JP2020508208A - Catalytic material for oxidation of hydrocarbons with titanium dioxide doped with antimony - Google Patents

Catalytic material for oxidation of hydrocarbons with titanium dioxide doped with antimony Download PDF

Info

Publication number
JP2020508208A
JP2020508208A JP2019543010A JP2019543010A JP2020508208A JP 2020508208 A JP2020508208 A JP 2020508208A JP 2019543010 A JP2019543010 A JP 2019543010A JP 2019543010 A JP2019543010 A JP 2019543010A JP 2020508208 A JP2020508208 A JP 2020508208A
Authority
JP
Japan
Prior art keywords
catalyst
tio
doped
hydrocarbons
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019543010A
Other languages
Japanese (ja)
Other versions
JP6860682B2 (en
Inventor
リヒター・オーリヴァー
メストル・ゲルハルト
ピッチ・ヴェルナー
フロム・ナディネ
ベックライン・ゼバスティアン
ヴィヒト・トーマス
Original Assignee
クラリアント・インターナシヨナル・リミテツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラリアント・インターナシヨナル・リミテツド filed Critical クラリアント・インターナシヨナル・リミテツド
Publication of JP2020508208A publication Critical patent/JP2020508208A/en
Application granted granted Critical
Publication of JP6860682B2 publication Critical patent/JP6860682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明は、VおよびSbでドープされたTiO材料を含む、気体状酸素を用いた炭化水素の酸化のための触媒材料、ならびにSbでドープされたTiO材料の、気体状酸素を用いた炭化水素の酸化のための触媒材料における担体材料としての使用に関する。さらに本発明は、酸化すべき炭化水素および酸素を本発明の触媒材料と接触させることを特徴とする、気体状の酸素を用いた炭化水素の酸化のための方法に関する。本発明はさらに、不活性担体を含む触媒成形体であって、当該担体上に本発明の触媒材料が施与されている触媒成形体、ならびに以下のステップを含む、本発明の触媒材料を製造する方法に関する:
a)TiOおよびSbの混合物を製造するステップ、
b)TiOおよびSbの混合物を焼成して、SbでドープされたTiO材料を得るステップ、および
c)SbでドープされたTiO2材料をV含有化合物で含浸するステップ。
The present invention uses a catalytic material for the oxidation of hydrocarbons with gaseous oxygen, including TiO 2 material doped with V and Sb, and gaseous oxygen, of a TiO 2 material doped with Sb. It relates to the use as a support material in catalytic materials for the oxidation of hydrocarbons. The invention furthermore relates to a process for the oxidation of hydrocarbons with gaseous oxygen, characterized in that the hydrocarbons to be oxidized and oxygen are brought into contact with the catalytic material according to the invention. The present invention further provides a catalyst molded body comprising an inert carrier, wherein the catalyst material of the present invention is provided on the carrier, and the catalyst material of the present invention comprising the following steps: On how to:
a) producing a mixture of TiO 2 and Sb 2 O 3 ;
b) firing a mixture of TiO 2 and Sb 2 O 3 to obtain a Sb-doped TiO 2 material, and c) impregnating the Sb-doped TiO 2 material with a V-containing compound.

Description

本発明は、気体の酸素を用いた炭化水素の酸化のための、Vと、SbドープされたTiO材料とを含む触媒材料に関する。前記触媒材料は、特に、オルト−キシレンおよび/またはナフタリンのフタル酸無水物への酸化のための触媒における使用に適している。 The present invention relates to a catalytic material for oxidation of hydrocarbons using gaseous oxygen, comprising V and an Sb-doped TiO 2 material. The catalyst material is particularly suitable for use in a catalyst for the oxidation of ortho-xylene and / or naphthalene to phthalic anhydride.

オルト−キシレンまたはナフタリンからのフタル酸無水物の工業的製造は、シェルアンドチューブ型反応器における選択的な気相酸化により行われ、ここでは4〜5個の異なる触媒層が反応器の軸方向に順に充填される。個々の触媒層は、通常触媒的に活性な材料で被覆された不活性な担体リングからなる触媒成形体でできた緩い堆積からなる。前記活性材料は、通常、V、Sb、アナターゼ変態のTiOおよびさらに別の助触媒の混合物からなる。そのような系は、例えばWO2006092304A1(特許文献1)、WO2008077791A1(特許文献2)、EP0985648A1(特許文献3)またはWO2011061132A1(特許文献4)に記載されている。 The industrial production of phthalic anhydride from ortho-xylene or naphthalene is carried out by selective gas-phase oxidation in a shell-and-tube reactor, in which four to five different catalyst layers are formed in the axial direction of the reactor. In order. The individual catalyst layers consist of a loose deposit made of a catalyst compact, usually consisting of an inert carrier ring coated with a catalytically active material. The active material usually consists of a mixture of V 2 O 5 , Sb 2 O 3 , anatase-modified TiO 2 and further cocatalysts. Such systems are described, for example, in WO2006092304A1 (Patent Document 1), WO2008077979A1 (Patent Document 2), EP0985648A1 (Patent Document 3) or WO2011061132A1 (Patent Document 4).

WO2006092304A1は、少なくとも1つのガス入口側に位置する第1触媒層、ガス出口側のより近くに位置する第2触媒層およびガス出口側のより一層近くにまたは当該出口側に位置する第3触媒層を含む触媒であって、前記触媒層が、好ましくは、それぞれTiOを含む活性材料を有する触媒の、オルト−キシレンおよび/またはナフタリンの気相酸化によるフタル酸無水物の製造のための使用であって、前記第1の触媒層の触媒活性が、前記第2の触媒層の触媒活性よりも高いことを特徴とする使用を記載している。前記第1の触媒層の活性は、当業者に公知の全ての手段により、それが後続の第2の触媒層の活性より高くなるように調節することができる。好ましい実施形態によると、第1の触媒層における高められた活性は、例えば、第1の触媒層における嵩密度を、例えば使用される不活性成形体の別の(リング)形状の使用により、高めることにより達成することができる。 WO2006093041A1 comprises at least one first catalyst layer located on the gas inlet side, a second catalyst layer located closer to the gas outlet side and a third catalyst layer located closer to or on the outlet side of the gas outlet Wherein the catalyst layer is preferably a catalyst having an active material comprising TiO 2 , respectively, for the production of phthalic anhydride by gas-phase oxidation of ortho-xylene and / or naphthalene. The use is described wherein the catalytic activity of the first catalyst layer is higher than the catalytic activity of the second catalyst layer. The activity of the first catalyst layer can be adjusted by all means known to those skilled in the art such that it is higher than the activity of the subsequent second catalyst layer. According to a preferred embodiment, the increased activity in the first catalyst layer is increased, for example, by increasing the bulk density in the first catalyst layer, for example by using another (ring) shape of the inert compact used. This can be achieved by:

WO2008077791A1は、芳香族炭化水素および分子状酸素を含む気体流を2つ以上の触媒層に流通させる、気相酸化のための方法を記載している。さらに、この公報は、前方層を使用する気相反応のための触媒系に関する。前方の不活性−および/または触媒−リングの直径と高さの積、または体積が、少なくとも1つの後続の触媒層よりも小さく、あるいは前方の不活性−および/または触媒−リングの体積あたりの表面積の割合が少なくとも1つの後続の触媒層よりも大きい。   WO2008077971A1 describes a method for gas-phase oxidation in which a gaseous stream containing aromatic hydrocarbons and molecular oxygen is passed through two or more catalyst layers. Furthermore, this publication relates to a catalyst system for a gas phase reaction using a front layer. The product or volume of the diameter and height of the front inert-and / or catalyst-ring is smaller than at least one subsequent catalyst layer, or the volume / volume of the front inert-and / or catalyst-ring The percentage of surface area is greater than at least one subsequent catalyst layer.

EP0985648A1は、分子状酸素含有ガスおよび置換基を有していてもよい炭化水素を含む気体状の混合物を触媒固定床を流通させる、炭化水素の気相酸化に関し、粗製材料の気体状の混合物を触媒固定床を流通させることによって実施され、触媒層の空洞部分が粗製材料の気体状混合物の流れに沿った流れ方向の1つ以上のステップで増加する、気相酸化のための方法を提供する。   EP 0 965 648 A1 relates to the gas-phase oxidation of hydrocarbons, in which a gaseous mixture containing a molecular oxygen-containing gas and a hydrocarbon optionally having substituents is passed through a fixed catalyst bed. Provided is a method for gas phase oxidation carried out by flowing through a fixed catalyst bed, wherein the cavity of the catalyst layer is increased in one or more steps in the direction of flow along the flow of the gaseous mixture of crude material. .

WO2011061132A1は、カルボン酸および/またはカルボン酸無水物の製造のための、反応管に重なり合って配置された複数の触媒層を有する触媒系であって、少なくとも1つの触媒層で、アンチモン酸バナジウムが活性材料中に導入されている触媒系に関する。さらに、当該発明は、少なくとも1種の炭化水素および分子状酸素を含む気体流に、複数の触媒層を流通させ、その際にホットスポットの最高温度が425℃未満である、気相酸化のための方法に関する。   WO2011061132A1 is a catalyst system for the production of carboxylic acids and / or carboxylic anhydrides, comprising a plurality of catalyst layers arranged one above the other in a reaction tube, wherein at least one of the catalyst layers has vanadium antimonate active. It relates to the catalyst system introduced into the material. Further, the present invention provides a method for gas-phase oxidation in which a plurality of catalyst layers are passed through a gas stream containing at least one kind of hydrocarbon and molecular oxygen, wherein a maximum temperature of a hot spot is less than 425 ° C. About the method.

活性材料はさらに、活性材料の不活性担体上への接着を可能にし、触媒成形体に機械的安定性を付与するバインダーを含む。そのようなバインダーは、例えばDE19824532A1(特許文献5)に記載されている。   The active material further comprises a binder that allows the active material to adhere to the inert support and imparts mechanical stability to the shaped catalyst body. Such binders are described, for example, in DE 198 24 532 A1.

DE19824532A1は、担体コアおよびその上にシェル状に塗布された触媒的に活性な金属酸化物からなり、50〜450℃の熱い担体材料上に、より高い温度で、活性酸化物を含む水性活性材料懸濁液をスプレー塗布することにより得られる、芳香族カルボン酸および/またはカルボン酸無水物の触媒的気相酸化のためのシェル触媒の製造方法であって、水性の活性材料懸濁液が、活性材料懸濁液の固体含有量を基準として1〜10重量%のバインダーを含み、当該バインダーは、A)エチレン性不飽和酸無水物またはエチレン性不飽和ジカルボン酸(そのカルボキシル基が無水物を形成することができる)の形態のモノマー(a)5〜100重量%、およびモノエチレン性不飽和モノマー(b)0〜95重量%を含む、ラジカル重合により得られる重合体(ただし、モノマー(a)および(b)が酸素含有基で官能化されていない最大6個の炭素原子を平均で有することを条件とする)およびB)少なくとも2個のOH基、最大で2個の窒素原子および最大で8個のC原子を有するアルカノールアミン(ここで、重量比A:Bが1:0.05〜1:1である)からなる、製造方法に関する。   DE 198 24 532 A1 consists of a catalytically active metal oxide coated in a carrier core and a shell on it, on a hot carrier material at 50 to 450 ° C., at a higher temperature, an aqueous active material comprising the active oxide. A process for the preparation of a shell catalyst for the catalytic gas-phase oxidation of aromatic carboxylic acids and / or carboxylic anhydrides, obtained by spraying the suspension, wherein the aqueous active material suspension is It comprises from 1 to 10% by weight, based on the solids content of the active material suspension, of a binder, wherein the binder comprises: A) an ethylenically unsaturated anhydride or an ethylenically unsaturated dicarboxylic acid whose carboxyl group has an anhydride. A radical monomer comprising from 5 to 100% by weight of a monomer (a) which can be formed) and from 0 to 95% by weight of a monoethylenically unsaturated monomer (b). (Provided that monomers (a) and (b) have on average at most 6 carbon atoms not functionalized with oxygen-containing groups) and B) at least 2 OH A alkanolamine having at most 2 nitrogen atoms and at most 8 C atoms, wherein the weight ratio A: B is from 1: 0.05 to 1: 1.

反応器に触媒層を供した後に、それぞれの層を形成する触媒活性体を活性化しなければならない。それは触媒成形体の熱処理であり、存在する有機バインダーが分解され、酸化物的なバナジウム含有活性材料が形成すると考えられる。触媒成形体の活性化は、いわゆる「始動(Anfahren)」により、in situで、すなわち、反応管中で行われる。ここで、空気および酸化すべき炭化水素の混合物(出発材料ガス)が燃焼され、最大温度の領域(「ホットスポット」)が第1の2つの触媒層に形成するが、温度は、反応器の軸方向にホットスポットの場所から反応器末端へ継続的に減少する。ホットスポットに続く触媒層の活性化を可能にするために、出発材料ガスの流速を一時的に高め、ホットスポットを(流れの向きに)後続の層に移動させることができる。しかしながらこの場合、比較的低いホットスポット温度だけが達成される点が不利であり、なぜならば出発材料ガスは部分的に前方の層中で反応するためである。この始動法によると、後続の触媒層は、場合によっては、不十分にin situで活性化されるだけであり、なぜならば触媒床において短時間のかつ比較的小さい温度上昇のみが生じるからである。しかしながら、後続の触媒層の不十分な活性化によって、望ましくない過小酸化生成物の割合が増加し、これは、例えばフタル酸無水物生成物の質に悪影響を及ぼす。   After providing the catalyst layers to the reactor, the catalytic activators that form each layer must be activated. It is a heat treatment of the shaped catalyst body, which is thought to decompose the organic binder present and form an oxide-like vanadium-containing active material. The activation of the shaped catalyst bodies takes place in situ, that is to say in the reaction tube, by the so-called “Anfahren”. Here, a mixture of air and the hydrocarbon to be oxidized (starting material gas) is burned, and a region of maximum temperature ("hot spot") forms in the first two catalyst layers, but the temperature rises in the reactor. It decreases continuously from the location of the hot spot to the end of the reactor in the axial direction. To enable activation of the catalyst layer following the hot spot, the flow rate of the starting material gas can be temporarily increased and the hot spot moved (in the direction of flow) to a subsequent layer. However, in this case it is disadvantageous that only a relatively low hot spot temperature is achieved, since the starting material gas partially reacts in the front layer. According to this start-up method, the subsequent catalyst layer is in some cases only poorly activated in situ, since only a short and relatively small temperature rise occurs in the catalyst bed. . However, the insufficient activation of the subsequent catalyst layer increases the proportion of undesirable underoxidation products, which adversely affects, for example, the quality of the phthalic anhydride product.

WO2006092304A1WO200609304A1 WO2008077791A1WO2008077971A1 EP0985648A1EP0985648A1 WO2011061132A1WO2011061132A1 DE19824532A1DE 198 24 532 A1

従って、本発明は、迅速に活性化され高い活性を有すると同時に高度に選択性である触媒を見出すという課題をベースとする。   The present invention is therefore based on the task of finding a catalyst which is rapidly activated and has a high activity while at the same time being highly selective.

この課題は、Vと、SbでドープしたTiO材料とを含む、気体酸素を用いて炭化水素を酸化するための触媒材料により解決される。 This problem is solved by a catalytic material for oxidizing hydrocarbons using gaseous oxygen, comprising V and a TiO 2 material doped with Sb.

本発明による触媒材料は、例えば、触媒成形体を形成するために、不活性な担体上に施与される活性材料であることができる。オルトキシレンおよび/またはナフタリンのフタル酸無水物への酸化のための触媒成形体が好ましい。好ましくは、前記の不活性な担体は、ステアタイトリングである。   The catalyst material according to the invention can be, for example, an active material applied on an inert support to form a shaped catalyst body. Catalyst shaped bodies for the oxidation of ortho-xylene and / or naphthalene to phthalic anhydride are preferred. Preferably, said inert carrier is a steatite ring.

SbでドープしたTiO材料は、好ましくは、粉末形態で存在し、任意の変態で存在することができるが、好ましくはアナターゼ変態で存在する。Sbドーピングという語句は、本願の意味において、Sbが少なくとも部分的にTiO材料に組み込まれて存在することと理解される。ここで、Sbは、Ti原子を同形置換して、または別の方法でTiO材料の結晶格子中に存在することができる。ここで、Sbは、TiO材料中に必ずしも均一に分散して存在しなくともよく、それは例えば、ドープされたTiO材料の表面にまたは表面近接領域に分離されていてもよい。 The Sb-doped TiO 2 material is preferably present in powder form and can be present in any modification, but is preferably present in the anatase modification. The phrase Sb doping is understood in the sense of the present application to be present in that Sb is at least partially incorporated into the TiO 2 material. Here, Sb may be present in the crystal lattice of the TiO 2 material, isomorphically replacing the Ti atoms, or otherwise. Here, Sb may not necessarily be present in the TiO 2 material in a uniformly dispersed state, but may be separated, for example, at the surface of the doped TiO 2 material or at a near-surface region.

前記のドープしたTiO材料は、本発明の触媒材料の全質量を基準として、好ましくは0.01〜5.0重量%のSb、より一層好ましくは0.1〜3.0重量%のSbを有する。 TiO 2 material doped said, based on the total weight of the catalyst material of the present invention, preferably 0.01 to 5.0 wt% of Sb, and even more preferably 0.1 to 3.0 wt% of Sb Having.

本発明の触媒材料は、任意のBET表面積を有することができるが、好ましくは、これは15〜25m2/gの範囲に、より好ましくは17〜23m2/gの範囲にある。 The catalyst material of the present invention can have any BET surface area, but preferably it is in the range of 15-25 m < 2 > / g, more preferably in the range of 17-23 m < 2 > / g.

本発明はさらに、以下のステップを含む、本発明の触媒材料の製造方法に関する:
a)TiOおよびSb含有化合物でできた混合物を製造するステップ、
b)TiOおよびSb含有化合物でできた混合物を焼成して、SbでドープしたTiO材料を得るステップ、
c)SbでドープしたTiO材料をV含有化合物で含浸するステップ。
The present invention further relates to a method for producing the catalyst material of the present invention, comprising the following steps:
a) producing a mixture made of TiO 2 and a Sb-containing compound;
b) firing a mixture made of TiO 2 and a Sb-containing compound to obtain a Sb-doped TiO 2 material;
c) impregnating the TiO 2 material doped with Sb with a V-containing compound.

出発材料として使用されるTiOは、任意のTiO(好ましくは粉末形態にある)であることができ、任意の変態で存在することができるが、好ましくはアナターゼ変態で存在する。出発材料として使用される前記のSb含有化合物は、好ましくは酸化アンチモン、例えばSbもしくはSb、または硝酸アンチモンであり、ここで水和度は変化し得る。SbがTiOをドープする固体反応を可能にするために、出発材料は密接に混合されるべきである。 The TiO 2 used as a starting material can be any TiO 2 (preferably in powder form) and can be present in any modification, but is preferably present in the anatase modification. Wherein the Sb-containing compounds used as starting material, preferably antimony oxide, for example, Sb 2 O 3 or Sb 2 O 5 or nitrate antimony, wherein degree of hydration may vary. The starting materials should be intimately mixed in order for Sb to allow a solid state reaction to dope TiO.

TiOとSb含有化合物でできた混合物の焼成(ステップb))は、好ましくは、1〜10時間、より好ましくは3〜8時間、空気中で、300℃超の温度、好ましくは400℃〜700℃の範囲の温度、より好ましくは450℃〜600℃の範囲の温度で行われる。 Calcination of the mixture made of TiO 2 and Sb-containing compound (step b)) is preferably 1 to 10 hours, more preferably 3 to 8 hours, in air, 300 ° C. greater than the temperature, preferably 400 ° C. ~ It is carried out at a temperature in the range of 700C, more preferably in the range of 450C to 600C.

TiO材料に組み込まれなかった余剰のSb(例えばSbまたはSbの形態の)を除去するために、ステップb)からのTiOを酸で処理することが有利であり得る。このためには、好ましくは、安価な無機酸、例えばHCl、HSOまたはHNOが使用される。酸処理後、好ましくは、酸の残留物を除去するために、ドープしたTiO材料を水で洗浄し、引き続き乾燥する。 It may be advantageous to treat the TiO 2 from step b) with an acid in order to remove excess Sb not incorporated into the TiO 2 material (eg in the form of Sb 2 O 3 or Sb 2 O 5 ). . For this purpose, cheap inorganic acids are preferably used, for example HCl, H 2 SO 4 or HNO 3 . After the acid treatment, the doped TiO 2 material is preferably washed with water and subsequently dried to remove acid residues.

SbでドープしたTiO材料のV含有化合物での含浸は、好ましくは、SbドープTiO材料およびV含有化合物を含む水性懸濁液を生成することにより行われる。この水性懸濁液は、P含有化合物、Sb、CsもしくはNa含有化合物のようなさらに別の化合物も含むことができ、さらにバインダーを含むことができる。次に、前記の水性懸濁液を、好ましくは、不活性な担体、例えば環状(リング状)の担体上に施与し、触媒成形体を生成する。担体上への懸濁液の施与は、例えば、流動床装置(例えばDE 197 09 589A1に記載されるような)を使用して行われる。好ましくは、水性懸濁液中のV含有化合物はVである。 Impregnation with V-containing compounds of the TiO 2 material doped with Sb is preferably carried out by generating an aqueous suspension containing Sb-doped TiO 2 material and V-containing compounds. The aqueous suspension can also include further compounds such as P-containing compounds, Sb, Cs or Na-containing compounds, and can further include a binder. Next, the aqueous suspension is preferably applied to an inert carrier, for example, a cyclic (ring-shaped) carrier to produce a shaped catalyst. The application of the suspension on the carrier is effected, for example, using a fluidized-bed apparatus (eg as described in DE 197 09 589 A1). Preferably, V-containing compound in the aqueous suspension is V 2 O 5.

本発明はさらに、SbドープしたTiO材料の、気体状酸素を用いた炭化水素の酸化用触媒のための担体材料としての使用に関する。好ましくは、前記炭化水素は、オルト−キシレンまたはナフタリンあるいは両者の混合物であり、酸化生成物は少なくとも部分的にフタル酸無水物である。 The invention further relates to the use of the Sb-doped TiO 2 material as a support material for a catalyst for the oxidation of hydrocarbons using gaseous oxygen. Preferably, the hydrocarbon is ortho-xylene or naphthalene or a mixture of both, and the oxidation product is at least partially phthalic anhydride.

本発明はさらに、酸化すべき炭化水素(複数可)および酸素を本発明の触媒と接触させることを特徴とする、気体状の酸素を用いた炭化水素の酸化のための方法に関する。典型的には、酸化すべき炭化水素(複数可)および酸素を本発明の触媒と、反応器中で高められた温度で接触させる。反応器における反応温度は、好ましくは、200℃超であり、より好ましくは350℃〜500℃の範囲である。前記反応器は好ましくは、塩浴で温度制御されるシェルアンドチューブ型反応器における管である。   The invention further relates to a process for the oxidation of hydrocarbons with gaseous oxygen, characterized in that the hydrocarbon (s) to be oxidized and oxygen are contacted with the catalyst according to the invention. Typically, the hydrocarbon (s) to be oxidized and oxygen are contacted with the catalyst of the invention at elevated temperature in the reactor. The reaction temperature in the reactor is preferably above 200C, more preferably in the range of 350C to 500C. The reactor is preferably a tube in a shell-and-tube reactor temperature controlled by a salt bath.

好ましくは、前記触媒材料を不活性な担体上に施与し、触媒成形体を形成する。多数の触媒成形体を1つの反応管に導入すると、それらが1つの触媒層を、すなわち、触媒成形体の緩い堆積を当該反応管中に形成する。異なる触媒成形体を含む複数のそのような触媒層は、本発明の意味における触媒装置を形成する。典型的には管式である反応器に、軸方向に反応ガスを貫流させ、ここで出発材料ガスは反応器のガス入口側に導入され、生じた生成物ガスはガス出口側において反応器から排出される。   Preferably, the catalyst material is applied on an inert carrier to form a shaped catalyst body. As multiple catalyst bodies are introduced into one reaction tube, they form one catalyst layer, ie a loose deposit of catalyst bodies, in the reaction tube. A plurality of such catalyst layers comprising different shaped catalyst bodies form a catalytic device in the sense of the present invention. The reaction gas is passed axially through a reactor, which is typically tubular, in which the starting material gas is introduced at the gas inlet side of the reactor and the resulting product gas leaves the reactor at the gas outlet side. Is discharged.

前記の触媒装置は、本発明の触媒材料を含む本発明の触媒成形体を含む。ここで、ガス出口側に最も近い触媒層の触媒成形体が本発明の触媒材料を含むことが好ましい。   The above-described catalyst device includes the shaped catalyst article of the present invention including the catalyst material of the present invention. Here, the catalyst molded body of the catalyst layer closest to the gas outlet side preferably contains the catalyst material of the present invention.

以下の実験的実施では、製造した触媒成形体を簡潔に触媒とも呼ぶ。   In the following experimental runs, the manufactured shaped catalyst bodies are also referred to simply as catalysts.

方法
バインダーの割合の決定は、コーティングされた触媒成形体を450℃で7時間焼成し、有機バインダーを完全に熱分解することにより行う。バインダーの割合は、焼成に続いて、Gl.1に従って決定される:
Gl. 1:
Method The determination of the ratio of the binder is performed by calcining the coated catalyst molded body at 450 ° C. for 7 hours to completely thermally decompose the organic binder. Following the firing, the proportion of binder is Gl. Determined according to 1:
Gl. 1:

= バインダーの割合
= 焼成前の触媒の秤量量
= 焼成後の触媒の秤量量
活性材料の物理化学的特性分析(BET、XRF)を、バインダーの熱分解後に、活性材料を篩を用いて担体リングから機械的に分離することにより行う。残りのなおも担体リングに付着した活性材料部分を、超音波処理により完全に除去する。最後に、洗浄した担体リングを120℃で乾燥棚において乾燥し、秤量する。活性材料の割合は、焼成に続いて、Gl.2に従って決定される:
Gl. 2:
AB = proportion of binder M E = weighed amount of catalyst before calcining M A = weighed amount of catalyst after calcining Physicochemical property analysis (BET, XRF) of the active material This is done by mechanical separation from the carrier ring using a sieve. The remaining portion of the active material still attached to the carrier ring is completely removed by sonication. Finally, the washed carrier ring is dried at 120 ° C. in a drying cabinet and weighed. Following firing, the proportion of active material is determined by the Gl. Determined according to 2:
Gl. 2:

= 活性材料の割合
= 焼成後の触媒の秤量量
= 担体リングの秤量量
活性材料の比表面積の測定は、DIN 66131に従って、BET法により行われる;BET法の刊行物はJ.Am.Chem.Soc.60,309(1938)にも見出せる。測定すべき試料を石英管中、350℃において減圧下で乾燥する(F=50 ml(分) 1.5時間)。次いで、石英管を室温に冷却し、真空にし、液体窒素を含むデュワー瓶に浸漬する。窒素吸着を77KでRXM 100 sorption system (Advanced Scientific Design, Inc.)を用いて行う。
A A = proportion of active material M A = weighed amount of catalyst after calcination M T = weighed amount of carrier ring The measurement of the specific surface area of the active material is carried out by the BET method according to DIN 66131; J. Am. Chem. Soc. 60, 309 (1938). The sample to be measured is dried in a quartz tube at 350 ° C. under reduced pressure (F = 50 ml (min) 1.5 hours). The quartz tube is then cooled to room temperature, evacuated and immersed in a dewar containing liquid nitrogen. Nitrogen adsorption is carried out at 77 K using RXM 100 solution system (Advanced Scientific Design, Inc.).

X線蛍光分析(XRF)による化学組成の決定のために、14gの活性材料を3.5gのワックス(Hoechst Wachs C Mikropulver)と撹拌ミルを使用して激しく混合し、引き続き、プレス(17 t 圧縮圧力、1分の圧縮時間)を用いて圧縮して3つの円盤状物を得る。圧縮物をその後、標準なしで(standardlos)、多元素X線蛍光分光計(S4 Pioneer, Bruker)で分析する。測定値を活性材料あたりで平均化し(3つの圧縮物、圧縮物あたり3回の個々の測定)、検出された元素の組成を合計でそれらの酸化物100重量%にする。   For the determination of the chemical composition by X-ray fluorescence analysis (XRF), 14 g of the active material are mixed vigorously with 3.5 g of wax (Hoechst Wachs C Mikropulver) using a stirring mill and subsequently pressed (17 t compression). (1 min compression time) to obtain three discs. The compact is then analyzed on a multi-element X-ray fluorescence spectrometer (S4 Pioneer, Bruker) without standardlos. The measurements are averaged per active material (3 compacts, 3 individual measurements per compact) and the composition of the elements detected totals 100% by weight of their oxides.

触媒の触媒特性分析のために、それぞれ25gの触媒成形体を540gの不活性材料(ステアタイトリングO 3 mm)で均一に希釈し、25mm内径および1mの長さを有し、塩浴で冷却される管に充填する。in situ焼成のために、管中の触媒に、それぞれ30 NL/hの空気を、410℃の塩浴温度において少なくとも48時間貫流させる。管中、温度測定のために、引き抜き要素(Zugelement)が組み込まれた3mmのサーモセンサーを中央に配置する。   For the analysis of the catalytic properties of the catalyst, each 25 g of the shaped catalyst body are uniformly diluted with 540 g of inert material (steatite ring O 3 mm), have a 25 mm inner diameter and 1 m length and are cooled in a salt bath. Fill the tubes to be filled. For in situ calcination, the catalyst in the tubes is passed with at least 30 NL / h of air at a salt bath temperature of 410 ° C. for at least 48 hours. In the tube, a 3 mm thermosensor with a withdrawal element (Zugeelement) is centrally located for temperature measurement.

触媒の測定の実施のために、330NL(標準リットル)の空気を、60gオルトキシレン/Nm空気(オルトキシレン純度>98%)の負荷で、約1200mbarの全圧で、継続的に管の上方から下方へ導入する。測定はそれぞれ、410℃の塩浴温度で行う。 To carry out the measurement of the catalyst, 330 NL (standard liters) of air were continuously pumped above the tube at a total pressure of about 1200 mbar at a load of 60 g ortho-xylene / Nm 3 air (ortho-xylene purity> 98%). From below. Each measurement is performed at a salt bath temperature of 410 ° C.

それぞれの触媒の活性定数Aおよび生成物選択性Sを調べるために、出発材料流の最初の計量添加(フロー時間 TOS=0h)後に、生成物流をその組成に関して、規則的な間隔でガスクロマトグラフ(GC6890N,Agilent)および非分散型IRアナライザー(EL3020,ABB)を用いて分析する。 To examine each of the active constants A * and product selectivity S P output catalysts, after the initial metering of the starting materials flow (flow time TOS = 0h), the product stream with respect to its composition, at regular intervals Gasukuroma The analysis is carried out using a chromatography (GC6890N, Agilent) and a non-dispersive IR analyzer (EL3020, ABB).

それぞれGl.4に従って決定した転化率Uを用いて、その後、Gl.3に従って、触媒の活性材料ベースの活性定数A*を算出することができる:
Gl. 3:
Gl. 4 using the conversion U determined according to Gl. According to 3, the active material-based activity constant A * of the catalyst can be calculated:
Gl. 3:

ここで以下を意味する:
A*: 活性材料を基準とする活性材料の活性定数[L/(h*g)];
Q: 反応条件における全容積流[L/h]
Aktivmasse: 反応器に導入された活性材料の量[g];
U: 出発材料の転化(ここで、UはGl. 4に従って算出される)。
Gl. 4:
Here it means:
A *: Active constant of active material based on active material [L / (h * g)];
Q: Total volume flow [L / h] under reaction conditions
m Aktivmass : amount of active material introduced into the reactor [g];
U: Conversion of starting material (where U is calculated according to GI.4).
Gl. 4:

rein: 触媒充填に供給される出発材料オルト−キシレンの流量[mol/s]、
raus: 触媒充填を出る出発材料オルト−キシレンの流量 [mol/s]
生成物選択性Sは、Gl.5に従って算出した:
Gl. 5:
Mrein : flow rate [mol / s] of the starting material ortho-xylene supplied to the catalyst packing;
M ras : flow rate of the starting material ortho-xylene leaving the catalyst charge [mol / s]
Product selectivity S P is, Gl. Calculated according to 5:
Gl. 5:

rein: 触媒充填に供給される出発材料オルト−キシレンの流量[mol/s]、
raus: 触媒充填を出る出発材料オルト−キシレンの流量[mol/s]
PA: 触媒充填を出る生成物フタル酸無水物の流量[mol/s]
TA: 触媒充填を出る生成物トルイルアルデヒドの流量 [mol/s]
TAc: 触媒充填を出る生成物トルイル酸の流量 [mol/s]
PD: 触媒充填を出る生成物フタリドの流量 [mol/s]
Mrein : flow rate [mol / s] of the starting material ortho-xylene supplied to the catalyst packing;
M ras : flow rate of the starting material ortho-xylene leaving the catalyst charge [mol / s]
MPA : flow rate of product phthalic anhydride leaving catalyst packing [mol / s]
M TA : flow rate of product tolualdehyde leaving catalyst charge [mol / s]
M TAc : flow rate of product toluic acid leaving catalyst packing [mol / s]
M PD : Flow rate of product phthalide leaving catalyst packing [mol / s]

本発明による例(例1参照)および本発明によらない比較例(比較1〜4参照)の触媒的特性分析の結果を、それぞれ図1および図2に示す。   The results of the catalytic characterization of the example according to the invention (see Example 1) and the comparative examples not according to the invention (see Comparatives 1-4) are shown in FIGS. 1 and 2, respectively.

例1
194.3gのアナターゼ変態のTiO(Titandioxid DT20,Cristal Global)を7.72gのSb(Antimontrioxid reinst,Merck)とドラムフープミキサーを用いて激しく混合し、次いで空気中で6時間500℃で焼成する。未結合Sbを溶解するために、得られた粉末を合計3回、それぞれ室温で500mlの6モル塩酸を用いて懸濁し、1時間後に白色バンドフィルター(Weissbandfilter)を通してろ過する。得られた粉末を最後に合計4回、300mLの脱イオン水でクロライドを含まないように洗浄し、白色バンドフィルターを用いてろ過し、一晩80℃で空気中において乾燥する。得られたアンチモンドープ二酸化チタン担体は、1.5重量%のアンチモン含有量を有する。
Example 1
194.3 g of anatase-modified TiO 2 (Titandioxide DT20, Cristal Global) was mixed vigorously with 7.72 g of Sb 2 O 3 (Antimontrioxide reinst, Merck) using a drum hoop mixer and then in air at 500 ° C. for 6 hours. Baking. In order to dissolve the unbound Sb 2 O 3 , the powder obtained is suspended a total of three times at room temperature with 500 ml of 6 molar hydrochloric acid, and after one hour is filtered through a white band filter (Weissbandfilter). The resulting powder is finally washed a total of four times with 300 mL of deionized water without chloride, filtered using a white band filter and dried overnight at 80 ° C. in air. The resulting antimony-doped titanium dioxide support has an antimony content of 1.5% by weight.

触媒成形体の製造のために、700mLの脱イオン水における131.9gのアンチモンドープTiO、10.9gのV (Vanadiumpentoxid purum, Treibacher Industrie AG)および0.779gのCsSO(Caesiumsulfat,Rockwood Lithium GmbH)の懸濁液を製造する。懸濁液にさらに121.6gのバインダー(酢酸ビニル/エチレンコポリマー)を添加する。不活性担体として、以下の寸法を有する2500gのステアタイトリングを使用する:6(高さ)x5(外径)x4(内径)mm。懸濁液を、流動床装置(例えばDE 197 09 589 A1に記載される装置)を使用して、流動床法において70℃でセラミックス担体に施与する。製造した触媒の最終的な特性を表1にまとめる。 For the production of shaped catalyst bodies, 131.9 g of antimony-doped TiO 2 , 10.9 g of V 2 O 5 (Vanadiumpentoxide purum, Treibacher Industry AG) and 0.779 g of Cs 2 SO 4 (700 mL of deionized water) A suspension of Caesiumsulfat, Rockwood Lithium GmbH) is prepared. A further 121.6 g of binder (vinyl acetate / ethylene copolymer) are added to the suspension. As inert carrier, a 2500 g steatite ring having the following dimensions is used: 6 (height) x 5 (outer diameter) x 4 (inner diameter) mm. The suspension is applied to the ceramic support in a fluidized-bed process at 70 ° C. using a fluidized-bed apparatus (for example, the apparatus described in DE 197 09 589 A1). The final properties of the produced catalyst are summarized in Table 1.

比較1
194.3gのアナターゼ変態のTiO(Titandioxid DT20, Cristal Global)を16.47gのV(Vanadiumpentoxid purum,Treibacher Industrie AG)とドラムフープミキサーを用いて激しく混合し、次いで空気中で6時間500℃で焼成する。
Comparison 1
194.3 g of anatase-modified TiO 2 (Titandioxide DT20, Crystal Global) was mixed vigorously with 16.47 g of V 2 O 5 (Vanadium pentoxid purum, Treibacher Industrie AG) using a drum hoop mixer and then for 6 hours in air using a drum hoop mixer. Bake at 500 ° C.

触媒成形体の製造のために、700mLの脱イオン水における140.5 gのバナジウムドープTiO、2.15gのSb(Antimontrioxid reinst,Merck)および0.779gのCsSO(Caesiumsulfat,Rockwood Lithium GmbH)の懸濁液を製造する。懸濁液にさらに121.6gのバインダー(酢酸ビニル/エチレンコポリマー)を添加する。不活性担体として、以下の寸法を有する2500gのステアタイトリングを使用する:6(高さ)x5(外径)x4(内径)mm。懸濁液を、流動床装置(例えばDE 197 09 589 A1に記載される装置)を使用して、流動床法において70℃でセラミックス担体に施与する。製造した触媒の最終的な特性を表1にまとめる。 For the production of shaped catalyst bodies, 140.5 g of vanadium-doped TiO 2 , 2.15 g of Sb 2 O 3 (Antimontrioxide reinst, Merck) and 0.779 g of Cs 2 SO 4 (Caesium sulfate) in 700 mL of deionized water , Rockwood Lithium GmbH). A further 121.6 g of binder (vinyl acetate / ethylene copolymer) are added to the suspension. As inert carrier, a 2500 g steatite ring having the following dimensions is used: 6 (height) x 5 (outer diameter) x 4 (inner diameter) mm. The suspension is applied to the ceramic support in a fluidized-bed process at 70 ° C. using a fluidized-bed apparatus (for example, the apparatus described in DE 197 09 589 A1). The final properties of the produced catalyst are summarized in Table 1.

比較2
触媒成形体の製造のために、700mLの脱イオン水における129.1gのアナターゼ変態のTiO(Titandioxid DT20,Cristal Global)、10.9gのV(Vanadiumpentoxid purum,Treibacher Industrie AG)、2.15gのSb(Antimontrioxid reinst,Merck)および0.779gのCsSO(Caesiumsulfat,Rockwood Lithium GmbH)の懸濁液を製造する。懸濁液にさらに121.6gのバインダー(酢酸ビニル/エチレンコポリマー)を添加する。不活性担体として、以下の寸法を有する2500gのステアタイトリングを使用する:6(高さ)x5(外径)x4(内径)mm。懸濁液を、流動床装置(例えばDE 197 09 589 A1に記載される装置)を使用して、流動床法において70℃でセラミックス担体に施与する。製造した触媒の最終的な特性を表1にまとめる。
Comparison 2
For the production of shaped catalyst bodies, 129.1 g of anatase-modified TiO 2 (Titandioxide DT20, Cristal Global) in 1700 g of deionized water, 10.9 g of V 2 O 5 (Vanadiumpentoxide purum, Treibacher Industrie AG, 2) Sb 2 O 3 of .15g (Antimontrioxid reinst, Merck) and 0.779g of Cs 2 SO 4 (Caesiumsulfat, Rockwood Lithium GmbH) preparing a suspension of. A further 121.6 g of binder (vinyl acetate / ethylene copolymer) are added to the suspension. As inert carrier, a 2500 g steatite ring having the following dimensions is used: 6 (height) x 5 (outer diameter) x 4 (inner diameter) mm. The suspension is applied to the ceramic support in a fluidized-bed process at 70 ° C. using a fluidized-bed apparatus (for example, the apparatus described in DE 197 09 589 A1). The final properties of the produced catalyst are summarized in Table 1.

比較3
21.9gのV(Vanadiumpentoxid purum,Treibacher Industrie AG)を4.78gのSb (Antimontrioxid reinst,Merck)とドラムフープミキサーを用いて激しく混合し、次いで空気中で6時間500℃で焼成する。そのようにして製造したバナジウム酸アンチモン粉末を最後に乳鉢で均質化した。
Comparison 3
21.9 g of V 2 O 5 (Vanadium pentoxide purum, Treibacher Industrie AG) is mixed vigorously with 4.78 g of Sb 2 O 3 (Antimontrioxide reinst, Merck) using a drum hoop mixer and then at 500 ° C. for 6 hours in air. Baking. The antimony vanadate powder so produced was finally homogenized in a mortar.

触媒成形体の製造のために、700mLの脱イオン水における13.3gのバナジウム酸アンチモン粉末、129.1gのアナターゼ変態のTiO(Titandioxid DT20,Cristal Global)および0.779gのCsSO(Caesiumsulfat,Rockwood Lithium GmbH)の懸濁液を製造する。懸濁液にさらに121.6gのバインダー(酢酸ビニル/エチレンコポリマー)を添加する。不活性担体として、以下の寸法を有する2500gのステアタイトリングを使用する:6(高さ)x5(外径)x4(内径)mm。懸濁液を、流動床装置(例えばDE 197 09 589 A1に記載される装置)を使用して、流動床法において70℃でセラミックス担体に施与する。製造した触媒の最終的な特性を表1にまとめる。 For the production of shaped catalyst bodies, 13.3 g of antimony vanadate powder in 700 mL of deionized water, 129.1 g of anatase-modified TiO 2 (Titandioxide DT20, Cristal Global) and 0.779 g of Cs 2 SO 4 ( A suspension of Caesiumsulfat, Rockwood Lithium GmbH) is prepared. A further 121.6 g of binder (vinyl acetate / ethylene copolymer) are added to the suspension. As inert carrier, a 2500 g steatite ring having the following dimensions is used: 6 (height) x 5 (outer diameter) x 4 (inner diameter) mm. The suspension is applied to the ceramic support in a fluidized-bed process at 70 ° C. using a fluidized-bed apparatus (for example, the apparatus described in DE 197 09 589 A1). The final properties of the produced catalyst are summarized in Table 1.

Claims (14)

炭化水素を気体状酸素を用いて酸化するための、Vと、SbでドープされているTiO材料とを含む触媒材料。 The catalyst material containing hydrocarbons to oxidized with gaseous oxygen, and V, and the TiO 2 material is doped with Sb. TiO材料がアナターゼ変態を有することを特徴とする、請求項1に記載の触媒材料。 TiO 2 material and having an anatase modification, the catalyst material of claim 1. TiO材料が、触媒材料の質量を基準として、0.01〜5.0重量%のSbを含むことを特徴とする、請求項1または2に記載の触媒材料。 3. The catalyst material according to claim 1, wherein the TiO 2 material contains 0.01 to 5.0% by weight of Sb based on the mass of the catalyst material. 4. TiO材料が、表面上にVが酸化物形態で存在する担体材料であることを特徴とする、請求項1〜3のいずれか1つに記載の触媒材料。 The catalyst material according to TiO 2 material, characterized in that V is a carrier material which is present in oxide form on the surface, any one of claims 1 to 3. 15〜25m2/gの間の範囲のBET表面積を有することを特徴とする、請求項1〜4のいずれか1つに記載の触媒材料。 It characterized by having a BET surface area in the range between 15~25m 2 / g, the catalytic material according to any one of claims 1 to 4. 炭化水素を気体状酸素を用いて酸化するための触媒材料における担体材料としての、SbでドープされたTiO材料の使用。 Of a hydrocarbon as a carrier material in the catalyst material for the oxidation with gaseous oxygen, the use of the doped TiO 2 material Sb. 酸化すべき炭化水素および酸素を請求項1に記載の触媒材料と接触させることを特徴とする、炭化水素を気体状酸素を用いて酸化する方法。   A method for oxidizing hydrocarbons using gaseous oxygen, comprising contacting the hydrocarbons to be oxidized and oxygen with the catalyst material according to claim 1. 不活性担体を含む触媒成形体であって、当該担体上に請求項1に記載の触媒材料が施与されている触媒成形体。   A shaped catalyst body containing an inert carrier, wherein the shaped catalyst material according to claim 1 is applied on the carrier. 反応器中の触媒層であって、請求項8に記載の触媒成形体でできた触媒層。   A catalyst layer in the reactor, wherein the catalyst layer is made of the shaped catalyst article according to claim 8. 出発材料ガス用のガス入口側および生成物ガス用のガス出口側ならびに触媒成形体でできた第1触媒層および触媒成形体でできた少なくとも1つの第2触媒層を備えた反応器を含む、炭化水素の酸化のための触媒装置であって、前記触媒層のうちの1つが請求項1に記載の触媒材料を含む、触媒装置。   A reactor with a gas inlet side for the starting material gas and a gas outlet side for the product gas and a first catalyst layer made of shaped catalyst and at least one second catalyst layer made of shaped catalyst. A catalyst device for hydrocarbon oxidation, wherein one of the catalyst layers comprises the catalyst material of claim 1. ガス出口側の最も近くに位置する触媒層が、請求項1に記載の触媒材料を含む触媒成形体を含むことを特徴とする、請求項10に記載の触媒装置。   The catalyst device according to claim 10, wherein the catalyst layer located closest to the gas outlet side includes a catalyst molded body containing the catalyst material according to claim 1. 以下のステップを含む、請求項1〜5のいずれか1つに記載の触媒材料を製造する方法:
a)TiOおよびSbの混合物を製造するステップ、
b)TiOおよびSbの混合物を焼成して、SbでドープされたTiO材料を得るステップ、
c)SbでドープされたTiO材料をV含有化合物で含浸するステップ。
A method for producing a catalyst material according to any one of claims 1 to 5, comprising the following steps:
a) producing a mixture of TiO 2 and Sb 2 O 3 ;
b) firing a mixture of TiO 2 and Sb 2 O 3 to obtain a Sb-doped TiO 2 material;
c) impregnating the Sb-doped TiO 2 material with a V-containing compound.
ステップb)からのSbでドープされたTiO材料を酸で処理することを特徴とする、請求項12に記載の方法。 Characterized by treating the doped TiO 2 material with acid in Sb from step b), The method of claim 12. 前記のV含有化合物がVであることを特徴とする、請求項12または13に記載の方法。 Wherein the V-containing compounds of the is a V 2 O 5, The method of claim 12 or 13.
JP2019543010A 2017-02-14 2018-02-12 Catalytic material for oxidation of hydrocarbons with antimony-doped titanium dioxide Active JP6860682B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017202351.1 2017-02-14
DE102017202351.1A DE102017202351A1 (en) 2017-02-14 2017-02-14 Catalyst material for the oxidation of hydrocarbons with antimony-doped titanium dioxide
PCT/EP2018/053456 WO2018149791A1 (en) 2017-02-14 2018-02-12 Catalyst material for oxidizing hydrocarbons with antimony-doped titanium dioxide

Publications (2)

Publication Number Publication Date
JP2020508208A true JP2020508208A (en) 2020-03-19
JP6860682B2 JP6860682B2 (en) 2021-04-21

Family

ID=61616945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019543010A Active JP6860682B2 (en) 2017-02-14 2018-02-12 Catalytic material for oxidation of hydrocarbons with antimony-doped titanium dioxide

Country Status (6)

Country Link
EP (1) EP3582890A1 (en)
JP (1) JP6860682B2 (en)
CN (1) CN110290869B (en)
DE (1) DE102017202351A1 (en)
TW (1) TWI660775B (en)
WO (1) WO2018149791A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143732A (en) * 1974-10-11 1976-04-14 Nippon Catalytic Chem Ind Musuifutarusanno seizohoho
JPS5268137A (en) * 1975-12-01 1977-06-06 Mitsui Toatsu Chem Inc Preparation of phthalic acid anhydride
JPH03245843A (en) * 1990-02-22 1991-11-01 Japan Synthetic Rubber Co Ltd Preparation of catalyst for producing unsaturated diester
JP2002523229A (en) * 1998-08-31 2002-07-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Oxidation catalyst prepared by high surface area sol-gel route

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL134884C (en) 1965-05-18
BR6800381D0 (en) * 1967-09-22 1973-04-17 Grace W R & Co CATALYST FOR PRODUCTION OF PHALYTIC ANHYDRIDE FROM O-LITHENE
US3862960A (en) * 1972-05-03 1975-01-28 Grace W R & Co Process for the oxidation of orthoxylene or naphthalene to phthalic anhydride
DE2260615A1 (en) 1972-12-12 1974-06-20 Basf Ag SUPPORT CATALYST FOR THE OXIDATION OF O-XYLOL OR NAPHTHALINE TO PHTHALIC ANHYDRIDE
DE2547624C2 (en) 1975-10-24 1981-10-08 Basf Ag, 6700 Ludwigshafen Supported catalysts containing vanadium pentoxide, titanium dioxide, antimony and rubidium
DE2554741A1 (en) * 1975-12-05 1977-06-16 Basf Ag METHOD FOR PRODUCING MALEIC ACID ANHYDRIDE
US4582911A (en) * 1984-06-29 1986-04-15 Exxon Research & Engineering Co. Molecular oxidation of aromatic hydrocarbons to the corresponding anhydrides using an improved catalyst
DE4013051A1 (en) 1990-04-24 1991-11-07 Basf Ag METHOD FOR PRODUCING PHTHALIC ACID ANHYDRIDE FROM O-XYLOL
EP0539878B1 (en) 1991-10-25 1996-01-10 Nippon Shokubai Co., Ltd. Method for production of phthalic anhydride by vapor-phase oxidation of mixture of ortho-xylene with naphthalene
TW415939B (en) 1996-10-23 2000-12-21 Nippon Steel Chemical Co Gas-phase oxidization process and process for the preparation of phthalic anhydride
DE19649426A1 (en) 1996-11-28 1998-06-04 Consortium Elektrochem Ind Shell catalyst for the production of acetic acid by gas phase oxidation of unsaturated C¶4¶ hydrocarbons
DE19709589C2 (en) 1997-03-08 2000-03-30 Bwi Huettlin Gmbh Fluid bed equipment for treating particulate material
DE19823088A1 (en) 1998-05-22 1999-11-25 Consortium Elektrochem Ind Production of saturated carboxylic acids by gas-phase oxidation of butane and/or butenes
DE19824532A1 (en) 1998-06-03 1999-12-09 Basf Ag Process for the preparation of coated catalysts for the catalytic gas phase oxidation of aromatic hydrocarbons and catalysts thus obtainable
DE10323461A1 (en) * 2003-05-23 2004-12-09 Basf Ag Preparation of aldehydes, carboxylic acids and / or carboxylic anhydrides by means of vanadium oxide, titanium dioxide and antimony oxide-containing catalysts
DE102005009473A1 (en) 2005-03-02 2006-09-07 Süd-Chemie AG Multi-layer catalyst for the production of phthalic anhydride
US20090286999A1 (en) 2006-04-12 2009-11-19 Basf Se Catalyst system for preparing carboxylic acids and/or carboxylic anhydrides
BRPI0720411A2 (en) 2006-12-21 2013-12-31 Basf Se PROCESS FOR GAS PHASE OXIDATION, AND CATALYST SYSTEM FOR CARRYING OUT GAS PHASE OXIDATION PROCESSES
DE102008044890B4 (en) * 2008-08-29 2023-09-14 Stesatec Gmbh Catalyst for the catalytic gas phase oxidation of aromatic hydrocarbons to aldehydes, carboxylic acids and/or carboxylic anhydrides, in particular to phthalic anhydride, and process for producing such a catalyst
EP2501472A1 (en) 2009-11-20 2012-09-26 Basf Se Multilayer catalyst for producing carboxylic acids and/or carboxylic acid anhydrides with vanadium antimonate in at least one catalyst layer, and method for producing phthalic acid anhydride with a low hot-spot temperature
CN102811808A (en) * 2010-03-19 2012-12-05 巴斯夫欧洲公司 Catalyst for gas-phase oxidations on the basis of sulfur- and calcium-poor titanium dioxide
BR112013001388A2 (en) * 2010-07-30 2016-05-24 Basf Se catalyst for the oxidation of o-xylene and / or naphthalene to phthalic anhydride, and process for gas phase oxidation
JP6563410B2 (en) * 2014-02-17 2019-08-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Catalyst system for oxidizing o-xylol and / or naphthalene to phthalic anhydride
CN106362730A (en) * 2016-10-12 2017-02-01 清华大学 Preparing method for vanadium based composite titanium dioxide catalyst used in ammonium bisulfate decomposition during De-NOxDenitration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143732A (en) * 1974-10-11 1976-04-14 Nippon Catalytic Chem Ind Musuifutarusanno seizohoho
JPS5268137A (en) * 1975-12-01 1977-06-06 Mitsui Toatsu Chem Inc Preparation of phthalic acid anhydride
JPH03245843A (en) * 1990-02-22 1991-11-01 Japan Synthetic Rubber Co Ltd Preparation of catalyst for producing unsaturated diester
JP2002523229A (en) * 1998-08-31 2002-07-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Oxidation catalyst prepared by high surface area sol-gel route

Also Published As

Publication number Publication date
TW201832825A (en) 2018-09-16
DE102017202351A1 (en) 2018-08-16
CN110290869B (en) 2022-10-28
JP6860682B2 (en) 2021-04-21
EP3582890A1 (en) 2019-12-25
TWI660775B (en) 2019-06-01
CN110290869A (en) 2019-09-27
WO2018149791A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
US5792719A (en) Supported catalyst for gas-phase oxidation reactions
JP5130450B2 (en) Application of a catalyst containing titanium dioxide, especially for the production of phthalic anhydride, and the process using it
JP3757111B2 (en) Supported catalyst
TW201219112A (en) Catalyst for the oxidation of o-xylene and/or naphthalene to phthalic anhydride
JP4499729B2 (en) Gas phase oxidation catalyst with defined vanadium oxide particle size distribution
JP4330626B2 (en) Multi-metal oxides containing silver, vanadium and propellant metals and their use
JP4518423B2 (en) Catalyst for gas phase oxidation
JP6563410B2 (en) Catalyst system for oxidizing o-xylol and / or naphthalene to phthalic anhydride
RU2720967C1 (en) Method of producing oxide catalyst and method of producing unsaturated nitrile
JP2018505776A (en) Catalyst system for oxidizing o-xylene and / or naphthalene to phthalic anhydride (PA)
KR101828779B1 (en) Catalytic converter arrangement with optimized surface for producing phthalic anhydride
JP2020508208A (en) Catalytic material for oxidation of hydrocarbons with titanium dioxide doped with antimony
US10155713B2 (en) Catalyst arrangement with optimized void fraction for the production of phthalic acid anhydride
JP2008502567A (en) Multi-metal oxides containing silver, vanadium and phosphorus group elements and uses thereof
JP5856089B2 (en) Titanium dioxide based gas phase oxidation catalyst with low sulfur and calcium content
JP2005529742A (en) Catalyst comprising titanium-vanadium-tin and method for producing phthalic anhydride
JPWO2018003289A1 (en) Method of producing acrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210326

R150 Certificate of patent or registration of utility model

Ref document number: 6860682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150