JP2020504352A - 将来の低血糖イベントのリスクを推定するためのシステムおよび方法 - Google Patents

将来の低血糖イベントのリスクを推定するためのシステムおよび方法 Download PDF

Info

Publication number
JP2020504352A
JP2020504352A JP2019521807A JP2019521807A JP2020504352A JP 2020504352 A JP2020504352 A JP 2020504352A JP 2019521807 A JP2019521807 A JP 2019521807A JP 2019521807 A JP2019521807 A JP 2019521807A JP 2020504352 A JP2020504352 A JP 2020504352A
Authority
JP
Japan
Prior art keywords
insulin
past
time
subject
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019521807A
Other languages
English (en)
Other versions
JP7082121B2 (ja
Inventor
オルデン, ブラッド ウォーレン ヴァン
オルデン, ブラッド ウォーレン ヴァン
ティナ ビョーク アーラドッティル,
ティナ ビョーク アーラドッティル,
ピート ブロックマイヤー,
ピート ブロックマイヤー,
ヘンリク ベントスン,
ヘンリク ベントスン,
Original Assignee
ノボ・ノルデイスク・エー/エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノボ・ノルデイスク・エー/エス filed Critical ノボ・ノルデイスク・エー/エス
Priority claimed from PCT/EP2017/077077 external-priority patent/WO2018077835A1/en
Publication of JP2020504352A publication Critical patent/JP2020504352A/ja
Application granted granted Critical
Publication of JP7082121B2 publication Critical patent/JP7082121B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • A61B5/4839Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

継続インスリン投薬計画(206)を行っている対象の将来の低血糖イベントのリスクを推定するためのデバイス(250)であって、継続インスリン投薬計画は、1つまたは複数のタイプのインスリン薬剤投与計画(208)を含み、1つまたは複数のタイプのインスリン薬剤投与計画(208)の各々は、1つまたは複数のタイプのインスリン薬剤を定義するインスリン薬剤のタイプ(210)を含む。グルコース濃度の評価、第1の時間導関数、および現在の代謝状態における対象の残存インスリン、ならびにグルコース濃度の評価、第1の時間導関数、および過去の残存インスリンを使用して、低血糖リスク尺度を推定する。【選択図】図5A

Description

本開示は、一般には、継続インスリン投薬計画を行っている対象の将来の低血糖イベントのリスクを推定するためのシステム、方法、およびコンピュータプログラムに関し、継続インスリン投薬計画は、対象が低血糖リスクを経験するリスクを最小にするために、1つまたは複数のタイプのインスリン薬剤によるインスリン薬剤投与計画を含む。
従来のインスリン薬剤送達システムは、インスリン薬剤の頻繁で定期的な投与を提供するポンプシステムの使用を含んでいる。インスリンポンプは、1タイプのみのインスリン、すなわち短時間作用型のポンプインスリンを使用し、これは、日中に異なるポンプレートを利用することによって基礎インスリン分泌および食事によるインスリン分泌を模倣する。インスリンペンなどの追加的なタイプの送達システムが開発されており、インスリンペンは、それほど頻繁でないインスリン薬剤注射の形態でインスリン薬剤治療投薬計画を自己投与するために使用することができる。そのような送達システムを使用した1型および2型糖尿病に対する一般的な対処法は、食事イベントに応答して、または食事イベントを見越して、対象のために予め既定されたインスリン投薬計画で1回の短時間作用型インスリン薬剤(ボーラス)投与量を注射するものである。そのような対処法では、対象は、毎日1回または複数回の食事の直前または直後に短時間作用型インスリン薬剤の投与量を注射することにより、それらの食事の結果生じるグルコースレベルを低下させる。次いで、長時間作用型インスリン薬剤を使用して基礎分泌を模倣する。
低血糖症の恐れは、最適なインスリン治療をはばむ重大な障壁の1つである。恐れのために、患者は食事ボーラスの大きさを低めに見積もる傾向があり、そのことが治療の不遵守と高血糖症を招き、患者の健康に対して負の長期的な帰結を伴う。グルコースとアクティブな残存インスリンとを常にモニタリングする予測的低血糖症アラームを有することで、この恐れをいくらか軽減することができる。
インスリンポンプの中には、低血糖症アラームを内蔵しているものがある。インスリンポンプ向けに開発されたあるアプリは、持続グルコースモニタ(CGM(continuous glucose monitor))からの持続的なグルコースデータの傾向を分析する。ポンプはさらに、炭水化物データ、インスリンポンプデータ、および個々人のグルコース履歴を分析して、ボーラスを取ってから3時間以内の将来の低血糖を予測する。この低血糖症予測アプリは、ポンプからモバイルアプリに送られるリアルタイムデータに依拠する。この情報は、2016年10月12日に検索されたhttps://diatribe.org/apppredictslowbloodsugarsthreehoursadvanceから取得される。
米国特許第8562587(B2)号は、インスリンポンプおよびCGMを備える別のシステムを記載している。記載される実施形態の一態様は、対象の低血糖症を予防または緩和するための方法を提供する。方法は、対象に関連付けられた代謝測定値を取得することと、代謝測定値に基づいて低血糖症のリスクを持続的に査定することとを含み得る。方法はさらに、次の結果、すなわち、1)措置の必要なし、2)インスリン送達の減衰が必要、3)追加的な介入が必要、または3)インスリン送達の減衰および追加的な介入が必要、の1つを判定するための低血糖症のリスクの評価を含む。
米国特許第8538703(B2)号は、HbA1cと低血糖症のリスクが増大する期間との両方を予測することが可能なインテリジェントなデータ解釈コンポーネントを導入することにより、家庭用血糖値モニタリングデバイスを強化するシステムおよび方法を記載している。重篤な低血糖症の長期確率を推定するための同方法およびシステムの一態様は、所定の期間から得られる自己モニタリング血糖(SMBG(self−monitored blood glucose))の読み取り値に基づいており、別の態様では短期確率の推定値を提供する。
米国特許出願公開第2014/0128803号は、ホストのグルコース濃度をモニタリングし、ホストにインスリンを送達するための一体型システムを記載している。同システムは持続グルコースセンサを備え、持続グルコースセンサは、ホストのグルコース濃度を実質的に持続的に測定すると共に、ホストのグルコース濃度に関連付けられたセンサデータを提供するように構成される。同システムはさらに、オン/オフコントローラモジュールを備えた電子モジュールを備え、オン/オフコントローラモジュールは、内部で導出されたデータとグルコース限界との関係の評価に応答してインスリン療法命令を反復的に決定するように構成され、インスリン療法命令は、オンおよびオフからなる群から選択される命令を含む。同システムはさらに、ホストにインスリンを送達するように構成されたインスリン送達デバイスを備え、インスリン送達デバイスは、受信器に物理的に接続される、および受信器に動作的に接続される、の少なくとも一方であり、インスリン送達デバイスは、コントローラからインスリン療法命令を受信するように構成される。いくつかの実施形態において、薬剤送達デバイスは、注入ポンプ、ペン、注射器、吸入器、薬剤パッチ等であり得る。
米国特許出願公開第2012/0109687(A1)号は、グリセミックコントロールを提供するための医療システムを記載している。同システムは、データを記憶するようにアレンジされた第1の記憶手段と、第1の記憶手段から検索されたデータを修正するために第1の処理機能を実行するようにアレンジされた第1のデータ処理手段と、データを記憶するようにアレンジされた第2の記憶手段と、血糖値を測定し、測定された血糖値に対応する血糖値データを提供するようにアレンジされた血糖測定手段と、血糖値データおよび第2の記憶手段から検索されたデータに基づいてグリセミックコントロールのための情報を提供する第2の処理機能を実行するようにアレンジされた第2のデータ処理手段と、第1の記憶手段に記憶されたデータおよびセキュリティデータを送信するようにアレンジされた送信手段と、送信されたデータを受信するようにアレンジされた受信手段と、受信したセキュリティデータを検証し、受信したセキュリティデータの検証に対応する検証データを提供するようにアレンジされた検証手段と、第2の処理機能の実行を制御するようにアレンジされた安全手段とを備える。同文献は、低血糖ルールを選択するための方法も記載している。いくつかの実施形態において、医療デバイスは、ペン、およびインスリンポンプまたは吸入デバイスを備え得る。
WO2016/019192A1は、電子インスリンペンの形態のスマートボーラス注入器を記載している。第1に、スマートボーラス注入器は、用量を設定するためにコンピューティングデバイスから命令を受信することが可能である。第2に、スマートボーラス注入器は、注入器を自動的にプライミングし、コンピューティングデバイスから受信した命令に対応するボーラス用量を送達することが可能である。コンピューティングデバイスは、パーソナルコンピュータやスマートフォンなどの別個の構成要素であり得るが、コンピューティングデバイスは、スマートボーラス注入器に一体化されてもよい。スマートボーラス注入器は、CGMおよびコンピューティングデバイスなどの外部デバイスからデータを受信する構成要素を含むことができる。同文献はさらに、低血糖症が検出されたときに送達システムを停止する安全機構を含む実施形態を記載している。この機構は、ボーラス注入器がインスリンを送達するのを阻止することにより、グルコースセンサからの低血糖の読み取り値に応答する。
米国特許出願公開第2016/0066843(A1)号は、持続的に検体をモニタリングする、機械により実行される方法を記載している。方法は、電子デバイスによって実行されるモジュールから第1の入力を受信し、持続的検体検査デバイスから第2の入力を受信することを含む。方法は、第1および第2の入力をさらに処理して出力を作成することを含み、この出力は、検査データのみを用いて作成される出力よりも情報量が多い。第1の態様の一実施形態では、出力は、食物を消費した後のユーザの将来の血糖レベルの推定値である。
米国特許第9439602(B2)号は、患者に低血糖症および高血糖症のリスクを警告するためのシステムを記載している。システムは、患者のグルコースレベルを周期的に判定するように構成された持続グルコースモニタリングデバイスを含み、それにより一連のグルコースレベルを生成する。動的リスク推定モジュールが、一連のグルコースレベルに基づいて経時的なグルコースレベルの差分変化(dg/dt)を評価し、一連のグルコースレベルを指示する平滑化されたグルコースレベルを生成するように構成される。このモジュールはさらに、一連の平滑化されたグルコースレベルに基づいてdg/dtを計算し、平滑化されたCGMおよび推定されるdg/dtに基づく動的リスクを推定するように構成される。比較回路が、動的リスクを所定の閾値と比較する。平滑化されたCGMを表す表示を生成するように構成されたデバイスモニタは、動的リスクが所定の閾値より大きい場合に知覚可能アラームを生成するようにも構成される。
米国特許第8798934(B2)号は、一体型グルコースセンサおよび薬剤送達デバイスからのデータを使用してグルコースレベルを推定するための方法を記載している。方法は、グルコースセンサに関連付けられたセンサデータを受信し、薬剤送達デバイスに関連付けられた薬剤送達データを受信することを含む。方法はさらに、送達および/または薬剤の放出に対応するセンサデータを用いて薬剤送達データを評価することにより、薬剤の送達および/または放出に関連付けられた1つまたは複数の個々の代謝パターンを判定することを含む。方法はさらに、少なくとも部分的に個々の代謝パターンおよびセンサデータに基づいて将来の時間期間についてのグルコース値を予測し、予測されるグルコース値が高血糖条件を指示する閾値より大きい場合、または低血糖条件を指示する閾値未満である場合、アラームを作動させることを含む。
米国特許出願公開第2015/0289821号は、グリセミック緊急度指数の判定にいくつかの因子を用いるシステムおよび方法を開示し、因子は、測定された血糖レベルならびに他の因子に基づき得る。同システムはポンプの駆動に使用され得る。
上記の背景にも関わらず、低血糖症の恐れを低減するために当技術分野でなお必要とされるのは、継続インスリン投薬計画を行っている対象の将来の低血糖イベントのリスクを推定するための信頼性の高いデバイスおよび方法であり、継続インスリン投薬計画は、1つまたは複数のタイプのインスリン薬剤によるインスリン薬剤投与計画を含む。
本発明の開示では、上記の目的の1つもしくは複数に対処する、または以下の開示ならびに例示的実施形態の説明から明らかになる目的に対処する、実施形態および態様が説明される。
第1の態様では、継続インスリン投薬計画を行っている対象の将来の低血糖イベントのリスクを推定するためのデバイスが提供され、継続インスリン投薬計画は、1つまたは複数のタイプのインスリン薬剤投与計画を含み、1つまたは複数のタイプのインスリン薬剤投与計画の各々は、1つまたは複数のタイプのインスリン薬剤を定義するインスリン薬剤のタイプを含み、
デバイスは、1つまたは複数のプロセッサと、メモリとを備え、メモリは、
1つまたは複数のタイプのインスリン薬剤と、インスリン薬剤のタイプの各々について、時間の関数として対象の体内に残留するインスリンを予測するための、それぞれのインスリン薬剤の持続時間によって特徴付けられる作用持続時間プロファイルであって、インスリン薬剤のタイプは、対応する注射イベントが持続時間以内のタイムスタンプを有しているときに残存インスリン評価に寄与することができる、インスリン薬剤および作用持続時間プロファイルと、
過去の時間的経過内の時間の関数としての対象の過去の残存インスリンデータと、過去の時間的経過内に取得された対象の過去のグルコース測定値および対応するタイムスタンプとを含む、過去のデータセットであって、過去のグルコース測定値および対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価された過去のグルコース濃度と、時間の関数としての評価された過去のグルコースの変化率とを取得するように構造化され、過去の時間的経過は、対象が継続インスリン投薬計画を遵守していた複数の過去の遵守時間期間を含む、過去のデータセットと、
過去のデータセットから取得される複数の過去の時間期間記録であって、過去の時間期間記録の各々は、対象の同定された過去の代謝状態と、過去の血糖イベントとを含み、過去の代謝状態は、過去の血糖イベントによって同定することができ、過去の血糖イベントは、過去のデータセットの過去のグルコース測定値のパターン、それぞれのタイプの代謝状態、および継続インスリン投薬計画への対応する過去の遵守時間期間として同定することができ、対応する過去の遵守時間期間は、複数の過去の遵守時間期間のうちの1つである、過去の時間期間記録と
を記憶し、
メモリはさらに、1つまたは複数のプロセッサによって実行されたときに方法を行う命令を記憶し、方法は、
継続インスリン投薬計画を適用するために対象によって使用される1つまたは複数のインスリン注射デバイスから第1のデータセットを取得することであって、第1のデータセットは、過去の時間的経過の後の時間的経過にわたる複数のインスリン薬剤記録を含み、複数の薬剤記録の各それぞれのインスリン薬剤記録は、
(i)1つまたは複数のインスリン注射デバイスのそれぞれのインスリン注射デバイスを使用して対象に注射されたインスリン薬剤の量を含む、それぞれのインスリン薬剤注射イベントと、
(ii)それぞれのインスリン薬剤注射イベントの発生時にそれぞれのインスリン注射デバイスによって自動的に生成される、上記時間的経過内の対応する電子注射イベントタイムスタンプと、
(iii)1つまたは複数のタイプのインスリン薬剤から対象に注射されたそれぞれのタイプのインスリン薬剤と、
を含む、第1のデータセットを取得することと、
対象の複数の自律的グルコース測定値と、複数の自律的グルコース測定値の各それぞれの自律的グルコース測定値について、それぞれの測定値がいつ取られたかを表すグルコース測定タイムスタンプとを含む第2のデータセットを取得することであって、グルコース測定値および対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価されたグルコース濃度と、時間の関数としてのグルコースの変化率とを取得するように構造化されている、第2のデータセットを取得することと、
対象に関連付けられた現在の血糖イベントを取得するために第2のデータセットを使用することであって、現在の血糖イベントは、第1のデータセットの自律的グルコース測定値のパターンとして同定することができ、現在の血糖イベントは、対象の現在の代謝状態の評価に関係する評価期間の始まりを同定し、現在の代謝状態は、それぞれのタイプの代謝状態を有している、第2のデータセットを使用することと、
所与の時刻における対象に関連付けられた現在の血糖イベントの同定に応答して、評価期間内の評価時刻における低血糖リスクを評価することであって、評価することが、
現在の代謝状態の代謝状態のタイプを取得するために第2のデータセットを使用すること、
対象の評価された残存インスリンを取得するために第1のデータセットを使用することであって、評価された残存インスリンは、評価時刻までのそれぞれのインスリン薬剤の持続時間内にあり、したがって残存インスリンに寄与する注射イベントタイムスタンプを有する第1のデータセット内の薬剤記録によって指示される、対象に注射されたインスリン薬剤の総量から計算され、評価は、注射されたインスリン薬剤の総量を指示する薬剤記録の作用持続時間プロファイルを利用する、第1のデータセットを使用すること、
第2のデータセットを使用して、
(i)評価時刻における評価されたグルコース濃度と、
(ii)評価時刻における評価されたグルコースの変化率と、
を取得すること、
によって行われる、低血糖リスクを評価することと、
評価された変化率が負であることに応答して、
上記複数の過去の時間期間記録を使用して、
(i)現在の代謝状態と同じタイプの代謝状態を有する過去の代謝状態を含む過去の時間期間記録を選択することによる、対象の基準の過去の代謝状態であって、選択された過去の時間期間記録は、基準の過去の時間期間記録を定義する、基準の過去の代謝状態と、
(ii)基準の過去の時間期間記録に対応する、基準の過去の時間期間と、
(iii)基準の過去の時間期間内で時刻を選択することによる、基準の過去の時刻であって、基準の過去の時刻における基準の過去の代謝状態の進行は、評価時刻における現在の代謝状態の進行に相当する、基準の過去の時刻と
を取得することと、
低血糖リスク尺度を推定することであって、低血糖リスク尺度は、真であるバイナリリスク式の個数による増加関数であり、
バイナリリスク式は、
(i)評価されたグルコース濃度が、基準の過去の時刻に評価された、評価された過去のグルコース濃度より低い、
(ii)評価されたグルコースの変化率が、基準の過去の時刻に評価された、グルコースの評価された過去の変化率より数値的に大きい、
(iii)評価時刻に評価された、評価された残存インスリンが、基準の過去の時刻に評価された、評価された過去の残存インスリンより多い
ことである、低血糖リスク尺度を推定すること
からなる方法である、デバイス。
これにより、ペンを用いて適用され、自律的グルコース測定を使用して制御される継続インスリン投薬計画を行っている対象の将来の低血糖イベントのリスクを推定するための、信頼性の高いデバイスが提供される。遵守していた期間のみ、かつ低血糖イベントが発生していないときに、対象に対して取得されたデータに関係する過去のデータを使用することにより、比較のための、および現在の状況におけるリスク尺度を推定するためのデータが最適化されることが保証される。
いくつかの実施形態では、同定される血糖イベントは、最大グルコースレベルとして同定され、食後の代謝状態に関係付けられる。いくつかの実施形態では、対象に関連付けられた現在の血糖イベントを同定するために第2のデータセットを使用するステップは、第2のデータセットを使用して最大グルコース濃度を同定することをさらに含む。このステップは、ユーザもしくは対象による食事の指示を受け取ったことに応答して、または第2のデータセット内で食事の摂取を同定することにより、行われる。上記方法は、同定された最大グルコース濃度に対応する最大グルコース濃度の時刻を同定し、それにより評価期間(260)の始まりを同定することをさらに含み、現在の代謝状態は食後状態である。
いくつかの実施形態では、同定される血糖イベントは、現在の空腹時期間に関係付けられ、代謝状態は、空腹によって特徴付けられる代謝状態である。いくつかの実施形態では、被験者対象に関連付けられた現在の血糖イベントを識別同定するために第2のデータセットを使用するステップは、分散の移動期間を評価することをさらに含む。分散の移動期間が事前定義された選択基準を満たしたことに応答して、この分散の移動期間は、評価期間の始まりの指示として選択される。選択された評価された分散の移動期間は、選択された分散の移動期間を定義する。
いくつかの実施形態では、上記デバイスはさらに、評価期間の始まりを、選択された分散の移動期間の始まりに対応する時刻として同定するステップを行うように適合される。現在の代謝状態は、現在の空腹時期間として定義される。
いくつかの実施形態では、複数の自律的グルコース測定値にわたる分散の移動期間
Figure 2020504352
を評価することが、次の関係、
Figure 2020504352
を使用することを含み、ここで、Gは、複数の自律的グルコース測定値の部分kにおけるi番目の自律的グルコース測定値であり、Mは、複数の自律的グルコース測定値中の自律的グルコース測定値の数であり、連続した所定の時間スパンを表し、
Figure 2020504352
は、複数の自律的グルコース測定値から選択された自律的グルコース測定値の平均値であり、kは、第1の時間期間内にある。事前定義された選択基準は、分散の移動期間
Figure 2020504352
が所定の閾値より小さいことである。
いくつかの実施形態では、インスリン薬剤投与計画は、短時間作用型インスリン薬剤によるボーラスインスリン薬剤投与計画と、長時間作用型インスリン薬剤による基礎インスリン薬剤投与計画とを含む。上記1つまたは複数のタイプのインスリン薬剤の作用持続時間プロファイルは、短時間作用型インスリン薬剤の持続時間によって特徴付けられる短時間作用型インスリン薬剤のボーラス作用持続時間プロファイルと、長時間作用型インスリン薬剤の持続時間によって特徴付けられる長時間作用型インスリン薬剤の基礎作用持続時間プロファイルとを含む。第1のデータセットを使用して、対象の評価された残存インスリンを計算するステップは、短時間作用型インスリン薬剤に関係する残存インスリンを、長時間作用型インスリン薬剤に関係する残存インスリンに加算することをさらに含む。短時間作用型インスリン薬剤に関係する残存インスリンは、評価時刻までの短時間作用型インスリン薬剤の持続時間内にある注射イベントタイムスタンプを有する第1のデータセット内の薬剤記録によって指示される、対象に注射された短時間作用型インスリン薬剤の総量から計算される。長時間作用型インスリン薬剤に関係する残存インスリンは、評価時刻までの長時間作用型インスリン薬剤の持続時間内にある注射イベントタイムスタンプを有する第1のデータセット内の薬剤記録によって指示される、対象に注射された長時間作用型インスリン薬剤の総量から計算される。
いくつかの実施形態では、上記方法は、低血糖リスク尺度を、デバイスのユーザ、対象、または健康管理専門家、または対象に関係する人物に通信することをさらに含む。
いくつかの実施形態では、上記デバイスは、推定される低血糖リスク尺度の重篤度尺度を推定するステップをさらに含み、重篤度thypoを評価することが、次の関係、
Figure 2020504352
を使用することを含み、ここで、Glowは、グルコースレベルの下限であり、Gは、評価時刻におけるグルコースレベルであり、hは、グルコースの評価された変化率である。
いくつかの実施形態では、バイナリリスク式は、評価時刻(261)における残存インスリンの評価された変化率が負であり、かつ、基準の過去の時刻に評価された、残存インスリンの評価された過去の変化率より数値的に小さく、基準の過去の時刻に評価された、残存インスリンの評価された過去の変化率も負であることをさらに含む。
いくつかの実施形態では、バイナリリスク式は、評価時刻(261)における残存インスリンの評価された変化率が正であり、かつ、基準の過去の時刻に評価された、残存インスリンの評価された過去の変化率より数値的に大きく、基準の過去の時刻に評価された、残存インスリンの評価された過去の変化率も正であることをさらに含む。
いくつかの実施形態では、バイナリリスク式は、評価時刻における残存インスリンの評価された変化率が正であり、かつ、基準の過去の時刻に評価された、残存インスリンの評価された過去の変化率が負であることをさらに含む。
継続インスリン投薬計画が基礎インスリン薬剤投与計画を含むいくつかの実施形態では、遵守期間は、未フィルタリングの過去の血糖データセット中で過去の血糖イベントを同定することによって同定することができる。これらの実施形態では、メモリはさらに、第1の未フィルタリングの過去のデータセットである未フィルタリングの過去のインスリン薬剤データセットと、第2の未フィルタリングの過去のデータセットである未フィルタリングの過去の血糖データセットとを記憶している。上記方法は、対象の複数の過去の自律的グルコース測定値と、第2の未フィルタリングの過去のデータセット内のそれぞれのタイムスタンプとを使用して、過去の血糖イベントを複数の過去の空腹時イベントとして同定することと、
複数の空腹時イベントの各それぞれの過去の空腹時イベントに第1の特徴付けを適用することと
を含み、
第1の特徴付けは、基礎投薬計画の遵守と基礎投薬計画の不遵守とのうちの1つであり、
それぞれの過去の空腹時イベントは、第1の未フィルタリングの過去のデータセットが、それぞれの過去の空腹時イベント中に継続基礎インスリン薬剤投与計画を遵守していたことを時間の面および量の面で立証する1つまたは複数の薬剤記録を含むときに、基礎投薬計画の遵守とみなされ、
それぞれの過去の空腹時イベントは、第1の未フィルタリングの過去のデータセットが、それぞれの過去の空腹時イベント中に継続基礎インスリン薬剤投与計画を遵守していたことを時間の面および量の面で立証する1つまたは複数の薬剤記録を含まないときに、基礎投薬計画の不遵守とみなされ、
過去のデータセットは、基礎投薬計画の遵守とみなされる過去の空腹時イベントと同じ時間の第2の未フィルタリングの過去のデータセット内のグルコース測定値に基づくと共に、基礎投薬計画の不遵守とみなされる過去の空腹時イベントと同じ時間の第2の未フィルタリングの過去のデータセット内のグルコース測定値を除外することによる。
いくつかの実施形態では、継続インスリン投薬計画は、ボーラスインスリン薬剤投与計画をさらに含む。上記方法は、
第2の過去の未フィルタリングデータセット内の複数の過去の自律的グルコース測定値および対応するタイムスタンプを使用して、過去の血糖イベントを複数の食事イベントとして同定することと、
複数の過去の食事イベントの各それぞれの過去の食事イベントに、第2の特徴付けを適用することと
をさらに含み、
第2の特徴付けは、ボーラス投薬計画の遵守とボーラス投薬計画の不遵守とのうちの1つであり、
それぞれの過去の食事イベントは、第1の未フィルタリングの過去のデータセット内の1つまたは複数の過去の薬剤記録が、それぞれの食事時に継続ボーラスインスリン薬剤投与計画を遵守していたことを、時間の面で、量の面で、およびインスリン薬剤のタイプの面で指示するときに、ボーラス投薬計画の遵守とみなされ、
それぞれの食事は、複数の過去の薬剤記録が、それぞれの食事時に継続ボーラスインスリン薬剤投与計画を遵守していたことを、時間の面で、量の面で、およびインスリン薬剤のタイプの面で指示しないときに、ボーラス投薬計画の不遵守とみなされ、
過去のデータセットは、基礎投薬計画の遵守とみなされる過去の食事イベントと同じ時間の第2の未フィルタリングの過去のデータセット内のグルコース測定値に基づくと共に、基礎投薬計画の不遵守とみなされる過去の食事イベントと同じ時間の第2の未フィルタリングの過去のデータセット内のグルコース測定値を除外することによる。
上記デバイスのさらなる態様では、過去のグルコース測定値のパターンは、最大グルコース値、分散の最小期間、または最小の平均の期間とすることができる。
上記デバイスのさらなる態様では、自律的グルコース測定値のパターンは、最大グルコース値、分散の最小期間、または最小の平均の期間とすることができる。
上記デバイスのさらなる態様では、過去の血糖イベントは、過去のグルコース測定値のパターンによって同定することができる過去のグルコースイベントタイプを含む。
上記デバイスのさらなる態様では、血糖イベントは、食事イベントおよび最大グルコース値の指示として同定される食事イベントタイプとすることができる。
上記デバイスのさらなる態様では、食事イベントの指示は、デバイスのユーザからの直接の入力として取得することができ、または、食事イベントの指示は、第2のデータセット内の自律的グルコース測定値の評価によって取得される。
上記デバイスのさらなる態様では、血糖イベントは、自律的グルコース測定値のパターンとして同定することができる血糖イベントタイプを含む。
上記デバイスのさらなる態様では、血糖イベントは、分散の最小期間の指示として同定される空腹時イベントタイプとすることができる。
上記デバイスのさらなる態様では、現在の代謝状態の代謝状態のタイプを取得するために第2のデータセットを使用することは、現在の血糖イベントを同定し、対応する現在の血糖イベントの血糖イベントタイプを代謝状態に割り当てることを含む。
本発明はさらに、継続インスリン投薬計画を行っている対象の将来の低血糖イベントのリスクを推定するための方法を提供し、継続インスリン投薬計画は、1つまたは複数のタイプのインスリン薬剤投与計画を含み、1つまたは複数のタイプのインスリン薬剤投与計画の各々は、1つまたは複数のタイプのインスリン薬剤を定義するインスリン薬剤のタイプを含み、方法は、
デバイスを使用すること
を含み、
デバイスは、1つまたは複数のプロセッサと、メモリとを備え、メモリは、
インスリン薬剤のタイプの各々について、時間の関数として対象の体内に残留するインスリンを予測し、それぞれのインスリン薬剤の持続時間によって特徴付けられる作用持続時間プロファイルと、
過去の時間的経過内の時間の関数としての対象の過去の残存インスリンデータと、過去の時間的経過内に取得された対象の過去のグルコース測定値および対応するタイムスタンプとを含む、過去のデータセットであって、過去のグルコース測定値および対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価された過去のグルコース濃度と、時間の関数としての評価された過去のグルコースの変化率とを取得するように構造化され、過去の時間的経過は、対象が継続インスリン投薬計画を遵守していた複数の過去の遵守時間期間を含む、過去のデータセットと、
複数の過去の時間期間記録であって、過去の時間期間記録の各々は、対象の同定された過去の代謝状態と、それぞれのタイプの代謝状態と、対応する過去の遵守時間期間とを含み、対応する過去の遵守時間期間は、複数の過去の遵守時間期間のうちの1つである、過去の時間期間記録と
を記憶し、
メモリはさらに、1つまたは複数のプロセッサによって実行されたときに方法を行う命令を記憶し、方法は、
継続インスリン投薬計画を適用するために対象によって使用される1つまたは複数のインスリン注射デバイスから第1のデータセットを取得することであって、第1のデータセットは、時間的経過にわたる複数のインスリン薬剤記録を含み、複数の薬剤記録の各それぞれのインスリン薬剤記録は、
(i)1つまたは複数のインスリン注射デバイスのそれぞれのインスリン注射デバイスを使用して対象に注射されたインスリン薬剤の量を含む、それぞれのインスリン薬剤注射イベントと、
(ii)それぞれのインスリン薬剤注射イベントの発生時にそれぞれのインスリン注射デバイスによって自動的に生成される、上記時間的経過内の対応する電子注射イベントタイムスタンプと、
(iii)1つまたは複数のタイプのインスリン薬剤から対象に注射されたそれぞれのタイプのインスリン薬剤と、
を含む、第1のデータセットを取得することと、
対象の複数の自律的グルコース測定値と、複数の自律的グルコース測定値の各それぞれの自律的グルコース測定値について、それぞれの測定値がいつ取られたかを表すグルコース測定タイムスタンプとを含む第2のデータセットを取得することであって、グルコース測定値および対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価されたグルコース濃度と、時間の関数としてのグルコースの変化率とを取得するように構造化されている、第2のデータセットを取得することと、
被験者対象に関連付けられた現在の血糖イベントを取得するために第2のデータセットを使用することであって、現在の血糖イベントは、対象の現在の代謝状態の評価に関係する評価期間の始まりを指示し、現在の代謝状態は、それぞれのタイプの代謝状態を有している、第2のデータセットを使用することと、
所与の時刻における対象に関連付けられた現在の血糖イベントの同定に応答して、評価期間内の評価時刻における低血糖リスクを評価することであって、評価することが、
現在の代謝状態の代謝状態のタイプを取得するために第2のデータセットを使用すること、
被験者対象の評価された残存インスリンを取得するために第1のデータセットを使用することであって、評価された残存インスリンは、評価時刻までのそれぞれのインスリン薬剤の持続時間内にある注射イベントタイムスタンプを有する第1のデータセット内の薬剤記録によって指示される、対象に注射されたインスリン薬剤の総量から計算され、評価は、当該指示する薬剤記録の作用持続時間プロファイルを利用する、第1のデータセットを使用すること、
第2のデータセットを使用して、
(i)評価時刻における評価されたグルコース濃度と、
(ii)評価時刻における評価されたグルコースの変化率と
を取得すること
によって行われる、低血糖リスクを評価することと、
評価された変化率が負であることに応答して、
複数の時間期間記録を使用して、
(i)現在の代謝状態と同じタイプの代謝状態を有する過去の代謝状態を含む過去の時間期間記録を選択することによる、対象の基準の過去の代謝状態であって、選択された過去の時間期間記録は、基準の過去の時間期間記録を定義する、基準の過去の代謝状態と、
(ii)基準の過去の時間期間記録に対応する、基準の過去の時間期間と、
(iii)基準の過去の時間期間内で時刻を選択することによる、基準の過去の時刻であって、基準の過去の時刻における基準の過去の代謝状態の進行は、評価時刻における現在の代謝状態の進行に相当する、基準の過去の時刻と
を取得することと、
低血糖リスク尺度を推定することであって、低血糖リスク尺度は、真であるバイナリリスク式の個数による増加関数であり、
バイナリリスク式は、
(i)評価されたグルコース濃度が、基準の過去の時刻に評価された、評価された過去のグルコース濃度より低い、
(ii)評価されたグルコースの変化率が、基準の過去の時刻に評価された、グルコースの評価された過去の変化率より数値的に大きい、
(iii)評価時刻に評価された、評価された残存インスリンが、基準の過去の時刻に評価された、評価された過去の残存インスリンより多い
ことである、低血糖リスク尺度を推定すること
からなる方法である。
さらなる態様では、1つまたは複数のプロセッサとメモリとを有するコンピュータによって実行されたときに本開示に係る方法を行う命令を備えたコンピュータプログラムが提供される。
さらなる態様では、本開示に係るコンピュータプログラムが記憶されているコンピュータ可読データ担持体が提供される。
継続インスリン投薬計画を行っている対象のための低血糖リスク推定デバイスと、患者データを収集するためのデータ収集デバイスと、対象からグルコースデータを測定する1つまたは複数のグルコースセンサと、継続インスリン投薬計画に従ってインスリン薬剤を注射するために対象によって使用される1つまたは複数のインスリンペンとを含む例示的なシステムトポロジーを示す図であり、上記で同定される構成要素は、本開示の一実施形態によれば、任意選択で通信ネットワークを通じて、相互に接続される。 本開示の一実施形態に係る、継続インスリン投薬計画を行っている対象の低血糖イベントのリスクを推定するためのデバイスをまとめて示す図である。 本開示の一実施形態に係る、継続インスリン投薬計画を行っている対象の低血糖イベントのリスクを推定するためのデバイスをまとめて示す図である。 本開示の別の実施形態に係る、継続インスリン投薬計画を行っている対象の低血糖イベントのリスクを推定するためのデバイスを示す図である。 本開示の別の実施形態に係る、継続インスリン投薬計画を行っている対象の低血糖イベントのリスクを推定するためのデバイスを示す図である。 継続インスリン投薬計画を行っている対象の低血糖イベントのリスクを推定するためのデバイスのプロセスおよび機構のフローチャートである。 本開示の一実施形態に係る、食事イベントとの関係で低血糖リスクを推定する方法を示す図である。 本開示の別の実施形態に係る、食事イベントとの関係で低血糖リスクを推定する方法を示す図である。 評価時における低血糖リスクの重篤度を推定する方法を示す図である。
同様の参照番号は、図面のいくつかの図すべてを通じて対応する部分を参照する。
本開示は、第1および第2のデータセットの獲得に依拠する。第1のデータセットは、時間的経過にわたって取られた複数のインスリン薬剤記録を含む。複数の薬剤記録の各それぞれのインスリン薬剤記録は、(i)1つまたは複数のインスリン注射デバイスのそれぞれのインスリン注射デバイスを使用して対象に注射されたインスリン薬剤の量を含むそれぞれのインスリン薬剤注射イベントと、(ii)それぞれのインスリン薬剤注射イベントの発生時にそれぞれのインスリン注射デバイスによって自動的に生成される、上記時間的経過内の対応する電子注射イベントタイムスタンプと、(iii)1つまたは複数のタイプのインスリン薬剤の1つから対象に注射されたそれぞれのタイプのインスリン薬剤とを含む。第2のデータセットは、対象の複数の自律的グルコース測定値と、複数の自律的グルコース測定値の各それぞれの自律的グルコース測定値について、当該それぞれの測定値がいつ取られたかを表すグルコース測定タイムスタンプとを含む。
図1は、そのようなデータを獲得するための一体型システム100の例を例示する。一体型システム100は、注射デバイスの例である、1つまたは複数の接続されたインスリンペン104を含む。図1はさらに、1つまたは複数のグルコースセンサまたはモニタ102と、メモリ(図示せず)と、継続インスリン投薬計画206を行っている対象の将来の低血糖イベントのリスクを推定するためのプロセッサ(図示せず)とを例示し、継続インスリン投薬計画は、1つまたは複数のタイプのインスリン薬剤210によるインスリン薬剤投与計画208を含む。
一体型システム100を用いると、対象に継続インスリン投薬計画を適用するために使用される1つまたは複数のインスリンペン104からのデータが、複数のインスリン薬剤記録として取得される。各インスリン薬剤記録は、対象が継続インスリン薬剤投与計画の一部として受けた注射されたインスリン薬剤の量を特定する、タイムスタンプが付与されたイベントを含む。また、対象の持続的で自律的なタイムスタンプの付されたグルコース測定値が取得される。自律的グルコース測定値は、持続的にフィルタリングされ、メモリに記憶される。時間的経過にわたって取られた対象の複数のインスリン薬剤記録およびグルコース測定値は、本開示の方法に従って、将来の低血糖イベントのリスクをリアルタイムまたは近リアルタイムで推定するために使用される。
以下で実施形態を詳細に参照し、実施形態の例は添付図面に例示される。以下の詳細な説明では、本開示の完全な理解を提供するために多数の具体的な詳細が述べられる。しかし、本開示はそれらの具体的な詳細を伴わずに実施され得ることが当業者には明らかであろう。他の事例では、よく知られている方法、手順、構成要素、回路、およびネットワークについては、実施形態の態様を不必要に曖昧にしないために詳細には説明していない。
また、第1、第2等の用語は、本明細書では様々な要素を説明するために使用されることがあるが、それらの要素はそれらの用語によって制限されるべきでないことも理解されよう。それらの用語は、単に、ある要素を別の要素から区別するために使用される。例えば、本開示の範囲から逸脱することなく、第1の対象が第2の対象と呼ばれてもよく、同様に第2の対象が第1の対象と呼ばれてもよい。第1の対象および第2の対象は共に対象であるが、同じ対象ではない。さらに、用語「対象」、「ユーザ」、および「患者」は、本明細書では交換可能に使用される。用語インスリンペンは、個別の用量のインスリンを適用するのに適した注射デバイスを意味し、ここで、注射デバイスは、用量に関係するデータをログに記録し、通信するために適合される。
本開示で使用される術語は、特定の実施形態を説明することのみを目的とし、本発明を制限する意図はない。本発明の説明および添付の特許請求の範囲で使用される場合、単数形の「a」、「an」、および「the」は、文脈が明確に別途指示しない限り、複数形も含むことが意図される。また、本明細書で使用される用語「および/または」は、関連する列挙された項目のうち1つまたは複数のあらゆる可能な組み合わせを指し、包含することも理解されよう。さらに、本明細書で使用される場合、用語「〜を備える/含む(comprises)」および/または「〜を備える/含む(comprising)」は、述べられる特徴、整数、ステップ、動作、要素、および/または構成要素の存在を特定するが、1つもしくは複数の他の特徴、整数、ステップ、動作、要素、構成要素および/またはそれらの群の存在または追加を排除しないことが理解されよう。
本明細書で使用される場合、用語「〜場合(if)」は、文脈に応じて、「〜とき」、または「〜すると」、または「〜と判定するのに応答して」、または「〜を検出するのに応答して」を意味するものと解釈されてよい。同様に、表現「〜と判定された場合」または「[述べられる条件またはイベント]が検出された場合」は、文脈に応じて、「〜と判定すると」、または「〜と判定するのに応答して」、または「[述べられる条件またはイベント]を検出すると」、または「[述べられる条件またはイベント]を検出するのに応じて」を意味するものと解釈されてよい。
本開示に係る対象の将来の低血糖イベントのリスクを推定するためのシステム48の詳細な説明は、図1〜3との関連で説明される。そのため、図1〜3は、本開示に係るシステムのトポロジーをまとめて例示している。このトポロジーには、対象の将来の低血糖イベントのリスクを推定するリスク推定デバイス(図1、図2、および図3)と、データ収集のためのデータ収集デバイス200と、対象にインスリン薬剤を注射するための1つまたは複数のインスリンペン104と、任意選択で、対象に関連付けられた1つまたは複数のグルコースセンサ102と、がある。本開示の全体を通じて、データ収集デバイス200およびリスク推定デバイス250は、単に明瞭性のために別々のデバイスとして参照される。すなわち、データ収集デバイス200の開示される機能性と、リスク推定デバイス250の開示される機能性とは、図1に例示されるように別々のデバイスに収容されている。しかし、実際には、いくつかの実施形態では、データ収集デバイス200の開示される機能性と、リスク推定デバイス250の開示される機能性とが単一のデバイスに収容されることが認識されよう。いくつかの実施形態では、データ収集デバイス200の開示される機能性および/またはリスク推定デバイス250の開示される機能性は、単一のデバイスに収容され、この単一のデバイスはインスリンペン104である。
図1を参照すると、リスク推定デバイス250は、対象の将来の低血糖イベントのリスクを推定する。これを行うために、データ収集デバイス200は、リスク推定デバイス250と電気通信し、第1のデータセット220および第2のデータセット235を受信する。第1のデータセット220は、時間的経過にわたる複数のインスリン薬剤記録を含み、各記録は、(i)1つまたは複数のインスリン注射デバイスのそれぞれのインスリン注射デバイスを使用して対象に注射されたインスリン薬剤の量を含む、それぞれのインスリン薬剤注射イベントと、(ii)それぞれのインスリン薬剤注射イベントの発生時にそれぞれのインスリン注射デバイスによって自動的に生成される、上記時間的経過内の対応する電子注射イベントタイムスタンプと、(iii)1つまたは複数のタイプのインスリン薬剤の1つから対象に注射されたそれぞれのタイプのインスリン薬剤とを含む。第2のデータセット235は、対象の複数の自律的グルコース測定値と、それら複数の自律的グルコース測定値の各それぞれの自律的グルコース測定値について、当該それぞれの測定値がいつ取られたかを表すグルコース測定タイムスタンプとを含む。いくつかの実施形態では、データ収集デバイス200は、そのようなデータを、対象によって使用されるインスリンペン104および/またはグルコースセンサ102から直接受信する。例として、いくつかの実施形態では、データ収集デバイス200は、このデータを、無線周波信号を通じてワイヤレスに受信する。いくつかの実施形態では、そのような信号は、802.11(WiFi)、Bluetooth、またはZigBee規格に準拠している。いくつかの実施形態では、データ収集デバイス200は、そのようなデータを直接受信し、データを分析し、分析されたデータをリスク推定デバイス250に渡す。いくつかの実施形態では、インスリンペン104および/またはグルコースセンサ102は、RFIDタグを含み、RFID通信を使用してデータ収集デバイス2006および/またはリスク推定デバイス250と通信する。いくつかの実施形態では、データ収集デバイス200は、対象の生理学的測定値も取得または受信する(例えば、装着型の生理学的測定デバイスから、データ収集デバイス200内の磁力計や温度計等の測定デバイスから等)。
いくつかの実施形態では、データ収集デバイス200および/またはリスク推定デバイス250は、対象に近接しておらず、および/またはワイヤレス能力を有していないか、もしくは、そのようなワイヤレス能力が、インスリン薬剤注射データ、自律的グルコースデータ、および/または生理学的測定データを獲得する目的に使用されない。そのような実施形態では、通信ネットワーク106を使用して、インスリン薬剤注射データを1つまたは複数のインスリンペン104からデータ収集デバイス200および/もしくはリスク推定デバイス250に、ならびに/または自律的グルコース測定値をグルコースセンサ102からデータ収集デバイス200および/もしくはリスク推定デバイス250に、ならびに/または生理学的測定データを1つもしくは複数の生理学的測定デバイス(図示せず)からデータ収集デバイス200および/もしくはリスク推定デバイス250に、通信し得る。
ネットワーク106の例には、これらに限定されないが、ワールドワイドウェブ(WWW)、イントラネット、および/またはセルラー電話ネットワーク、ワイヤレスローカルエリアネットワーク(LAN)および/またはメトロポリタンエリアネットワーク(MAN)などのワイヤレスネットワーク、ならびにワイヤレス通信による他のデバイスが含まれる。ワイヤレス通信は、任意選択で、複数の通信規格、プロトコル、および技術のうち任意のものを使用し、それらには、これらに限定されないが、Global System for Mobile Communications(GSM)、Enhanced Data GSM Environment(EDGE)、高速ダウンリンクパケットアクセス(HSDPA)、高速アップリンクパケットアクセス(HSUPA)、Evolution、Data−Only(EV−DO)、HSPA、HSPA+、Dual−Cell HSPA(DC−HSPDA)、ロングタームエボリューション(LTE)、近距離通信(NFC)、広帯域符号分割多重接続(W−CDMA)、符号分割多重接続(CDMA)、時分割多重接続(TDMA)、Bluetooth、Wireless Fidelity(Wi−Fi)(例えば、IEEE 802.11a、IEEE 802.11ac、IEEE 802.11ax、IEEE 802.11b、IEEE 802.11g、および/またはIEEE 802.11n)、voice over Internet Protocol(VoIP)、Wi−MAX、電子メール用のプロトコル(例えばInternet Message Access Protocol(IMAP)および/またはPost Office Protocol(POP))、インスタントメッセージング(例えば拡張可能メッセージングおよびプレゼンスプロトコル(XMPP)、Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions(SIMPLE)、Instant Messaging and Presence Service(IMPS))、および/もしくはShort Message Service(SMS)、または本開示の出願日の時点でまだ開発されていない通信プロトコルを含む任意の他の適切な通信プロトコルが含まれる。
いくつかの実施形態では、データ収集デバイス200および/またはリスク推定デバイス250は、インスリンペンの一部である。すなわち、いくつかの実施形態では、データ収集デバイス200および/またはリスク推定デバイス250ならびにインスリンペン104が、単一のデバイスである。
いくつかの実施形態では、対象に取り付けられる単一のグルコースセンサ102があり、データ収集デバイス200および/またはリスク推定デバイス250は、このグルコースセンサ102の一部である。すなわち、いくつかの実施形態では、データ収集デバイス200および/またはリスク推定デバイス250ならびにグルコースセンサ102が、単一のデバイスである。
無論、システム48の他のトポロジーが可能である。例として、通信ネットワーク106に依拠するのではなく、1つまたは複数のインスリンペン104、および任意選択の1つまたは複数のグルコースセンサ102は、データ収集デバイス200および/またはリスク推定デバイス250に対して直接ワイヤレスに情報を送信してもよい。さらに、データ収集デバイス200および/またはリスク推定デバイス250は、携帯型電子デバイス、サーバコンピュータを構成するか、または、実際に、ネットワーク内で共にリンクされたいくつかのコンピュータを構成するか、もしくはクラウドコンピューティングの文脈における仮想機械であってもよい。そのため、図1に示す例示的トポロジーは、当業者に容易に理解される形で本開示の実施形態の特徴を説明する役割を果たすに過ぎない。
図2を参照すると、典型的な実施形態では、リスク推定デバイス250は、1つまたは複数のコンピュータを備える。図2における例示の目的で、リスク推定デバイス250は、継続インスリン投薬計画206を行っている対象の将来の低血糖イベントのリスクを推定するためのすべての機能性を含む単一のコンピュータとして表されている。しかし、本開示はそのように制限されない。いくつかの実施形態では、継続インスリン投薬計画206を行っている対象の将来の低血糖イベントのリスクを推定するための機能性は、任意数のネットワーク接続されたコンピュータに分散され、および/またはいくつかのネットワーク接続されたコンピュータの各々に存在し、および/または通信ネットワーク106を介してアクセス可能な遠隔の場所にある1つもしくは複数の仮想機械にホストされる。当業者は、幅広い種々のコンピュータトポロジーの任意のものが本願に使用され、すべてのそのようなトポロジーが本開示の範囲内にあることを認識されよう。
前述を念頭において図2に移ると、継続インスリン投薬計画206を行っている対象の将来の低血糖イベントのリスクを推定するための例示的なリスク推定デバイス250は、1つまたは複数の処理ユニット(CPU)274と、ネットワークまたは他の通信インターフェース284と、メモリ192(例えばランダムアクセスメモリ)と、1つまたは複数のコントローラ288から任意選択でアクセスされる1つまたは複数の磁気ディスク記憶および/または永続的デバイス290と、上述の構成要素を相互に接続するための1つまたは複数の通信バス213と、ユーザインターフェース278であって、ディスプレイ282および入力280(例えばキーボード、キーパッド、タッチ画面)を含むユーザインターフェース278と、上述の構成要素に電力を供給するための電源276とを備える。いくつかの実施形態では、メモリ192内のデータは、キャッシュなどの知られているコンピューティング技術を使用して、不揮発性メモリ290との間でシームレスに共有される。いくつかの実施形態では、メモリ192および/またはメモリ290は、中央処理ユニット274に対して遠隔に位置する大容量ストレージを含む。言い換えると、メモリ192および/またはメモリ290に記憶された一部のデータは、実際には、リスク推定デバイス250に対して外部にあるコンピュータであるがネットワークインターフェース284を使用してインターネット、イントラネット、もしくは他の形態のネットワーク、または電子ケーブル(図2では要素106として例示される)を通じてリスク推定デバイス250から電子的にアクセスできるコンピュータにホストされ得る。
いくつかの実施形態では、継続インスリン投薬計画206を行っている対象の将来の低血糖イベントのリスクを推定するためのリスク推定デバイス250のメモリ192は、以下を記憶する:
− 様々な基本的システムサービスを扱うための手順を含むオペレーティングシステム202;
− 投与リスク推定モジュール204;
− 1つまたは複数のタイプのインスリン薬剤投与計画208を含む継続インスリン投薬計画206であって、1つまたは複数のタイプのインスリン薬剤を定義するインスリン薬剤のタイプ210を各々が含む、継続インスリン投薬計画206;
− インスリン薬剤のタイプ210各々について、時間の関数として対象の体内に残留するインスリンを予測し、それぞれのインスリン薬剤の持続時間によって特徴付けられる作用持続時間プロファイル212;
− 過去の時間的経過内の時間の関数としての対象の過去の残存インスリンデータ219を含む、過去の遵守についてのフィルタリング後データセット218であって、過去の残存インスリンデータ219は、複数の過去のインスリン薬剤記録122から導出できる、過去の遵守についてのフィルタリング後データセット218;
− 上記過去の時間的経過内に取得された対象の過去のグルコース測定値240および対応するタイムスタンプ242であって、過去のグルコース測定値は、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価された過去のグルコース濃度と、時間の関数としての評価された過去のグルコースの変化率とを取得するように構造化されている、過去のグルコース測定値240および対応するタイムスタンプ242;
− 複数の過去の時間期間記録244であって、過去の時間期間記録の各々245は、同定された過去の代謝状態246と、それぞれのタイプの代謝状態247、すなわち食事イベントまたは空腹時イベントに関係する代謝状態と、対応する過去の遵守時間期間248とを含み、上記対応する過去の遵守時間期間(248)は、複数の過去の遵守時間期間のうちの1つである、複数の過去の時間期間記録244;
− 継続インスリン投薬計画206を適用するために対象によって使用される1つまたは複数のインスリン注射デバイスからの第1のデータセット220であって、第1のデータセット220は、時間的経過にわたる複数のインスリン薬剤記録を含み、複数の薬剤記録の各それぞれのインスリン薬剤記録222は、(i)1つまたは複数のインスリン注射デバイスのそれぞれのインスリン注射デバイス104を使用して対象に注射されたインスリン薬剤の量228を含むそれぞれのインスリン薬剤注射イベント224と、(ii)それぞれのインスリン薬剤注射イベント224の発生時にそれぞれのインスリン注射デバイス104によって自動的に生成される、上記時間的経過内の対応する電子注射イベントタイムスタンプ226と、(iii)1つまたは複数のタイプのインスリン薬剤の中から対象に注射されたそれぞれのタイプのインスリン薬剤230とを含む、第1のデータセット220;
− 対象の複数の自律的グルコース測定値と、複数の自律的グルコース測定値の各それぞれの自律的グルコース測定値236について、それぞれの測定値236がいつ取られたかを表すグルコース測定タイムスタンプ238とを含む第2のデータセット235であって、グルコース測定値および対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価されたグルコース濃度と、時間の関数としてのグルコースの変化率とを取得するように構造化されている、第2のデータセット235;
− 対象に関連付けられた現在の血糖イベント255であって、現在の血糖イベント255は、対象の現在の代謝状態256の評価に関係する評価期間260の始まりを指示し、現在の代謝状態256はそれぞれのタイプの代謝状態257を有している、現在の血糖イベント255;
− 評価期間260内の評価時刻261;
− 現在の代謝状態の代謝状態257のタイプ;
− 対象の評価された残存インスリン502であって、評価された残存インスリンは、評価時刻までのそれぞれのインスリン薬剤の持続時間内にある注射イベントタイムスタンプ226を有する第1のデータセット220内の薬剤記録222によって指示される、対象に注射されたインスリン薬剤の総量から計算され、評価は、当該指示している薬剤記録222の作用持続時間プロファイルを利用する、対象の評価された残存インスリン502;
− 評価時刻261における評価されたグルコース濃度263;
− 評価時刻261におけるグルコースの評価された変化率264;
− 複数の時間期間記録244のうちの過去の時間期間記録(245)から選択される、対象の基準の過去の代謝状態(265)。選択された過去の代謝状態は、現在の代謝状態256と同じタイプの代謝状態247を有する過去の代謝状態246を含み、選択された過去の時間期間記録245は、基準の過去の時間期間記録を定義する;
− 基準の過去の時間期間記録に対応する、基準の過去の時間期間266;
− 基準の過去の時間期間266内の時刻として選択される、基準の過去の時刻267であって、基準の過去の代謝状態265の進行は、評価時刻261における現在の代謝状態256の進行に相当する、基準の過去の時刻267;
− 低血糖リスク尺度299であって、低血糖リスク尺度299は、真であるバイナリリスク式の個数による増加関数として評価され、バイナリリスク式は、(i)評価されたグルコース濃度263が、基準の過去の時刻267に評価された、評価された過去のグルコース濃度270より低い、(ii)グルコースの評価された変化率264が、基準の過去の時刻267に評価された、グルコースの評価された過去の変化率264より数値的に大きい、(iii)評価時刻261に評価された、評価された残存インスリン262が、基準の過去の時刻267に評価された、評価された過去の残存インスリン272より多い、である。
いくつかの実施形態では、低血糖リスク推定モジュール204には、任意のブラウザ(電話、タブレット、ラップトップ/デスクトップ)内でアクセス可能である。いくつかの実施形態では、リスク推定モジュール204は、固有のデバイスフレームワークを実行し、AndroidまたはiOSなどのオペレーティングシステム202を走らせているリスク推定デバイス250にダウンロードすることが可能である。
いくつかの実装形態では、継続インスリン投薬計画206を行っている対象の将来の低血糖イベントのリスクを推定するためのリスク推定デバイス250の、上記で同定したデータ要素またはモジュールのうち1つまたは複数は、先に記載したメモリデバイスの1つまたは複数に記憶され、上記の機能を行うための命令のセットに対応する。上記で同定したデータ、モジュールまたはプログラム(例えば命令のセット)は、別々のソフトウェアプログラム、手順、またはモジュールとして実装される必要はなく、したがって、それらモジュールの様々なサブセットが様々な実装形態で組み合わせられるか、その他の形で再構成され得る。いくつかの実装形態では、メモリ192および/または290は、任意選択で、上記で同定したモジュールおよびデータ構造のサブセットを記憶する。さらに、いくつかの実施形態では、メモリ192および/または290は、上記に記載されない追加的なモジュールおよびデータ構造を記憶する。
いくつかの実施形態では、継続インスリン投薬計画206を行っている対象の将来の低血糖イベントのリスクを推定するためのリスク推定デバイス250は、スマートフォン(例えばiPHONE)、ラップトップ、タブレットコンピュータ、デスクトップコンピュータ、または他の形態の電子デバイス(例えばゲームコンソール)である。いくつかの実施形態では、リスク推定デバイス250は可動性ではない。いくつかの実施形態では、リスク推定デバイス250は可動性である。
図3は、本開示と共に使用することができる低血糖リスク推定デバイス250の特定の実施形態のさらなる説明を提供する。図3に例示されるリスク推定デバイス250は、1つまたは複数の処理ユニット(CPU)274、周辺インターフェース370、メモリコントローラ368、ネットワークまたは他の通信インターフェース284、メモリ192(例えばランダムアクセスメモリ)、ユーザインターフェース278、ディスプレイ282および入力280(例えばキーボード、キーパッド、タッチ画面)を含むユーザインターフェース278、任意選択の加速度計317、任意選択のGPS319、任意選択の音声回路構成372、任意選択のスピーカ360、任意選択のマイクロフォン362、リスク推定デバイス250(例えばリスク推定デバイス250のタッチセンシティブディスプレイシステム282などのタッチセンシティブ面)への接触の強度を検出する1つまたは複数の任意選択の強度センサ364、任意選択の入出力(I/O)サブシステム366、1つまたは複数の任意選択の光学センサ373、上述の構成要素を相互に接続するための1つまたは複数の通信バス213、および上述の構成要素に電力を供給するための電源276を有する。
いくつかの実施形態では、入力280は、タッチセンシティブ面などのタッチセンシティブディスプレイである。いくつかの実施形態では、ユーザインターフェース278は、1つまたは複数のソフトキーボード実施形態を含む。ソフトキーボード実施形態は、表示されるアイコン上での記号の標準的構成(QWERTY)および/または非標準的構成を含み得る。
図3に例示されるリスク推定デバイス250は、任意選択で、加速度計317に加えて、磁力計(図示せず)と、リスク推定デバイス250の場所および向き(例えば縦置きまたは横置き)に関する情報を取得するため、および/または対象による身体運動の量を判定するための、GPS319(またはGLONASSもしくは他の世界規模のナビゲーションシステム)受信器とを含む。
図3に例示されるリスク推定デバイス250は、継続インスリン投薬計画206を行っている対象の将来の低血糖イベントのリスクを推定するために使用され得る多機能デバイスの一例に過ぎないこと、および、リスク推定デバイス250は、任意選択で、図示されるよりも多いまたは少ない構成要素を有し、任意選択で2つ以上の構成要素を組み合わせるか、または任意選択で構成要素の異なる構成または配置を有することが認識されるべきである。図3に示される様々な構成要素は、1つまたは複数の信号処理用集積回路および/または特定用途集積回路を含む、ハードウェア、ソフトウェア、ファームウェア、またはそれらの組み合わせとして実装される。
図3に例示されるリスク推定デバイス250のメモリ192は、任意選択で、高速ランダムアクセスメモリを含み、また任意選択で、1つまたは複数の磁気ディスク記憶装置、フラッシュメモリデバイス、または他の不揮発性の固体状態メモリデバイスなどの不揮発性メモリも含む。CPU274などの、リスク推定デバイス250の他の構成要素によるメモリ192へのアクセスは、任意選択で、メモリコントローラ368によって制御される。
周辺インターフェース370は、デバイスの入出力周辺機器をCPU274およびメモリ192に結合するために使用することができる。1つまたは複数のプロセッサ274は、インスリンリスク推定モジュール204など、メモリ192に記憶された様々なソフトウェアプログラムおよび/または命令セットを走らせるかまたは実行して、リスク推定デバイス250に関する様々な機能を行い、データを処理する。
いくつかの実施形態では、周辺インターフェース370、CPU274、およびメモリコントローラ368は、任意選択で、単一のチップに実装される。いくつかの他の実施形態では、それらは別々のチップに実装される。
ネットワークインターフェース284のRF(無線周波)回路構成は、電磁気信号とも呼ばれるRF信号を受信し、送出する。いくつかの実施形態では、継続インスリン投薬計画206、第1のデータセット220、および/または第2のデータセット238は、このRF回路構成を使用して、1つまたは複数のデバイス、例えば、対象に関連付けられたグルコースセンサ102、対象に関連付けられたインスリンペン104、および/またはデータ収集デバイス200から受信される。いくつかの実施形態では、RF回路構成108は、電気信号と電磁気信号の間の変換を行い、電磁気信号を介して、通信ネットワークおよび他の通信デバイス、グルコースセンサ102、およびインスリンペン104、ならびに/またはデータ収集デバイス200と通信する。RF回路構成284は、任意選択で、これらの機能を行うためのよく知られた回路構成を含み、そのような回路構成には、これらに限定されないが、アンテナシステム、RFトランシーバ、1つまたは複数の増幅器、チューナ、1つまたは複数の発振器、デジタル信号プロセッサ、CODECチップセット、加入者同定モジュール(SIM)カード、メモリ等が含まれる。RF回路構成284は、任意選択で、通信ネットワーク106と通信する。いくつかの実施形態では、回路構成284は、RF回路構成を含まず、実際には、1つまたは複数の配線(例えば光ケーブル、同軸ケーブル等)を通じてネットワーク106に接続される。
いくつかの実施形態では、音声回路構成372、任意選択のスピーカ360、および任意選択のマイクロフォン362は、対象とリスク推定デバイス250との間の音声インターフェースを提供する。音声回路構成372は、周辺インターフェース370から音声データを受信し、音声データを電気信号に変換し、電気信号をスピーカ360に送信する。スピーカ360は、電気信号を人間に可聴の音波に変換する。音声回路構成372は、マイクロフォン362により音波から変換された電気信号も受信する。音声回路構成372は、電気信号を音声データに変換し、処理のために音声データを周辺インターフェース370に送信する。音声データは、任意選択で、周辺インターフェース370によって、メモリ192および/またはRF回路構成284から検索され、および/またはそれらに送信される。
いくつかの実施形態では、電源276は、任意選択で、電力管理システム、1つまたは複数の電力源(例えばバッテリ、交流(AC))、再充電システム、停電検出回路、電力変換器またはインバータ、電力ステータスインディケータ(例えば発光ダイオード(LED))、ならびに携帯型デバイス内での電力の生成、管理、および分配に関連する任意の他の構成要素を含む。
いくつかの実施形態では、リスク推定デバイス250は、任意選択で、1つまたは複数の光学センサ373も含む。光学センサ373は、任意選択で、電荷結合デバイス(CCD)または相補型金属酸化膜半導体(CMOS)フォトトランジスタを含む。光学センサ373は、1つまたは複数のレンズを通じて投射される、環境からの光を受け取り、その光を画像を表すデータに変換する。光学センサ373は任意選択で、静止画像および/または動画を捕捉する。いくつかの実施形態では、リスク推定デバイス250の後面の、リスク推定デバイス250の前面のディスプレイ282の反対側に、光学センサが置かれ、入力280が、静止画像および/または動画像を獲得するためのビューファインダとして使用できるようにされる。いくつかの実施形態では、別の光学センサ373がリスク推定デバイス250の前面に置かれて、対象の画像が取得される(例えば対象の健康または体調を確認するため、対象の身体活動レベルを判定するため、対象の体調を遠隔から診断するのを助けるため、または対象の視覚的な生理学的測定値を獲得するため等)。
図3に例示されるように、リスク推定デバイス250は、好ましくは、様々な基本的システムサービスを扱うための手順を含むオペレーティングシステム202を備える。オペレーティングシステム202(例えばiOS、DARWIN、RTXC、LINUX、UNIX、OS X、WINDOWS、またはVxWorksなどの拡張オペレーティングシステム)は、一般的なシステムタスク(例えばメモリ管理、記憶装置制御、電力管理等)を制御および管理するための様々なソフトウェア構成要素および/またはドライバを含むと共に、様々なハードウェア構成要素およびソフトウェア構成要素間の通信を容易にする。
いくつかの実施形態では、リスク推定デバイス250はスマートフォンである。他の実施形態では、リスク推定デバイス250は、スマートフォンではなく、タブレットコンピュータ、デスクトップコンピュータ、緊急車両コンピュータ、または他の形態もしくは有線もしくは無線のネットワーク接続されたデバイスである。いくつかの実施形態では、リスク推定デバイス250は、図2または図3に描かれるリスク推定デバイス250に見られる回路構成、ハードウェア構成要素、およびソフトウェア構成要素のいずれかまたはすべてを有する。簡潔性と明瞭性のために、リスク推定デバイス250にインストールされる追加的なソフトウェアモジュールをより強調するために、リスク推定デバイス250の可能な構成要素のうちいくつかのみを示している。
いくつかの実施形態では、図2にも示されるように、メモリはさらに複数の過去の薬剤記録を記憶することができ、過去の薬剤記録122の各々は、(i)過去のインスリン薬剤注射イベント124と、(ii)過去の注射イベントタイムスタンプ126と、(iii)過去のインスリン薬剤の量130、(iv)過去の注入されたインスリン薬剤のタイプとを含み、過去の残存インスリンデータ219は、複数の過去の薬剤記録から導出可能である。
いくつかの実施形態では、図3Aおよび図3Bにも示すように、メモリはさらに、最大グルコース濃度518と、最大グルコース濃度の時刻519と、選択された分散の移動期間(302)と、所定の閾値304とを記憶することができる。
いくつかの実施形態では、メモリはさらに、短時間作用型インスリン薬剤310によるボーラスインスリン薬剤投与計画308と、長時間作用型インスリン薬剤315による基礎インスリン薬剤投与計画314とを記憶することができる。メモリはさらに、短時間作用型インスリン薬剤の持続時間によって特徴付けられる短時間作用型インスリン薬剤310のボーラス作用持続時間プロファイル312と、長時間作用型インスリン薬剤の持続時間によって特徴付けられる長時間作用型インスリン薬剤315の基礎作用持続時間プロファイル316とを記憶することができる。
本開示に係るいくつかの実施形態では、メモリはさらに、推定される低血糖リスク尺度299の重篤度尺度602を記憶することができ、重篤度尺度thypoを評価することは、次の関係、
Figure 2020504352
を使用することを含み、ここで、Glowは、グルコースレベルの下限512であり、Gは、評価時刻におけるグルコースレベルであり、hは、グルコースの評価された変化率264である。
図1に開示されるシステム48は単独で動作することができるが、いくつかの実施形態では、任意の方式で情報を交換するために電子医療記録にリンクすることもできる。
継続インスリン投薬計画206を行っている対象の将来の低血糖イベントのリスクを推定するためのシステム48の詳細を開示したので、本開示の一実施形態に係るシステムのプロセスおよび機構のフローチャートに関する詳細を、図4を参照して開示する。いくつかの実施形態では、システムのそのようなプロセスおよび機構は、図2および図3に例示されるリスク推定モジュール204によって実施される。
図4は、継続インスリン投薬計画206を行っている対象の将来の低血糖イベントのリスクを推定するためのデバイス250によって行われる方法を例示する流れ図を示す。継続インスリン投薬計画は、1つまたは複数のタイプのインスリン薬剤投与計画208を含み、1つまたは複数のタイプのインスリン薬剤投与計画208の各々は、1つまたは複数のタイプのインスリン薬剤を定義するインスリン薬剤のタイプ210を含む。
デバイスは、1つまたは複数のプロセッサ274と、メモリ192/290とを備え、メモリは以下を記憶する:(a)インスリン薬剤のタイプ210の各々について、時間の関数として対象の体内に残留するインスリンを予測し、それぞれのインスリン薬剤の持続時間によって特徴付けられる作用持続時間プロファイル212、(b)過去の時間的経過内の時間の関数としての対象の過去の残存インスリンデータ219と、上記過去の時間的経過内に取得された対象の過去のグルコース測定値240および対応するタイムスタンプ242とを含む、過去のデータセット218であって、過去のグルコース測定値および対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価された過去のグルコース濃度と、時間の関数としての評価された過去のグルコースの変化率とを取得するように構造化され、過去の時間的経過は、対象が継続インスリン投薬計画を遵守していた複数の過去の遵守時間期間を含み、過去のデータセット218は、対象が継続インスリン投薬計画を遵守していた期間に取得されたデータのみを含むことを意味する、遵守についてのフィルタリング後データを含む、過去のデータセット218、(c)複数の過去の時間期間記録244であって、過去の時間期間記録の各々245は、対象の同定された過去の代謝状態246と、それぞれのタイプの代謝状態247と、対応する過去の遵守時間期間248とを含み、対応する過去の遵守時間期間248は、複数の過去の遵守時間期間のうちの1つである、過去の時間期間記録245。
メモリはさらに、1つまたは複数のプロセッサ274によって実行されたときに図4に例示される方法を行う命令を記憶する。
ブロック402で、プロセスが開始する。ブロック404は、継続インスリン投薬計画206を適用するために対象によって使用される1つまたは複数のインスリン注射デバイスから第1のデータセット220を取得するステップを例示する。第1のデータセット220は、時間的経過にわたる複数のインスリン薬剤記録を含み、複数の薬剤記録の各それぞれのインスリン薬剤記録222は、(i)1つまたは複数のインスリン注射デバイスのそれぞれのインスリン注射デバイス104を使用して対象に注射されたインスリン薬剤の量228を含む、それぞれのインスリン薬剤注射イベント224と、(ii)それぞれのインスリン薬剤注射イベント224の発生時にそれぞれのインスリン注射デバイス104によって自動的に生成される、上記時間的経過内の対応する電子注射イベントタイムスタンプ226と、(iii)1つまたは複数のタイプのインスリン薬剤から対象に注射されたそれぞれのタイプのインスリン薬剤230とを含む。
ブロック406は、第2のデータセット235を取得するステップを例示し、第2のデータセットは、対象の複数の自律的グルコース測定値と、複数の自律的グルコース測定値の各それぞれの自律的グルコース測定値236について、当該それぞれの測定値236がいつ取られたかを表すグルコース測定タイムスタンプ238とを含み、グルコース測定値および対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価されたグルコース濃度と、時間の関数としてのグルコースの変化率とを取得するように構造化されている。
ブロック408は、被験者対象に関連付けられた現在の血糖イベント255を取得するために第2のデータセット235を使用するステップを例示し、現在の血糖イベント255は、対象の現在の代謝状態256の評価に関係する評価期間260の始まりを指示し、現在の代謝状態256は、それぞれのタイプの代謝状態257を有している。
ブロック410は、所与の時刻に処理される条件ステップを例示する。いくつかの実施形態では、現在の血糖イベントが見つかっていない場合、プロセスはブロック404に進む。現在の血糖イベントが同定されている場合、プロセスはブロック412に進み、すなわち、所与の時刻における対象に関連付けられた現在の血糖イベント255の同定に応答して、プロセスは進んで評価期間内の評価時刻261における低血糖リスクを評価する。
ブロック412は、現在の代謝状態256の代謝状態257のタイプを取得するために第2のデータセット235を使用するステップを例示する。
ブロック414は、図5(1回の注射のみについて例示している)に例示されるように、第1のデータセット220を使用して対象の評価された残存インスリン502を取得するステップを例示し、評価された残存インスリンは、評価時刻までのそれぞれのインスリン薬剤の持続時間内にある注射イベントタイムスタンプ226を有する第1のデータセット220内の薬剤記録222によって指示される、対象に注射されたインスリン薬剤の総量から計算され、評価は、指示している薬剤記録222の作用持続時間プロファイルを利用する。
ブロック416は、第2のデータセットを使用して、(i)評価時刻における評価されたグルコース濃度263と、(ii)評価時刻におけるグルコースの評価された変化率264とを取得するステップを例示する。
ブロック416は、グルコースの評価された変化率264が負である旨の指示を受信するステップを例示する。評価された変化率が負でない場合、プロセスは、いくつかの実施形態ではブロック404に進むことができる。変化率264が負である場合、プロセスはブロック418に進む。
ブロック418は、複数の時間期間記録を使用して、(i)現在の代謝状態256と同じタイプの代謝状態247を有する過去の代謝状態246を含む過去の時間期間記録245を選択することによる、対象の基準の過去の代謝状態265であって、選択された過去の時間期間記録245は、基準の過去の時間期間記録を定義する、過去の代謝状態265と、(ii)基準の過去の時間期間記録に対応する、基準の過去の時間期間266と、(iii)基準の過去の時間期間266内で時刻を選択することによる、基準の過去の時刻267であって、基準の過去の代謝状態265の進行は、評価時刻261における現在の代謝状態256の進行に相当する、基準の過去の時間期間266とを取得するステップを例示する。
ブロック420は、低血糖リスク尺度299を推定するステップを例示し、低血糖リスク尺度299は、真であるバイナリリスク式の個数による増加関数であり、バイナリリスク式は、(i)評価されたグルコース濃度263が、基準の過去の時刻267に評価された、評価された過去のグルコース濃度270より低い、(ii)グルコースの評価された変化率264が、基準の過去の時刻267に評価された、グルコースの評価された過去の変化率264より数値的に大きい、(iii)評価時刻261に評価された、評価された残存インスリン262が、基準の過去の時刻267に評価された、評価された過去の残存インスリン272より多い、である。
いくつかの実施形態では、プロセスはブロック422で終了し、その後ブロック402に戻って、リスクを推定するプロセスを再度始めることができる。
図5Aおよび図5Bは、異なる血糖イベント255が同定される本開示の実施形態を例示する。
図5Aは、対象に関連付けられた現在の血糖イベント255が、対象によって食事が通知された後の、または食事検出アルゴリズムを使用して第2のデータセット内で食事の発生が同定された後の、最大血糖レベルによって指示される実施形態に関する。食事を摂取する時刻は、食事または摂取時刻561によって指示される。食事は、対象またはデバイスのユーザによって通知することができ、対象またはユーザが、食事が摂取されたことを能動的にデバイスに通信する。通信は、例えばユーザによって操作されるボタンによって実現することができる。あるいは、血糖イベントはパターンとして同定することもでき、食事に関係する血糖イベントパターンは、i)最大グルコース、ii)食事の摂取後、として同定される。食事の摂取は、例えば、第2のデータセット内で、血糖濃度の特徴的な増加、血糖濃度の急激な増加、グルコースの変化率の高い値、グルコースの変化率の増加として同定することができ、最大グルコースは、例えば、グルコースの変化率のゼロ値として同定することができ、変化率は、同定されたゼロ値の変化率のイベント時刻を越えたときに正値から負値に変化する。第2のデータセットから導出された現在の血糖濃度は、破線の曲線506として例示されており、過去のデータ218から導出された過去の血糖濃度は、実線の曲線508として例示されている。過去の血糖濃度は、対象に対する過去のグルコース測定値から取得され、その間対象は遵守または準拠した状態にあり、対象は血糖イベント後の期間に低血糖イベントを経験していない。すなわち、対象は、継続インスリン投薬計画に従うことによって遵守した状態にあり、継続インスリン投薬計画は、一例として、食事前、食事中、または食事後に短時間作用型インスリンを注射することであり得る。図5Aは、下限512および上限514を境界とする許容グルコース濃度の区間も例示している。この区間内では、対象はグリセミックコントロールされた状態にある。食事後の最大グルコースは、血糖イベントを指示し、最大グルコースの時刻519が血糖イベント時刻を同定し、時刻519はさらに評価期間260の始まりを同定する。食事後の最大グルコース、すなわち血糖イベントが同定されると、現在のグルコース濃度および時間導関数が評価時刻261に評価され、評価時刻261は、続く評価期間260内の選択された一時点である。現在のグルコース濃度および評価時刻は、ある過去の時間期間内の過去の基準時刻267における過去のグルコース濃度の対応する評価と比較される。過去の基準時刻267では、最大グルコースの時刻519、すなわち過去の血糖イベントと、基準の過去の時刻267との間の持続時間と、第2のデータセット内で同定される(またはユーザによって通信される)、見つかった最大グルコースの現在の時刻、すなわち現在の血糖イベントと、評価時刻261との間の持続時間とが、同じである。血糖イベントには代謝状態が関連付けられ、食事に関係する血糖イベントの場合、関連付けられる代謝状態は、食事の後に発生するため食後状態である。血糖イベントは、血糖イベントの発生から評価期間内の所与の時刻または評価時刻までの時間を測定することによって、代謝状態の進行を測定するための基準として使用することができる。このようにして、基準血糖イベントから基準の過去の評価時刻までの時間である、基準の過去の代謝状態265の進行は、現在の血糖イベントから評価時刻までの時間である、現在の代謝状態256の進行に相当する。しかし、進行を測定するための基準時刻として血糖イベントの発生を選ぶ代わりに、食事の摂取などの他の時間イベントが使用され得る。同じ進行における現在の代謝状態と過去の代謝状態を比較するために、現在の血糖濃度が過去の血糖濃度より低い場合、低血糖リスクは、現在の濃度が下方境界512に近づくにつれて大きくなる。血糖濃度の第1の時間導関数が負であり、過去の血糖濃度の負の第1の導関数より数値的に大きいほど、低血糖リスクは、現在の状況において、状況または代謝状態がより高い速度でリスクに向かって進展するにつれてやはり大きくなる。該当する以前の作用持続時間の時間期間内のすべての注射から計算される現在の残存インスリンが多いほど、低血糖リスクはさらに大きくなる。図5Aは、過去の残存インスリン502、および第1のデータセットから取得された現在の残存インスリンについての曲線も示している。推定値を改善するために、現在のグルコース濃度の高階導関数(2階導関数、3階導関数等)ならびに残存インスリンの1階導関数およびさらに高階の導関数(2階導関数、3階導関数等)を使用して低血糖リスクの推定を改善することができる。
図5Bは、対象に関連付けられた現在の血糖イベント255が血糖濃度の最小の分散によって指示される実施形態に関し、最小の分散は第2のデータセットから取得される。最小の分散を識別同定するために第2のデータセットを使用するステップは、分散の移動期間302を評価すること、および、分散の移動期間が最小であることに応答して、評価期間260の始まりの指示としての評価された分散の移動期間を選択することによって取得することができる。あるいは、分散の最小期間の平均値、中央値、または始まりもしくは終わりを使用して、評価期間260の始まりを指示する。このようにすると、最小の分散は、空腹時イベントである血糖イベントを指示し、最小の分散の後の関連付けられた代謝状態は空腹時状態である。第2のデータセットから導出された現在の血糖濃度が破線の曲線506として例示されており、過去のデータ218から導出された過去の血糖濃度が実線の曲線508として例示されている。過去の血糖濃度は、対象の過去のグルコース測定値から取得され、対象はその間継続インスリン投薬計画に遵守または準拠した状態にあり、対象は、血糖イベント後の期間に低血糖イベントを経験していない。すなわち、対象は、継続インスリン投薬計画に従うことによって遵守した状態にあり、継続インスリン投薬計画は、一例として、例えば1日に2回、1日に1回、週に1回など、定期的に長時間作用型インスリンを注射することであり得る。空腹時期間内の血糖レベルは、適切な量の長時間作用型インスリンが投与されたかどうかを指示することができる。図5Bは、下限512および上限514を境界とする許容グルコース濃度の区間も例示している。この区間内では、対象はグリセミックコントロールされた状態にある。この場合にはある期間内のグルコース濃度の最小の分散によって同定されるパターンである、血糖イベント255が同定されると、そのイベントの発生の時刻が評価期間260の始まりを指示する。現在のグルコース濃度および時間導関数、変化率が、続く評価期間260内の評価時刻261に評価される。評価時刻261におけるグルコース濃度の評価を、過去の時間期間内の、代謝状態の進行が同じである過去の基準時刻267における過去のグルコース濃度の対応する評価と比較することができる。過去の代謝状態の進行は、過去のグルコース濃度の最小の分散の時刻521と、基準の過去の時刻267との間の持続時間として評価することができる。同様に、現在の代謝状態の進行は、第2のデータセットから取得される現在のグルコース濃度の最小の分散の時刻(例えば、この時刻は、最小の分散を有する期間の始まり、終わり、中央値、または平均値とすることができる)と、評価時刻261との間の持続時間として評価することができる。このようにすると、基準の過去の代謝状態265の進行は、現在の代謝状態256の進行に相当する。現在の血糖濃度が過去の血糖濃度より低い場合、低血糖リスクは、現在の濃度が下方境界512に近づくにつれて大きくなる。血糖濃度の第1の時間導関数、すなわち変化率が負であり、過去の血糖濃度の負の第1の導関数より数値的に大きいほど、低血糖リスクは、現在の状況において、状況または代謝状態がより高い速度で進展するにつれてやはり大きくなる。該当する以前の作用持続時間の時間期間内のすべての注射から計算される現在の残存インスリンが多いほど、低血糖リスクはさらに大きくなる。図5Bは、過去の残存インスリン502、および第1のデータセットから取得された現在の残存インスリンについての曲線も示している。長時間作用型インスリンの注射時刻523も指示されている。推定値を改善するために、現在のグルコース濃度の高階導関数ならびに残存インスリンの1階導関数およびさらに高階の導関数を使用して低血糖リスクの推定を改善することができる。空腹時期間570も指示されている。
代替の実施形態では、血糖イベントは、グルコース測定値の移動期間として同定することができ、評価期間260の始まりを指示する時刻は、その期間の始まり、その期間の終わり、その期間の中央値、または、グルコース測定値の最小の平均を有する期間として同定された期間の平均値とすることができる。
(i)過去の時間的経過内の時間の関数としての対象の過去の残存インスリンデータ219と、(ii)当該過去の時間的経過内に取得された対象の過去のグルコース測定値240および対応するタイムスタンプ242とを含む過去のデータセット218は、(iii)複数の過去の遵守時間期間、も含み、過去の遵守時間期間は、対象が継続インスリン投薬計画を遵守していた期間を指示する。過去のデータセット218を使用して、構造化された複数の過去の時間期間記録を取得することができ、過去の時間期間記録245の各々は、同定された過去の代謝状態246と、過去の血糖イベントとを含む。過去の代謝状態は、過去の血糖イベントによって同定することができ、過去の血糖イベントは、過去のデータセット218の過去のグルコース測定値のパターンとして同定することができる。過去の時間期間記録の各々はさらに、代謝状態247のそれぞれのタイプと、対応する過去の遵守時間期間248とを含み、過去の遵守時間期間248は、継続インスリン投薬計画を遵守している期間である。
複数の過去の遵守時間期間は以下によって同定することができる:(i)対象の複数の未フィルタリングの過去のグルコース測定値と、それぞれのタイムスタンプとを使用して複数の過去の血糖イベントを同定することにより、未フィルタリングの過去のグルコース測定値における複数の血糖パターンを同定すること、(ii)複数の過去の血糖イベントの各それぞれの過去の血糖イベントに第1の特徴付けを適用することであって、第1の特徴付けは、投薬計画の遵守と投薬計画の不遵守とのうちの1つであり、それぞれの過去の血糖イベントは、過去のインスリン注射イベントおよび対応するタイムスタンプのセットが、それぞれの過去の血糖イベント中に継続インスリン薬剤投与計画を遵守していたことを時間の面および量の面で立証するときに、投薬計画の遵守とみなされ、それぞれの過去の血糖イベントは、過去のインスリン注射イベントおよび対応するタイムスタンプのセットが、それぞれの過去の血糖イベント中に継続的基礎インスリン薬剤投与計画を遵守していたことを時間の面および量の面で立証する1つまたは複数の薬剤記録を含まないときに、基礎投薬計画の不遵守とみなされる。
図6は、本開示に係る実施形態を例示する。低血糖症アラームは、いつ低血糖が予想されるかに応じて、異なる重篤度を有し得る。図6は、食事の前後の期間のグルコース濃度を例示している。摂取の時刻または食事時刻561と、食事の後の最大グルコース濃度の時刻519とが例示されている。下方グルコース境界512および上方グルコース境界514も例示されている。さらに、異なる評価時刻261−1、261−2、261−3、および対応する血糖濃度の評価263−1、263−2、263−3が指示されている。評価時刻261−1における時間導関数264−1も指示されている。評価時刻261−3においては、低血糖イベントまでの時間がより短いため、低血糖リスクは、評価時刻261−1に評価された低血糖リスクと比べてより重い。重篤度thypoを評価することは、次の関係、
Figure 2020504352
を使用することを含み、ここで、Glowは、グルコースレベルの下限512であり、Gは、評価時刻におけるグルコースレベルであり、hは、グルコースの評価された変化率264である。
実施形態のリスト
1.継続インスリン投薬計画206を行っている対象の将来の低血糖イベントのリスクを推定するためのデバイス250であって、継続インスリン投薬計画は、1つまたは複数のタイプのインスリン薬剤投与計画208を含み、1つまたは複数のタイプのインスリン薬剤投与計画208の各々は、1つまたは複数のタイプのインスリン薬剤を定義するインスリン薬剤のタイプ210を含み、
デバイスは、1つまたは複数のプロセッサ274と、メモリ192/290とを備え、メモリは、
インスリン薬剤のタイプ210の各々について、時間の関数として対象の体内に残留するインスリンを予測し、それぞれのインスリン薬剤の持続時間によって特徴付けられる作用持続時間プロファイル212と、
過去の時間的経過内の時間の関数としての対象の過去の残存インスリンデータ219と、過去の時間的経過内に取得された対象の過去のグルコース測定値240および対応するタイムスタンプ242とを含む、過去のデータセット218であって、過去のグルコース測定値および対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価された過去のグルコース濃度と、時間の関数としての評価された過去のグルコースの変化率とを取得するように構造化され、過去の時間的経過は、対象が継続インスリン投薬計画を遵守していた複数の過去の遵守時間期間を含む、過去のデータセット218と、
複数の過去の時間期間記録244であって、過去の時間期間記録の各々245は、対象の同定された過去の代謝状態246と、それぞれのタイプの代謝状態247と、対応する過去の遵守時間期間248とを含み、対応する過去の遵守時間期間248は、複数の過去の遵守時間期間のうちの1つである、過去の時間期間記録244と、
を記憶し、
メモリはさらに、1つまたは複数のプロセッサ274によって実行されたときに方法を行う命令を記憶し、方法は、
継続インスリン投薬計画206を適用するために対象によって使用される1つまたは複数のインスリン注射デバイスから第1のデータセット220を取得することであって、第1のデータセット220は、時間的経過にわたる複数のインスリン薬剤記録を含み、複数の薬剤記録の各それぞれのインスリン薬剤記録222は、
(i)1つまたは複数のインスリン注射デバイスのそれぞれのインスリン注射デバイス104を使用して対象に注射されたインスリン薬剤の量228を含む、それぞれのインスリン薬剤注射イベント224と、
(ii)それぞれのインスリン薬剤注射イベント224の発生時にそれぞれのインスリン注射デバイス104によって自動的に生成される、上記時間的経過内の対応する電子注射イベントタイムスタンプ226と、
(iii)1つまたは複数のタイプのインスリン薬剤から対象に注射されたそれぞれのタイプのインスリン薬剤230と、
を含むことと、
対象の複数の自律的グルコース測定値と、複数の自律的グルコース測定値の各それぞれの自律的グルコース測定値236について、それぞれの測定値236がいつ取られたかを表すグルコース測定タイムスタンプ238とを含む第2のデータセット235を取得することであって、グルコース測定値および対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価されたグルコース濃度と、時間の関数としてのグルコースの変化率とを取得するように構造化されている、第2のデータセット235を取得することと、
被験者対象に関連付けられた現在の血糖イベント255を取得するために第2のデータセット235を使用することであって、現在の血糖イベント255は、対象の現在の代謝状態256の評価に関係する評価期間260の始まりを指示し、現在の代謝状態256は、それぞれのタイプの代謝状態257を有している、第2のデータセット235を使用することと、
所与の時刻における対象に関連付けられた現在の血糖イベント255の同定に応答して、評価期間内の評価時刻261における低血糖リスクを評価することであって、評価することが、以下のことによって、すなわち、
現在の代謝状態256の代謝状態257のタイプを取得するために第2のデータセット235を使用すること、
被験者対象の評価された残存インスリン502を取得するために第1のデータセット220を使用することであって、評価された残存インスリンは、評価時刻までのそれぞれのインスリン薬剤の持続時間内にある注射イベントタイムスタンプ226を有する第1のデータセット220内の薬剤記録222によって指示される、対象に注射されたインスリン薬剤の総量から計算され、評価は、当該指示する薬剤記録222の作用持続時間プロファイルを利用すること、
第2のデータセットを使用して、
(i)評価時刻における評価されたグルコース濃度263と、
(ii)評価時刻における評価されたグルコースの変化率264と、
を取得すること
によって行われることと、
評価された変化率264が負であることに応答して、
複数の過去の時間期間記録を使用して、
(i)現在の代謝状態256と同じタイプの代謝状態247を有する過去の代謝状態246を含む過去の時間期間記録245を選択することによる、対象の基準の過去の代謝状態265であって、選択された過去の時間期間記録245は、基準の過去の時間期間記録を定義する、基準の過去の代謝状態265と、
(ii)基準の過去の時間期間記録に対応する、基準の過去の時間期間266と、
(iii)基準の過去の時間期間266内で時刻を選択することによる、基準の過去の時刻267であって、基準の過去の時刻267における基準の過去の代謝状態265の進行は、評価時刻261における現在の代謝状態256の進行に相当する、基準の過去の時刻267と
を取得することと、
低血糖リスク尺度299を推定することであって、低血糖リスク尺度(299)は、真であるバイナリリスク式の個数による増加関数であることと
からなる方法であり、
バイナリリスク式は、
(i)評価されたグルコース濃度263が、基準の過去の時刻267に評価された、評価された過去のグルコース濃度270より低い、
(ii)評価されたグルコースの変化率264が、基準の過去の時刻267に評価された、グルコースの評価された過去の変化率264より数値的に大きい、
(iii)評価時刻261に評価された、評価された残存インスリン262が、基準の過去の時刻267に評価された、評価された過去の残存インスリン272より多い、
である、デバイス。
2.被験者対象に関連付けられた現在の血糖イベント255を識別同定するために第2のデータセット235を使用するステップが、
食事の指示を受け取ったことに応答して、最大グルコース濃度518を識別同定するために第2のデータセットを使用することと、
同定された最大グルコース濃度518に対応する最大グルコース濃度の時刻519を同定し、それにより評価期間260の始まりを同定することであって、現在の代謝状態は食後状態である、ことと
を含む、実施形態1に記載のデバイス。
3.被験者対象に関連付けられた現在の血糖イベント255を識別同定するために第2のデータセット235を使用するステップが、
分散の移動期間302を評価することと、
分散の移動期間が事前定義された選択基準を満たしたことに応答して、評価された分散の移動期間を、評価期間260の始まりの指示として選択することであって、選択された評価された分散の移動期間は、選択された分散の移動期間302を定義することと
を含む、実施形態1に記載のデバイス。
4.評価期間260の始まりを、選択された分散の移動期間302の始まりに対応する時刻として同定するステップをさらに含み、現在の代謝状態(265)が現在の空腹時期間である、実施形態3に記載のデバイス。
5.複数の自律的グルコース測定値236にわたる分散の移動期間
Figure 2020504352
を評価することが、次の関係、
Figure 2020504352
を使用することを含み、
ここで、Gは、複数の自律的グルコース測定値の部分kにおけるi番目の自律的グルコース測定値であり、
Mは、複数の自律的グルコース測定値中の自律的グルコース測定値の数であり、連続した所定の時間スパンを表し、
Figure 2020504352
は、複数の自律的グルコース測定値から選択された自律的グルコース測定値の平均値であり、
kは、第1の時間期間内にあり、
事前定義された選択基準は、分散の移動期間
Figure 2020504352
が所定の閾値304より小さいことである、実施形態3または4に記載のデバイス。
6.インスリン薬剤投与計画は、短時間作用型インスリン薬剤310によるボーラスインスリン薬剤投与計画308と、長時間作用型インスリン薬剤315による基礎インスリン薬剤投与計画314とを含み、
1つまたは複数のタイプのインスリン薬剤の作用持続時間プロファイルは、
短時間作用型インスリン薬剤の持続時間によって特徴付けられる短時間作用型インスリン薬剤310のボーラス作用持続時間プロファイル312と、
長時間作用型インスリン薬剤の持続時間によって特徴付けられる長時間作用型インスリン薬剤315の基礎作用持続時間プロファイル316と
を含み、
第1のデータセット220を使用して、対象の評価された残存インスリンを計算することは、短時間作用型インスリン薬剤310に関係する残存インスリンを、長時間作用型インスリン薬剤315に関係する残存インスリンに加算することを含み、
短時間作用型インスリン薬剤に関係する残存インスリンは、評価時刻260までの短時間作用型インスリン薬剤の持続時間内にある注射イベントタイムスタンプを有する第1のデータセット内の薬剤記録によって指示される、対象に注射された短時間作用型インスリン薬剤の総量から計算され、
長時間作用型インスリン薬剤に関係する残存インスリンは、評価時刻260までの長時間作用型インスリン薬剤の持続時間内にある注射イベントタイムスタンプを有する第1のデータセット内の薬剤記録によって指示される、対象に注射された長時間作用型インスリン薬剤の総量から計算される、実施形態1から5のいずれか一項に記載のデバイス。
7.上記方法が、低血糖リスク尺度299を、デバイスのユーザ、健康管理専門家、または対象に関係する人物に通信することをさらに含む、実施形態1から6のいずれか一項に記載のデバイス。
8.上記方法が、推定される低血糖リスク尺度299の重篤度尺度602を推定するステップをさらに含み、重篤度thypoを評価することが、次の関係、
Figure 2020504352
を使用することを含み、
ここで、Glowは、グルコースレベルの下限512であり、
Gは、評価時刻におけるグルコースレベルであり、
は、グルコースの評価された変化率264である、実施形態1から7のいずれか一項に記載のデバイス。
9.バイナリリスク式が、
(iv)評価時刻261における残存インスリンの評価された変化率が負であり、かつ、基準の過去の時刻に評価された、残存インスリンの評価された過去の変化率より数値的に小さく、基準の過去の時刻に評価された、残存インスリンの評価された過去の変化率も負であること
をさらに含む、実施形態1から8のいずれか一項に記載のデバイス。
10.バイナリリスク式が、
(v)評価時刻261における残存インスリンの評価された変化率が正であり、かつ、基準の過去の時刻に評価された、残存インスリンの評価された過去の変化率より数値的に大きく、基準の過去の時刻に評価された、残存インスリンの評価された過去の変化率も正であること
をさらに含む、実施形態1から9のいずれか一項に記載のデバイス。
11.バイナリリスク式が、
(vi)評価時刻261における残存インスリンの評価された変化率が正であり、かつ、基準の過去の時刻に評価された、残存インスリンの評価された過去の変化率が負であること
をさらに含む、実施形態1から10のいずれか一項に記載のデバイス。
12.継続インスリン投薬計画206を行っている対象の将来の低血糖イベントのリスクを推定するための方法であって、継続インスリン投薬計画は、1つまたは複数のタイプのインスリン薬剤投与計画208を含み、1つまたは複数のタイプのインスリン薬剤投与計画208の各々は、1つまたは複数のタイプのインスリン薬剤を定義するインスリン薬剤のタイプ210を含み、上記方法は、
デバイス250を使用すること
を含み、デバイスは、1つまたは複数のプロセッサ274と、メモリ192/290とを備え、メモリは、
インスリン薬剤のタイプ210の各々について、時間の関数として対象の体内に残留するインスリンを予測し、それぞれのインスリン薬剤の持続時間によって特徴付けられる作用持続時間プロファイル212と、
過去の時間的経過内の時間の関数としての対象の過去の残存インスリンデータ219と、過去の時間的経過内に取得された対象の過去のグルコース測定値240および対応するタイムスタンプ242とを含む、過去のデータセット218であって、過去のグルコース測定値および対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価された過去のグルコース濃度と、時間の関数としての評価された過去のグルコースの変化率とを取得するように構造化され、過去の時間的経過は、対象が継続インスリン投薬計画を遵守していた複数の過去の遵守時間期間を含む、過去のデータセット218と、
複数の過去の時間期間記録244であって、過去の時間期間記録の各々245は、対象の同定された過去の代謝状態246と、それぞれのタイプの代謝状態247と、対応する過去の遵守時間期間248とを含み、対応する過去の遵守時間期間248は、複数の過去の遵守時間期間のうちの1つである、過去の時間期間記録244と
を記憶し、
メモリはさらに、1つまたは複数のプロセッサ274によって実行されたときに方法を行う命令を記憶し、方法は、
継続インスリン投薬計画206を適用するために対象によって使用される1つまたは複数のインスリン注射デバイスから第1のデータセット220を取得することであって、第1のデータセット220は、時間的経過にわたる複数のインスリン薬剤記録を含み、複数の薬剤記録の各それぞれのインスリン薬剤記録222は、
(i)1つまたは複数のインスリン注射デバイスのそれぞれのインスリン注射デバイス104を使用して対象に注射されたインスリン薬剤の量228を含む、それぞれのインスリン薬剤注射イベント224と、
(ii)それぞれのインスリン薬剤注射イベント224の発生時にそれぞれのインスリン注射デバイス104によって自動的に生成される、時間的経過内の対応する電子注射イベントタイムスタンプ226と、
(iii)1つまたは複数のタイプのインスリン薬剤から対象に注射されたそれぞれのタイプのインスリン薬剤230と
を含むことと、
対象の複数の自律的グルコース測定値と、複数の自律的グルコース測定値の各それぞれの自律的グルコース測定値236について、それぞれの測定値236がいつ取られたかを表すグルコース測定タイムスタンプ238とを含む第2のデータセット235を取得することであって、グルコース測定値および対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価されたグルコース濃度と、時間の関数としてのグルコースの変化率とを取得するように構造化されている、第2のデータセット235を取得することと、
被験者対象に関連付けられた現在の血糖イベント255を取得するために第2のデータセット235を使用することであって、現在の血糖イベント255は、対象の現在の代謝状態256の評価に関係する評価期間260の始まりを指示し、現在の代謝状態256は、それぞれのタイプの代謝状態257を有している、第2のデータセット235を使用することと、
所与の時刻における対象に関連付けられた現在の血糖イベント255の同定に応答して、評価期間内の評価時刻261における低血糖リスクを評価することであって、評価することが、以下のことによって、すなわち、
現在の代謝状態256の代謝状態257のタイプを取得するために第2のデータセット235を使用すること、
被験者対象の評価された残存インスリン502を取得するために第1のデータセット220を使用することであって、評価された残存インスリンは、評価時刻までのそれぞれのインスリン薬剤の持続時間内にある注射イベントタイムスタンプ226を有する第1のデータセット220内の薬剤記録222によって指示される、対象に注射されたインスリン薬剤の総量から計算され、評価は、当該指示する薬剤記録222の作用持続時間プロファイルを利用すること、
第2のデータセットを使用して、
(i)評価時刻における評価されたグルコース濃度263と、
(ii)評価時刻における評価されたグルコースの変化率264と、
を取得すること、
によって行われることと、
評価された変化率264が負であることに応答して、
複数の過去の時間期間記録を使用して、
(i)現在の代謝状態256と同じタイプの代謝状態247を有する過去の代謝状態246を含む過去の時間期間記録245を選択することによる、対象の基準の過去の代謝状態265であって、選択された過去の時間期間記録245は、基準の過去の時間期間記録を定義する、基準の過去の代謝状態265と、
(ii)基準の過去の時間期間記録に対応する、基準の過去の時間期間266と、
(iii)基準の過去の時間期間266内で時刻を選択することによる、基準の過去の時刻267であって、基準の過去の時刻267における基準の過去の代謝状態265の進行は、評価時刻261における現在の代謝状態256の進行に相当する、基準の過去の時刻267と、
を取得することと、
低血糖リスク尺度299を推定することであって、低血糖リスク尺度(299)は、真であるバイナリリスク式の個数による増加関数であることと
からなる方法であり、
バイナリリスク式は、
(i)評価されたグルコース濃度263が、基準の過去の時刻267に評価された、評価された過去のグルコース濃度270より低い、
(ii)評価されたグルコースの変化率264が、基準の過去の時刻267に評価された、グルコースの評価された過去の変化率264より数値的に大きい、
(iii)評価時刻261に評価された、評価された残存インスリン262が、基準の過去の時刻267に評価された、評価された過去の残存インスリン272より多い、
である、方法。
引用される参考文献および代替の実施形態
本明細書で引用されるすべての参考文献は、全体が参照により本明細書に組み込まれ、あらゆる目的のために、各個々の出版物または特許もしくは特許出願があらゆる目的のために全体が具体的かつ個々に参照により組み込まれるものと指示されるのと同程度に組み込まれる。
本発明は、非一時的コンピュータ可読記憶媒体に埋め込まれたコンピュータプログラムメカニズムを備えるコンピュータプログラム製品として実装することができる。例として、コンピュータプログラム製品は、図1、図2、図3に任意の組み合わせで示される、および/または図4に記載されるプログラムモジュールを収容し得る。これらのプログラムモジュールは、CD−ROM、DVD、磁気ディスク記憶製品、USBキー、または任意の他の非一時的コンピュータ可読データもしくはプログラム記憶製品に記憶することができる。
当業者には明らかとなるように、本発明の主旨および範囲から逸脱することなく、本発明の多くの修正および変形を作成することができる。本明細書に記載される特定の実施形態は、単に例として与えられる。それらの実施形態は、本発明およびその実際的な適用の原理を最もよく解説し、それにより当業者が、本発明および様々な実施形態を、企図される特定の使用に適する様々な修正を加えて最も良く利用できるようにするために選ばれ、説明されたものである。本発明は、添付の請求項の用語と、そのような請求項が権利を持つ均等物の全範囲によってのみ制限されるものである。

Claims (14)

  1. 継続インスリン投薬計画(206)を行っている対象の将来の低血糖イベントのリスクを推定するためのデバイス(250)であって、前記継続インスリン投薬計画は、1つまたは複数のタイプのインスリン薬剤投与計画(208)を含み、前記1つまたは複数のタイプのインスリン薬剤投与計画(208)の各々は、1つまたは複数のタイプのインスリン薬剤を定義するインスリン薬剤のタイプ(210)を含み、
    前記デバイスは、1つまたは複数のプロセッサ(274)と、メモリ(192/290)とを備え、前記メモリは、
    1つまたは複数のタイプのインスリン薬剤(210)と、前記インスリン薬剤のタイプ(210)の各々について、時間の関数として前記対象の体内に残留するインスリンを予測するための、それぞれの前記インスリン薬剤の持続時間によって特徴付けられる作用持続時間プロファイル(212)であって、前記インスリン薬剤のタイプは、対応する注射イベントが評価時刻から前記持続時間以内のタイムスタンプを有しているときに残存インスリン評価に寄与することができる、インスリン薬剤(210)と作用持続時間プロファイル(212)、
    過去の時間的経過内の時間の関数としての前記対象の過去の残存インスリンデータ(219)と、前記過去の時間的経過内に取得された前記対象の過去のグルコース測定値(240)および対応するタイムスタンプ(242)とを含む過去のデータセット(218)であって、前記過去のグルコース測定値および前記対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価された過去のグルコース濃度と、時間の関数としての評価された過去のグルコースの変化率とを取得するように構造化され、前記過去の時間的経過は、前記対象が前記継続インスリン投薬計画を遵守していた複数の過去の遵守時間期間を含む、過去のデータセット(218)、ならびに
    前記過去のデータセット(218)から取得される複数の過去の時間期間記録(244)であって、前記過去の時間期間記録の各々(245)は、前記対象の同定された過去の代謝状態(246)と、過去の血糖イベントとを含み、前記過去の代謝状態(246)は、前記過去の血糖イベントによって同定することができ、前記過去の血糖イベントは、前記過去のデータセット(218)の前記過去のグルコース測定値のパターン、それぞれのタイプの代謝状態(247)、および前記継続インスリン投薬計画への対応する過去の遵守時間期間(248)として同定することができ、前記対応する過去の遵守時間期間(248)は、前記複数の過去の遵守時間期間のうちの1つである、複数の過去の時間期間記録(244)
    を記憶し、
    前記メモリはさらに、前記1つまたは複数のプロセッサ(274)によって実行されたときに方法を行う命令を記憶し、前記方法は、
    前記継続インスリン投薬計画(206)を適用するために前記対象によって使用される1つまたは複数のインスリン注射デバイスから第1のデータセット(220)を取得することであって、前記第1のデータセット(220)は、前記過去の時間的経過の後の時間的経過にわたる複数のインスリン薬剤記録を含み、前記複数の薬剤記録の各それぞれのインスリン薬剤記録(222)は、
    (i)前記1つまたは複数のインスリン注射デバイスのそれぞれのインスリン注射デバイス(104)を使用して前記対象に注射されたインスリン薬剤の量(228)を含むそれぞれのインスリン薬剤注射イベント(224)と、
    (ii)前記それぞれのインスリン薬剤注射イベント(224)の発生時に前記それぞれのインスリン注射デバイス(104)によって自動的に生成される、前記時間的経過内の対応する電子注射イベントタイムスタンプ(226)と、
    (iii)1つまたは複数のタイプのインスリン薬剤から前記対象に注射されたそれぞれのタイプのインスリン薬剤(230)と
    を含む、前記第1のデータセット(220)を取得することと、
    前記対象の複数の自律的グルコース測定値と、前記複数の自律的グルコース測定値の各それぞれの自律的グルコース測定値(236)について、前記それぞれの測定値(236)がいつ取られたかを表すグルコース測定タイムスタンプ(238)とを含む第2のデータセット(235)を取得することであって、前記グルコース測定値および前記対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価されたグルコース濃度と、時間の関数としてのグルコースの変化率とを取得するように構造化されている、前記第2のデータセット(235)を取得することと、
    前記対象に関連付けられた現在の血糖イベント(255)を取得するために前記第2のデータセット(235)を使用することであって、前記現在の血糖イベント(255)は、前記第1のデータセットの前記自律的グルコース測定値のパターンとして同定することができ、前記現在の血糖イベントは、前記対象の現在の代謝状態(256)の評価に関係する評価期間(260)の始まりを同定し、前記現在の代謝状態(256)は、それぞれのタイプの代謝状態(257)を有している、前記第2のデータセット(235)を使用することと、
    所与の時刻における前記対象に関連付けられた前記現在の血糖イベント(255)の同定に応答して、前記評価期間内の評価時刻(261)における前記低血糖リスクを評価することであって、前記評価することが、
    前記現在の代謝状態(256)の代謝状態(257)のタイプを取得するために前記第2のデータセット(235)を使用すること、
    前記対象の評価された残存インスリン(502)を取得するために前記第1のデータセット(220)を使用することであって、前記評価された残存インスリンは、前記評価時刻までの前記それぞれのインスリン薬剤の持続時間内にあり、したがって前記残存インスリンに寄与する注射イベントタイムスタンプ(226)を有する前記第1のデータセット(220)内の前記薬剤記録(222)によって指示される、前記対象に注射されたインスリン薬剤の総量から計算され、前記評価は、前記注射されたインスリン薬剤の総量を指示する前記薬剤記録(222)の前記作用持続時間プロファイルを利用する、前記第1のデータセット(220)を使用すること、
    前記第2のデータセットを使用して、
    (i)前記評価時刻における評価されたグルコース濃度(263)と、
    (ii)前記評価時刻における評価されたグルコースの変化率(264)と
    を取得すること
    によって行われる、前記低血糖リスクを評価することと、
    前記評価された変化率(264)が負であることに応答して、
    前記複数の過去の時間期間記録を使用して、
    (i)前記現在の代謝状態(256)と同じタイプの代謝状態(247)を有する過去の代謝状態(246)を含む過去の時間期間記録(245)を選択することによる、前記対象の基準の過去の代謝状態(265)であって、前記選択された過去の時間期間記録(245)は、基準の過去の時間期間記録を定義する、前記対象の基準の過去の代謝状態(265)と、
    (ii)前記基準の過去の時間期間記録に対応する基準の過去の時間期間(266)と、
    (iii)前記基準の過去の時間期間(266)内で時刻を選択することによる、基準の過去の時刻(267)であって、前記基準の過去の時刻(267)における前記基準の過去の代謝状態(265)の進行は、前記評価時刻(261)における前記現在の代謝状態(256)の進行に相当する、前記基準の過去の時刻(267)と
    を取得することと、
    低血糖リスク尺度(299)を推定することであって、前記低血糖リスク尺度(299)は、真であるバイナリリスク式の個数による増加関数であり、前記バイナリリスク式は、
    (i)前記評価されたグルコース濃度(263)が、前記基準の過去の時刻(267)に評価された、評価された過去のグルコース濃度(270)より低い、
    (ii)評価されたグルコースの変化率(264)が、前記基準の過去の時刻(267)に評価された、グルコースの評価された過去の変化率(264)より数値的に大きい、
    (iii)前記評価時刻(261)に評価された、評価された残存インスリン(262)が、前記基準の過去の時刻(267)に評価された、評価された過去の残存インスリン(272)より多い
    ことである、前記低血糖リスク尺度(299)を推定すること
    からなる方法である、デバイス。
  2. 前記対象に関連付けられた現在の血糖イベント(255)を同定するために前記第2のデータセット(235)を使用する前記ステップが、
    食事の指示を受け取ったことに応答して、前記現在の血糖イベント(255)を指示する前記グルコースパターンとしての最大グルコース濃度(518)を同定するために前記第2のデータセットを使用することと、
    前記同定された最大グルコース濃度(518)に対応する最大グルコース濃度の時刻(519)を同定し、それにより前記評価期間(260)の前記始まりを同定すること
    を含み、前記現在の代謝状態は食後状態である、請求項1に記載のデバイス。
  3. 前記対象に関連付けられた現在の血糖イベント(255)を同定するために前記第2のデータセット(235)を使用する前記ステップが、
    分散の移動期間(302)を評価することと、
    前記分散の移動期間が事前定義された選択基準を満たしたことに応答して、前記評価された分散の移動期間を、前記評価期間(260)の前記始まりの指示として選択することであって、前記選択された評価された分散の移動期間は、選択された分散の移動期間(302)を定義する、選択することと
    を含む、請求項1に記載のデバイス。
  4. 前記評価期間(260)の前記始まりを、前記選択された分散の移動期間(302)の始まりに対応する時刻として同定するステップをさらに含み、前記現在の代謝状態(265)が現在の空腹時期間である、請求項3に記載のデバイス。
  5. 前記複数の自律的グルコース測定値(236)にわたる分散の移動期間
    Figure 2020504352
    を評価することが、次の関係、
    Figure 2020504352
    を使用することを含み、
    ここで、Gは、前記複数の自律的グルコース測定値の部分kにおけるi番目の自律的グルコース測定値であり、
    Mは、前記複数の自律的グルコース測定値中の自律的グルコース測定値の数であり、連続した所定の時間スパンを表し、
    Figure 2020504352
    は、前記複数の自律的グルコース測定値から選択された前記自律的グルコース測定値の平均値であり、
    kは、前記第1の時間期間内にあり、
    前記事前定義された選択基準は、前記分散の移動期間
    Figure 2020504352
    が所定の閾値(304)より小さいことである、請求項3または4に記載のデバイス。
  6. 前記インスリン薬剤投与計画は、短時間作用型インスリン薬剤(310)によるボーラスインスリン薬剤投与計画(308)と、長時間作用型インスリン薬剤(315)による基礎インスリン薬剤投与計画(314)とを含み、
    前記1つまたは複数のタイプのインスリン薬剤の前記作用持続時間プロファイルは、
    前記短時間作用型インスリン薬剤の持続時間によって特徴付けられる前記短時間作用型インスリン薬剤(310)のボーラス作用持続時間プロファイル(312)と、
    前記長時間作用型インスリン薬剤の持続時間によって特徴付けられる前記長時間作用型インスリン薬剤(315)の基礎作用持続時間プロファイル(316)と
    を含み、
    前記第1のデータセット(220)を使用して、前記対象の評価された残存インスリンを計算することは、前記短時間作用型インスリン薬剤(310)に関係する残存インスリンを、前記長時間作用型インスリン薬剤(315)に関係する残存インスリンに加算することを含み、
    前記短時間作用型インスリン薬剤に関係する前記残存インスリンは、前記評価時刻(260)までの前記短時間作用型インスリン薬剤の前記持続時間内にある注射イベントタイムスタンプを有する前記第1のデータセット内の前記薬剤記録によって指示される、前記対象に注射される短時間作用型インスリン薬剤の総量から計算され、
    前記長時間作用型インスリン薬剤に関係する前記残存インスリンは、前記評価時刻(260)までの前記長時間作用型インスリン薬剤の前記持続時間内にある注射イベントタイムスタンプを有する前記第1のデータセット内の前記薬剤記録によって指示される、前記対象に注射される長時間作用型インスリン薬剤の総量から計算される、
    請求項1から5のいずれか一項に記載のデバイス。
  7. 前記方法が、前記低血糖リスク尺度(299)を、前記デバイスのユーザ、健康管理専門家、または前記対象に関係する人物に通信することをさらに含む、請求項1から6のいずれか一項に記載のデバイス。
  8. 前記方法が、前記推定される低血糖リスク尺度(299)の重篤度尺度(602)を推定するステップをさらに含み、前記重篤度thypoを評価することが、次の関係、
    Figure 2020504352
    を使用することを含み、
    ここで、Glowは、グルコースレベルの下限(512)であり、
    Gは、前記評価時刻における前記グルコースレベルであり、
    は、グルコースの前記評価された変化率(264)である、
    請求項1から7のいずれか一項に記載のデバイス。
  9. 前記バイナリリスク式が、
    (iii)前記評価時刻(261)における残存インスリンの評価された変化率が負であり、かつ、前記基準の過去の時刻に評価された、残存インスリンの評価された過去の変化率より数値的に小さく、前記基準の過去の時刻に評価された、前記残存インスリンの評価された過去の変化率も負であること
    をさらに含む、請求項1から8のいずれか一項に記載のデバイス。
  10. 前記バイナリリスク式が、
    (iv)前記評価時刻(261)における残存インスリンの評価された変化率が正であり、かつ、前記基準の過去の時刻に評価された、残存インスリンの評価された過去の変化率より数値的に大きく、前記基準の過去の時刻に評価された、前記残存インスリンの評価された過去の変化率も正であること
    をさらに含む、請求項1から9のいずれか一項に記載のデバイス。
  11. 前記バイナリリスク式が、
    (v)前記評価時刻(261)における残存インスリンの評価された変化率が正であり、かつ、前記基準の過去の時刻に評価された、残存インスリンの評価された過去の変化率が負であること
    をさらに含む、請求項1から10のいずれか一項に記載のデバイス。
  12. 継続インスリン投薬計画(206)を行っている対象の将来の低血糖イベントのリスクを推定するための方法であって、前記継続インスリン投薬計画は、1つまたは複数のタイプのインスリン薬剤投与計画(208)を含み、前記1つまたは複数のタイプのインスリン薬剤投与計画(208)の各々は、1つまたは複数のタイプのインスリン薬剤を定義するインスリン薬剤のタイプ(210)を含み、前記方法は、
    デバイス(250)を使用すること
    を含み、前記デバイスは、1つまたは複数のプロセッサ(274)と、メモリ(192/290)とを備え、前記メモリは、
    1つまたは複数のタイプのインスリン薬剤(210)と、前記インスリン薬剤のタイプ(210)の各々について、時間の関数として前記対象の体内に残留するインスリンを予測するための、それぞれの前記インスリン薬剤の持続時間によって特徴付けられる作用持続時間プロファイル(212)であって、前記インスリン薬剤のタイプは、対応する注射イベントが前記持続時間以内のタイムスタンプを有している場合に残存インスリンに寄与することができる、インスリン薬剤(210)と作用持続時間プロファイル(212)、
    過去の時間的経過内の時間の関数としての前記対象の過去の残存インスリンデータ(219)と、前記過去の時間的経過内に取得された前記対象の過去のグルコース測定値(240)および対応するタイムスタンプ(242)とを含む過去のデータセット(218)であって、前記過去のグルコース測定値および前記対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価された過去のグルコース濃度と、時間の関数としての評価された過去のグルコースの変化率とを取得するように構造化され、前記過去の時間的経過は、前記対象が前記継続インスリン投薬計画を遵守していた複数の過去の遵守時間期間を含む、過去のデータセット(218)、ならびに
    前記過去のデータセット(218)から取得される複数の過去の時間期間記録(244)であって、前記過去の時間期間記録の各々(245)は、前記対象の同定された過去の代謝状態(246)と、過去の血糖イベントとを含み、前記過去の代謝状態(246)は、前記過去の血糖イベントによって同定することができ、前記過去の血糖イベントは、前記過去のデータセット(218)の前記過去のグルコース測定値のパターン、それぞれのタイプの代謝状態(247)、および前記継続インスリン投薬計画への対応する過去の遵守時間期間(248)として同定することができ、前記対応する過去の遵守時間期間(248)は、前記複数の過去の遵守時間期間のうちの1つである、複数の過去の時間期間記録(244)
    を記憶し、
    前記メモリはさらに、前記1つまたは複数のプロセッサ(274)によって実行されたときに方法を行う命令を記憶し、前記方法は、
    前記継続インスリン投薬計画(206)を適用するために前記対象によって使用される1つまたは複数のインスリン注射デバイスから第1のデータセット(220)を取得することであって、前記第1のデータセット(220)は、前記過去の時間的経過の後の時間的経過にわたる複数のインスリン薬剤記録を含み、前記複数の薬剤記録の各それぞれのインスリン薬剤記録(222)は、
    (iv)前記1つまたは複数のインスリン注射デバイスのそれぞれのインスリン注射デバイス(104)を使用して前記対象に注射されたインスリン薬剤の量(228)を含む、それぞれのインスリン薬剤注射イベント(224)と、
    (v)前記それぞれのインスリン薬剤注射イベント(224)の発生時に前記それぞれのインスリン注射デバイス(104)によって自動的に生成される、前記時間的経過内の対応する電子注射イベントタイムスタンプ(226)と、
    (vi)1つまたは複数のタイプのインスリン薬剤から前記対象に注射されたそれぞれのタイプのインスリン薬剤(230)と
    を含む、前記第1のデータセット(220)を取得することと、
    前記対象の複数の自律的グルコース測定値と、前記複数の自律的グルコース測定値の各それぞれの自律的グルコース測定値(236)について、前記それぞれの測定値(236)がいつ取られたかを表すグルコース測定タイムスタンプ(238)とを含む第2のデータセット(235)を取得することであって、前記グルコース測定値および前記対応するタイムスタンプは、時間に関する第1の導関数の導出を可能にするように、および、それにより、評価されたグルコース濃度と、時間の関数としてのグルコースの変化率とを取得するように構造化されている、前記第2のデータセット(235)を取得することと、
    前記被験者対象に関連付けられた現在の血糖イベント(255)を取得するために前記第2のデータセット(235)を使用することであって、前記現在の血糖イベント(255)は、前記第1のデータセットの前記自律的グルコース測定値のパターンとして同定することができ、前記現在の血糖イベントは、前記対象の現在の代謝状態(256)の評価に関係する評価期間(260)の始まりを同定し、前記現在の代謝状態(256)は、それぞれのタイプの代謝状態(257)を有している、前記第2のデータセット(235)を使用することと、
    所与の時刻における前記対象に関連付けられた前記現在の血糖イベント(255)の同定に応答して、前記評価期間内の評価時刻(261)における前記低血糖リスクを評価することであって、前記評価することが、
    前記現在の代謝状態(256)の代謝状態(257)のタイプを取得するために前記第2のデータセット(235)を使用すること、
    前記被験者対象の評価された残存インスリン(502)を取得するために前記第1のデータセット(220)を使用することであって、前記評価された残存インスリンは、前記評価時刻までの前記それぞれのインスリン薬剤の持続時間内にあり、したがって前記残存インスリンに寄与する注射イベントタイムスタンプ(226)を有する前記第1のデータセット(220)内の前記薬剤記録(222)によって指示される、前記対象に注射されたインスリン薬剤の総量から計算され、前記評価は、前記注射されたインスリン薬剤の総量を指示する前記薬剤記録(222)の前記作用持続時間プロファイルを利用する、前記第1のデータセット(220)を使用すること、
    前記第2のデータセットを使用して、
    (i)前記評価時刻における評価されたグルコース濃度(263)と、
    (ii)前記評価時刻における評価されたグルコースの変化率(264)と
    を取得すること
    によって行われる、前記低血糖リスクを評価することと、
    前記評価された変化率(264)が負であることに応答して、
    前記複数の過去の時間期間記録を使用して、
    (iv)前記現在の代謝状態(256)と同じタイプの代謝状態(247)を有する過去の代謝状態(246)を含む過去の時間期間記録(245)を選択することによる、前記対象の基準の過去の代謝状態(265)であって、前記選択された過去の時間期間記録(245)は、基準の過去の時間期間記録を定義する、基準の過去の代謝状態(265)と、
    (v)前記基準の過去の時間期間記録に対応する基準の過去の時間期間(266)と、
    (vi)前記基準の過去の時間期間(266)内で時刻を選択することによる、基準の過去の時刻(267)であって、前記基準の過去の時刻(267)における前記基準の過去の代謝状態(265)の進行は、前記評価時刻(261)における前記現在の代謝状態(256)の進行に相当する、基準の過去の時刻(267)と
    を取得することと、
    低血糖リスク尺度(299)を推定することであって、前記低血糖リスク尺度(299)は、真であるバイナリリスク式の個数による増加関数であり、
    前記バイナリリスク式は、
    (vi)前記評価されたグルコース濃度(263)が、前記基準の過去の時刻(267)に評価された、評価された過去のグルコース濃度(270)より低い、
    (vii)評価されたグルコースの変化率(264)が、前記基準の過去の時刻(267)に評価された、グルコースの評価された過去の変化率(264)より数値的に大きい、
    前記評価時刻(261)に評価された、評価された残存インスリン(262)が、前記基準の過去の時刻(267)に評価された、評価された過去の残存インスリン(272)より多い
    ことである、前記低血糖リスク尺度(299)を推定すること
    からなる、方法。
  13. 1つまたは複数のプロセッサとメモリとを有するコンピュータによって実行されたときに請求項12に記載の方法を行う命令を備えたコンピュータプログラム。
  14. 請求項13に記載のコンピュータプログラムが記憶されているコンピュータ可読データ担持体。
JP2019521807A 2016-10-31 2017-10-24 将来の低血糖イベントのリスクを推定するためのシステムおよび方法 Active JP7082121B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662414988P 2016-10-31 2016-10-31
US62/414,988 2016-10-31
EP16199030.4 2016-11-16
EP16199030 2016-11-16
PCT/EP2017/077077 WO2018077835A1 (en) 2016-10-31 2017-10-24 Systems and methods for estimating the risk of a future hypoglycemic event

Publications (2)

Publication Number Publication Date
JP2020504352A true JP2020504352A (ja) 2020-02-06
JP7082121B2 JP7082121B2 (ja) 2022-06-07

Family

ID=60143723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019521807A Active JP7082121B2 (ja) 2016-10-31 2017-10-24 将来の低血糖イベントのリスクを推定するためのシステムおよび方法

Country Status (5)

Country Link
US (1) US11373759B2 (ja)
EP (1) EP3532958B1 (ja)
JP (1) JP7082121B2 (ja)
CN (1) CN109863563B (ja)
MA (1) MA46606A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230046438A (ko) * 2021-09-30 2023-04-06 이오플로우(주) 혈당 알림 등급에 연동되는 그래픽 제공 방법 및 기록매체

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109564784A (zh) * 2016-08-17 2019-04-02 诺和诺德股份有限公司 用于优化相对于用餐事件的餐时定时的系统和方法
US20180353112A1 (en) * 2017-06-09 2018-12-13 President And Fellows Of Harvard College Prevention of post-bariatric hypoglycemia using a novel glucose prediction algorithm and mini-dose stable glucagon
WO2020257667A1 (en) * 2019-06-19 2020-12-24 Dexcom, Inc. Dynamic equivalent on board estimator
CN112370607B (zh) * 2020-12-13 2022-08-05 李兴阳 一种胰岛素泵治疗仪
WO2023070245A1 (en) * 2021-10-25 2023-05-04 Medtrum Technologies Inc. Closed-loop artificial pancreas insulin infusion control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140107607A1 (en) * 2012-10-16 2014-04-17 Asante Solutions, Inc. Infusion Pump System and Methods
JP2015178044A (ja) * 2012-08-30 2015-10-08 メドトロニック ミニメド インコーポレイテッド インスリン注入デバイスを制御するシステム及び方法
US20150289821A1 (en) * 2014-04-10 2015-10-15 Dexcom, Inc. Glycemic urgency assessment and alerts interface
US20160113594A1 (en) * 2014-10-22 2016-04-28 Dexcom, Inc. User interfaces for continuous glucose monitoring

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251126A (en) * 1990-10-29 1993-10-05 Miles Inc. Diabetes data analysis and interpretation method
US6923763B1 (en) * 1999-08-23 2005-08-02 University Of Virginia Patent Foundation Method and apparatus for predicting the risk of hypoglycemia
JP5072182B2 (ja) 2002-08-13 2012-11-14 ユニヴァースティ オブ ヴァージニア パテント ファウンデイション 糖尿病自己管理を推進するための自己モニタリング血糖(smbg)データを処理するための方法、システムおよびコンピュータ・プログラム・プロダクト
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
EP2227132B1 (en) 2007-10-09 2023-03-08 DexCom, Inc. Integrated insulin delivery system with continuous glucose sensor
EP2260423B1 (en) * 2008-04-04 2018-02-28 Hygieia, Inc. Apparatus for optimizing a patient's insulin dosage regimen
US9220456B2 (en) * 2008-04-04 2015-12-29 Hygieia, Inc. Systems, methods and devices for achieving glycemic balance
JP5677322B2 (ja) 2009-02-04 2015-02-25 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 血糖コントロールのための情報を提供するための医療システム及び方法
WO2010099313A1 (en) 2009-02-25 2010-09-02 University Of Virginia Patent Foundation Cgm-based prevention of hypoglycemia via hypoglycemia risk assessment and smooth reduction insulin delivery
EP4276652A3 (en) 2009-07-23 2024-01-31 Abbott Diabetes Care, Inc. Real time management of data relating to physiological control of glucose levels
EP2483824B1 (en) 2009-09-30 2017-08-16 DreaMed Diabetes Ltd Monitoring device for management of insulin delivery
WO2011084208A1 (en) * 2009-12-21 2011-07-14 Stc.Unm System and methods for estimating hba1c, treatment response, and hypoglycemia risk using self-monitoring of blood glucose data
US8532933B2 (en) * 2010-06-18 2013-09-10 Roche Diagnostics Operations, Inc. Insulin optimization systems and testing methods with adjusted exit criterion accounting for system noise associated with biomarkers
US8671237B2 (en) * 2011-05-31 2014-03-11 Covidien Lp Patient monitoring platform interface
CA3175850A1 (en) * 2011-08-26 2013-03-07 Stephen D. Patek Method, system and computer readable medium for adaptive advisory control of diabetes
US9439602B2 (en) 2011-10-26 2016-09-13 Dexcom, Inc. Alert system for hypo and hyperglycemia prevention based on clinical risk
US20140012510A1 (en) 2012-07-09 2014-01-09 Dexcom, Inc Systems and methods for leveraging smartphone features in continuous glucose monitoring
US10130767B2 (en) * 2012-08-30 2018-11-20 Medtronic Minimed, Inc. Sensor model supervisor for a closed-loop insulin infusion system
KR102496129B1 (ko) 2014-08-01 2023-02-07 엠벡타 코포레이션 지속적인 포도당 모니터링 주입 디바이스
US10332633B2 (en) * 2016-06-01 2019-06-25 Roche Diabetes Care, Inc. Control-to-range aggressiveness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178044A (ja) * 2012-08-30 2015-10-08 メドトロニック ミニメド インコーポレイテッド インスリン注入デバイスを制御するシステム及び方法
US20140107607A1 (en) * 2012-10-16 2014-04-17 Asante Solutions, Inc. Infusion Pump System and Methods
US20150289821A1 (en) * 2014-04-10 2015-10-15 Dexcom, Inc. Glycemic urgency assessment and alerts interface
JP2017515520A (ja) * 2014-04-10 2017-06-15 デックスコム・インコーポレーテッド 血糖緊急度評価及び警告インターフェース
US20160113594A1 (en) * 2014-10-22 2016-04-28 Dexcom, Inc. User interfaces for continuous glucose monitoring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230046438A (ko) * 2021-09-30 2023-04-06 이오플로우(주) 혈당 알림 등급에 연동되는 그래픽 제공 방법 및 기록매체
KR102706305B1 (ko) * 2021-09-30 2024-09-13 이오플로우(주) 혈당 알림 등급에 연동되는 그래픽 제공 방법 및 기록매체

Also Published As

Publication number Publication date
CN109863563B (zh) 2024-01-09
US20190244713A1 (en) 2019-08-08
US11373759B2 (en) 2022-06-28
MA46606A (fr) 2019-09-04
JP7082121B2 (ja) 2022-06-07
EP3532958A1 (en) 2019-09-04
EP3532958B1 (en) 2024-03-27
CN109863563A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
JP7082121B2 (ja) 将来の低血糖イベントのリスクを推定するためのシステムおよび方法
US11195607B2 (en) Starter kit for basal rate titration
JP6756030B2 (ja) 適応的目標グルコース値による基礎滴定
US11282598B2 (en) Starter kit for basal insulin titration
JP7042791B2 (ja) インスリン感受性を判断するためのシステムおよび方法
JP2022122877A (ja) 食事イベントに関連したボーラスタイミングを最適化するためのシステムおよび方法
WO2018037080A1 (en) Starter kit for basal insulin titration
WO2018077835A1 (en) Systems and methods for estimating the risk of a future hypoglycemic event
JP7018937B2 (ja) 基礎投与のタイミングを調節するためのシステムおよび方法
US20210142879A1 (en) Systems and methods for communicating a dose
JP2020524844A (ja) 適合可能な標的グルコースレベルを用いる基礎タイトレーション
WO2018099912A1 (en) Starter kit for basal rate titration
JP2019523482A (ja) グルコース測定値およびインスリンペンデータに基づくインスリン治療のための計画アドヒアランス測定

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220526

R150 Certificate of patent or registration of utility model

Ref document number: 7082121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150