuppressive resistant T cell for immunotherapy |
EP2861918B1 (en) | 2012-06-14 | 2019-11-06 | Yan Beliavsky | Method and device for transfer of energy |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9689802B2 (en) | 2012-06-29 | 2017-06-27 | Southwest Research Institute | Systems, methods and apparatus for analysis of multiphase fluid mixture in pipelines |
US9657290B2 (en) | 2012-07-03 | 2017-05-23 | The Board Of Trustees Of The Leland Stanford Junior University | Scalable bio-element analysis |
US8709250B2 (en) | 2012-07-12 | 2014-04-29 | Heliae Development, Llc | Tubular electro-acoustic aggregation device |
CA2879365A1 (en) | 2012-07-16 | 2014-01-23 | Flodesign Sonics, Inc. | Improved separation of multi-component fluid through ultrasonic acoustophoresis |
ES2757623T3 (en) | 2012-07-25 | 2020-04-29 | Broad Inst Inc | Inducible DNA binding proteins and genomic disruption tools and applications thereof |
JP6025982B2 (en) | 2012-08-01 | 2016-11-16 | ザ・ペン・ステート・リサーチ・ファンデーション | Efficient separation and manipulation of particles and cells |
WO2014029505A1 (en) | 2012-08-22 | 2014-02-27 | Eth Zurich | Acoustophoretic contactless transport and handling of matter in air |
AU2013309488A1 (en) | 2012-08-29 | 2015-03-05 | Nature Technology Corporation | DNA plasmids with improved expression |
EP2890720B1 (en) | 2012-08-30 | 2019-07-17 | The General Hospital Corporation | Compositions and methods for treating cancer |
WO2014046605A1 (en) | 2012-09-21 | 2014-03-27 | Acousort Ab | A method for separating cells-bead complexes |
KR102132990B1 (en) | 2012-10-02 | 2020-07-14 | 프로디자인 소닉스, 인크. | Acoustophoretic separation technology using multi-dimensional standing waves |
DK2906684T3 (en) | 2012-10-10 | 2020-09-28 | Sangamo Therapeutics Inc | T-CELL MODIFIING COMPOUNDS AND USES THEREOF |
US9480991B2 (en) | 2012-10-12 | 2016-11-01 | Elwha Llc | Radiofrequency particle separator |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
CN104736718A (en) | 2012-10-26 | 2015-06-24 | 贝克顿·迪金森公司 | Devices and methods for manipulating components in a fluid sample |
DE102012022146A1 (en) | 2012-11-12 | 2014-05-15 | Physik Instrumente (Pi) Gmbh & Co. Kg | Ultrasonic actuator for a linear ultrasonic motor and linear ultrasonic motor with an ultrasonic actuator |
US9080167B2 (en) | 2012-11-16 | 2015-07-14 | Covaris, Inc. | System and method for processing paraffin embedded samples |
US8900532B2 (en) | 2012-11-16 | 2014-12-02 | The Charles Stark Draper Laboratory, Inc. | Apparatus and method for separating plasma from blood and delayed wetting |
US9938390B2 (en) | 2012-11-26 | 2018-04-10 | Eth Zurich | Method for the preparation of macroporous particles and macroporous microclusters |
LT2922554T (en) | 2012-11-26 | 2022-06-27 | Modernatx, Inc. | Terminally modified rna |
BR112015013784A2 (en) | 2012-12-12 | 2017-07-11 | Massachusetts Inst Technology | application, manipulation and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US9504780B2 (en) | 2013-01-30 | 2016-11-29 | The Charles Stark Draper Laboratory, Inc. | Extracorporeal clearance of organophosphates from blood on an acoustic separation device |
WO2014124306A1 (en) | 2013-02-07 | 2014-08-14 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
WO2014138715A1 (en) * | 2013-03-08 | 2014-09-12 | Duke University | Devices, systems, and methods for acoustically -enhanced magnetophoresis |
US9388363B2 (en) | 2013-03-15 | 2016-07-12 | Megasonic Sweeping, Incorporated | Ultrasonic and megasonic method for extracting palm oil |
WO2014153470A2 (en) | 2013-03-21 | 2014-09-25 | Sangamo Biosciences, Inc. | Targeted disruption of t cell receptor genes using engineered zinc finger protein nucleases |
CA2906231C (en) | 2013-03-28 | 2024-05-14 | Marketa RICICOVA | Microfluidic devices and methods for use thereof in multicellular assays of secretion |
WO2014163558A1 (en) | 2013-04-01 | 2014-10-09 | Moreinx Ab | Nanoparticles, composed of sterol and saponin from quillaja saponaria molina process for preparation and use thereof as carrier for amphipatic of hydrphobic molecules in fields of medicine including cancer treatment and food related compounds |
CN105339064B (en) | 2013-04-25 | 2017-06-16 | 弗洛设计声能学公司 | Excipient is from the removal in drug sample |
TWI631132B (en) | 2013-05-06 | 2018-08-01 | 賽諾菲公司 | Continuous multistep process for purifying antibodies |
AU2014262843B2 (en) | 2013-05-06 | 2017-06-22 | Scholar Rock, Inc. | Compositions and methods for growth factor modulation |
WO2014186469A2 (en) | 2013-05-14 | 2014-11-20 | Board Of Regents, The University Of Texas System | Human application of engineered chimeric antigen receptor (car) t-cells |
CN116083487A (en) | 2013-05-15 | 2023-05-09 | 桑格摩生物治疗股份有限公司 | Methods and compositions for treating genetic conditions |
KR101442486B1 (en) | 2013-06-07 | 2014-09-24 | 아이에스테크놀로지 주식회사 | Apparatus and method for separating impurities from fluid using ultrasound |
US9725690B2 (en) | 2013-06-24 | 2017-08-08 | Flodesign Sonics, Inc. | Fluid dynamic sonic separator |
US10214718B2 (en) | 2013-07-01 | 2019-02-26 | University Of Massachusetts | Distributed perfusion bioreactor system for continuous culture of biological cells |
WO2015006730A1 (en) | 2013-07-12 | 2015-01-15 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
WO2015031619A1 (en) | 2013-08-28 | 2015-03-05 | Sangamo Biosciences, Inc. | Compositions for linking dna-binding domains and cleavage domains |
US9745569B2 (en) | 2013-09-13 | 2017-08-29 | Flodesign Sonics, Inc. | System for generating high concentration factors for low cell density suspensions |
EP3043826A4 (en) | 2013-09-13 | 2017-05-24 | Moderna Therapeutics, Inc. | Polynucleotide compositions containing amino acids |
JP6292808B2 (en) | 2013-09-13 | 2018-03-14 | デクセリアルズ株式会社 | Adhesive and light emitting device |
EP3065795A1 (en) | 2013-11-05 | 2016-09-14 | Flodesign Sonics Inc. | Acoustophoresis device with modular components |
JP2016536021A (en) | 2013-11-07 | 2016-11-24 | エディタス・メディシン,インコーポレイテッド | CRISPR-related methods and compositions with governing gRNA |
MX2016006134A (en) | 2013-11-12 | 2017-01-20 | Univ Brussel Vrije | Rna transcription vector and uses thereof. |
FR3012972A1 (en) | 2013-11-14 | 2015-05-15 | Biomerieux Sa | NOVEL FILTER MEDIA FOR OBTAINING PLASMA, APPARATUS AND FILTRATION METHOD THEREOF |
JP6702866B2 (en) | 2013-11-18 | 2020-06-03 | ルビウス セラピューティクス, インコーポレイテッド | Synthetic membrane-receiver complex |
US20170173128A1 (en) | 2013-12-06 | 2017-06-22 | Moderna TX, Inc. | Targeted adaptive vaccines |
AU2014361834B2 (en) | 2013-12-12 | 2020-10-22 | Massachusetts Institute Of Technology | CRISPR-Cas systems and methods for altering expression of gene products, structural information and inducible modular Cas enzymes |
GB201322103D0 (en) | 2013-12-13 | 2014-01-29 | The Technology Partnership Plc | Fluid pump |
EP3808410A1 (en) | 2013-12-20 | 2021-04-21 | Cellectis | Method of engineering multi-input signal sensitive t cell for immunotherapy |
US20170002060A1 (en) | 2014-01-08 | 2017-01-05 | Moderna Therapeutics, Inc. | Polynucleotides for the in vivo production of antibodies |
US20160332159A1 (en) | 2014-01-15 | 2016-11-17 | Eth Zurich | Acoustophoretic droplet handling in bulk acoustic wave devices |
US9878536B2 (en) | 2014-01-24 | 2018-01-30 | President And Fellows Of Harvard College | Acoustophoretic printing apparatus and method |
JP6665102B2 (en) | 2014-02-21 | 2020-03-13 | セレクティスCellectis | Methods for inhibiting regulatory T cells in situ |
WO2015138489A1 (en) | 2014-03-10 | 2015-09-17 | Flodesign Sonics, Inc. | Disposable bioreactor with acoustophoresis device |
ES2978312T3 (en) | 2014-03-11 | 2024-09-10 | Cellectis | Method for generating compatible T lymphocytes for allogeneic transplantation |
US8820538B1 (en) | 2014-03-17 | 2014-09-02 | Namocell LLC | Method and apparatus for particle sorting |
ES2740903T3 (en) | 2014-03-19 | 2020-02-07 | Cellectis | CD123 specific chimeric antigenic receptors for cancer immunotherapy |
WO2015143335A1 (en) | 2014-03-20 | 2015-09-24 | The University Of North Carolina At Chapel Hill | Methods and compositions for chimeric coronavirus spike proteins |
CA2943622A1 (en) | 2014-03-25 | 2015-10-01 | Editas Medicine Inc. | Crispr/cas-related methods and compositions for treating hiv infection and aids |
AU2015235932B2 (en) | 2014-03-28 | 2021-08-05 | The Regents Of The University Of California | Efficient delivery of large cargos into cells on a porous substrate |
US9982265B2 (en) | 2014-03-28 | 2018-05-29 | Board Of Regents, The University Of Texas System | Inhibition of Bruton's tyrosine kinase (Btk) in the lung to treat severe lung inflammation and lung injury |
JP6735233B2 (en) | 2014-04-01 | 2020-08-05 | ルビウス セラピューティクス, インコーポレイテッド | Immunoregulatory methods and compositions |
EP4123024A1 (en) | 2014-04-01 | 2023-01-25 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus type 1 (hsv-1) |
CN106795221B (en) | 2014-04-03 | 2022-06-07 | 塞勒克提斯公司 | CD 33-specific chimeric antigen receptor for cancer immunotherapy |
DE102014206823A1 (en) | 2014-04-09 | 2015-10-15 | Siemens Aktiengesellschaft | Device for separating an emulsion and / or a suspension |
JP2017513472A (en) | 2014-04-11 | 2017-06-01 | セレクティスCellectis | Method for generating immune cells resistant to arginine and / or tryptophan depleted microenvironment |
WO2015158671A1 (en) | 2014-04-14 | 2015-10-22 | Cellectis | Bcma (cd269) specific chimeric antigen receptors for cancer immunotherapy |
EP3134437A1 (en) | 2014-04-23 | 2017-03-01 | Board of Regents, The University of Texas System | Chimeric antigen receptors (car) for use in therapy and methods for making the same |
SG10201912038TA (en) | 2014-04-23 | 2020-02-27 | Modernatx Inc | Nucleic acid vaccines |
CA2947967A1 (en) | 2014-05-06 | 2015-11-12 | Scholar Rock, Inc. | Compositions and methods for growth factor modulation |
KR102450509B1 (en) | 2014-05-08 | 2022-10-04 | 프로디자인 소닉스, 인크. | Acoustophoretic device with piezoelectric transducer array |
AU2015259877B2 (en) | 2014-05-15 | 2021-02-25 | National University Of Singapore | Modified natural killer cells and uses thereof |
GB201410262D0 (en) | 2014-06-10 | 2014-07-23 | Cambridge Entpr Ltd | Novel method |
US9827511B2 (en) | 2014-07-02 | 2017-11-28 | Flodesign Sonics, Inc. | Acoustophoretic device with uniform fluid flow |
US9744483B2 (en) | 2014-07-02 | 2017-08-29 | Flodesign Sonics, Inc. | Large scale acoustic separation device |
US9605266B2 (en) | 2014-07-16 | 2017-03-28 | City Of Hope | Cell-specific internalizing RNA aptamers against human CCR5 and uses therefore |
US9908288B2 (en) | 2014-07-29 | 2018-03-06 | The Boeing Company | Free-form spatial 3-D printing using part levitation |
US9616090B2 (en) | 2014-07-30 | 2017-04-11 | Sangamo Biosciences, Inc. | Gene correction of SCID-related genes in hematopoietic stem and progenitor cells |
WO2016022851A1 (en) | 2014-08-06 | 2016-02-11 | Children's Medical Center Corporation | Modified integrin polypeptides, modified integrin polypeptide dimers, and uses thereof |
WO2016025518A1 (en) | 2014-08-11 | 2016-02-18 | Carnegie Mellon University | Separation of low-abundance cells from fluid using surface acoustic waves |
DK3180426T3 (en) | 2014-08-17 | 2020-03-30 | Broad Inst Inc | RETURNING BY USING CAS9 NICKASES |
US20160060615A1 (en) | 2014-09-03 | 2016-03-03 | Thomas Walther | Device for the identification, separation and / or cell type-specific manipulation of at least one cell of a cellular system |
WO2016049258A2 (en) | 2014-09-25 | 2016-03-31 | The Broad Institute Inc. | Functional screening with optimized functional crispr-cas systems |
WO2016054192A1 (en) | 2014-09-30 | 2016-04-07 | Flodesign Sonics, Inc. | Acoustophoretic clarification of particle-laden non-flowing fluids |
EP3207130B1 (en) | 2014-10-14 | 2019-08-07 | Halozyme, Inc. | Compositions of adenosine deaminase-2 (ada2), variants thereof and methods of using same |
JP6757723B2 (en) | 2014-11-03 | 2020-09-23 | ザ ジェネラル ホスピタル コーポレイション | Particle enrichment in microfluidic equipment |
US9879087B2 (en) | 2014-11-12 | 2018-01-30 | Siamab Therapeutics, Inc. | Glycan-interacting compounds and methods of use |
US20160153249A1 (en) | 2014-12-02 | 2016-06-02 | Chevron U.S.A. Inc. | Systems and Methods for Reducing Pipeline Erosion Using Acoustic Radiation |
US10098993B2 (en) | 2014-12-10 | 2018-10-16 | Medtronic, Inc. | Sensing and storage system for fluid balance |
CN116059378A (en) | 2014-12-10 | 2023-05-05 | 明尼苏达大学董事会 | Genetically modified cells, tissues and organs for the treatment of diseases |
GB201501017D0 (en) | 2014-12-23 | 2015-03-04 | Immatics Biotechnologies Gmbh | Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (HCC) and other cancers |
CA2972848C (en) | 2015-01-12 | 2023-02-07 | Instrumentation Laboratory Company | Spatial separation of particles in a particle containing solution for biomedical sensing and detection |
JP6901404B2 (en) | 2015-01-21 | 2021-07-14 | ユタ バレー ユニバーシティ | Systems and methods for harmonic modulation of standing wave fields for spatial convergence, manipulation, and patterning |
MX2017009181A (en) | 2015-01-26 | 2017-11-22 | Cellectis | ANTI-CLL1 SPECIFIC SINGLE-CHAIN CHIMERIC ANTIGEN RECEPTORS (scCARS) FOR CANCER IMMUNOTHERAPY. |
DE102015101542A1 (en) | 2015-02-03 | 2016-08-18 | ACO Severin Ahlmann GmbH & Co Kommanditgesellschaft | Method and device for the separation of substances |
KR20170117166A (en) | 2015-02-13 | 2017-10-20 | 사노피 | Stable Liquid Formulation for Monoclonal Antibodies |
US20160237110A1 (en) | 2015-02-16 | 2016-08-18 | Flodesign Sonics, Inc. | Acoustic microreactor and methods of use thereof |
US10568970B2 (en) | 2015-02-20 | 2020-02-25 | Trustees Of Boston University | Theranostic compositions and uses thereof |
NL2014433B1 (en) | 2015-03-10 | 2016-10-13 | Exsilent Res Bv | Personal hearing device, in particular a hearing aid. |
CA2977818A1 (en) | 2015-03-11 | 2016-09-15 | Board Of Regents, The University Of Texas System | Transposase polypeptides and uses thereof |
CN107635634A (en) | 2015-03-24 | 2018-01-26 | 弗洛设计声能学公司 | Method and apparatus for carrying out particle aggregation using sound standing wave |
US10106770B2 (en) | 2015-03-24 | 2018-10-23 | Flodesign Sonics, Inc. | Methods and apparatus for particle aggregation using acoustic standing waves |
CN104722106B (en) | 2015-03-25 | 2016-04-06 | 陕西师范大学 | A kind of ultrasonic separation means of fine particle |
US10444138B2 (en) | 2015-03-25 | 2019-10-15 | Bennubio, Inc. | Optical cell constructed by anodically bonding a thin metal layer between two optically clear glass windows |
EP3274454B1 (en) | 2015-03-25 | 2021-08-25 | Editas Medicine, Inc. | Crispr/cas-related methods, compositions and components |
US20160281111A1 (en) | 2015-03-26 | 2016-09-29 | Editas Medicine, Inc. | Crispr/cas-mediated gene conversion |
US20180071981A1 (en) | 2015-03-31 | 2018-03-15 | The Regents Of The University Of California | System and method for tunable patterning and assembly of particles via acoustophoresis |
US10737012B2 (en) | 2015-03-31 | 2020-08-11 | Biomet Biologics, Inc. | Cell washing using acoustic waves |
US10794865B2 (en) | 2015-04-01 | 2020-10-06 | Triad National Security, Llc | Ultrasonic in-situ water-cut measurement using ultrasonic oil-water separation for affecting sound speed calibration |
US20180095067A1 (en) | 2015-04-03 | 2018-04-05 | Abbott Laboratories | Devices and methods for sample analysis |
US20180066223A1 (en) | 2015-04-17 | 2018-03-08 | Xcell Biosciences, Inc. | Cancer cell enrichment system |
WO2016168687A1 (en) | 2015-04-17 | 2016-10-20 | Xcell Biosciences, Inc. | Cancer cell enrichment system |
US9947431B2 (en) | 2015-04-21 | 2018-04-17 | The Florida International University Board Of Trustees | Anisotropic films templated using ultrasonic focusing |
WO2016172726A1 (en) | 2015-04-24 | 2016-10-27 | The Regents Of The University Of California | Modulators of ror1-ror2 binding |
CA2984492A1 (en) | 2015-04-29 | 2016-11-03 | Flodesign Sonics, Inc. | Acoustophoretic device for angled wave particle deflection |
CN107810413B (en) | 2015-04-30 | 2021-03-12 | 欧洲分子生物学实验室 | Microfluidic droplet detection and sorting |
WO2016176611A2 (en) | 2015-04-30 | 2016-11-03 | Wilsa Holding, Llc | Method and apparatus for conditioning fluids |
CA2985029A1 (en) | 2015-05-04 | 2016-11-10 | Vcn Biosciences Sl | Oncolytic adenoviruses with mutations in immunodominant adenovirus epitopes and their use in cancer treatment |
US20160325206A1 (en) | 2015-05-06 | 2016-11-10 | Flodesign Sonics, Inc. | Acoustic pre-conditioner |
WO2016177832A1 (en) | 2015-05-07 | 2016-11-10 | Aenitis Technologies | Closed disposable multiple sterile blood bag system for fractionating blood with the corresponding method |
EP3015542A1 (en) | 2015-05-07 | 2016-05-04 | Bayer Technology Services GmbH | Modular system and method for continuous, germ reduced production and/or processing of a product |
EP3291842A4 (en) | 2015-05-07 | 2019-01-23 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Variant survivin vaccine for treatment of cancer |
CA2985615A1 (en) | 2015-05-11 | 2016-11-17 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating hiv infection and aids |
US11390884B2 (en) | 2015-05-11 | 2022-07-19 | Editas Medicine, Inc. | Optimized CRISPR/cas9 systems and methods for gene editing in stem cells |
WO2016180918A1 (en) | 2015-05-12 | 2016-11-17 | Platod | Combination of pharmacological and microfluidic features for improved platelets production |
US20180119174A1 (en) | 2015-05-13 | 2018-05-03 | Seattle Children's Hospita (dba Seattle Children's Research Institute | Enhancing endonuclease based gene editing in primary cells |
EP3037513A1 (en) | 2015-05-13 | 2016-06-29 | Bayer Technology Services GmbH | Method for the continuous elution of a product from chromatography columns |
EP3294764B1 (en) | 2015-05-15 | 2020-12-30 | City of Hope | Chimeric antigen receptor compositions |
CN104892672B (en) | 2015-05-15 | 2018-09-21 | 浙江九洲药业股份有限公司 | Chiral spiro phosphine-nitrogen-sulphur tridentate ligand and its preparation method and application |
US10752670B2 (en) | 2015-05-20 | 2020-08-25 | Cellectis | Anti-GD3 specific chimeric antigen receptors for cancer immunotherapy |
US9686096B2 (en) | 2015-05-20 | 2017-06-20 | Flodesign Sonics, Inc. | Acoustic manipulation of particles in standing wave fields |
US9550134B2 (en) | 2015-05-20 | 2017-01-24 | Flodesign Sonics, Inc. | Acoustic manipulation of particles in standing wave fields |
CA2983184A1 (en) | 2015-05-27 | 2016-12-01 | Commonwealth Scientific And Industrial Research Organisation | Separation of metal-organic frameworks |
MY192309A (en) | 2015-05-27 | 2022-08-17 | Commw Scient Ind Res Org | Production of metal-organic frameworks |
CN107922919A (en) | 2015-05-29 | 2018-04-17 | 勃林格殷格翰国际公司 | The perfusion of cell control in continuous culture |
WO2016194114A1 (en) | 2015-06-01 | 2016-12-08 | 株式会社島津製作所 | Method for quantifying monoclonal antibody |
WO2016201385A2 (en) | 2015-06-11 | 2016-12-15 | Flodesign Sonics, Inc. | Acoustic methods for separation cells and pathogens |
US9663756B1 (en) | 2016-02-25 | 2017-05-30 | Flodesign Sonics, Inc. | Acoustic separation of cellular supporting materials from cultured cells |
EP3310848A1 (en) | 2015-06-22 | 2018-04-25 | Proxonix AS | Method for making a body with arranged particles using acoustic waves |
US9368110B1 (en) | 2015-07-07 | 2016-06-14 | Mitsubishi Electric Research Laboratories, Inc. | Method for distinguishing components of an acoustic signal |
CA2995043C (en) | 2015-07-09 | 2023-11-21 | Bart Lipkens | Non-planar and non-symmetrical piezoelectric crystals and reflectors |
WO2017011519A1 (en) | 2015-07-13 | 2017-01-19 | Sangamo Biosciences, Inc. | Delivery methods and compositions for nuclease-mediated genome engineering |
CA3005845A1 (en) * | 2015-07-28 | 2017-02-02 | Flodesign Sonics, Inc. | Acoustic affinity separation |
US20170119820A1 (en) | 2015-07-31 | 2017-05-04 | Regents Of The University Of Minnesota | Modified cells and methods of therapy |
CN105087788B (en) | 2015-08-03 | 2018-11-23 | 上海白泽医疗器械有限公司 | It is a kind of sort people's cell immunomagnetic beads, its preparation and cutting method |
CN105384825B (en) | 2015-08-11 | 2018-06-01 | 南京传奇生物科技有限公司 | A kind of bispecific chimeric antigen receptor and its application based on single domain antibody |
EP3341413A4 (en) | 2015-08-24 | 2019-07-17 | Trustees of Boston University | ANTI-DEspR MONOCLONAL ANTIBODY TARGETED THERAPY AND IMAGING FOR CANCER AND STROKE |
JP6458682B2 (en) | 2015-08-24 | 2019-01-30 | 富士通株式会社 | Arithmetic processing device and control method of arithmetic processing device |
WO2017040670A1 (en) | 2015-09-01 | 2017-03-09 | Ifm Therapeutics, Inc | Immune cells having increased immunity or resistance to an immunosuppressive cytokine and use of the same |
WO2017041102A1 (en) | 2015-09-04 | 2017-03-09 | Flodesign Sonics, Inc. | Acoustic blood separation processes and devices |
US10155222B2 (en) | 2015-09-17 | 2018-12-18 | Carnegie Mellon University | Device for the separation of particles using a bulk acoustic wave field |
USD787630S1 (en) | 2015-10-06 | 2017-05-23 | Flodesign Sonics, Inc. | U-turn acoustic separation device |
US10829787B2 (en) | 2015-10-14 | 2020-11-10 | Life Technologies Corporation | Ribonucleoprotein transfection agents |
CN108779163A (en) | 2015-12-14 | 2018-11-09 | 贝里坤制药股份有限公司 | The double control for activating or eliminating for therapeutic cells |
US11053788B2 (en) | 2015-12-16 | 2021-07-06 | Saudi Arabian Oil Company | Acoustic downhole oil-water separation |
US10648460B2 (en) | 2015-12-16 | 2020-05-12 | The University Of Hong Kong | Nanomotor propulsion |
CA3008382A1 (en) | 2015-12-18 | 2017-06-22 | Sangamo Therapeutics, Inc. | Targeted disruption of the mhc cell receptor |
US10648900B2 (en) | 2015-12-23 | 2020-05-12 | Becton, Dickinson And Company | Multi-color flow cytometric analysis of samples with low cell numbers |
KR102529012B1 (en) | 2016-04-22 | 2023-05-09 | 크라제 메디컬 씨오 리미티드 | Compositions and methods of cellular immunotherapy |
CN114891635A (en) | 2016-05-03 | 2022-08-12 | 弗洛设计声能学公司 | Therapeutic cell washing, concentration and separation using acoustophoresis |
MY201498A (en) | 2016-05-18 | 2024-02-27 | Modernatx Inc | Polynucleotides encoding citrin for the treatment of citrullinemia type 2 |
KR20190017985A (en) | 2016-06-14 | 2019-02-20 | 리전츠 오브 더 유니버스티 오브 미네소타 | Genetically modified cells, tissues, and organs for treating diseases |
EP3257600A1 (en) | 2016-06-15 | 2017-12-20 | Maquinaria GEKA, S.A. | Notching tool, use and method |
US10800899B2 (en) | 2016-06-22 | 2020-10-13 | Yunuen Montelongo | Reversible optical assembly of composites |
US20190225694A1 (en) | 2016-06-28 | 2019-07-25 | Zaklady Farmaceutyczne Polpharma Sa | Recombinant production of monoclonal antibodies |
US20180015128A1 (en) | 2016-06-29 | 2018-01-18 | Applied Biologics, Llc | Amniotic Fluid-Derived Preparation with a Standardized Biologic Activity |
US20180000870A1 (en) | 2016-06-29 | 2018-01-04 | Applied Biologics, Llc | Methods of forming amniotic fluid-derived preparations |
WO2018005873A1 (en) | 2016-06-29 | 2018-01-04 | The Broad Institute Inc. | Crispr-cas systems having destabilization domain |
KR102496333B1 (en) | 2016-06-30 | 2023-02-07 | 삼성전자주식회사 | Dish washer and method for controlling the same |
WO2018009894A1 (en) | 2016-07-07 | 2018-01-11 | Iovance Biotherapeutics, Inc. | Programmed death 1 ligand 1 (pd-l1) binding proteins and methods of use thereof |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
EP3485032B1 (en) | 2016-07-12 | 2021-02-17 | Life Technologies Corporation | Compositions and methods for detecting nucleic acid regions |
AU2017295720B2 (en) | 2016-07-13 | 2021-07-22 | Vertex Pharmaceuticals Incorporated | Methods, compositions and kits for increasing genome editing efficiency |
SG11201811783YA (en) | 2016-07-14 | 2019-01-30 | Puridify Ltd | Functionalised chromatography medium comprising polymer nanofibres and process of preparation thereof |
WO2018014174A1 (en) | 2016-07-19 | 2018-01-25 | General Electric Company | Ultrasonic separation of a production stream |
JP2019521715A (en) | 2016-07-21 | 2019-08-08 | セリアドCelyad | Method and apparatus for automatically and independently batch processing cells in parallel |
EP3487994A4 (en) | 2016-07-25 | 2020-01-29 | Bluebird Bio, Inc. | Bcl11a homing endonuclease variants, compositions, and methods of use |
US20210128611A1 (en) | 2016-07-25 | 2021-05-06 | Cellular Approaches, Inc. | Autologous and allogenic macrophages and monocytes for use in therapeutic methods |
WO2018021920A1 (en) | 2016-07-27 | 2018-02-01 | The University Of Canterbury | Maskless speech airflow measurement system |
CN109890619B (en) | 2016-07-27 | 2021-01-26 | 哈佛学院院长及董事 | Apparatus and method for acoustophoretic printing |
EP3490562A4 (en) | 2016-07-27 | 2020-04-22 | The Board of Trustees of the Leland Stanford Junior University | Immolative cell-penetrating complexes for nucleic acid delivery |
CA3027691C (en) | 2016-07-28 | 2024-06-18 | The Charles Stark Draper Laboratory, Inc. | Acoustic separation for bioprocessing |
EP3490574B8 (en) | 2016-07-29 | 2024-07-10 | Ohio State Innovation Foundation | Expression of pten-long with oncolytic viruses |
WO2018026644A1 (en) | 2016-08-01 | 2018-02-08 | Academia Sinica | Internally fixed lipid vesicle |
CN109562380B (en) | 2016-08-02 | 2022-04-05 | Imec 非营利协会 | Method and device for collecting objects in a flow |
EP3494226B1 (en) | 2016-08-03 | 2021-09-22 | Lonza Walkersville, Inc. | Method of detecting an endotoxin using limulus amebocyte lysate substantially free of coagulogen |
US10160061B2 (en) | 2016-08-15 | 2018-12-25 | The Aerospace Corporation | Systems and methods for modifying acoustic waves based on selective heating |
KR102369014B1 (en) | 2016-08-16 | 2022-03-02 | 리제너론 파아마슈티컬스, 인크. | Methods for quantifying individual antibodies from mixtures |
US20190309274A1 (en) | 2016-08-16 | 2019-10-10 | Bluebird Bio, Inc. | Il-10 receptor alpha homing endonuclease variants, compositions, and methods of use |
WO2018034655A1 (en) | 2016-08-16 | 2018-02-22 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US20190169597A1 (en) | 2016-08-19 | 2019-06-06 | Bluebird Bio, Inc. | Genome editing enhancers |
WO2018034343A1 (en) | 2016-08-19 | 2018-02-22 | 国立大学法人香川大学 | Optical characteristic measurement device and optical characteristic measurement method |
WO2018039119A1 (en) | 2016-08-22 | 2018-03-01 | Codiak Biosciences, Inc. | Methods of suppressing delivery of exosomes to liver and spleen |
CN109863238A (en) | 2016-08-23 | 2019-06-07 | 弗洛设计声能学公司 | Acoustics bioreactor process |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10736649B2 (en) | 2016-08-25 | 2020-08-11 | Ethicon Llc | Electrical and thermal connections for ultrasonic transducer |
US11801374B2 (en) | 2016-09-02 | 2023-10-31 | The General Hospital Corporation | Methods and systems for non-contact construction of an internal structure |
WO2018049226A1 (en) | 2016-09-08 | 2018-03-15 | Bluebird Bio, Inc. | Pd-1 homing endonuclease variants, compositions, and methods of use |
WO2018050738A1 (en) | 2016-09-14 | 2018-03-22 | Université Catholique de Louvain | Modified vsv-g and vaccines thereof |
WO2018057825A1 (en) | 2016-09-23 | 2018-03-29 | The Curators Of The University Of Missouri | Antigen-specific immune modulation |
WO2018063291A1 (en) | 2016-09-30 | 2018-04-05 | Intel Corporation | Single-flipped resonator devices with 2deg bottom electrode |
AU2017347854B2 (en) | 2016-10-27 | 2022-12-08 | Intima Bioscience, Inc. | Viral methods of T cell therapy |
US9909313B1 (en) | 2017-01-19 | 2018-03-06 | Austin M. Grubbs | Composite materials, methods of making composite materials, and enclosures constructed from composite materials |
WO2018202691A1 (en) | 2017-05-02 | 2018-11-08 | Linnaeus University | Method for performing a bioleaching process of chalcopyrite |
US10304490B2 (en) | 2017-11-02 | 2019-05-28 | AcoustiX VR Inc. | Acoustic holographic recording and reproduction system using meta material layers |
-
2017
- 2017-10-19 US US15/788,784 patent/US11420136B2/en active Active
- 2017-10-19 JP JP2019543176A patent/JP2020513248A/en active Pending
- 2017-10-19 CA CA3041517A patent/CA3041517A1/en active Pending
- 2017-10-19 CN CN201780070614.9A patent/CN110494543A/en active Pending
- 2017-10-19 WO PCT/US2017/057485 patent/WO2018075830A1/en unknown
- 2017-10-19 EP EP17804325.3A patent/EP3529347A1/en not_active Withdrawn
- 2017-10-19 KR KR1020197014501A patent/KR20190127655A/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7081192B1 (en) * | 2000-08-08 | 2006-07-25 | Aviva Biosciences Corporation | Methods for manipulating moieties in microfluidic systems |
WO2013187382A1 (en) * | 2012-06-15 | 2013-12-19 | 株式会社日立ハイテクノロジーズ | Sample isolation particle, sample isolation device and sample isolation method |
WO2015102528A1 (en) * | 2013-12-30 | 2015-07-09 | Ge Healthcare Bio-Sciences Corp. | Apparatus for cell cultivation |
Non-Patent Citations (1)
Title |
---|
CYTOMETRY PART A (2014) VOL.85A, PP.933-941, JPN6021022032, ISSN: 0004963298 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022545485A (en) * | 2019-08-30 | 2022-10-27 | フロデザイン ソニックス, インク. | Selection of sonoaffinity cells for multiple target receptors |
Also Published As
Publication number | Publication date |
---|---|
CA3041517A1 (en) | 2018-04-26 |
CN110494543A (en) | 2019-11-22 |
KR20190127655A (en) | 2019-11-13 |
US20180104620A1 (en) | 2018-04-19 |
US11420136B2 (en) | 2022-08-23 |
WO2018075830A1 (en) | 2018-04-26 |
EP3529347A1 (en) | 2019-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gijs et al. | Microfluidic applications of magnetic particles for biological analysis and catalysis | |
US20160304829A1 (en) | Automated Superparamagnetic Particle Handling System | |
Wang et al. | Advances in epitope molecularly imprinted polymers for protein detection: a review | |
JP2020513248A (en) | Affinity cell extraction by sound | |
WO2016194114A1 (en) | Method for quantifying monoclonal antibody | |
EP2725359B1 (en) | Cell separation method using a release system for cell-antibody-substrate conjugates containing a polyethylene glycol spacer unit | |
CN104254780A (en) | Chromatographic isolation of cells and other complex biological materials | |
JP2020516603A5 (en) | ||
US11708572B2 (en) | Acoustic cell separation techniques and processes | |
Battle et al. | Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity μSPE device | |
Cetin et al. | A comparative study on EpCAM antibody immobilization on gold surfaces and microfluidic channels for the detection of circulating tumor cells | |
Malhotra et al. | Novel devices for isolation and detection of bacterial and mammalian extracellular vesicles | |
Cusano et al. | Integration of binding peptide selection and multifunctional particles as tool-box for capture of soluble proteins in serum | |
JP7130919B2 (en) | Biological material immobilization method | |
Diener et al. | Solid-state capture and real-time analysis of individual T cell activation via self-assembly of binding multimeric proteins on functionalized materials surfaces | |
JP2004150841A (en) | Biological material purifying method, kit for purifying biological material, and biological material analysis system | |
RU2684325C1 (en) | Method of producing conjugate based on magnetic metall-carbon nanoparticles suitable for diagnostic and analytical target using nmr-relaxometry as a detection method | |
JP6223347B2 (en) | Protein chromatography matrix with hydrophilic copolymer coating | |
CN115786349B (en) | Aptamer for traceless sorting of killer T lymphocytes in peripheral blood, complementary sequence and application of aptamer | |
CN110108531B (en) | Method for eliminating blood cell interference in medical detection | |
Javanmard et al. | Three stage sample preparation for purification of proteins from complex biological samples | |
TWI428597B (en) | Antigen-detection complex and antigen-detection kit | |
AU2022363505A1 (en) | Methods and systems for levitation‐based magnetic separation | |
ES2639941T3 (en) | White blood cell labeling with phosphorothioate oligonucleotides | |
AU2022364681A1 (en) | Methods and systems for cell separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191017 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210611 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210908 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20211109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211213 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20220222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20220222 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230113 |