JP2020500593A - 最適化された光干渉断層撮影のための可視化システム及び方法 - Google Patents

最適化された光干渉断層撮影のための可視化システム及び方法 Download PDF

Info

Publication number
JP2020500593A
JP2020500593A JP2019527174A JP2019527174A JP2020500593A JP 2020500593 A JP2020500593 A JP 2020500593A JP 2019527174 A JP2019527174 A JP 2019527174A JP 2019527174 A JP2019527174 A JP 2019527174A JP 2020500593 A JP2020500593 A JP 2020500593A
Authority
JP
Japan
Prior art keywords
sample
oct
lens
operable
autofocus imager
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019527174A
Other languages
English (en)
Other versions
JP7010943B2 (ja
Inventor
レン フーカン
レン フーカン
ユイ リンフォン
ユイ リンフォン
Original Assignee
ノバルティス アーゲー
ノバルティス アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノバルティス アーゲー, ノバルティス アーゲー filed Critical ノバルティス アーゲー
Publication of JP2020500593A publication Critical patent/JP2020500593A/ja
Application granted granted Critical
Publication of JP7010943B2 publication Critical patent/JP7010943B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0083Apparatus for testing the eyes; Instruments for examining the eyes provided with means for patient positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/152Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0269Microscope type

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Eye Examination Apparatus (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本開示は、OCT光源とサンプルとの間の絶対距離を特定することによって最適化された光干渉断層撮影(OCT)を実行するための可視化システムを提供する。本開示はまた、OCTを最適化する方法も提供し、これはOCT光源とサンプルとの間の絶対距離を、オートフォーカスイメージャレンズの焦点距離又は位置に関するデータを使って特定するステップを含む。

Description

本開示は光干渉断層撮影(OCT)に関し、より詳しくは、最適化されたOCT走査のための可視化システム及び方法に関する。
眼の手術、すなわち眼科手術は、毎年何万人もの人々の視力を保存し、改善している。しかしながら、視覚が眼内の小さい変化によってさえ影響を受けやすく、多くの眼構造が微細で繊細な性質であることを考えると、眼科手術は施行が難しく、軽微又は稀な手術のエラーを減少させ、外科的技術の精度を少し高めるだけでも、術後の患者の視力には非常に大きな差が生じる可能性がある。
眼科手術は、眼及び付属の視覚構造に対して行われる。眼科手術中、患者は上向きで支持台に載せられる。この支持台は、診察台又はベッドであってよく、手術用顕微鏡の下に位置付けられてもよい。開瞼器が挿入されて、眼が露出した状態に保たれる。外科医は手術用顕微鏡を使って患者の眼を見ることが多く、様々な処置の何れかを行うために手術器具が導入されてもよい。手術用顕微鏡は、処置中の眼の部分の画像を形成し、任意選択によりそれを照明する。
単純に眼の拡大像を提供できるだけでなく、手術用顕微鏡は、手術用顕微鏡だけでは効果的に見ることができない眼の内部構造に関する追加の情報を提供するためにOCTシステムを備えていてもよい。OCTシステムは、光学的又は電気機械的に手術用顕微鏡に組み込まれていてもよい。
OCTは、少なくとも部分的に光を反射するサンプル、例えば生体組織の構造的検査のための干渉解析法である。OCTはまた、例えばサンプルの動き及び速度又は組織内の血流等、サンプルの機能的検査にも使用できる。OCTシステムは、参照ミラーからの反射ビームとサンプルからの反射ビームとの間の相互作用によってできる干渉パターンに基づいて、距離及び深度プロファイルならびにその他の情報を特定するために使用されてもよい。
OCTシステムにおいて、1つのOCT光源ビームは2つの成分ビーム、すなわちサンプルへと伝搬され、そこで少なくとも部分的に反射するサンプルビームと、参照ミラーへと伝搬され、そこで反射する参照ビームとに分割される。各ビームは典型的に、反射してビームスプリッタに戻り、結合されるが、特定のOCTシステムでは、各反射ビームがビームスプリッタに戻って結合されなくてもよい。反射したサンプルビームと反射した参照ビームが結合されると参照パターンが生まれ、これはサンプルの距離及び深度プロファイルならびにその他の情報を測定し、サンプルビームが通過する内部標的構造の画像を形成するために使用されてもよい。眼科手術において、OCTシステムは、例えば網膜の高解像度の断面画像を提供するために使用されてもよい。
本開示は、OCT光源ビームを生成するように動作可能であるOCT光源と、OCTビームスプリッタと、OCT検出器と、を備えるOCTシステムを含む可視化システムを提供する。OCTビームスプリッタは、OCT光源ビームを、サンプルアームに沿って、それがサンプルで反射し、反射サンプルビームを形成するまで進むサンプルビームと、参照アームに沿って、それがOCTシステム内の参照ミラーで反射し、反射参照ビームを形成するまで進む参照ビームとに分割するように動作可能であり、反射サンプルビームと反射参照ビームを結合して反射OCTビームを形成するように動作可能である。OCT検出器は、反射OCTビームを受け取るように動作可能であり、反射OCTビームの干渉パターンを検出するように動作可能である。可視化システムはまた、手術用顕微鏡と、非OCT光を実質的に通過させるように動作可能であり、サンプルビームを反射させるように動作可能であるダイクロイックミラーと、非OCT光を手術用顕微鏡とオートフォーカスイメージャの両方へと案内するように動作可能である可視化ビームスプリッタも含む。オートフォーカスイメージャは、サンプルで反射し、ダイクロイックミラーを通過し、可視化ビームスプリッタによりオートフォーカスイメージャへと案内された非OCT光を受け取るように動作可能である。オートフォーカスイメージャは、サンプルで反射した非OCT光を使って、オートフォーカスイメージャレンズを調節することによってサンプル上でのオートフォーカスイメージャの焦点を最適化するように動作可能であり、オートフォーカスイメージャレンズの位置又は焦点距離に関するデータを生成するように動作可能である。可視化システムは、ダイクロイックミラーとサンプルとの間の距離を、オートフォーカスイメージャレンズの位置又は焦点距離に関するデータを使って特定し、OCT光源とサンプルとの間の絶対距離を、ダイクロイックミラーとサンプルとの間の距離を使って特定し、サンプルアームの長さを、OCT光源とサンプルとの間の絶対距離を使って特定し、参照アームの長さ又はサンプルアームの焦点を調節することによってOCTシステムを最適化するように動作可能な制御信号を生成し、制御信号をOCTシステムに送信するように動作可能であるプロセッサをさらに含む。
明確に排他的でないかぎり相互に組み合わせることのできる追加的な複数の実施形態において、オートフォーカスイメージャレンズは屈折力調節可能レンズであり、屈折力調節可能レンズの焦点距離は調節可能であり、また、オートフォーカスイメージャレンズは位置調節可能レンズであり、位置調節可能レンズの位置は調節可能であり、また、プロセッサは、サンプルアームの長さを、OCT光源とサンプルとの間の絶対距離を使って計算し、制御信号をリアルタイムで生成し、送信するように動作可能であり、また、プロセッサは、OCT光源とサンプルとの間の絶対距離を、レンズ距離参照データを参照することによって特定するように動作可能であり、また、レンズ−距離参照データは、オートフォーカスイメージャレンズの異なる焦点距離又は位置におけるOCT光源とサンプルとの間の距離に対応するデータを含む。
本開示はさらに、OCT光源ビームを生成するように動作可能であるOCT光源と、OCTビームスプリッタと、OCT検出器と、を備えるOCTシステムを含む可視化システムを提供する。OCTビームスプリッタは、OCT光源ビームを、サンプルアームに沿って、それがサンプルで反射し、反射サンプルビームを形成するまで進むサンプルビームと、参照アームに沿って、それがOCTシステム内の参照ミラーで反射し、反射参照ビームを形成するまで進む参照ビームとに分割するように動作可能であり、反射サンプルビームと反射参照ビームを結合して反射OCTビームを形成するように動作可能である。OCT検出器は、反射OCTビームを受け取るように動作可能であり、反射OCTビームの干渉パターンを検出するように動作可能である。可視化システムはまた、手術用顕微鏡と、非OCT光を実質的に通過させるように動作可能であり、サンプルビームを反射させるように動作可能であるダイクロイックミラーと、非OCT光を手術用顕微鏡とオートフォーカスイメージャの両方へと案内するように動作可能である可視化ビームスプリッタも含む。オートフォーカスイメージャは、サンプルで反射し、ダイクロイックミラーを通過し、可視化ビームスプリッタによりオートフォーカスイメージャへと案内された非OCT光を受け取るように動作可能である。オートフォーカスイメージャは、サンプルで反射した非OCT光を使って、オートフォーカスイメージャレンズを調節することによってサンプル上でのオートフォーカスイメージャの焦点を最適化するように動作可能であり、オートフォーカスイメージャレンズの位置又は焦点距離に関するデータを生成するように動作可能である。
可視化システムは、ダイクロイックミラーとサンプルとの間の距離の変化を、オートフォーカスイメージャレンズの位置又は焦点距離に関するデータを使って特定し、サンプルアームの長さの変化を、ダイクロイックミラーとサンプルとの間の距離の変化を使って特定し、参照アームの長さ又はサンプルアームの焦点を調節することによってOCTシステムを最適化するように動作可能な制御信号を生成し、制御信号をOCTシステムに送信するように動作可能であるプロセッサをさらに含む。
明確に排他的でないかぎり相互に組み合わせることのできる追加的な複数の実施形態において、オートフォーカスイメージャレンズは屈折力調節可能レンズであり、屈折力調節可能レンズの焦点距離は調節可能であり、また、オートフォーカスイメージャレンズは位置調節可能レンズであり、位置調節可能レンズの位置は調節可能であり、また、プロセッサは、サンプルアームの長さの変化を、ダイクロイックミラーとサンプルとの間の距離の変化を使って特定し、制御信号をリアルタイムで生成し、送信するように動作可能である。
本開示はまた、光干渉断層撮影(OCT)を最適化する方法を提供し、これは、オートフォーカスイメージャにおいて、サンプルで反射した非OCT光であって、ダイクロイックミラーを通過し、可視化ビームスプリッタによりオートフォーカスイメージャへと案内された非OCT光を受け取るステップと、オートフォーカスイメージャにおいて、サンプルで反射した非OCT光を使って、オートフォーカスイメージャレンズを調節することによってサンプル上でのオートフォーカスイメージャの焦点を最適化するステップと、オートフォーカスイメージャによって、オートフォーカスイメージャレンズの位置又は焦点距離に関するデータを生成するステップと、ダイクロイックミラーとサンプルとの間の距離を、オートフォーカスイメージャレンズの位置又は焦点距離に関するデータを使って特定するステップと、OCT光源とサンプルとの間の絶対距離を、ダイクロイックミラーとサンプルとの間の距離を使って特定するステップと、サンプルアームの長さを、OCT光源とサンプルとの間の絶対距離を使って特定するステップと、制御信号であって、参照アームの長さ又はサンプルアームの焦点を調節することによってOCTシステムを最適化するように動作可能な制御信号を生成するステップと、制御信号をOCTシステムに送信するステップと、を含む。
明確に排他的でないかぎり相互に組み合わせることのできる追加的な複数の実施形態において、オートフォーカスイメージャレンズは屈折力調節可能レンズであり、制御装置はレンズの焦点距離を調節するように動作可能であり、また、オートフォーカスイメージャのレンズは位置調節可能レンズであり、制御装置はレンズの位置を調節するように動作可能であり、また、サンプルアームの長さを計算するステップと、OCT光源とサンプルとの間の絶対距離を使用するステップと、制御信号を生成して、送信するステップとは、リアルタイムで行われ、また、OCT光源とサンプルとの間の絶対距離を特定するステップは、レンズ−距離参照データを参照することによって行われ、また、レンズ−距離参照データは、オートフォーカスイメージャレンズの異なる焦点距離又は位置におけるOCT光源とサンプルとの間の距離に対応するデータを含む。
上記のシステムは上記の方法と共に使用されてよく、その逆でもある。それに加えて、本明細書中に記載の何れのシステムも本明細書中に記載の何れの方法と共に使用されてよく、その逆でもある。
本発明及びその特徴と利点をよりよく理解するために、ここで、以下の説明を添付の図面と併せて参照するが、図は正確な縮尺で描かれていない。
OCTシステムの概略図である。 OCTシステムと、屈折力調節可能レンズを備えるオートフォーカスイメージャと、を含む可視化システムの概略図である。 OCTシステムと、位置調節可能レンズを備えるオートフォーカスイメージャと、を含む可視化システムの概略図である。 OCTを最適化する方法のフローチャートである。
以下の説明の中で、開示されている主旨を説明しやすくするために、例として詳細事項が記されている。しかしながら、当業者にとっては、開示された実施形態が例示的であり、あらゆる考えうる実施形態を網羅しているわけではないことが明らかであるはずである。
OCTを行う際、サンプルビームが通過する内部標的構造の適正な測定と画像形成を行うには、分析可能な干渉パターンを得ることが重要である。このような干渉パターンを得るには、参照アームの長さとサンプルアームの長さに差があればそれを最小限にすることが重要である。このような長さの差はわずかであり、いかなる差異もわかっていることが好ましい。例えば、参照アームの長さサンプルアームの長さの差は、それが100mm未満であれば、わずかであると考えてよい。OCTシステムにおいて、参照アームの長さとは、OCTビームスプリッタと参照ミラーとの間の距離を指す。サンプルアームの長さとは、OCTビームスプリッタとサンプルとの間の距離を指す。現在、参照アーム又はサンプルアームの長さの調節は手作業で行われている。
OCTシステムの典型的な使用において、使用者はOCT光源の位置を手で前後に調整して、参照アームとサンプルアームの長さが同じとなり、最適な画像が得られるようにするかもしれない。しかしながら、特定の例において、例えばOCTシステムが手術用顕微鏡に接続されている場合、OCT光源を前後に動かして最適な画像を得ることは不可能か、又は現実的ではないかもしれない。このような場合、使用者は、手術中に明瞭な手術用顕微鏡の視野を得ることの方を、最適なOCT画像を得ることより重視するかもしれない。明瞭な手術用顕微鏡の視野を得るために、使用者は手術用顕微鏡の焦点を調節するか、手術用顕微鏡を上下に移動させるかもしれず、それにより、OCT光源の位置、及びその結果、サンプルアームの長さが変化する。最適化されたOCT画像を保持するために、手術用顕微鏡の焦点又は位置を調節しながら、参照アームの長さを調節しなければならない。
本開示は、オートフォーカスイメージャレンズの位置又は焦点距離に関するデータを生成してもよいオートフォーカスイメージャを内蔵する可視化システムを提供する。オートフォーカスイメージャレンズは例えば、レンズの焦点距離が調節されてもよい屈折力調節可能レンズか、又はレンズの位置が調節されてもよい位置調節可能レンズであってよい。オートフォーカスイメージャを実装することにより、本願の可視化システムは、使用者による手作業の調節と対照的に、参照アームの長さ又はサンプルアームの焦点の自動調節を提供する。
可視化システムのプロセッサは、ダイクロイックミラーとサンプルとの間の距離を、オートフォーカスイメージャレンズの位置又は焦点距離に関するデータを使って特定する。プロセッサは、OCT光源とサンプルとの間の絶対距離を、ダイクロイックミラーとサンプルとの間の距離を使って特定する。プロセッサはさらに、サンプルアームの長さを、OCT光源とサンプルとの間の絶対距離を使って特定する。これらの特定を行うことによって、可視化システムは参照アームの長さ、サンプルアームの焦点、又はそれらの両方を調節することによりOCT走査を最適化することができる。参照アームの長さは、例えば参照ミラーに接続された制御装置を介して調節されてもよい。サンプルアームの焦点は、OCTレンズの、すなわちOCTシステムの位置又はOCTレンズの焦点の何れかを調節するかことによって調節されてもよい。OCTレンズは、図1には含まれていないが、ビームスプリッタとサンプルとの間の何れの位置にあってもよく、これは図のように、経路130又は150上の何れかの位置であり、これについては図1を参照しながら後でさらに説明する。参照アームの長さ、サンプルアームの焦点、又はそれらの両方を調節することにより、可視化システムは最適化されたOCT走査を実行し、それによってより分析可能な干渉パターン、及び、したがって、最適化されたOCT画像が得られる。
ここで、図面を参照すると、図1はOCTシステム100の概略図であり、これは図のように、走査ミラー105を含む。OCTシステム100はプロセッサ170に接続され、これはメモリ155に接続されている。OCTシステム100は、OCTビームスプリッタ102、検出器107、参照ミラー104、及びOCT光源101を含む。OCT光源101は、OCT光源ビームを生成し、これは経路110上でOCTビームスプリッタ102へと伝搬する。OCTビームスプリッタ102は、経路110上で伝播するOCT光源ビームを2つの成分ビーム、すなわち(1)サンプルアームである経路130に沿って、走査ミラー105で反射した後、サンプル106へと伝搬するサンプルビームと、(2)参照アームである経路120に沿って参照ミラー104へと伝搬する参照ビームとに分割する。サンプル106は、例えば患者の眼であってもよい。
サンプルビームがサンプル106に到達すると、それは反射し、経路150上でOCTビームスプリッタ102へと戻る。OCTビームスプリッタ102は、経路140上の反射サンプルビームと経路150上の反射参照ビームとを結合して、干渉パターンを作る。結合された反射ビームを、「反射OCTビーム」と呼ぶ。
反射OCTビームは、検出器107へと案内される。検出器107は例えば、フォトディテクタであってもよい。検出器107は、反射OCTビームの干渉パターンを検出して、干渉パターンに関するデータを生成する。プロセッサ170は、検出器107からのデータを受信し、このデータを処理して、サンプルビームが通過する内部標的構造のOCT画像を生成してもよい。
プロセッサ170は、例えばマイクロプロセッサ、マイクロコントローラ、デジタルシグナルプロセッサ(DSP)、特定用途集積回路(ASIC)又は、プログラム命令を解読及び/又は実行し、及び/又はデータを処理するように構成された他の何れのデジタルもしくはアナログ回路構成を含んでいてもよい。幾つかの実施形態において、プロセッサ170は、メモリ175に記憶されたプログラム命令を解読及び/又は実行し、及び/又はそのようなデータを処理してもよい。メモリ175は、部分的又は全体的に、アプリケーションメモリ、システムメモリ、又はこれらの両方として構成されてもよい。メモリ175は、1つ又は複数のメモリモジュールを保持及び/又は格納するように構成された何れのシステム、デバイス、又は装置を含んでいてもよい。各メモリモジュールは、ある期間にわたってプログラム命令及び/又はデータを保持するように構成された何れのシステム、デバイス、又は装置を含んでいてもよい(例えば、コンピュータ可読媒体)。各種のサーバ、電子デバイス、又はその他の機械は、関連する機械の機能を実行するためのプログラム命令を記憶し、実行するための1つ又は複数の同様のこのようなプロセッサ又はメモリを含んでいてもよい。
図2は、屈折力調節可能レンズ207を備えるオートフォーカスイメージャ203を含む可視化システム200の概略図である。屈折力調節可能レンズ207は、オートフォーカスイメージャ203に組み込まれ、又はそれに接続されてもよい。屈折力調節可能レンズ207は制御装置290に接続され、これは少なくとも屈折力調節レンズの焦点距離を調節できる。屈折力調節可能レンズ207の焦点距離を調節することを、屈折力調節可能レンズの「屈折力」を調節すると言ってもよい。可視化システム200はまた、手術用顕微鏡202も含み、これは手術用顕微鏡接眼レンズ260と、プロセッサ250と、メモリ251と、ダイクロイックミラー204と、可視化ビームスプリッタ206と、OCTシステム280と、を備える。OCTシステム280は、OCT光源201と、OCTビームプリッタと、参照ミラーと、検出器と、OCTレンズと、を含む。
可視化システム200は、最適化されたOCT走査を行うことによって、結果として得られる干渉パターン、及び、したがって結果として得られるOCT画像を最適化する。最適化されたOCT走査を実行するために、可視化システム200はOCTシステムの参照アームの長さ又はサンプルアームの焦点を調節してもよい。図2に関して述べる際、参照アームとサンプルアームは可視化システム200ではなくOCTシステム280に関している。サンプルアームの焦点は、OCTレンズの位置又はOCTレンズの焦点の何れかを調節することによって調節されてよい。前述のように、図2には示されていないが、OCTレンズはOCTシステム280のOCTビームスプリッタとサンプル205との間の何れの位置にあってもよい。
OCT光源201はOCT光源ビームを生成し、これは経路210上でダイクロイックミラー204に向かって伝播する。ダイクロイックミラー204は、手術用顕微鏡202に組み込まれていてもよい。ダイクロイックミラー204は、OCT光源ビームを経路220に沿ってサンプル205に向かって案内する。サンプル205は、患者の眼であってもよい。経路210及び220上のOCT光源ビームがサンプル205に到達すると、これは再びダイクロイックミラー204へと反射し、経路230上で再びOCTシステム280へと案内される。
ダイクロイックミラー204は、2種類の波長で大きく異なる反射又は透過特性を有するミラーである。このような特性により、ダイクロイックミラーは、概して赤外範囲に近く、概して700nmより高い波長のOCT光源ビームを反射させることができる。反対に、このような特性により、ダイクロイックミラーは、可視範囲であり、概して700nmの波長より低い非OCT光を透過させることもできる。例えば、非OCT光は環境光又は手術用顕微鏡により生成される光であってもよい。
OCT光源ビースが経路210及び220に沿って案内される間に、オートフォーカスイメージャ203は、ダイクロイックミラーを通過して可視化ビースプリッタによりオートフォーカスイメージャへと案内された、サンプルで反射した非OCT光を受け取る。オートフォーカスイメージャ203は、この非OCT光をその屈折力調節可能レンズ207を通じて受け取る。オートフォーカスイメージャ203は屈折力調節可能レンズ207の焦点距離と位置を検出し、それに関するデータを生成することができる。経路240上の非OCT光は、例えば環境光又は手術用顕微鏡により生成される光であってもよい。経路240上で、透過された非OCT光はダイクロイックミラー204を通過し、可視化ビームスプリッタ206において2つの成分ビームに分割される。
可視化ビームスプリッタ206は手術用顕微鏡202の一部である。可視化ビームスプリッタ206は、非OCT光のビームを分割し、一方の成分ビームをオートフォーカスイメージャレンズ207に、他方の成分ビームを手術用顕微鏡の接眼レンズ260に案内し、それによって使用者はサンプル205を観察できる。
オートフォーカスイメージャ203がオートフォーカスビームを受け取ると、これは少なくとも屈折力調節可能レンズ207の焦点を調節することによって、サンプル上での屈折力調節可能レンズ207の焦点を最適化することができる。オートフォーカスイメージャ203は非OCT光を使って、屈折力調節可能レンズ207を調節することによりサンプル上でのオートフォーカスイメージャの焦点を最適化してもよい。オートフォーカスイメージャ203は、屈折力調節可能レンズ207の焦点距離又は位置を検出し、それに関するデータを生成できる。
プロセッサ250は、屈折力調節可能レンズ207の焦点距離と位置に関するデータを受け取り、それを処理して、ダイクロイックミラー204とサンプル205との間の距離を特定することができる。プロセッサ250は、OCT光源とサンプル205との間の絶対距離を、ダイクロイックミラーとサンプルとの間の距離を使って特定できる。プロセッサ250はさらに、サンプルアームの長さを、OCT光源とサンプルとの間の絶対距離を使って特定できる。
その代わりに、プロセッサ250は、ダイクロイックミラー204とサンプル205との間の距離の変化を、オートフォーカスイメージャレンズの位置又は焦点距離に関するデータを使って特定してもよい。プロセッサ250はさらに、サンプルアームの長さの変化を、ダイクロイックミラーとサンプルとの間の距離の変化を使って特定してもよい。この例においても、プロセッサ250は依然として、参照アームと、サンプルアームの焦点を調節してOCTシステムを最適化してもよく、それに伴って、(1)ダイクロイックミラーとサンプルとの間の距離を特定したり、又はその特定結果を使用したりしなくてよく、又は(2)OCT光源とサンプルとの間の絶対距離を特定したり、その特定結果を使用したりしなくてよい。その代わりに、プロセッサ250は、ダイクロイックミラーとサンプルとの間の距離の変化があればこれを特定し、サンプルアームの長さの変化を特定し、その特定結果を使ってOCTシステムを最適化してもよい。
プロセッサ250は、参照アームの長さ又はサンプルアームの焦点を調節することによってOCTシステム280を最適化するための制御信号を生成し、この制御信号をOCTシステム280に送信してもよい。参照アームの長さは、例えば制御装置を介して調節されてもよい。サンプルアームの焦点は、OCTレンズの、すなわちOCTシステムの位置かOCTレンズの焦点の何れかを調節することによって調節されてもよい。参照アームの長さ又はサンプルアームの焦点を調節することにより、参照アーム及びサンプルアームの長さ間に差がある場合にこれを最小化してもよく、わずかであることが好ましい。参照アーム及びサンプルアームの長さ間に差があった場合にこれを最小化することにより、可視化システムは、その結果として得られる干渉パターンと、したがってその結果として得られるOCT画像とを最適化する。
図2の可視化システムにおいて、「サンプルアーム」の長さとは、OCT光源201からサンプル205までの距離であり、これはL1+L2+L3と等しく、L1はOCT光源201とダイクロイックミラー204との間の距離、L2はダイクロイックミラー204と手術用顕微鏡202の端縁との間の距離、L3は手術用顕微鏡202の端縁とサンプル205との間の距離である。L1及びL2は固定されている。サンプルアームの長さの計算における唯一の可変パラメータはL3であり、これは手術用顕微鏡202とサンプル205との間の可変距離である。
図2において、「物体距離」の長さとは、屈折力調節可能レンズ207からサンプル205までの距離であり、これはL4+L5+L6と等しく、L4は屈折力調節可能レンズ207と可視化ビームスプリッタ206との間の距離、L5は可視化ビームスプリッタ206と手術用顕微鏡202の端縁との間の距離、L6は手術用顕微鏡202の端縁とサンプル205との間の距離である。図のように、L3とL6は同じ距離である。屈折力調節可能レンズ207とオートフォーカスイメージャ203のセンサとの間の距離はL7として示されている。
可視化システム200において、
Figure 2020500593
であり、式中、「f」は屈折力調節可能レンズ207の焦点距離を表す。この式は、L6について以下のように解かれてもよい:
Figure 2020500593
前述し、図2に示すように、L6=L3である。その結果、OCT光源201とサンプル205との間の絶対距離は、LOCTで示され、以下のように計算できる:
Figure 2020500593
上式のパラメータのうち、L1、L2、L7、L4、及びL5は、構成された状態の可視化システムの特性である。焦点距離「f」は、オートフォーカスイメージャ203により表示又は特定されてよい。そこから、LOCTがプロセッサ250により特定されてよい。
前述のように、LOCT、すなわちOCT光源201とサンプル205との間の絶対距離は、ダイクロイックミラーとサンプルとの間の距離を使って特定され、これはオートフォーカスイメージャレンズの位置又は焦点距離に関するデータを使って特定される。この例では、オートフォーカスイメージャレンズは屈折力調節可能レンズ207である。プロセッサ250は、サンプルアームの長さを、OCT光源とサンプルとの間の絶対距離を使って特定し、OCTレンズの位置又はOCTレンズの焦点の何れかを調節して参照アーム及びサンプルアームの長さ間に差があればこれを最小化するための制御信号を生成し、これはOCT走査を最適化する。
図3は、可視化システム300の概略図であり、これは可視化システム200の屈折力調節レンズ207とは異なり、位置調節可能レンズ307を備えるオートフォーカスイメージャ203を含む。オートフォーカスイメージャ203は、サンプル上でのその焦点を、位置調節可能レンズ307の位置を調節することによって最適化されてもよい。位置調節可能レンズ307は、オートフォーカスイメージャ203に組み込まれるか、それに接続されてもよい。位置調節可能レンズ307は制御装置290に接続され、これは少なくとも位置調節可能レンズの位置を調節できる。可視化システム200はまた、手術用顕微鏡202も含み、これは手術用顕微鏡接眼レンズ260と、プロセッサ250と、メモリ251と、ダイクロイックミラー204と、可視化ビームスプリッタ206と、OCTシステム280と、を備える。OCTシステム280は、OCT光源201と、OCTビームスプリッタと、参照ミラーと、検出器と、OCTレンズと、を含む。
可視化システム200は、最適化されたOCT走査を行うことによって、結果として得られる干渉パターン、及び、したがって結果として得られるOCT画像を最適化する。最適化されたOCT走査を実行するために、可視化システム200はOCTシステムの参照アームの長さ又はサンプルアームの焦点を調節してもよい。図2に関して述べる際、参照アームとサンプルアームは可視化システム200ではなくOCTシステム280に関している。サンプルアームの焦点は、OCTレンズの位置又はOCTレンズの焦点の何れかを調節することによって調節されてよい。前述のように、図2には示されていないが、OCTレンズはOCTシステム280のOCTビームスプリッタとサンプル205との間の何れの位置にあってもよい。
OCT光源201はOCT光源ビームを生成し、これは経路210上でダイクロイックミラー204に向かって伝播する。ダイクロイックミラー204は、手術用顕微鏡202に組み込まれていてもよい。ダイクロイックミラー204は、OCT光源ビームを経路220に沿ってサンプル205に向かって案内する。サンプル205は、患者の眼であってもよい。経路210及び220上のOCT光源ビームがサンプル205に到達すると、これは再びダイクロイックミラー204へと反射し、経路230上で再びOCTシステム280へと案内される。
OCT光源ビースが経路210及び220に沿って案内される間に、オートフォーカスイメージャ203は、ダイクロイックミラーを通過して可視化ビースプリッタによりオートフォーカスイメージャへと案内された、サンプルで反射した非OCT光を受け取る。図2の可視化システム200とは異なり、図3の可視化システム300では、オートフォーカスイメージャ203はこの非OCT光をその屈折力調節可能レンズ207を通じて受け取る。オートフォーカスイメージャ203は、屈折力調節可能レンズ207の焦点距離と位置を検出し、それに関するデータを生成できる。経路240上の非OCT光は、例えば環境光又は手術用顕微鏡により生成される光であってもよい。経路240上で、透過された非OCT光はダイクロイックミラー204を通過し、可視化ビームスプリッタ206において2つの成分ビームに分割される。
可視化ビームスプリッタ206は手術用顕微鏡202の一部である。可視化ビームスプリッタ206は、非OCT光のビームを分割し、一方の成分ビームをオートフォーカスイメージャレンズ307に、他方の成分ビームを手術用顕微鏡の接眼レンズ260に案内し、それによって使用者はサンプル205を観察できる。
オートフォーカスイメージャ203がオートフォーカスビームを受け取ると、これは少なくとも位置調節可能レンズ307位置を調節することによって、サンプル上での位置調節可能レンズ307の焦点を最適化することができる。オートフォーカスイメージャ203は非OCT光を使って、位置調節可能レンズ307を調節することによりサンプル上でのオートフォーカスイメージャの焦点を最適化してもよい。オートフォーカスイメージャ203は、位置調節可能レンズ307の焦点距離又は位置を検出し、それに関するデータを生成できる。
プロセッサ250は、位置調節可能レンズ307の焦点距離と位置に関するデータを受け取り、それを処理して、ダイクロイックミラー204とサンプル205との間の距離を特定することができる。プロセッサ250は、OCT光源とサンプル205との間の絶対距離を、ダイクロイックミラーとサンプルとの間の距離を使って特定できる。プロセッサ250はさらに、サンプルアームの長さを、OCT光源とサンプルとの間の絶対距離を使って特定できる。
その代わりに、プロセッサ250は、ダイクロイックミラー204とサンプル205との間の距離の変化を、オートフォーカスイメージャレンズの位置又は焦点距離に関するデータを使って特定してもよい。プロセッサ250はさらに、サンプルアームの長さの変化を、ダイクロイックミラーとサンプルとの間の距離の変化を使って特定してもよい。この例においても、プロセッサ250は依然として、参照アームと、サンプルアームの焦点を調節してOCTシステムを最適化してもよく、それに伴って、(1)ダイクロイックミラーとサンプルとの間の距離を特定したり、又はその特定結果を使用したりしなくてよく、又は(2)OCT光源とサンプルとの間の絶対距離を特定したり、その特定結果を使用したりしなくてよい。その代わりに、プロセッサ250は、ダイクロイックミラーとサンプルとの間の距離の変化があればこれを特定し、サンプルアームの長さの変化を特定し、その特定結果を使ってOCTシステムを最適化してもよい。
プロセッサ250は、参照アームの長さ又はサンプルアームの焦点を調節することによってOCTシステム280を最適化するための制御信号を生成し、この制御信号をOCTシステム280に送信してもよい。参照アームの長さは、例えば制御装置を介して調節されてもよい。サンプルアームの焦点は、OCTレンズの、すなわちOCTシステムの位置かOCTレンズの焦点の何れかを調節することによって調節されてもよい。参照アームの長さ又はサンプルアームの焦点を調節することにより、参照アーム及びサンプルアームの長さ間に差がある場合にこれを最小化してもよく、わずかであることが好ましい。参照アーム及びサンプルアームの長さ間に差があればこれを最小化することにより、可視化システムは、その結果として得られる干渉パターンと、したがってその結果として得られるOCT画像とを最適化する。
図3の可視化システムにおいて、「サンプルアーム」の長さとは、OCT光源201からサンプル205までの距離であり、これはL1+L2+L3と等しく、L1はOCT光源201とダイクロイックミラー204との間の距離、L2はダイクロイックミラー204と手術用顕微鏡202の端縁との間の距離、L3は手術用顕微鏡202の端縁とサンプル205との間の距離である。L1及びL2は固定されている。サンプルアームの長さの計算における唯一の可変パラメータはL3であり、これは手術用顕微鏡202とサンプル205との間の可変距離である。
図3において、「物体距離」の長さとは、位置調節可能レンズ307からサンプル205までの距離であり、これはL4+L5+L6と等しく、L4は位置調節可能レンズ307と可視化ビームスプリッタ206との間の距離、L5は可視化ビームスプリッタ206と手術用顕微鏡202の端縁との間の距離、L6は手術用顕微鏡202の端縁とサンプル205との間の距離である。図のように、L3とL6は同じ距離である。図2の可視化システム200と異なり、位置調節可能レンズ307とオートフォーカスイメージャ203のセンサとの間の距離はL7として示されている。
可視化システム300において、
Figure 2020500593
であり、式中、「f」は位置調節可能レンズ307の焦点距離を表す。この式は、L6について以下のように解かれてもよい:
Figure 2020500593
前述し、図2に示すように、L6=L3である。その結果、OCT光源201とサンプル205との間の絶対距離は、LOCTで示され、以下のように計算できる:
Figure 2020500593
上式のパラメータのうち、L1、L2、L7、L4、及びL5は、構成された状態の可視化システムの特性である。焦点距離「f」は、この状況では固定されており、それは、屈折力調節可能レンズ207ではなく位置調節可能レンズ307が実装されているからであり、Δdはオートフォーカスイメージャ203のディスプレイから読み出すことができる。そこから、LOCTがプロセッサ250により特定されてよい。
前述のように、LOCT、すなわちOCT光源201とサンプル205との間の絶対距離は、ダイクロイックミラーとサンプルとの間の距離を使って特定され、これはオートフォーカスイメージャレンズの位置又は焦点距離に関するデータを使って特定される。この例では、オートフォーカスイメージャレンズは位置調節可能レンズ307である。プロセッサ250は、サンプルアームの長さを、OCT光源とサンプルとの間の絶対距離を使って特定し、OCTレンズの位置又はOCTレンズの焦点の何れかを調節してOCTシステムの参照アーム及びサンプルアームの長さ間のあらゆる差を最小化するための制御信号を生成し、これはOCT走査を最適化する。
図2の可視化システム200又はその何れの構成要素も、図3の可視化システム300又はその何れの構成要素とも使用されてよく、その逆でもある。
可視化システム200及び300のどちらについても、サンプルアームの長さを計算すること、OCT光源とサンプルとの間の絶対距離を使用すること、及び制御信号を生成して送信することは、リアルタイムで行われてもよい。リアルタイムとは、2分の1秒未満、1秒未満、又はそれ以外に視覚的情報のユーザの通常の反応時間未満を意味してもよい。また、LOCT、すなわちOCT光源とサンプルとの間の絶対距離の決定は、レンズ−距離参照データを参照することによって行われてもよい。レンズ−距離参照データは、オートフォーカスイメージャレンズの異なる焦点距離又は位置におけるOCT光源とサンプルとの間の距離に対応するデータを含んでいてもよい。
図4は、OCTを最適化する方法のフローチャートである。ステップ405で、サンプルで反射した非OCT光がオートフォーカスイメージャで受け取られる。サンプルは例えば、患者の眼であってもよい。非OCT光は例えば、環境光又は手術用顕微鏡により生成される光であってもよい。ステップ410で、サンプル上でのオートフォーカスイメージャの焦点が、サンプルで反射した非OCT光を使って最適化される。
ステップ415で、オートフォーカスイメージャにおいて、オートフォーカスイメージャレンズの位置又は焦点距離に関するデータが生成される。生成されたデータは、オートフォーカスイメージャレンズの位置又は焦点距離のあらゆる変化を含んでいてもよく、この変化は、サンプル上でのオートフォーカスイメージャの焦点が、サンプルで反射した非OCT光を使って最適化されたときに生じる。オートフォーカスイメージャレンズは例えば、位置調節可能レンズ(図3で説明される)又は屈折力調節可能レンズ(図2で説明される)であってもよい。生成されるデータは、位置調節可能レンズが実装され、位置調節可能レンズの位置だけが調節された場合、オートフォーカスイメージャレンズの位置だけを含んでいてよい。それに対して、屈折力調節可能レンズが実装された場合、受け取るデータには、屈折力調節可能レンズの焦点距離と位置が含まれるべきである。
ステップ420で、ダイクロイックミラーとサンプルとの間の距離は、オートフォーカスイメージャレンズの位置又は焦点距離に関するデータに基づいて特定されてもよい。ステップ425で、LOCT、すなわちOCT光源とサンプルとの間の絶対距離は、屈折力調節可能レンズを備える可視化システムについては図2で説明されているように、又は位置調節可能レンズを備える可視化システムについては図3で説明されているように特定されてよい。ステップ430で、OCTシステムのサンプルアームの長さは、OCT光源とサンプルとの間の絶対距離に基づいて特定されてよい。
ステップ420、425、及び430の代わりに、ダイクロイックミラーとサンプルとの間の距離の変化が、オートフォーカスメージャレンズの位置又は焦点距離に関するデータを使って特定されてもよく、サンプルアームの長さの変化が、ダイクロイックミラーとサンプルとの間の距離の変化を使って特定されてもよい。この例においても、OCTシステムは依然として、参照アーム又は、サンプルアームの焦点を調節することによって最適化されてよく、それに伴って(1)ダイクロイックミラーとサンプルとの間の距離を特定したり、その特定結果を使用したりしなくてもよく、又は(2)OCT光源とサンプルとの間の絶対距離を特定したり、その特定結果を使用したりしなくてよい。その代わりに、ダイクロイックミラーとサンプルとの間の距離のあらゆる変化が特定され、サンプルアームの長さのあらゆる変化が特定されて、OCTシステムを最適化するために使用される。
ステップ440で、参照アームの長さ、サンプルアームの焦点、又はそれらの両方を調節することによってOCTシステムを最適化するための制御信号が生成されてもよい。参照アームの長さは、例えばOCTシステムの参照ミラーに接続された制御装置を介して調節されてもよい。サンプルアームの焦点は、OCTレンズの、すなわちOCTシステムの位置又はOCTレンズの焦点の何れかを調節することによって調節されてもよい。
ステップ450で、参照アームの長さ、サンプルアームの焦点、又はそれらの両方を調節するための制御信号がOCTシステムに送信されてもよい。このような調節を行うことにより、OCTのパフォーマンスは最適化され、これは、参照アームの長さとサンプルアームの長さとの間に差があればこれが最小化されるからである。このような長さの差はわずかとされ、すべての差異がわかっていることが好ましい。例えば、参照アームの長さとサンプルアームの長さとの間の差は、それが100mm未満であればわずかと考えてもよい。これによって、より分析可能な干渉パターンと、したがって最適化されたOCT画像とが得られる。
方法400は、図2もしくは図3の可視化システム又は、その他の何れの適当なシステムを使用して実装されてもよい。このような方法の好ましいスタート地点及びそれらのステップの順番は、選択される実装形態に依存していてもよい。幾つかの実施形態において、幾つかのステップは、任意選択により除外し、繰り返し、又は一緒にてもよい。幾つかの実施形態において、このような方法の幾つかのステップは、他のステップと並行して実行されてもよい。特定の実施形態において、方法は、部分的に、又は全体的に、コンピュータ可読媒体内に埋め込まれたソフトウェアにおいて実装されてもよい。
本開示の解釈において、コンピュータ可読媒体とは、ある期間にわたりデータ及び/又は命令を保持してもよいあらゆる手段又は手段の集合を含んでいてもよい。コンピュータ可読媒体には、限定ではないが、直接アクセス記憶装置(例えば、ハードディスクドライブ又はフロッピディスク)、順次アクセス記憶装置(例えば、テープディスクドライブ)、コンパクトディスク、CD−ROM、DVD、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、電気的消去可能プログラマブルROM(EEPROM)、及び/又はフラッシュメモリのほか、ワイヤ、光ファイバ、及びその他の電磁及び/又は光キャリア等の通信媒体、及び/又はこれらのあらゆる組合せが含まれていてもよい。
上記の主旨は限定ではなく例示であると考えるものとし、付属の特許請求の範囲は本開示の主旨と範囲に含まれるすべての変更、改良、及びその他の実施形態をカバーすることが意図されている。それゆえ、法的に可能なかぎり、本開示の範囲は以下の特許請求の範囲のできるだけ広い解釈及びその均等物によって特定され、上記の詳細な説明により制限又は限定されないものとする。

Claims (16)

  1. 可視化システムにおいて、
    OCTシステムであって、
    OCT光源ビームを生成するように動作可能であるOCT光源と、
    前記OCT光源ビームを、サンプルアームに沿って、それがサンプルで反射し、反射サンプルビームを形成するまで進むサンプルビームと、参照アームに沿って、それが前記OCTシステム内の参照ミラーで反射し、反射参照ビームを形成するまで進む参照ビームに分割するように動作可能であり、前記反射サンプルビームと前記反射参照ビームを結合して反射OCTビームを形成するように動作可能であるOCTビームスプリッタと、
    前記反射OCTビームを受け取るように動作可能であり、前記反射OCTビームの干渉パターンを検出するように動作可能であるOCT検出器と、
    を備えるOCTシステムと、
    手術用顕微鏡と、
    非OCT光を実質的に通過させるように動作可能であり、前記サンプルビームを反射させるように動作可能であるダイクロイックミラーと、
    非OCT光を前記手術用顕微鏡の両方へと案内するように動作可能である可視化ビームスプリッタと、
    オートフォーカスイメージャであって、
    前記サンプルで反射した、前記ダイクロイックミラーを通過し、前記可視化ビームスプリッタにより前記オートフォーカスイメージャへと案内された非OCT光を受け取り、
    前記サンプルで反射した前記非OCT光を使って、前記オートフォーカスイメージャレンズを調節することによって前記サンプル上での前記オートフォーカスイメージャの焦点を最適化し、
    前記オートフォーカスイメージャレンズの位置又は焦点距離に関するデータを生成する
    ように動作可能であるオートフォーカスイメージャと、
    プロセッサであって、
    前記ダイクロイックミラーと前記サンプルとの間の距離を、前記オートフォーカスイメージャレンズの前記位置又は前記焦点距離に関する前記データを使って特定し、
    前記OCT光源と前記サンプルとの間の絶対距離を、前記ダイクロイックミラーと前記サンプルとの間の前記距離を使って特定し、
    前記サンプルアームの長さを、前記OCT光源と前記サンプルとの間の前記絶対距離を使って特定し、
    前記参照アームの前記長さ又は前記サンプルアームの前記焦点を調節することによって前記OCTシステムを最適化するように動作可能な制御信号を生成し、
    前記制御信号を前記OCTシステムに送信する
    ように動作可能であるプロセッサと、
    を含む可視化システム。
  2. 前記オートフォーカスイメージャレンズは屈折力調節可能レンズであり、前記屈折力調節可能レンズの焦点距離が調節される、請求項1に記載の可視化システム。
  3. 前記オートフォーカスイメージャレンズは位置調節可能レンズであり、前記位置調節可能レンズの位置が調節される、請求項1に記載の可視化システム。
  4. 前記プロセッサは、
    前記サンプルアームの前記長さを、前記OCT光源と前記サンプルとの間の前記絶対距離を使って計算し、
    前記制御信号をリアルタイムで生成し、送信する
    ように動作可能である、請求項1に記載の可視化システム。
  5. 前記プロセッサは、前記OCT光源と前記サンプルとの間の前記絶対距離を、レンズ−距離参照データを参照することによって特定するように動作可能である、請求項1に記載の可視化システム。
  6. 前記レンズ−距離参照データは、前記オートフォーカスイメージャレンズの異なる焦点距離又は位置における前記OCT光源と前記サンプルとの間の前記距離に対応するデータを含む、請求項5に記載の可視化システム。
  7. 可視化システムにおいて、
    OCTシステムであって、
    OCT光源ビームを生成するように動作可能であるOCT光源と、
    前記OCT光源ビームを、サンプルアームに沿って、それがサンプルで反射し、反射サンプルビームを形成するまで進むサンプルビームと、参照アームに沿って、それが前記OCTシステム内の参照ミラーで反射し、反射参照ビームを形成するまで進む参照ビームに分割するように動作可能であり、前記反射サンプルビームと前記反射参照ビームを結合して反射OCTビームを形成するように動作可能であるOCTビームスプリッタと、
    前記反射OCTビームを受け取るように動作可能であり、前記反射OCTビームの干渉パターンを検出するように動作可能であるOCT検出器と、
    を備えるOCTシステムと、
    手術用顕微鏡と、
    非OCT光を実質的に通過させるように動作可能であり、前記サンプルビームを反射させるように動作可能であるダイクロイックミラーと、
    非OCT光を前記手術用顕微鏡の両方へと案内するように動作可能である可視化ビームスプリッタと、
    オートフォーカスイメージャであって、
    前記サンプルで反射し、前記ダイクロイックミラーを通過し、前記可視化ビームスプリッタにより前記オートフォーカスイメージャへと案内された非OCT光を受け取り、
    前記サンプルで反射した前記非OCT光を使って、オートフォーカスイメージャレンズを調節することによって前記サンプル上での前記オートフォーカスイメージャの前記焦点を最適化し、
    前記オートフォーカスイメージャレンズの位置又は焦点距離に関するデータを生成する
    ように動作可能であるオートフォーカスイメージャと、
    プロセッサであって、
    前記ダイクロイックミラーと前記サンプルとの間の距離の変化を、前記オートフォーカスイメージャレンズの前記位置又は前記焦点距離に関する前記データを使って特定し、
    前記サンプルアームの前記長さの変化を、前記ダイクロイックミラーと前記サンプルとの間の距離の前記変化を使って特定し、
    前記参照アームの前記長さ又は前記サンプルアームの前記焦点を調節することによって前記OCTシステムを最適化するように動作可能な制御信号を生成し、
    前記制御信号を前記OCTシステムに送信する
    ように動作可能であるプロセッサと、
    を含む可視化システム。
  8. 前記オートフォーカスイメージャレンズは屈折力調節可能レンズであり、前記屈折力調節可能レンズの焦点距離は調節される、請求項7に記載の可視化システム。
  9. 前記オートフォーカスイメージャレンズは位置調節可能レンズであり、前記位置調節可能レンズの位置は調節される、請求項7に記載の可視化システム。
  10. 前記プロセッサは、前記サンプルアームの前記長さの変化を、前記ダイクロイックミラーと前記サンプルとの間の前記距離の前記変化を使って特定し、前記制御信号をリアルタイムで生成し、送信するように動作可能である、請求項7に記載の可視化システム。
  11. 光干渉断層撮影(OCT)を最適化する方法において、
    オートフォーカスイメージャにおいて、サンプルで反射した非OCT光であって、ダイクロイックミラーを通過し、可視化ビームスプリッタにより前記オートフォーカスイメージャへと案内された非OCT光を受け取るステップと、
    前記オートフォーカスイメージャにおいて、前記サンプルで反射した前記非OCT光を使って、オートフォーカスイメージャレンズを調節することによって前記サンプル上での前記オートフォーカスイメージャの前記焦点を最適化するステップと、
    前記オートフォーカスイメージャによって、前記オートフォーカスイメージャレンズの位置又は焦点距離に関するデータを生成するステップと、
    前記ダイクロイックミラーと前記サンプルとの間の距離を、前記オートフォーカスイメージャレンズの前記位置又は前記焦点距離に関する前記データを使って特定するステップと、
    OCT光源と前記サンプルとの間の絶対距離を、前記ダイクロイックミラーと前記サンプルとの間の前記距離を使って特定するステップと、
    サンプルアームの長さを、前記OCT光源と前記サンプルとの間の前記絶対距離を使って特定するステップと、
    制御信号であって、前記参照アームの前記長さ又は前記サンプルアームの前記焦点を調節することによって前記OCTシステムを最適化するように動作可能な制御信号を生成するステップと、
    前記制御信号を前記OCTシステムに送信するステップと、
    を含む方法。
  12. 前記オートフォーカスイメージャレンズは屈折力調節可能レンズであり、前記制御装置は前記レンズの前記焦点距離を調節するように動作可能である、請求項11に記載の方法。
  13. 前記オートフォーカスイメージャの前記レンズは位置調節可能レンズであり、前記制御装置は前記レンズの前記位置を調節するように動作可能である、請求項11に記載の方法。
  14. 前記サンプルアームの前記長さを計算するステップと、前記OCT光源と前記サンプルとの間の前記絶対距離を使用するステップと、前記制御信号を生成して、送信するステップは、リアルタイムで行われる、請求項11に記載の方法。
  15. 前記OCT光源と前記サンプルとの間の前記絶対距離を特定するステップは、レンズ距離参照データを参照することによって行われる、請求項11に記載の方法。
  16. 前記レンズ−距離参照データは、前記オートフォーカスイメージャレンズの異なる焦点距離又は位置における前記OCT光源と前記サンプルとの間の前記距離に対応するデータを含む、請求項15に記載の可視化システム。
JP2019527174A 2016-11-30 2017-11-09 最適化された光干渉断層撮影のための可視化システム及び方法 Active JP7010943B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662428318P 2016-11-30 2016-11-30
US62/428,318 2016-11-30
PCT/IB2017/057018 WO2018100453A1 (en) 2016-11-30 2017-11-09 Visualization systems and methods for optimized optical coherence tomography

Publications (2)

Publication Number Publication Date
JP2020500593A true JP2020500593A (ja) 2020-01-16
JP7010943B2 JP7010943B2 (ja) 2022-01-26

Family

ID=60543615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019527174A Active JP7010943B2 (ja) 2016-11-30 2017-11-09 最適化された光干渉断層撮影のための可視化システム及び方法

Country Status (8)

Country Link
US (2) US10408601B2 (ja)
EP (1) EP3547895B1 (ja)
JP (1) JP7010943B2 (ja)
CN (1) CN110022754B (ja)
AU (1) AU2017367254B2 (ja)
CA (1) CA3039471A1 (ja)
ES (1) ES2858398T3 (ja)
WO (1) WO2018100453A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109602396A (zh) * 2018-12-29 2019-04-12 执鼎医疗科技(杭州)有限公司 一种击穿式全光纤参考臂扫频oct系统
WO2021150921A1 (en) 2020-01-22 2021-07-29 Photonic Medical Inc Open view, multi-modal, calibrated digital loupe with depth sensing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120184846A1 (en) * 2011-01-19 2012-07-19 Duke University Imaging and visualization systems, instruments, and methods using optical coherence tomography
JP2013520236A (ja) * 2010-02-18 2013-06-06 アルコン レンゼックス, インコーポレーテッド 眼科手術のための光コヒーレンス・トモグラフィ・システム
JP2015519095A (ja) * 2012-04-05 2015-07-09 バイオプティジェン,インコーポレイテッド 光コヒーレンストモグラフィを使用する手術用顕微鏡、ならびに関連するシステムおよび方法
JP2015211734A (ja) * 2014-05-02 2015-11-26 株式会社トプコン 眼科手術装置および眼科手術用アタッチメント
JP2016016331A (ja) * 2014-07-10 2016-02-01 カール ツアイス メディテック アクチエンゲゼルシャフト 眼科手術システム
JP2016536091A (ja) * 2013-09-19 2016-11-24 ノバルティス アーゲー 眼球バイオメトリのための統合されたoct−屈折計システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4370554B2 (ja) * 2002-06-14 2009-11-25 株式会社ニコン オートフォーカス装置およびオートフォーカス付き顕微鏡
DE102006027836B4 (de) * 2006-06-16 2020-02-20 Carl Zeiss Microscopy Gmbh Mikroskop mit Autofokuseinrichtung
GB0802290D0 (en) * 2008-02-08 2008-03-12 Univ Kent Canterbury Camera adapter based optical imaging apparatus
WO2010009450A1 (en) * 2008-07-18 2010-01-21 Doheny Eye Institute Optical coherence tomography device, method, and system
US8459795B2 (en) 2008-09-16 2013-06-11 Carl Zeiss Meditec Ag Measuring system for ophthalmic surgery
DE102011119899A1 (de) * 2011-11-30 2013-06-06 Carl Zeiss Meditec Ag Mikroskopiesystem zur augenuntersuchung und oct-system
US8842287B2 (en) * 2011-12-22 2014-09-23 General Electric Company System and method for auto-focusing in optical coherence tomography
WO2013159280A1 (zh) * 2012-04-24 2013-10-31 深圳市斯尔顿科技有限公司 眼科光学相干断层成像系统及快速切换实现前后节成像方法
DE102012022058A1 (de) * 2012-11-08 2014-05-08 Carl Zeiss Meditec Ag Flexibles, multimodales Retina-Bildaufnahme- und Messsystem
US9723978B2 (en) * 2014-03-31 2017-08-08 Nidek Co., Ltd. Fundus photography device
CN106255911B (zh) * 2014-04-10 2019-03-26 统雷有限公司 自动聚焦系统
DE202014011051U1 (de) * 2014-11-05 2017-07-26 Carl Zeiss Meditec Ag Vorrichtung für das Untersuchen eines Patientenauges

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520236A (ja) * 2010-02-18 2013-06-06 アルコン レンゼックス, インコーポレーテッド 眼科手術のための光コヒーレンス・トモグラフィ・システム
US20120184846A1 (en) * 2011-01-19 2012-07-19 Duke University Imaging and visualization systems, instruments, and methods using optical coherence tomography
JP2015519095A (ja) * 2012-04-05 2015-07-09 バイオプティジェン,インコーポレイテッド 光コヒーレンストモグラフィを使用する手術用顕微鏡、ならびに関連するシステムおよび方法
JP2016536091A (ja) * 2013-09-19 2016-11-24 ノバルティス アーゲー 眼球バイオメトリのための統合されたoct−屈折計システム
JP2015211734A (ja) * 2014-05-02 2015-11-26 株式会社トプコン 眼科手術装置および眼科手術用アタッチメント
JP2016016331A (ja) * 2014-07-10 2016-02-01 カール ツアイス メディテック アクチエンゲゼルシャフト 眼科手術システム

Also Published As

Publication number Publication date
ES2858398T3 (es) 2021-09-30
US10533838B2 (en) 2020-01-14
CN110022754A (zh) 2019-07-16
AU2017367254B2 (en) 2023-04-13
EP3547895A1 (en) 2019-10-09
CA3039471A1 (en) 2018-06-07
US20180149467A1 (en) 2018-05-31
CN110022754B (zh) 2021-11-05
AU2017367254A1 (en) 2019-05-02
EP3547895B1 (en) 2021-02-17
WO2018100453A1 (en) 2018-06-07
US20190346253A1 (en) 2019-11-14
JP7010943B2 (ja) 2022-01-26
US10408601B2 (en) 2019-09-10

Similar Documents

Publication Publication Date Title
US9408531B2 (en) Ophthalmologic apparatus
US10016124B2 (en) Data processing method and OCT apparatus
US8845098B2 (en) Optical coherence tomography apparatus, method of controlling optical coherence tomography apparatus, storage medium, and ophthalmic system
US9420947B2 (en) Automatic alignment of an imager
US10820793B2 (en) Biological object observation system and non-transitory computer-readable medium
US10321819B2 (en) Ophthalmic imaging apparatus
US11134842B2 (en) Observation system and non-transitory computer-readable medium storing computer-readable instructions
JP7010943B2 (ja) 最適化された光干渉断層撮影のための可視化システム及び方法
US10448827B2 (en) Ophthalmologic imaging apparatus
US20230107680A1 (en) Systems, Methods and Computer Program Products for Optimizing Optics of a Surgical Microscope Having an Integrated Imaging System
JP5921639B2 (ja) 光干渉断層撮影装置、光干渉断層撮影装置の制御方法およびプログラム
US20220117486A1 (en) Ophthalmic apparatus, method for controlling ophthalmic apparatus, and storage medium
JP6754096B2 (ja) 眼科用観察システムおよび眼科用観察制御プログラム
JP6600198B2 (ja) 光干渉計測装置
JP2016083318A (ja) 眼科装置および眼科装置の制御方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220113

R150 Certificate of patent or registration of utility model

Ref document number: 7010943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150