JP2020503402A - Thermoplastic resin composition and molded article produced therefrom - Google Patents

Thermoplastic resin composition and molded article produced therefrom Download PDF

Info

Publication number
JP2020503402A
JP2020503402A JP2019532007A JP2019532007A JP2020503402A JP 2020503402 A JP2020503402 A JP 2020503402A JP 2019532007 A JP2019532007 A JP 2019532007A JP 2019532007 A JP2019532007 A JP 2019532007A JP 2020503402 A JP2020503402 A JP 2020503402A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin composition
weight
monomer
aromatic vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019532007A
Other languages
Japanese (ja)
Other versions
JP7198753B2 (en
Inventor
ソク ヤン,チョン
ソク ヤン,チョン
キョン キム,ヨン
キョン キム,ヨン
ヨン ペ,ソン
ヨン ペ,ソン
ソン キム,チュ
ソン キム,チュ
Original Assignee
ロッテ アドバンスト マテリアルズ カンパニー リミテッド
ロッテ アドバンスト マテリアルズ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ロッテ アドバンスト マテリアルズ カンパニー リミテッド, ロッテ アドバンスト マテリアルズ カンパニー リミテッド filed Critical ロッテ アドバンスト マテリアルズ カンパニー リミテッド
Priority claimed from PCT/KR2017/015364 external-priority patent/WO2018124657A1/en
Publication of JP2020503402A publication Critical patent/JP2020503402A/en
Application granted granted Critical
Publication of JP7198753B2 publication Critical patent/JP7198753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0075Antistatics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plant Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の熱可塑性樹脂組成物は、ゴム変性ビニル系グラフト共重合体および芳香族ビニル系共重合体樹脂を含む熱可塑性樹脂約100重量部;帯電防止剤約10重量部〜約30重量部;ならびに酸化亜鉛約0.01重量部〜約2重量部を含み、前記帯電防止剤はポリエーテルエステルアミドブロック共重合体、ポリアルキレングリコール、およびポリアミドのうちの1種以上を含むことを特徴とする。前記熱可塑性樹脂組成物は、抗菌性、帯電防止性、耐衝撃性等に優れる。The thermoplastic resin composition of the present invention comprises about 100 parts by weight of a thermoplastic resin containing a rubber-modified vinyl-based graft copolymer and an aromatic vinyl-based copolymer resin; about 10 parts by weight to about 30 parts by weight of an antistatic agent; And about 0.01 parts by weight to about 2 parts by weight of zinc oxide, wherein the antistatic agent comprises one or more of a polyetheresteramide block copolymer, a polyalkylene glycol, and a polyamide. . The thermoplastic resin composition is excellent in antibacterial properties, antistatic properties, impact resistance and the like.

Description

本発明は、熱可塑性樹脂組成物およびこれから製造された成形品に関するものである。より具体的には、本発明は、抗菌性、帯電防止性、耐衝撃性等に優れた熱可塑性樹脂組成物およびこれから製造された成形品に関する。   The present invention relates to a thermoplastic resin composition and a molded article produced therefrom. More specifically, the present invention relates to a thermoplastic resin composition having excellent antibacterial properties, antistatic properties, impact resistance, and the like, and a molded article produced therefrom.

熱可塑性樹脂として、アクリロニトリル−ブタジエン−スチレン共重合体樹脂(ABS樹脂)等のゴム変性芳香族ビニル系共重合体樹脂は、機械的物性、加工性、外観特性等に優れるため、電気/電子製品の内/外装材、自動車の内/外装材、建築用外装材等に広く使用されている。   As thermoplastic resins, rubber-modified aromatic vinyl copolymer resins such as acrylonitrile-butadiene-styrene copolymer resin (ABS resin) are excellent in mechanical properties, workability, appearance characteristics, etc., and are used for electric / electronic products. Widely used for interior / exterior materials of automobiles, interior / exterior materials of automobiles, exterior materials for buildings, etc.

これらの樹脂は、医療機器、おもちゃ、食品容器等の物理的な接触が生じる用途に使用される場合、素材自体に、菌を除去したり抑制したりすることができる抗菌性が要求され、静電気の発生を防止する帯電防止性、耐衝撃性等の機械的物性等が要求される。抗菌性熱可塑性樹脂組成物を得るためには、無機または有機抗菌剤が使用され得るが、無機抗菌剤の場合は、熱可塑性樹脂の変色、透明性の低下等の問題があり、有機抗菌剤の場合は、高温加工時に分解、溶出等のおそれがあるため適用が容易ではない。   When these resins are used in applications where physical contact occurs, such as medical equipment, toys, food containers, etc., the materials themselves are required to have antibacterial properties that can remove or suppress bacteria, and It is required to have mechanical properties such as antistatic property and impact resistance for preventing the occurrence of cracks. In order to obtain an antibacterial thermoplastic resin composition, an inorganic or organic antibacterial agent may be used.However, in the case of an inorganic antibacterial agent, there are problems such as discoloration of the thermoplastic resin, reduction in transparency, and the like, and an organic antibacterial agent. In the case of (1), application is not easy because there is a risk of decomposition and elution during high-temperature processing.

よって、抗菌性だけでなく、帯電防止性、耐衝撃性等に優れた熱可塑性樹脂組成物の開発が必要な実情にある。   Therefore, there is a need to develop a thermoplastic resin composition having not only antibacterial properties but also excellent antistatic properties and impact resistance.

本発明の背景技術は、特開2005−239904号公報等に開示されている。   The background art of the present invention is disclosed in Japanese Patent Application Laid-Open No. 2005-239904.

本発明の目的は、抗菌性、帯電防止性、衝撃性等に優れた熱可塑性樹脂組成物を提供することにある。   An object of the present invention is to provide a thermoplastic resin composition having excellent antibacterial properties, antistatic properties, impact properties, and the like.

本発明の他の目的は、前記熱可塑性樹脂組成物から形成された成形品を提供することにある。   Another object of the present invention is to provide a molded article formed from the thermoplastic resin composition.

本発明の上記およびその他の目的は、下記で説明する本発明によって全て達成することができる。   The above and other objects of the present invention can all be achieved by the present invention described below.

本発明の一つの観点は、熱可塑性樹脂組成物に関するものである。上記熱可塑性樹脂組成物は、ゴム変性ビニル系グラフト共重合体および芳香族ビニル系共重合体樹脂を含む熱可塑性樹脂約100重量部;帯電防止剤約10重量部〜約30重量部;ならびに酸化亜鉛約0.01重量部〜約2重量部を含み、上記帯電防止剤はポリエーテルエステルアミドブロック共重合体、ポリアルキレングリコール、およびポリアミドのうち1種以上を含む。   One aspect of the present invention relates to a thermoplastic resin composition. The thermoplastic resin composition comprises about 100 parts by weight of a thermoplastic resin containing a rubber-modified vinyl-based graft copolymer and an aromatic vinyl-based copolymer resin; about 10 parts by weight to about 30 parts by weight of an antistatic agent; And about 2 parts by weight of zinc, and the antistatic agent comprises one or more of a polyetheresteramide block copolymer, a polyalkylene glycol, and a polyamide.

具体例において、上記ゴム変性ビニル系グラフト共重合体は、ゴム質重合体に芳香族ビニル系単量体およびシアン化ビニル系単量体を含む単量体混合物がグラフト重合されたものであり得る。   In a specific example, the rubber-modified vinyl-based graft copolymer may be a rubbery polymer obtained by graft-polymerizing a monomer mixture containing an aromatic vinyl-based monomer and a vinyl cyanide-based monomer. .

具体例において、上記芳香族ビニル系共重合体樹脂は、芳香族ビニル系単量体および上記芳香族ビニル系単量体と共重合可能な単量体の重合体であってもよい。   In a specific example, the aromatic vinyl copolymer resin may be a polymer of an aromatic vinyl monomer and a monomer copolymerizable with the aromatic vinyl monomer.

具体例において、上記ゴム変性ビニル系グラフト共重合体は、上記熱可塑性樹脂100重量%のうち、約20重量%〜約50重量%で含まれ、上記芳香族ビニル系共重合体樹脂は、上記熱可塑性樹脂100重量%のうち約50重量%〜約80重量%で含まれ得る。   In a specific example, the rubber-modified vinyl-based graft copolymer is included in about 20% by weight to about 50% by weight based on 100% by weight of the thermoplastic resin, and the aromatic vinyl-based copolymer resin is It may comprise from about 50% to about 80% by weight of 100% by weight of the thermoplastic resin.

具体例において、上記酸化亜鉛は、平均粒子径が約0.2μm〜約3μmであり、BET比表面積が約1m/g〜約10m/gであり得る。 In an embodiment, the zinc oxide has an average particle size is about 0.2μm~ about 3 [mu] m, BET specific surface area may be about 1 m 2 / g to about 10 m 2 / g.

具体例において、上記酸化亜鉛は、フォトルミネッセンス(Photo Luminescence)の測定時、370nm〜390nm領域のピークAと450nm〜600nm領域のピークBとの強度比(B/A)が約0〜約1であり得る。   In a specific example, the zinc oxide has an intensity ratio (B / A) of a peak A in a 370 nm to 390 nm region and a peak B in a 450 nm to 600 nm region when photoluminescence (Photo Luminescence) is measured, from about 0 to about 1. possible.

具体例において、上記酸化亜鉛は、X線回折(X−ray diffraction、XRD)の分析時、ピーク位置(peak position)2θ値が35°〜37°の範囲であり、下記数式1による微結晶サイズ(crystallite size)の値が約1,000Å〜約2,000Åであり得る:   In a specific example, the zinc oxide has a peak position (peak position) 2θ value in the range of 35 ° to 37 ° upon X-ray diffraction (X-ray diffraction, XRD) analysis, and has a crystallite size according to the following formula 1. The value of (crystallite size) can be from about 1,000 to about 2,000:

上記数式1において、Kは形状係数(shape factor)であり、λはX線波長(X−ray wavelength)であり、βはX線回折ピーク(peak)のFWHM値(degree)であり、θはピーク位置の値(peak position degree)である。   In the above formula 1, K is a shape factor, λ is an X-ray wavelength, β is an FWHM value (degree) of an X-ray diffraction peak (peak), and θ is It is a value of a peak position (peak position degree).

具体例において、上記熱可塑性樹脂組成物は、JIS Z 2801抗菌評価法によって、5cm×5cmの大きさの試験片に黄色ブドウ球菌および大腸菌を接種し、35℃、RH90%の条件で24時間培養した後、測定した抗菌活性値がそれぞれ約2〜約7および約2〜約6.5であり得る。   In a specific example, the above thermoplastic resin composition was inoculated with Staphylococcus aureus and Escherichia coli on a test piece having a size of 5 cm × 5 cm according to JIS Z 2801 antibacterial evaluation method, and cultured at 35 ° C. and RH 90% for 24 hours. After that, the measured antimicrobial activity values can be about 2 to about 7 and about 2 to about 6.5, respectively.

具体例において、上記熱可塑性樹脂組成物は、ASTM D257に基づいて測定した表面抵抗値が約1×10Ω・cm〜約1×1010Ω・cmであり得る。 In a specific example, the thermoplastic resin composition may have a surface resistance value of about 1 × 10 6 Ω · cm to about 1 × 10 10 Ω · cm based on ASTM D257.

具体例において、上記熱可塑性樹脂組成物は、ASTM D256に基づいて測定した1/4”厚の試験片のノッチアイゾット衝撃強度が約15kgf・cm/cm〜約25kgf・cm/cmであり得る。   In a specific example, the thermoplastic resin composition may have a notch Izod impact strength of a 1/4 "thick test piece, measured according to ASTM D256, of about 15 kgf.cm/cm to about 25 kgf.cm/cm.

本発明の他の観点は、成形品に関するものである。上記成形品は、上記熱可塑性樹脂組成物から形成されることを特徴とする。   Another aspect of the present invention relates to a molded article. The molded article is formed from the thermoplastic resin composition.

本発明は、抗菌性、帯電防止性、耐衝撃性等に優れた熱可塑性樹脂組成物およびこれから形成された成形品を提供する発明の効果を有する。   The present invention has the effect of the invention of providing a thermoplastic resin composition having excellent antibacterial properties, antistatic properties, impact resistance, and the like, and a molded article formed therefrom.

以下、本発明を詳しく説明する。   Hereinafter, the present invention will be described in detail.

本発明にかかる熱可塑性樹脂組成物は、(A1)ゴム変性ビニル系グラフト共重合体および(A2)芳香族ビニル系共重合体樹脂を含む(A)熱可塑性樹脂;(B)帯電防止剤;ならびに(C)酸化亜鉛を含む。   The thermoplastic resin composition according to the present invention comprises (A1) a thermoplastic resin containing (A1) a rubber-modified vinyl-based graft copolymer and (A2) an aromatic vinyl-based copolymer resin; (B) an antistatic agent; And (C) zinc oxide.

(A)熱可塑性樹脂
本発明の熱可塑性樹脂は、(A1)ゴム変性ビニル系グラフト共重合体および(A2)芳香族ビニル系共重合体樹脂を含むゴム変性ビニル系共重合体樹脂であってもよい。
(A) Thermoplastic resin The thermoplastic resin of the present invention is a rubber-modified vinyl-based copolymer resin containing (A1) a rubber-modified vinyl-based graft copolymer and (A2) an aromatic vinyl-based copolymer resin. Is also good.

(A1)ゴム変性芳香族ビニル系グラフト共重合体
本発明の一具体例にかかるゴム変性ビニル系グラフト共重合体は、ゴム質重合体に芳香族ビニル系単量体およびシアン化ビニル系単量体を含む単量体混合物がグラフト重合されたものであってもよい。例えば、上記ゴム変性ビニル系グラフト共重合体は、ゴム質重合体に芳香族ビニル系単量体およびシアン化ビニル系単量体を含む単量体混合物をグラフト重合して得ることができ、必要に応じて、上記単量体混合物に加工性および耐熱性を付与する単量体をさらに含有させてグラフト重合することができる。上記重合は、乳化重合、懸濁重合等の公知の重合方法によって行うことができる。また、上記ゴム変性ビニル系グラフト共重合体は、コア(ゴム質重合体)−シェル(単量体混合物の共重合体)構造を形成することができるが、これらに制限されない。
(A1) Rubber-Modified Aromatic Vinyl-Based Graft Copolymer The rubber-modified vinyl-based graft copolymer according to one embodiment of the present invention is a rubbery polymer comprising an aromatic vinyl-based monomer and a vinyl cyanide-based monomer. The monomer mixture containing the polymer may be obtained by graft polymerization. For example, the rubber-modified vinyl-based graft copolymer can be obtained by graft-polymerizing a rubber-based polymer with a monomer mixture containing an aromatic vinyl-based monomer and a vinyl cyanide-based monomer. Depending on the above, graft polymerization can be performed by further adding a monomer that imparts processability and heat resistance to the monomer mixture. The above polymerization can be carried out by a known polymerization method such as emulsion polymerization, suspension polymerization and the like. The rubber-modified vinyl-based graft copolymer can form a core (rubber polymer) -shell (copolymer of monomer mixture) structure, but is not limited thereto.

具体例において、上記ゴム質重合体としては、ポリブタジエン、ポリ(スチレン−ブタジエン)、ポリ(アクリロニトリル−ブタジエン)等のジエン系ゴム、および上記ジエン系ゴムに水素添加した飽和ゴム、イソプレンゴム、炭素数2〜10のアルキル(メタ)アクリレートゴム、炭素数2〜10のアルキル(メタ)アクリレートおよびスチレンの共重合体、エチレン−プロピレン−ジエン単量体三元共重合体(EPDM)等を例示することができる。これらは、単独または2種以上混合して適用することができる。例えば、ジエン系ゴム、(メタ)アクリレートゴム等を使用することができ、具体的には、ブタジエン系ゴム、ブチルアクリレートゴム等を使用することができる。上記ゴム質重合体(ゴム粒子)の平均粒子径(Z−平均)は、約0.05μm〜約6μm、例えば約0.15μm〜約4μm、具体的には約0.25μm〜約3.5μmであり得る。上記範囲で、熱可塑性樹脂組成物の耐衝撃性、外観特性等に優れる。   In specific examples, the rubbery polymer includes diene rubbers such as polybutadiene, poly (styrene-butadiene), and poly (acrylonitrile-butadiene); saturated rubber obtained by hydrogenating the diene rubber; isoprene rubber; Examples thereof include an alkyl (meth) acrylate rubber having 2 to 10 carbon atoms, a copolymer of alkyl (meth) acrylate having 2 to 10 carbon atoms and styrene, and an ethylene-propylene-diene monomer terpolymer (EPDM). Can be. These can be applied alone or as a mixture of two or more. For example, a diene rubber, a (meth) acrylate rubber, or the like can be used, and specifically, a butadiene rubber, a butyl acrylate rubber, or the like can be used. The rubbery polymer (rubber particles) has an average particle size (Z-average) of about 0.05 μm to about 6 μm, for example, about 0.15 μm to about 4 μm, specifically about 0.25 μm to about 3.5 μm. Can be Within the above range, the thermoplastic resin composition is excellent in impact resistance, appearance characteristics, and the like.

具体例において、上記ゴム質重合体の含有量は、ゴム変性ビニル系グラフト共重合体全体100重量%のうち、約20重量%〜約70重量%、例えば約25重量%〜約60重量%であり得、上記単量体混合物(芳香族ビニル系単量体およびシアン化ビニル系単量体を含む)の含有量は、ゴム変性ビニル系グラフト共重合体全体100重量%のうち、約30重量%〜約80重量%、例えば約40重量%〜約75重量%であり得る。上記範囲で、熱可塑性樹脂組成物の耐衝撃性、外観特性等に優れる。   In a specific example, the content of the rubbery polymer is about 20% to about 70% by weight, for example, about 25% to about 60% by weight, based on 100% by weight of the whole rubber-modified vinyl-based graft copolymer. The content of the monomer mixture (including the aromatic vinyl monomer and the vinyl cyanide monomer) may be about 30% by weight based on 100% by weight of the whole rubber-modified vinyl-based graft copolymer. % To about 80% by weight, for example about 40% to about 75% by weight. Within the above range, the thermoplastic resin composition is excellent in impact resistance, appearance characteristics, and the like.

具体例において、上記芳香族ビニル系単量体は、上記ゴム質重合体にグラフト共重合できるものであり、スチレン、α−メチルスチレン、β−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン、エチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、ジブロモスチレン、ビニルナフタレン等を例示することができる。これらは単独で使用したり、2種以上を混合したりして使用することができる。上記芳香族ビニル系単量体の含有量は、上記単量体混合物100重量%中、約10重量%〜約90重量%、例えば約40重量%〜約90重量%であり得る。上記範囲で、熱可塑性樹脂組成物の加工性、耐衝撃性等に優れる。   In a specific example, the aromatic vinyl monomer can be graft-copolymerized with the rubbery polymer, and may be styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, pt-butyl. Styrene, ethyl styrene, vinyl xylene, monochlorostyrene, dichlorostyrene, dibromostyrene, vinylnaphthalene and the like can be exemplified. These can be used alone or as a mixture of two or more. The content of the aromatic vinyl monomer may be about 10% to about 90% by weight, for example, about 40% to about 90% by weight, based on 100% by weight of the monomer mixture. Within the above range, the thermoplastic resin composition is excellent in workability, impact resistance, and the like.

具体例において、上記シアン化ビニル系単量体は、上記芳香族ビニル系と共重合可能なものであり、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フェニルアクリロニトリル、α−クロロアクリロニトリル、フマロニトリル等を例示することができる。これらは単独で使用したり、2種以上を混合したりして使用することができる。例えば、アクリロニトリル、メタクリロニトリル等を使用できる。上記シアン化ビニル系単量体の含有量は、上記単量体混合物100重量%中、約10重量%〜約90重量%、例えば約10重量%〜約60重量%であり得る。上記範囲で、熱可塑性樹脂組成物の耐薬品性、機械的特性等に優れる。   In specific examples, the vinyl cyanide-based monomer is a copolymerizable with the aromatic vinyl-based monomer, and includes acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, α-chloroacrylonitrile, fumaronitrile, and the like. can do. These can be used alone or as a mixture of two or more. For example, acrylonitrile, methacrylonitrile, and the like can be used. The content of the vinyl cyanide monomer may be about 10% to about 90% by weight, for example, about 10% to about 60% by weight, based on 100% by weight of the monomer mixture. Within the above range, the thermoplastic resin composition is excellent in chemical resistance, mechanical properties, and the like.

具体例において、上記加工性および耐熱性を付与するための単量体としては、(メタ)アクリル酸、無水マレイン酸、N−置換マレイミド等が例示できるが、これらに限定されない。上記の加工性および耐熱性を付与するための単量体を使用する際、その含有量は上記単量体混合物100重量%中、約15重量%以下、例えば約0.1重量%〜約10重量%であってもよい。上記範囲で、他の物性を損なうことなく、熱可塑性樹脂組成物に加工性および耐熱性を付与することができる。   In specific examples, examples of the monomer for imparting the processability and heat resistance include (meth) acrylic acid, maleic anhydride, and N-substituted maleimide, but are not limited thereto. When a monomer for imparting the above processability and heat resistance is used, its content is about 15% by weight or less, for example, about 0.1% by weight to about 10% by weight in 100% by weight of the monomer mixture. % By weight. Within the above range, processability and heat resistance can be imparted to the thermoplastic resin composition without impairing other physical properties.

具体例において、上記ゴム変性ビニル系グラフト共重合体としては、ブタジエン系ゴム質重合体に芳香族ビニル系化合物であるスチレン単量体と、シアン化ビニル系化合物であるアクリロニトリル単量体とがグラフトされた共重合体(g−ABS)、ブチルアクリレート系ゴム質重合体に芳香族ビニル系化合物であるスチレン単量体と、シアン化ビニル系化合物であるアクリロニトリル単量体とがグラフトされた共重合体であるアクリレート−スチレン−アクリロニトリル グラフト共重合体(g−ASA)等を例示することができる。   In a specific example, as the rubber-modified vinyl-based graft copolymer, a styrene monomer which is an aromatic vinyl-based compound and an acrylonitrile monomer which is a vinyl cyanide-based compound are grafted onto a butadiene-based rubbery polymer. Copolymer obtained by grafting a styrene monomer, which is an aromatic vinyl compound, and an acrylonitrile monomer, which is a vinyl cyanide compound, to a copolymer (g-ABS) obtained by the above method and a butyl acrylate rubbery polymer. An acrylate-styrene-acrylonitrile graft copolymer (g-ASA) or the like, which is a union, can be exemplified.

具体例において、上記ゴム変性ビニル系グラフト共重合体は、全体の熱可塑性樹脂(ゴム変性ビニル系グラフト共重合体および芳香族ビニル系共重合体樹脂)100重量%のうち、約20重量%〜約50重量%、例えば約25重量%〜約45重量%で含まれ得る。上記範囲で、熱可塑性樹脂組成物の耐衝撃性、流動性(成形加工性)、外観特性、これらの物性バランス等に優れる。   In a specific example, the rubber-modified vinyl-based graft copolymer is about 20% by weight to 100% by weight of the entire thermoplastic resin (rubber-modified vinyl-based graft copolymer and aromatic vinyl-based copolymer resin). It may be included at about 50% by weight, for example from about 25% to about 45% by weight. Within the above range, the thermoplastic resin composition is excellent in impact resistance, fluidity (moldability), appearance characteristics, balance of these physical properties, and the like.

(A2)芳香族ビニル系共重合体樹脂
本発明の一具体例にかかる芳香族ビニル系共重合体樹脂は、通常のゴム変性ビニル系共重合体樹脂に使用される芳香族ビニル系共重合体樹脂であってもよい。例えば、上記芳香族ビニル系共重合体樹脂は、芳香族ビニル系単量体および前記芳香族ビニル系単量体と共重合可能な単量体を含む単量体混合物の重合体でもよい。
(A2) Aromatic vinyl copolymer resin The aromatic vinyl copolymer resin according to one specific example of the present invention is an aromatic vinyl copolymer used for a general rubber-modified vinyl copolymer resin. It may be a resin. For example, the aromatic vinyl copolymer resin may be a polymer of a monomer mixture containing an aromatic vinyl monomer and a monomer copolymerizable with the aromatic vinyl monomer.

具体例において、上記芳香族ビニル系共重合体樹脂は、芳香族ビニル系単量体および芳香族ビニル系単量体と共重合可能な単量体等を混合した後、これを重合して得ることができ、前記重合は、乳化重合、懸濁重合、塊状重合等の公知の重合方法によって行うことができる。   In a specific example, the aromatic vinyl-based copolymer resin is obtained by mixing an aromatic vinyl-based monomer and a monomer copolymerizable with the aromatic vinyl-based monomer, and then polymerizing the same. The polymerization can be performed by a known polymerization method such as emulsion polymerization, suspension polymerization, or bulk polymerization.

具体例において、前記芳香族ビニル系単量体としては、スチレン、α−メチルスチレン、β−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン、エチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、ジブロモスチレン、ビニルナフタレン等を使用できる。これらは、単独または2種以上を混合して適用することができる。上記芳香族ビニル系単量体の含有量は、芳香族ビニル系共重合体樹脂全体100重量%中、約20重量%〜約90重量%、例えば約30重量%〜約80重量%であり得る。上記範囲で、熱可塑性樹脂組成物の耐衝撃性、流動性等に優れる。   In a specific example, the aromatic vinyl monomer includes styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, and dichlorostyrene. , Dibromostyrene, vinyl naphthalene and the like can be used. These can be applied alone or as a mixture of two or more. The content of the aromatic vinyl-based monomer may be about 20% by weight to about 90% by weight, for example, about 30% by weight to about 80% by weight, based on 100% by weight of the entire aromatic vinyl-based copolymer resin. . Within the above range, the thermoplastic resin composition is excellent in impact resistance, fluidity, and the like.

具体例において、上記芳香族ビニル系単量体と共重合可能な単量体は、シアン化ビニル系単量体およびアルキル(メタ)アクリル系単量体のうち1種以上を含むことができる。例えば、シアン化ビニル系単量体またはシアン化ビニル系単量体およびアルキル(メタ)アクリル系単量体、具体的にはシアン化ビニル系単量体およびアルキル(メタ)アクリル系単量体であってもよい。   In a specific example, the monomer copolymerizable with the aromatic vinyl monomer may include at least one of a vinyl cyanide monomer and an alkyl (meth) acrylic monomer. For example, a vinyl cyanide monomer or a vinyl cyanide monomer and an alkyl (meth) acrylic monomer, specifically, a vinyl cyanide monomer and an alkyl (meth) acrylic monomer There may be.

具体例において、上記シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フェニルアクリロニトリル、α−クロロアクリロニトリル、フマロニトリル等が例示できるが、これらに制限されない。これらは単独で使用したり、2種以上を混合して使用したりすることができる。例えば、アクリロニトリル、メタクリロニトリル等が使用することができる。   In specific examples, examples of the vinyl cyanide-based monomer include, but are not limited to, acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, α-chloroacrylonitrile, fumaronitrile, and the like. These can be used alone or as a mixture of two or more. For example, acrylonitrile, methacrylonitrile, and the like can be used.

具体例において、前記アルキル(メタ)アクリル系単量体としては、(メタ)アクリル酸および/または炭素数1〜10のアルキル(メタ)アクリレート等を例示することができる。これらは単独で使用したり、2種以上を混合して使用したりすることができる。例えば、メチルメタクリレート、メチルアクリレート等が使用できる。   In a specific example, examples of the alkyl (meth) acrylic monomer include (meth) acrylic acid and / or an alkyl (meth) acrylate having 1 to 10 carbon atoms. These can be used alone or as a mixture of two or more. For example, methyl methacrylate, methyl acrylate and the like can be used.

具体例において、上記芳香族ビニル系単量体と共重合可能な単量体が、シアン化ビニル系単量体およびアルキル(メタ)アクリル系単量体の混合物である場合、上記シアン化ビニル系単量体の含有量は、上記芳香族ビニル系単量体と共重合可能な単量体100重量%のうち、約1重量%〜約40重量%、例えば約2重量%〜約35重量%であり得、上記アルキル(メタ)アクリル系単量体の含有量は、上記芳香族ビニル系単量体と共重合可能な単量体100重量%のうち、約60重量%〜約99重量%、例えば約65重量%〜約98重量%であり得る。上記範囲で、熱可塑性樹脂組成物の透明性、耐熱性、加工性等に優れる。   In a specific example, when the monomer copolymerizable with the aromatic vinyl monomer is a mixture of a vinyl cyanide monomer and an alkyl (meth) acrylic monomer, The content of the monomer is about 1% by weight to about 40% by weight, for example, about 2% by weight to about 35% by weight based on 100% by weight of the monomer copolymerizable with the aromatic vinyl monomer. And the content of the alkyl (meth) acrylic monomer is about 60% by weight to about 99% by weight based on 100% by weight of the monomer copolymerizable with the aromatic vinylic monomer. For example, from about 65% to about 98% by weight. Within the above range, the thermoplastic resin composition is excellent in transparency, heat resistance, workability, and the like.

具体例において、上記芳香族ビニル系単量体と共重合可能な単量体の含有量は、芳香族ビニル系共重合体樹脂全体100重量%中、約10重量%〜約80重量%、例えば約20重量%〜約70重量%であり得る。上記範囲で、熱可塑性樹脂組成物の耐衝撃性、流動性等に優れる。   In a specific example, the content of the monomer copolymerizable with the aromatic vinyl-based monomer is about 10% by weight to about 80% by weight based on 100% by weight of the entire aromatic vinyl-based copolymer resin. It can be from about 20% to about 70% by weight. Within the above range, the thermoplastic resin composition is excellent in impact resistance, fluidity, and the like.

具体例において、上記芳香族ビニル系共重合体樹脂は、GPC(gel permeation chromatography)で測定した重量平均分子量(Mw)が、約10,000g/mol〜約300,000g/mol、例えば約15,000g/mol〜約150,000g/molであり得る。上記範囲で、熱可塑性樹脂組成物の機械的強度、成形性等に優れる。   In a specific example, the aromatic vinyl copolymer resin has a weight average molecular weight (Mw) measured by GPC (gel permeation chromatography) of about 10,000 g / mol to about 300,000 g / mol, for example, about 15, 000 g / mol to about 150,000 g / mol. Within the above range, the thermoplastic resin composition is excellent in mechanical strength, moldability, and the like.

具体例において、上記芳香族ビニル系共重合体樹脂は、全体の熱可塑性樹脂100重量%中、約50重量%〜約80重量%、例えば約55重量%〜約75重量%で含まれ得る。上記範囲で、熱可塑性樹脂組成物の耐衝撃性、流動性(成形加工性)等に優れる。   In a specific example, the aromatic vinyl copolymer resin may be included in about 50% to about 80% by weight, for example, about 55% to about 75% by weight, based on 100% by weight of the entire thermoplastic resin. Within the above range, the thermoplastic resin composition is excellent in impact resistance, fluidity (moldability), and the like.

(B)帯電防止剤
本発明の一具体例にかかる帯電防止剤は、少ない含有量の酸化亜鉛と共に、熱可塑性樹脂組成物(試料)の抗菌性、帯電防止性等を向上させることができるものであり、ポリエーテルエステルアミドブロック共重合体、ポリアルキレングリコールおよびポリアミド、これらの組合せ等を含むことができる。好ましくは、ポリエーテルエステルアミドブロック共重合体を含むことができ、商用化されたポリエーテルエステルアミド系共重合体からなる帯電防止剤を使用してもよい。
(B) Antistatic agent The antistatic agent according to one embodiment of the present invention can improve the antibacterial property, antistatic property, and the like of a thermoplastic resin composition (sample) together with a small amount of zinc oxide. And may include polyetheresteramide block copolymers, polyalkylene glycols and polyamides, combinations thereof, and the like. Preferably, a polyetheresteramide block copolymer can be contained, and an antistatic agent composed of a commercially available polyetheresteramide copolymer may be used.

具体例において、上記ポリエーテルエステルアミドブロック共重合体は、炭素数6以上のアミノカルボン酸、ラクタム、またはジアミン−ジカルボン酸塩;ポリアルキレングリコール;および炭素数4〜20のジカルボン酸;を含む反応混合物のブロック共重合体であってもよい。   In a specific example, the polyetheresteramide block copolymer is a reaction comprising an aminocarboxylic acid having 6 or more carbon atoms, a lactam, or a diamine-dicarboxylate; a polyalkylene glycol; and a dicarboxylic acid having 4 to 20 carbon atoms. It may be a block copolymer of a mixture.

上記炭素数6以上のアミノカルボン酸、ラクタム、またはジアミン−ジカルボン酸の塩としては、ω−アミノカプロン酸、ω−アミノエナント酸、ω−アミノカプリル酸、ω−アミノペルコン酸、ω−アミノカプリン酸、1,1−アミノウンデカン酸、1,2−アミノドデカン酸等のようなアミノカルボン酸類;カプロラクタム、エナントラクタム、カプリルラクタム、ラウリルラクタム等のようなラクタム類;およびヘキサメチレンジアミン−アジピン酸の塩、ヘキサメチレンジアミン−イソフタル酸の塩等のようなジアミンとジカルボン酸の塩等を例示することができる。例えば、1,2−アミノドデカン酸、カプロラクタム、ヘキサメチレンジアミン−アジピン酸の塩等を使用することができる。   Examples of the salt of an aminocarboxylic acid having 6 or more carbon atoms, a lactam, or a diamine-dicarboxylic acid include ω-aminocaproic acid, ω-aminoenanthic acid, ω-aminocaprylic acid, ω-aminoperconic acid, ω-aminocapric acid, Aminocarboxylic acids such as 1,1-aminoundecanoic acid, 1,2-aminododecanoic acid, etc .; lactams such as caprolactam, enantholactam, caprylactam, lauryl lactam, etc .; and salts of hexamethylenediamine-adipic acid; A salt of a diamine and a dicarboxylic acid, such as a salt of hexamethylenediamine-isophthalic acid, and the like can be given. For example, 1,2-aminododecanoic acid, caprolactam, hexamethylenediamine-adipic acid salt and the like can be used.

上記ポリアルキレングリコールとしては、ポリエチレングリコール、ポリ(1,2−および1,3−プロピレングリコール)、ポリテトラメチレングリコール、ポリヘキサメチレングリコール、エチレングリコールとプロピレングリコールとのブロックまたはランダム共重合体、エチレングリコールとテトラヒドロフランとの共重合体等を例示できる。例えば、ポリエチレングリコール、エチレングリコールとプロピレングリコールとの共重合体等を使用することができる。   Examples of the polyalkylene glycol include polyethylene glycol, poly (1,2- and 1,3-propylene glycol), polytetramethylene glycol, polyhexamethylene glycol, a block or random copolymer of ethylene glycol and propylene glycol, ethylene Examples include a copolymer of glycol and tetrahydrofuran. For example, polyethylene glycol, a copolymer of ethylene glycol and propylene glycol, or the like can be used.

上記炭素数4〜20のジカルボン酸としては、テレフタル酸、1,4−シクロヘキサカルボン酸、セバシン酸、アジピン酸、ドデカノカルボン酸等を例示することができる。   Examples of the dicarboxylic acid having 4 to 20 carbon atoms include terephthalic acid, 1,4-cyclohexacarboxylic acid, sebacic acid, adipic acid, dodecanocarboxylic acid, and the like.

具体例において、上記炭素数6以上のアミノカルボン酸、ラクタム、またはジアミン−ジカルボン酸塩;と、上記ポリアルキレングリコール;の結合はエステル結合であってもよく、上記炭素数6以上のアミノカルボン酸、ラクタム、またはジアミン−ジカルボン酸塩;と、上記炭素数4〜20のジカルボン酸;の結合はアミド結合であってもよく、上記ポリアルキレングリコール;と、上記炭素数4〜20のジカルボン酸;の結合はエステル結合であってもよい。   In a specific example, the bond between the aminocarboxylic acid having 6 or more carbon atoms, lactam, or diamine-dicarboxylate; and the polyalkylene glycol; may be an ester bond, and the aminocarboxylic acid having 6 or more carbon atoms. , A lactam, or a diamine-dicarboxylate; the dicarboxylic acid having 4 to 20 carbon atoms may be an amide bond, the polyalkylene glycol; and the dicarboxylic acid having 4 to 20 carbon atoms; May be an ester bond.

具体例において、上記ポリエーテルエステルアミドブロック共重合体は、公知の合成方法によって製造することができ、例えば、特公昭56−45419号公報および特公昭55−133424号公報に開示されている合成方法によって製造することができる。   In a specific example, the above polyetheresteramide block copolymer can be produced by a known synthesis method, for example, the synthesis method disclosed in JP-B-56-45419 and JP-B-55-133424. Can be manufactured by

具体例において、上記ポリエーテルエステルアミドブロック共重合体は、ポリエーテル−エステルブロックを約10重量%〜約95重量%含んでもよい。上記範囲で、熱可塑性樹脂組成物の機械的物性、帯電防止性等に優れる。   In embodiments, the polyetheresteramide block copolymer may include about 10% to about 95% polyether-ester blocks by weight. Within the above range, the thermoplastic resin composition is excellent in mechanical properties, antistatic properties and the like.

具体例において、上記帯電防止剤は、上記熱可塑性樹脂約100重量部に対して、約10重量部〜約30重量部、例えば約12重量部〜約25重量部、具体的には約14重量部〜約20重量部で含んでもよい。上記帯電防止剤を、約10重量部未満で使用すると熱可塑性樹脂組成物の抗菌性および帯電防止性が低下するおそれがあり、約30重量部を超えると、熱可塑性樹脂組成物の耐衝撃性、外観特性等が低下するおそれがある。   In a specific example, the antistatic agent is used in an amount of about 10 parts by weight to about 30 parts by weight, for example, about 12 parts by weight to about 25 parts by weight, specifically about 14 parts by weight, based on about 100 parts by weight of the thermoplastic resin. Parts to about 20 parts by weight. When the above antistatic agent is used in less than about 10 parts by weight, the antibacterial property and antistatic property of the thermoplastic resin composition may be reduced. When the amount is more than about 30 parts by weight, the impact resistance of the thermoplastic resin composition may be reduced. , The appearance characteristics and the like may be reduced.

(C)酸化亜鉛
本発明の酸化亜鉛は、熱安定剤と共に熱可塑性樹脂組成物の抗菌性等を向上させることができるものであり、通常の抗菌組成物に使用される酸化亜鉛を使用することができる。
(C) Zinc oxide The zinc oxide of the present invention can improve the antibacterial property and the like of the thermoplastic resin composition together with the heat stabilizer, and uses zinc oxide which is usually used in an antibacterial composition. Can be.

具体例において、上記酸化亜鉛は粒度分析装置で測定した平均粒子径が約0.2μm〜約3μm、例えば約0.3μm〜約2μmであってもよく、BET比表面積が約1m/g〜約10m/g、例えば約1m/g〜約7m/gであってもよく、純度が約99%以上であってもよい。上記範囲で、熱可塑性樹脂組成物の抗菌性、耐候性等に優れる。 In a specific example, the zinc oxide may have an average particle size measured by a particle size analyzer of about 0.2 μm to about 3 μm, for example, about 0.3 μm to about 2 μm, and a BET specific surface area of about 1 m 2 / g to about 10 m 2 / g, it may be, for example, about 1 m 2 / g to about 7m 2 / g, may be pure greater than about 99%. Within the above range, the thermoplastic resin composition is excellent in antibacterial properties, weather resistance and the like.

具体例において、前記酸化亜鉛は、フォトルミネッセンス(Photo Luminescence)の測定時、370nm〜390nm領域のピークAと450nm〜600nm領域のピークBとの強度比(B/A)が約0〜約1、例えば約0.01〜約0.09、または約0.1〜約1であってもよい。上記範囲で、熱可塑性樹脂組成物の抗菌性、低臭性または耐候性等に優れる。   In a specific example, the zinc oxide has an intensity ratio (B / A) of a peak A in a 370 nm to 390 nm region and a peak B in a 450 nm to 600 nm region when photoluminescence (Photo Luminescence) is measured, from about 0 to about 1, For example, it may be about 0.01 to about 0.09, or about 0.1 to about 1. Within the above range, the thermoplastic resin composition is excellent in antibacterial properties, low odor properties, weather resistance, and the like.

具体例において、上記酸化亜鉛は、X線回折(X−ray diffraction、XRD)の分析時、ピーク位置(peak position)2θ値が35°〜37°の範囲であり、測定されたFWHM値(回折ピーク(peak)のFull width at Half Maximum)を基準にScherrer’s equation(下記数式1)に適用して演算された微結晶サイズ(crystallite size)の値が約1,000Å〜約2,000Å、例えば約1,200Å〜約1,800Åであり得る。上記範囲で、熱可塑性樹脂組成物の初期色相、耐候性、抗菌性等に優れる。   In a specific example, at the time of X-ray diffraction (XRD) analysis, the zinc oxide has a peak position (peak position) 2θ value in the range of 35 ° to 37 ° and a measured FWHM value (diffraction value). The value of the crystallite size calculated by applying to the Scherrer's equation (Equation 1 below) based on the Full width at Half Maximum of the peak is about 1,000Å to about 2,000Å, For example, it may be about 1,200 ° to about 1,800 °. Within the above range, the thermoplastic resin composition is excellent in initial hue, weather resistance, antibacterial properties and the like.

上記数式1において、Kは形状係数(shape factor)であり、λはX線波長(X−ray wavelength)であり、βはFWHM値(degree)であり、θはピーク位置の値(peak position degree)である。   In the above formula 1, K is a shape factor, λ is an X-ray wavelength, β is a FWHM value (degree), and θ is a peak position value (peak position degree). ).

具体例において、上記酸化亜鉛は、金属形態の亜鉛を溶かした後、約850℃〜約1,000℃、例えば約900℃〜約950℃に加熱して気化させた後、酸素ガスを注入して約20℃〜約30℃に冷却し、必要に応じて、反応器に窒素/水素ガスを注入しながら、約700℃〜約800℃で約30分〜約150分間熱処理を行った後、常温(20℃〜30℃)に冷却して製造することができる。   In a specific example, the zinc oxide is formed by dissolving zinc in a metal form, heating to about 850 ° C. to about 1,000 ° C., for example, about 900 ° C. to about 950 ° C., vaporizing, and then injecting oxygen gas. To about 20 ° C. to about 30 ° C., and, if necessary, performing a heat treatment at about 700 ° C. to about 800 ° C. for about 30 minutes to about 150 minutes while injecting nitrogen / hydrogen gas into the reactor. It can be manufactured by cooling to room temperature (20 ° C. to 30 ° C.).

具体例において、上記酸化亜鉛は、上記熱可塑性樹脂約100重量部に対して、約0.01重量部〜約2重量部、例えば約0.02重量部〜約0.5重量部、具体的には約0.03重量部〜約0.2重量部で含んでいてもよい。上記酸化亜鉛を約0.01重量部未満で使用すると、熱可塑性樹脂組成物の抗菌性が低下するおそれがあり、約0.2重量部を超えると、熱可塑性樹脂組成物の外観特性(透明性)等が低下するおそれがある。   In a specific example, the zinc oxide is used in an amount of about 0.01 to about 2 parts by weight, for example, about 0.02 to about 0.5 parts by weight, based on about 100 parts by weight of the thermoplastic resin. May comprise from about 0.03 parts to about 0.2 parts by weight. If the zinc oxide is used in less than about 0.01 part by weight, the antibacterial properties of the thermoplastic resin composition may be reduced. ) May be reduced.

本発明の一具体例にかかる熱可塑性樹脂組成物は、通常の熱可塑性樹脂組成物に含まれる添加剤をさらに含んでもよい。上記添加剤としては、難燃剤、充填剤、酸化防止剤、滴下防止剤、滑剤、離型剤、核剤、帯電防止剤、安定剤、顔料、染料、これらの混合物等を例示できるが、これらに制限されない。上記添加剤を使用する際、その含有量は、熱可塑性樹脂約100重量部に対して、約0.001重量部〜約40重量部、例えば約0.1重量部〜約10重量部であり得る。   The thermoplastic resin composition according to one embodiment of the present invention may further include an additive contained in a general thermoplastic resin composition. Examples of the additives include a flame retardant, a filler, an antioxidant, an anti-dripping agent, a lubricant, a release agent, a nucleating agent, an antistatic agent, a stabilizer, a pigment, a dye, a mixture thereof, and the like. Not limited to When the above additive is used, its content is about 0.001 part by weight to about 40 parts by weight, for example, about 0.1 part by weight to about 10 parts by weight, based on about 100 parts by weight of the thermoplastic resin. obtain.

本発明の一具体例にかかる熱可塑性樹脂組成物は、上記構成成分を混合し、通常の二軸押出機を用いて、約200℃〜約280℃、例えば約220℃〜約250℃で溶融押出したペレット形態になり得る。   The thermoplastic resin composition according to one embodiment of the present invention is prepared by mixing the above-mentioned components and melting at about 200 ° C. to about 280 ° C., for example, about 220 ° C. to about 250 ° C. using a conventional twin-screw extruder. It can be in extruded pellet form.

具体例において、上記熱可塑性樹脂組成物は、JIS Z 2801抗菌評価法に基づいて、5cm×5cmの大きさの試験片に黄色ブドウ球菌および大腸菌を接種し、35℃、RH90%の条件で24時間培養した後、測定した抗菌活性値がそれぞれ約2〜約7および約2〜約6.5であり得る。   In a specific example, the thermoplastic resin composition is inoculated with Staphylococcus aureus and Escherichia coli into a test piece having a size of 5 cm × 5 cm based on the JIS Z 2801 antibacterial evaluation method, and is inoculated at a temperature of 35 ° C. and an RH of 90%. After culturing for a period of time, the measured antimicrobial activity value may be about 2 to about 7 and about 2 to about 6.5, respectively.

具体例において、上記熱可塑性樹脂組成物は、ASTM D257に基づいて測定した表面抵抗値が、約1×10Ω・cm〜約1×1010Ω・cm、例えば約1×10Ω・cm〜約1×1010Ω・cmであり得る。 In a specific example, the thermoplastic resin composition has a surface resistance value measured based on ASTM D257 of about 1 × 10 6 Ω · cm to about 1 × 10 10 Ω · cm, for example, about 1 × 10 8 Ω · cm. cm to about 1 × 10 10 Ω · cm.

具体例において、前記熱可塑性樹脂組成物は、ASTM D256に基づいて測定した1/4”厚の試験片のノッチアイゾット衝撃強度が約15kgf・cm/cm〜約25kgf・cm/cm、例えば約18kgf・cm/cm〜約23kgf・cm/cmであり得る。   In a specific example, the thermoplastic resin composition has a notch Izod impact strength of a 1/4 ″ thick test piece measured based on ASTM D256 of about 15 kgf · cm / cm to about 25 kgf · cm / cm, for example, about 18 kgf. Cm / cm to about 23 kgfcm / cm.

本発明にかかる成形品は、上記熱可塑性樹脂組成物から形成される。上記熱可塑性樹脂組成物はペレットの形態で製造することができ、製造されたペレットは、射出成形、押出成形、真空成形、キャスティング成形等の多様な成形方法を通じて多様な成形品(製品)に製造することができる。このような成形方法は、本発明が属する分野の通常の知識を有する者によってよく知られている。上記成形品は、抗菌性、帯電防止性、耐衝撃性、透明性、流動性(成形加工性)、これらの物性バランス等に優れるため、物理的な接触が多い医療用品の素材、電気/電子製品の内/外装材等に有用である。   The molded article according to the present invention is formed from the above-mentioned thermoplastic resin composition. The thermoplastic resin composition can be manufactured in the form of pellets, and the manufactured pellets are manufactured into various molded products (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. can do. Such molding methods are well known to those of ordinary skill in the art to which this invention belongs. The above molded products are excellent in antibacterial properties, antistatic properties, impact resistance, transparency, fluidity (molding processability), balance of these physical properties, etc., so that there are many physical contact materials for medical supplies, electric / electronic Useful for interior / exterior materials of products.

以下、実施例を通じて本発明をより具体的に説明するが、このような実施例は、単に説明の目的のためのものであり、本発明を制限するものであると解釈してはならない。   Hereinafter, the present invention will be described more specifically with reference to Examples. However, such Examples are for the purpose of explanation only, and should not be construed as limiting the present invention.

実施例
実施例および比較例で用いられた各成分の仕様は次の通りである。
Examples The specifications of each component used in Examples and Comparative Examples are as follows.

(A)熱可塑性樹脂
(A1)ゴム変性芳香族ビニル系グラフト共重合体
45重量%のZ−平均が310nmのブタジエンゴムに、55重量%のスチレンおよびアクリロニトリル(重量比:75/25)がグラフト共重合されたg−ABSを使用した。
(A) Thermoplastic resin (A1) Rubber-modified aromatic vinyl-based graft copolymer 55% by weight of styrene and acrylonitrile (weight ratio: 75/25) are grafted on 45% by weight of butadiene rubber having a Z-average of 310 nm. Co-polymerized g-ABS was used.

(A2)芳香族ビニル系共重合体樹脂
(A2−1)スチレン71重量%およびアクリロニトリル29重量%が重合されたSAN樹脂(重量平均分子量:130,000g/mol)を使用した。
(A2) Aromatic vinyl copolymer resin (A2-1) A SAN resin (weight average molecular weight: 130,000 g / mol) obtained by polymerizing 71% by weight of styrene and 29% by weight of acrylonitrile was used.

(A2−2)メチルメタクリレート74重量%、スチレン22重量%、およびアクリロニトリル4重量%が重合されたメチルメタクリレート−スチレン−アクリロニトリル共重合体(MSAN、重量平均分子量:90,000g/mol)を使用した。   (A2-2) A methyl methacrylate-styrene-acrylonitrile copolymer (MSAN, weight average molecular weight: 90,000 g / mol) obtained by polymerizing 74% by weight of methyl methacrylate, 22% by weight of styrene, and 4% by weight of acrylonitrile was used. .

(B)帯電防止剤
(B1)ポリエーテルエステルアミドブロック共重合体を含む帯電防止剤(製造社:Sanyo、製品名:PELECTRON AS)を使用した。
(B) Antistatic agent (B1) An antistatic agent containing a polyetheresteramide block copolymer (manufacturer: Sanyo, product name: PELECTRON AS) was used.

(B2)BASF社のUltramide 8270HSを使用した。   (B2) Ultramide 8270HS from BASF was used.

(C)酸化亜鉛
平均粒子径1.2μm、BET表面積5.5m/g、純度99.9%、フォトルミネッセンス(Photo Luminescence)の測定時、370nm〜390nm領域のピークAと450nm〜600nm領域のピークBとの強度比(B/A)0.28、および微結晶サイズ(crystallite size)の値1,750Åを有する酸化亜鉛を使用した。
(C) Zinc oxide Average particle diameter 1.2 μm, BET surface area 5.5 m 2 / g, purity 99.9%, peak A in the 370 nm to 390 nm region and peak A in the 450 nm to 600 nm region when measuring photoluminescence (Photo Luminescence). Zinc oxide having an intensity ratio (B / A) to peak B of 0.28 and a crystallite size of 1,750 ° was used.

(D)酸化チタン(メーカー:Kemira Specialty Corp、製品名:WH−01)を使用した。   (D) Titanium oxide (manufacturer: Kemira Specialty Corp, product name: WH-01) was used.

物性の測定方法
(1)平均粒子径(単位:μm):粒度分析装置(Beckman Coulter社のLaser Diffraction Particle Size Analyzer LS I3 320の機器)を使用して、平均粒子径を測定した。
Measurement Methods of Physical Properties (1) Average particle size (unit: μm): The average particle size was measured using a particle size analyzer (a device of Beckman Coulter, Laser Diffraction Particle Size Analyzer LS I3 320).

(2)BET表面積(単位:m/g):窒素ガス吸着法を用いて、BET分析装置(Micromeritics社のSurface Area and Porosity Analyzer ASAP 2020装置)でBET表面積を測定した。 (2) BET surface area (unit: m 2 / g): The BET surface area was measured by a nitrogen gas adsorption method using a BET analyzer (Surface Area and Porosity Analyzer ASAP 2020 manufactured by Micromeritics).

(3)純度(単位:%):TGA熱分析法を用いて、800℃の温度で残留する重さをもって純度を測定した。   (3) Purity (unit:%): Purity was measured using TGA thermal analysis at the temperature of 800 ° C. and remaining weight.

(4)PL強度比(B/A):フォトルミネッセンス(Photo Luminescence)の測定法に従い、室温で325nm波長のHe−Cd laser(KIMMON社、30mW)を試験片に入射して発光するスペクトルをCCD detectorを用いて検出し、このとき、CCD detectorの温度は−70℃を保った。370nm〜390nm領域のピークAと450nm〜600nm領域のピークBとの強度比(B/A)を測定した。ここで、射出試験片は別途の処理をせずレーザー(laser)を試験片に入射させてPL分析を行い、酸化亜鉛粉末は、6mm径のペレタイザー(pelletizer)に入れ、圧着して平らに試験片を作製した後、測定した。   (4) PL intensity ratio (B / A): According to a photoluminescence (Photo Luminescence) measurement method, a spectrum obtained by injecting a 325 nm wavelength He-Cd laser (KIMMON, 30 mW) at room temperature into a test piece and emitting light at a CCD. Detection was performed using a detector. At this time, the temperature of the CCD detector was kept at -70 ° C. The intensity ratio (B / A) between the peak A in the 370 nm to 390 nm region and the peak B in the 450 nm to 600 nm region was measured. Here, the injection test piece was subjected to PL analysis by irradiating a laser to the test piece without performing a separate treatment, and the zinc oxide powder was put into a 6 mm diameter pelletizer, pressed and flattened. After preparing the piece, it was measured.

(5)微結晶サイズ(crystallite size、単位:Å):高分解能X線回折分析装置(High Resolution X−Ray Diffractometer、メーカー:X’pert社、装置名:PRO−MRD)を使用し、ピーク位置(peak position)2θ値が35°〜37°の範囲であり、測定されたFWHM値(回折ピーク(peak)のFull width at Half Maximum)を基準にScherrer’s equation(下記数式1)に適用して演算した。ここで、粉末形態および射出試験片共に測定が可能であり、より正確な分析のために、射出試験片の場合は、600℃、エアー(air)状態で2時間熱処理して高分子樹脂を除去した後、XRD分析を行った。   (5) Crystallite size (unit: Å): peak position using high resolution X-ray diffraction analyzer (High Resolution X-Ray Diffractometer, manufacturer: X'pert, apparatus name: PRO-MRD) (Peak position) 2θ value is in the range of 35 ° to 37 °, and is applied to Scherrer's equation (Formula 1 below) based on the measured FWHM value (Full width at Half Maximum of the diffraction peak (peak)). Calculated. Here, both the powder form and the injection test piece can be measured. For more accurate analysis, in the case of the injection test piece, the polymer resin is removed by heat treatment at 600 ° C. in an air state for 2 hours. After that, XRD analysis was performed.

前記数式1において、Kは形状係数(shape factor)であり、λはX線波長(X−ray wavelength)であり、βはFWHM値(degree)であり、θはピーク位置の値(peak position degree)である。   In Equation 1, K is a shape factor, λ is an X-ray wavelength, β is a FWHM value (degree), and θ is a value of a peak position (peak position degree). ).

実施例1〜5および比較例1〜6
上記各構成成分を下記表1および2に記載の含有量で添加した後、230℃で押出してペレットを製造した。押出はL/D=36、直径45mmの二軸押出機を使用し、製造されたペレットは80℃で2時間以上乾燥した後、6Ozの射出機(成形温度230℃、金型温度:60℃)で射出して試験片を製造した。製造された試験片に対して下記の方法で物性を評価し、その結果を下記表1および2に示した。
Examples 1 to 5 and Comparative Examples 1 to 6
Each of the above components was added at the contents shown in Tables 1 and 2 below, and extruded at 230 ° C. to produce pellets. Extrusion was carried out using a twin screw extruder having an L / D of 36 and a diameter of 45 mm. ) To produce a test piece. The physical properties of the manufactured test pieces were evaluated by the following methods, and the results are shown in Tables 1 and 2 below.

物性の測定方法
(1)抗菌活性値:JIS Z 2801抗菌評価法に基づいて、5cm×5cmの大きさの試験片に黄色ブドウ球菌および大腸菌を接種し、35℃、RH90%の条件で24時間培養した後、測定した。
Measurement Methods of Physical Properties (1) Antibacterial activity value: Staphylococcus aureus and Escherichia coli were inoculated on a test piece having a size of 5 cm × 5 cm based on JIS Z 2801 antibacterial evaluation method, and were incubated at 35 ° C. and RH 90% for 24 hours. After culturing, measurements were taken.

(2)表面抵抗値(単位:Ω・cm):ASTM D257に基づいて、表面抵抗測定装置(メーカー:三菱ケミカル、装置名:Hiresta−UP(MCP−HT450))で測定した。   (2) Surface resistance value (unit: Ω · cm): Measured with a surface resistance measuring device (manufacturer: Mitsubishi Chemical, device name: Hiresta-UP (MCP-HT450)) based on ASTM D257.

(3)ノッチアイゾット衝撃強度(単位:kgf・cm/cm):ASTM D256に基づいて、1/4”厚の試験片に対してノッチアイゾット衝撃強度を測定した。   (3) Notch Izod impact strength (unit: kgf · cm / cm): Notch Izod impact strength was measured on a 1 / ″ test piece based on ASTM D256.

(4)透明度(haze)(単位:%):ASTM D1003に基づいて、日本電色社のHaze meter NDH 2000装置を用いて、2.5mm厚の試験片に対して透明度(haze)を測定した。   (4) Transparency (haze) (unit:%): Based on ASTM D1003, the transparency (haze) of a 2.5 mm-thick test piece was measured using a Haze meter NDH 2000 apparatus manufactured by Nippon Denshoku Co., Ltd. .

上記の結果から、本発明の熱可塑性樹脂組成物は、抗菌性、帯電防止性、耐衝撃性等が全て優れることが分かった。   From the above results, it was found that the thermoplastic resin composition of the present invention was excellent in antibacterial properties, antistatic properties, impact resistance, and the like.

一方、帯電防止剤を少量使用した比較例1の場合は、帯電防止性が低下し、測定抵抗値が測定範囲を超えるレベルとなり、抗菌性(ブドウ球菌)も大きく低下することが分かり、帯電防止剤を過剰量使用した比較例2の場合は、耐衝撃性が低下することが分かり、酸化亜鉛を少量使用した比較例3の場合は、抗菌性が大きく低下したことが分かり、酸化亜鉛を過剰量使用した比較例4の場合は、透明性においてほぼ不透明な状態であることが確認できた。また、帯電防止剤(B2)を適用した比較例5の場合は、帯電防止性、抗菌性等が低下したことが分かり、抗菌剤として、酸化チタンを適用した比較例6の場合は、抗菌性が大きく低下したことが分かった。   On the other hand, in the case of Comparative Example 1 in which a small amount of an antistatic agent was used, it was found that the antistatic property was reduced, the measured resistance value exceeded the measuring range, and the antibacterial property (Staphylococcus) was greatly reduced. In the case of Comparative Example 2 in which an excessive amount of the agent was used, it was found that the impact resistance was reduced. In the case of Comparative Example 3 in which a small amount of zinc oxide was used, it was found that the antibacterial property was greatly reduced, and In the case of Comparative Example 4 in which the amount was used, it was confirmed that the transparency was almost opaque. In addition, in the case of Comparative Example 5 in which the antistatic agent (B2) was applied, it was found that the antistatic properties, antibacterial properties, etc. were reduced, and in the case of Comparative Example 6, in which titanium oxide was applied as the antibacterial agent, the antibacterial properties were reduced. Was found to have greatly decreased.

本発明の単純な変形または変更は、本分野の通常の知識を有する者が容易に実施することができ、このような変形や変更は共に本発明の領域に含まれるものと見なすことができる。   Simple variations or modifications of the present invention can be readily implemented by those having ordinary skill in the art, and both such modifications and changes can be considered to be included in the scope of the present invention.

Claims (11)

ゴム変性ビニル系グラフト共重合体および芳香族ビニル系共重合体樹脂を含む熱可塑性樹脂約100重量部;
帯電防止剤約10重量部〜約30重量部;ならびに
酸化亜鉛約0.01重量部〜約2重量部を含み、
前記帯電防止剤はポリエーテルエステルアミドブロック共重合体、ポリアルキレングリコール、およびポリアミドのうち1種以上を含むことを特徴とする熱可塑性樹脂組成物。
About 100 parts by weight of a thermoplastic resin containing a rubber-modified vinyl-based graft copolymer and an aromatic vinyl-based copolymer resin;
About 10 parts to about 30 parts by weight of an antistatic agent; and about 0.01 parts to about 2 parts by weight of zinc oxide;
A thermoplastic resin composition, wherein the antistatic agent contains at least one of a polyetheresteramide block copolymer, a polyalkylene glycol, and a polyamide.
前記ゴム変性ビニル系グラフト共重合体は、ゴム質重合体に芳香族ビニル系単量体およびシアン化ビニル系単量体を含む単量体混合物がグラフト重合されたことを特徴とする、請求項1に記載の熱可塑性樹脂組成物。   The rubber-modified vinyl-based graft copolymer is characterized in that a monomer mixture containing an aromatic vinyl-based monomer and a vinyl cyanide-based monomer is graft-polymerized to a rubbery polymer. 2. The thermoplastic resin composition according to 1. 前記芳香族ビニル系共重合体樹脂は、芳香族ビニル系単量体および前記芳香族ビニル系単量体と共重合可能な単量体の重合体であることを特徴とする、請求項1に記載の熱可塑性樹脂組成物。   The aromatic vinyl copolymer resin is a polymer of an aromatic vinyl monomer and a monomer copolymerizable with the aromatic vinyl monomer. The thermoplastic resin composition according to the above. 前記ゴム変性ビニル系グラフト共重合体は、前記熱可塑性樹脂100重量%のうち、約20重量%〜約50重量%で含まれ、前記芳香族ビニル系共重合体樹脂は前記熱可塑性樹脂100重量%のうち、約50重量%〜約80重量%で含まれることを特徴とする、請求項1に記載の熱可塑性樹脂組成物。   The rubber-modified vinyl-based graft copolymer is included in about 20% by weight to about 50% by weight of the thermoplastic resin of 100% by weight, and the aromatic vinyl-based copolymer resin is contained in the thermoplastic resin by 100% by weight. The thermoplastic resin composition according to claim 1, wherein the thermoplastic resin composition comprises from about 50% to about 80% by weight of the composition. 前記酸化亜鉛は、平均粒子径が約0.2μm〜約3μmであり、BET比表面積が約1m/g〜約10m/gであることを特徴とする請求項1に記載の熱可塑性樹脂組成物。 The zinc oxide has an average particle size is about 0.2μm~ about 3 [mu] m, a thermoplastic resin according to claim 1, wherein the BET specific surface area of about 1 m 2 / g to about 10 m 2 / g Composition. 前記酸化亜鉛は、フォトルミネッセンス(Photo Luminescence)の測定時、370nm〜390nm領域のピークAと450nm〜600nm領域のピークBとの強度比(B/A)が約0〜約1であることを特徴とする、請求項1に記載の熱可塑性樹脂組成物。   The zinc oxide has an intensity ratio (B / A) of a peak A in a range of 370 nm to 390 nm and a peak B in a range of 450 nm to 600 nm of about 0 to about 1 upon measurement of photoluminescence (Photo Luminescence). The thermoplastic resin composition according to claim 1, wherein 前記酸化亜鉛は、X線回折(X−ray diffraction,XRD)の分析時、ピーク位置(peak position)2θ値が35°〜37°の範囲であり、下記数式1による微結晶サイズ(crystallite size)の値が約1,000Å〜約2,000Åであることを特徴とする、請求項1に記載の熱可塑性樹脂組成物:

前記数式1において、Kは形状係数(shape factor)であり、λはX線波長(X−ray wavelength)であり、βはX線回折ピーク(peak)のFWHM値(degree)であり、θはピーク位置の値(peak position degree)である。
When the zinc oxide is analyzed by X-ray diffraction (XRD), a peak position 2θ value is in a range of 35 ° to 37 °, and a crystallite size according to the following equation 1 is obtained. The thermoplastic resin composition according to claim 1, wherein the value of the thermoplastic resin composition is from about 1,000 ° to about 2,000 °:

In Equation 1, K is a shape factor, λ is an X-ray wavelength, β is a FWHM value (degree) of an X-ray diffraction peak, and θ is It is a value of a peak position (peak position degree).
前記熱可塑性樹脂組成物は、JIS Z 2801抗菌評価法によって、5cm×5cmの大きさの試験片に黄色ブドウ球菌および大腸菌を接種し、35℃、RH90%の条件で24時間培養した後、測定した抗菌活性値がそれぞれ約2〜約7および約2〜約6.5であることを特徴とする、請求項1に記載の熱可塑性樹脂組成物。   The thermoplastic resin composition was measured by inoculating Staphylococcus aureus and Escherichia coli into a test piece having a size of 5 cm × 5 cm according to JIS Z 2801 antibacterial evaluation method, and culturing at 35 ° C. and RH 90% for 24 hours, followed by measurement. The thermoplastic resin composition of claim 1, wherein the antimicrobial activity values are about 2 to about 7 and about 2 to about 6.5, respectively. 前記熱可塑性樹脂組成物は、ASTM D257に基づいて測定した表面抵抗値が約1×10Ω・cm〜約1×1010Ω・cmであることを特徴とする、請求項1に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the thermoplastic resin composition has a surface resistance value of about 1 × 10 6 Ω · cm to about 1 × 10 10 Ω · cm measured according to ASTM D257. Thermoplastic resin composition. 前記熱可塑性樹脂組成物は、ASTM D256に基づいて測定した1/4”厚の試験片のノッチアイゾット衝撃強度が約15kgf・cm/cm〜約25kgf・cm/cmであることを特徴とする、請求項1に記載の熱可塑性樹脂組成物。   The thermoplastic resin composition is characterized in that a notch Izod impact strength of a 1/4 "thick test piece measured according to ASTM D256 is about 15 kgf · cm / cm to about 25 kgf · cm / cm, The thermoplastic resin composition according to claim 1. 請求項1〜10のいずれか1項に記載の熱可塑性樹脂組成物から形成されることを特徴とする、成形品。   A molded article formed from the thermoplastic resin composition according to any one of claims 1 to 10.
JP2019532007A 2016-12-28 2017-12-22 Thermoplastic resin composition and molded article produced therefrom Active JP7198753B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2016-0181359 2016-12-28
KR20160181359 2016-12-28
KR10-2017-0177878 2017-12-22
PCT/KR2017/015364 WO2018124657A1 (en) 2016-12-28 2017-12-22 Thermoplastic resin composition and molded article manufactured therefrom
KR1020170177878A KR102005162B1 (en) 2016-12-28 2017-12-22 Thermoplastic resin composition and article produced therefrom

Publications (2)

Publication Number Publication Date
JP2020503402A true JP2020503402A (en) 2020-01-30
JP7198753B2 JP7198753B2 (en) 2023-01-04

Family

ID=62921163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019532007A Active JP7198753B2 (en) 2016-12-28 2017-12-22 Thermoplastic resin composition and molded article produced therefrom

Country Status (4)

Country Link
US (1) US10829628B2 (en)
JP (1) JP7198753B2 (en)
KR (1) KR102005162B1 (en)
CN (1) CN110114405B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023504343A (en) * 2020-10-21 2023-02-03 エルジー・ケム・リミテッド Thermoplastic resin composition and molded article made therefrom

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102121099B1 (en) * 2017-09-28 2020-06-09 롯데첨단소재(주) Ionizing radiation resistant thermoplastic resin composition and article comprising the same
KR102161339B1 (en) 2017-11-08 2020-09-29 롯데첨단소재(주) Thermoplastic resin composition and article produced therefrom
KR102236413B1 (en) 2018-11-30 2021-04-05 롯데첨단소재(주) Thermoplastic resin composition and article produced therefrom
KR20210086227A (en) * 2019-12-31 2021-07-08 롯데케미칼 주식회사 Thermoplastic resin composition and article manufactured using the same
KR20220049180A (en) * 2020-10-14 2022-04-21 주식회사 엘지화학 Thermoplastic resin composition, method for preparing the resin composition and molding product comprising the resin composition
KR102693913B1 (en) * 2020-10-21 2024-08-12 주식회사 엘지화학 Thermoplastic resin composition and plated molding product produced therefrom
KR20220148120A (en) * 2021-04-28 2022-11-04 주식회사 엘지화학 Thermoplastic resin composition
KR20230032699A (en) * 2021-08-31 2023-03-07 롯데케미칼 주식회사 Thermoplastic resin composition and article manufactured using the same
KR20230045326A (en) * 2021-09-28 2023-04-04 롯데케미칼 주식회사 Thermoplastic resin composition and article produced therefrom

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207351A (en) * 1986-03-07 1987-09-11 Sumitomo Naugatuck Co Ltd Heat-resistant, impact-resistant resin composition having improved thermal stability
JPH08217936A (en) * 1995-02-10 1996-08-27 Japan Synthetic Rubber Co Ltd Antibacterial moldproof resin composition
JPH09255843A (en) * 1996-03-26 1997-09-30 Dai Ichi Kogyo Seiyaku Co Ltd Antimicrobial resin composition
JPH1135787A (en) * 1997-07-24 1999-02-09 Techno Polymer Kk Antibacterial thermoplastic resin composition
JPH1180469A (en) * 1997-09-08 1999-03-26 Toray Ind Inc Thermoplastic resin composition
JPH11240995A (en) * 1998-02-24 1999-09-07 Techno Polymer Kk Thermoplastic resin composition
JP2009161758A (en) * 2007-12-31 2009-07-23 Cheil Industries Inc Antistatic thermoplastic resin composition
JP2009173758A (en) * 2008-01-23 2009-08-06 Techno Polymer Co Ltd Flame-retardant antistatic resin composition
JP2012241153A (en) * 2011-05-23 2012-12-10 Daicel Polymer Ltd Paper transportation member

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US593A (en) * 1838-02-06 Arrangement of gearing fob driving machinery
JPH09157512A (en) 1995-12-11 1997-06-17 Denki Kagaku Kogyo Kk Flame-retardant resin composition
JP3611228B2 (en) * 1996-09-30 2005-01-19 日本ジーイープラスチックス株式会社 Polycarbonate resin composition
JPH11263705A (en) 1998-03-17 1999-09-28 Nisshin Steel Co Ltd Antimicrobial and antimicrobial resin composition
US6166116A (en) 1999-06-03 2000-12-26 The Dow Chemical Company Carbonate polymer compositions stabilized against discoloration and physical property deterioration during sterilization by ionizing radiation
ATE328479T1 (en) * 2000-09-21 2006-06-15 Ciba Sc Holding Ag MIXTURES OF PHENOLIC AND INORGANIC MATERIALS THAT EXHIBIT ANTIMICROBIAL ACTIVITY
KR100439629B1 (en) * 2002-04-01 2004-07-12 제일모직주식회사 Thermoplastic Resin Composition Having High Impact Strength, High Fatigue Strength and High Flowability
KR100490580B1 (en) * 2002-09-05 2005-05-19 제일모직주식회사 Acrylonitrile-Butadiene-Styrene Resin Composition with Excellent Thermal Stability, Impact Strength, Flowability and Antistatics
JP2005239904A (en) 2004-02-26 2005-09-08 Techno Polymer Co Ltd Thermoplastic resin composition and molded article
EP1770125B1 (en) * 2004-07-15 2014-07-02 Toray Industries, Inc. Thermoplastic resin composition
US7812078B2 (en) 2005-10-31 2010-10-12 Sabic Innovative Plastics Ip B.V. Ionizing radiation stable thermoplastic composition, method of making, and articles formed therefrom
JP5089055B2 (en) 2006-02-22 2012-12-05 株式会社シナネンゼオミック Antibacterial zeolite and antibacterial composition
JP5595279B2 (en) 2007-12-21 2014-09-24 ビーエーエスエフ ソシエタス・ヨーロピア Plastic film or packaging film for agriculture, or use of nanostructured UV absorbers for the film
KR101233383B1 (en) * 2007-12-31 2013-02-15 제일모직주식회사 Antistatic thermoplastic resin composition
US20140093712A1 (en) * 2012-09-28 2014-04-03 Sabic Innovative Plastics Ip B.V. Polycarbonate ABS Composites with Improved Electromagnetic Shielding Effectiveness
JP2016516856A (en) * 2013-03-28 2016-06-09 ペーアーエルイクス プラスティクス ベーフェーPARX Plastics BV Antibacterial polymer and method for producing the same
US20150237866A1 (en) 2014-02-24 2015-08-27 Sabic Innovative Plastics Ip B.V. Antimicrobial thermoplastic polymer compositions
KR20170007791A (en) * 2014-06-26 2017-01-20 사빅 글로벌 테크놀러지스 비.브이. Flame retardant thermally conductive polymer compositions with good flow property and uses thereof
JP2017132913A (en) 2016-01-28 2017-08-03 帝人株式会社 Antibacterial polycarbonate resin composition
WO2018124657A1 (en) 2016-12-28 2018-07-05 롯데첨단소재(주) Thermoplastic resin composition and molded article manufactured therefrom
KR102121099B1 (en) 2017-09-28 2020-06-09 롯데첨단소재(주) Ionizing radiation resistant thermoplastic resin composition and article comprising the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207351A (en) * 1986-03-07 1987-09-11 Sumitomo Naugatuck Co Ltd Heat-resistant, impact-resistant resin composition having improved thermal stability
JPH08217936A (en) * 1995-02-10 1996-08-27 Japan Synthetic Rubber Co Ltd Antibacterial moldproof resin composition
JPH09255843A (en) * 1996-03-26 1997-09-30 Dai Ichi Kogyo Seiyaku Co Ltd Antimicrobial resin composition
JPH1135787A (en) * 1997-07-24 1999-02-09 Techno Polymer Kk Antibacterial thermoplastic resin composition
JPH1180469A (en) * 1997-09-08 1999-03-26 Toray Ind Inc Thermoplastic resin composition
JPH11240995A (en) * 1998-02-24 1999-09-07 Techno Polymer Kk Thermoplastic resin composition
JP2009161758A (en) * 2007-12-31 2009-07-23 Cheil Industries Inc Antistatic thermoplastic resin composition
JP2009173758A (en) * 2008-01-23 2009-08-06 Techno Polymer Co Ltd Flame-retardant antistatic resin composition
JP2012241153A (en) * 2011-05-23 2012-12-10 Daicel Polymer Ltd Paper transportation member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023504343A (en) * 2020-10-21 2023-02-03 エルジー・ケム・リミテッド Thermoplastic resin composition and molded article made therefrom
JP7350163B2 (en) 2020-10-21 2023-09-25 エルジー・ケム・リミテッド Thermoplastic resin compositions and molded products manufactured therefrom

Also Published As

Publication number Publication date
CN110114405A (en) 2019-08-09
CN110114405B (en) 2022-06-17
US20190322854A1 (en) 2019-10-24
KR102005162B1 (en) 2019-08-01
US10829628B2 (en) 2020-11-10
JP7198753B2 (en) 2023-01-04
KR20180077044A (en) 2018-07-06

Similar Documents

Publication Publication Date Title
JP7198753B2 (en) Thermoplastic resin composition and molded article produced therefrom
JP6966288B2 (en) Thermoplastic resin composition and molded article produced from this
JP2018104686A (en) Thermoplastic resin composition and molded products produced therefrom
JP2020536984A (en) Thermoplastic resin composition and molded article formed thereby
JP7260301B2 (en) Thermoplastic resin composition for blow molding and molded article molded therefrom
JP2020503399A (en) Thermoplastic resin composition and molded article produced therefrom
JP7174032B2 (en) Thermoplastic resin composition and molded article produced therefrom
JP7048607B2 (en) Thermoplastic resin composition and molded articles produced thereby
KR101861482B1 (en) Thermoplastic resin composition and article produced therefrom
JP3512039B2 (en) Antistatic resin composition
JP7145941B2 (en) Thermoplastic resin composition and molded article formed therefrom
JP2000017170A (en) Thermoplastic resin composition
JP5188732B2 (en) Environment-friendly thermoplastic resin composition
JP7048618B2 (en) Thermoplastic resin composition
JP2005139215A (en) Antistatic thermoplastic resin composition and molded article obtained by using the same
KR102013502B1 (en) Rubber-modified vinyl graft copolymer and thermoplastic resin composition comprising the same
JP2021500421A (en) Thermoplastic resin composition and molded article produced from this
JP2734569B2 (en) Thermoplastic resin composition
JP2023552981A (en) Thermoplastic resin compositions and molded products manufactured using the same
JP2022515319A (en) Thermoplastic resin composition and articles manufactured from it
JP3301113B2 (en) Flame retardant resin composition
KR20230100042A (en) Antiviral article
JPH04348150A (en) Thermoplastic resin composition
JP2023516610A (en) Thermoplastic resin composition and molded article produced therefrom
JPH07252398A (en) Antibacterial resin composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R150 Certificate of patent or registration of utility model

Ref document number: 7198753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150