JP2020205384A - Vertical wafer boat and manufacturing method thereof - Google Patents
Vertical wafer boat and manufacturing method thereof Download PDFInfo
- Publication number
- JP2020205384A JP2020205384A JP2019113261A JP2019113261A JP2020205384A JP 2020205384 A JP2020205384 A JP 2020205384A JP 2019113261 A JP2019113261 A JP 2019113261A JP 2019113261 A JP2019113261 A JP 2019113261A JP 2020205384 A JP2020205384 A JP 2020205384A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- region
- surface roughness
- support portion
- vertical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 230000003746 surface roughness Effects 0.000 claims abstract description 48
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 31
- 239000010703 silicon Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims description 8
- 239000002245 particle Substances 0.000 abstract description 18
- 235000012431 wafers Nutrition 0.000 description 180
- 238000010438 heat treatment Methods 0.000 description 22
- 230000002093 peripheral effect Effects 0.000 description 22
- 239000000463 material Substances 0.000 description 8
- 238000005498 polishing Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
本発明は、縦型ウェハボート及びその製造方法に関し、特に半導体デバイスの製造に使用される、シリコンウェハを載置する縦型ウェハボート及びその製造方法に関する。 The present invention relates to a vertical wafer boat and a method for manufacturing the same, and more particularly to a vertical wafer boat on which a silicon wafer is placed and a method for manufacturing the same, which are used for manufacturing a semiconductor device.
半導体製造プロセスでは、シリコンウェハ(以下、ウェハと呼ぶ)に対し酸化や拡散、CVD等の熱処理が行われる。この熱処理時に使用されるウェハボートとしては、垂直に立設した複数(例えば4本)のボート支柱に対し、水平方向にウェハ支持部(ウェハ格納用溝)が延設された縦型ウェハボートが知られている。
そして、このウェハ支持部にウェハを搭載し、所定の熱処理を行うことで、高スループットを実現でき、ウェハの量産化を図っている。
In the semiconductor manufacturing process, a silicon wafer (hereinafter referred to as a wafer) is subjected to heat treatment such as oxidation, diffusion, and CVD. As the wafer boat used during this heat treatment, a vertical wafer boat in which a wafer support portion (wafer storage groove) is extended in the horizontal direction with respect to a plurality of vertically erected (for example, four) boat columns is used. Are known.
Then, by mounting the wafer on the wafer support portion and performing a predetermined heat treatment, high throughput can be realized and mass production of the wafer is aimed at.
しかしながら、ウェハ支持部はウェハと接するため、ウェハ支持部の表面粗さが粗い場合には、熱処理中にウェハとウェハ支持部とが擦れ、ウェハにスリップと呼ばれる表面傷や、パーティクルが発生するという技術的課題があった。 However, since the wafer support portion is in contact with the wafer, if the surface roughness of the wafer support portion is rough, the wafer and the wafer support portion rub against each other during the heat treatment, and surface scratches called slips and particles are generated on the wafer. There was a technical challenge.
そのため従来は、ウェハに接触するウェハ支持部の上面の粗さを均一に低くする(滑らかにする)ことが望ましいとされていた。
例えば、特許文献1(特開2005−203648号公報)に開示された縦型ウェハボートでは、ウェハ支持部上にシリコン製の板状の支持体を配置し、その支持体がウェハ裏面の外周部に接触する構成が用いられている。
尚、特許文献1には、このウェハと接する前記支持体の表面粗さは0.1μm以下に抑えられ、それによりウェハとの間の摩擦が小さくなり、ウェハ接触面への傷つきが防止されると記載されている。
Therefore, conventionally, it has been desirable to uniformly reduce (smooth) the roughness of the upper surface of the wafer support portion in contact with the wafer.
For example, in the vertical wafer boat disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2005-203648), a silicon plate-shaped support is arranged on the wafer support portion, and the support is the outer peripheral portion of the back surface of the wafer. A configuration is used that contacts the.
In
ところで、ウェハを収容した縦型ウェハボートをチャンバに収容し熱処理を施す場合、熱処理初期段階(炉にいれた直後、或いは昇温開始直後など)では、急速に加熱されるため、ウェハの反り、ボートの変形などにより、ウェハ支持部に載置された状態からウェハが移動することがあった。
特に、特許文献1に開示されたウェハボートのようにウェハと接する部位の表面粗さRaが小さい場合には、ウェハとウェハ支持部との間の摩擦力が小さいため、ウェハの移動は抑制し難いものであった。
このウェハの移動は、時として、ウェハ中心が1mm以上も移動することがあり、その結果、ウェハとウェハ支持部との間に、大きな擦れが生じ、ウェハにスリップが生じる、またパーティクルが発生するという技術的課題があった。
By the way, when a vertical wafer boat containing a wafer is housed in a chamber and heat-treated, the wafer is warped because it is rapidly heated in the initial stage of heat treatment (immediately after being put into a furnace or immediately after the start of temperature rise). Due to deformation of the boat, the wafer may move from the state of being placed on the wafer support.
In particular, when the surface roughness Ra of the portion in contact with the wafer is small as in the wafer boat disclosed in
In this movement of the wafer, the center of the wafer sometimes moves by 1 mm or more, and as a result, a large amount of rubbing occurs between the wafer and the wafer support portion, the wafer slips, and particles are generated. There was a technical problem.
本発明は、前記したような事情の下になされたものであり、縦型ウェハボートにおいて、シリコンウェハの移動を抑制するとともに、シリコンウェハのスリップ及びパーティクルの発生を抑制できる縦型ウェハボート及びその製造方法を提供することを目的とする。 The present invention has been made under the above-mentioned circumstances, and in a vertical wafer boat, a vertical wafer boat capable of suppressing the movement of a silicon wafer and suppressing slippage of the silicon wafer and generation of particles, and a vertical wafer boat thereof. It is an object of the present invention to provide a manufacturing method.
前記課題を解決するためになされた、本発明に係る縦型ウェハボートは、天板と、前記天板に一端が固定され、他端が底板に固定された複数の支柱と、前記支柱の側面から水平方向に突出するウェハ支持部とを有する縦型ウェハボートであって、シリコンウェハが載置される前記ウェハ支持部の上面が、非加熱処理状態のシリコンウェハが接触する第1の領域と、加熱処理状態のシリコンウェハが接触する第2の領域と、を備え、前記第1の領域の表面粗さが、前記第2の領域の表面粗さよりも大きく形成されていることを特徴としている。 The vertical wafer boat according to the present invention, which has been made to solve the above problems, has a top plate, a plurality of columns having one end fixed to the top plate and the other end fixed to the bottom plate, and side surfaces of the columns. A vertical wafer boat having a wafer support portion that projects horizontally from the wafer, and the upper surface of the wafer support portion on which the silicon wafer is placed is a first region in contact with the silicon wafer in the non-heat-treated state. The silicon wafer in the heat-treated state is provided with a second region in contact with the silicon wafer, and the surface roughness of the first region is formed to be larger than the surface roughness of the second region. ..
尚、シリコンウェハが載置される前記ウェハ支持部の上面において、前記第2の領域は、前記ウェハ支持部の上面先端から該ウェハ支持部の基端に向かって1〜3mmまでの領域であることが望ましい。
また、シリコンウェハが載置される前記ウェハ支持部の上面において、前記第1の領域の表面粗さRaは小さくても1.5μmであり、前記第2の領域の表面粗さRaは大きくても0.4μmであることが望ましい。
更に、前記ウェハ支持部の上面は、支柱側から先端に向かって下方向に傾斜するテーパ面に形成されていても良い。
On the upper surface of the wafer support portion on which the silicon wafer is placed, the second region is a region of 1 to 3 mm from the tip of the upper surface of the wafer support portion toward the base end of the wafer support portion. Is desirable.
Further, on the upper surface of the wafer support portion on which the silicon wafer is placed, the surface roughness Ra of the first region is at least 1.5 μm, and the surface roughness Ra of the second region is large. Is also preferably 0.4 μm.
Further, the upper surface of the wafer support portion may be formed as a tapered surface that inclines downward from the support column side toward the tip end.
本発明によれば、ウェハボートの各ウェハ支持部において、その上面先端から所定範囲の第2の領域が、表面粗さが小さい状態になされ、そのほかの領域である第1の領域は、第2の領域の表面粗さよりも表面粗さが大きい状態となされる。
そのため、非加熱処理状態においては、ウェハ外周部が前記表面粗さの大きい第1の領域に当接して、ウェハの移動が抑制される。
そして、加熱処理状態においては、ウェハが反ってウェハ最外周縁部が浮き、前記表面粗さの大きい領域から離れる。このとき、ウェハ外周部は平滑化された第2の領域により支持されることになり、スリップ及びパーティクルの発生を防止することができる。
尚、非加熱処理状態とは、ウェハ載置後の状態から、加熱されてもウェハが未だ反らないウェハ加熱初期段階を含む状態をいう。また加熱処理状態とは、熱によりウェハが反って、ウェハ最外周縁部が浮き上がる、ウェハの加熱状態をいう。
According to the present invention, in each wafer support portion of the wafer boat, the second region within a predetermined range from the tip of the upper surface thereof is set to have a small surface roughness, and the other region, the first region, is the second region. The surface roughness is larger than the surface roughness of the region of.
Therefore, in the non-heat treatment state, the outer peripheral portion of the wafer comes into contact with the first region having a large surface roughness, and the movement of the wafer is suppressed.
Then, in the heat-treated state, the wafer warps and the outermost peripheral edge of the wafer floats, leaving the region having a large surface roughness. At this time, the outer peripheral portion of the wafer is supported by the smoothed second region, and slip and the generation of particles can be prevented.
The non-heat treatment state refers to a state including the initial stage of wafer heating in which the wafer does not warp even when heated from the state after the wafer is placed. The heat-treated state refers to a heated state of the wafer in which the wafer is warped by heat and the outermost peripheral edge of the wafer is lifted.
また、前記課題を解決するためになされた、本発明に係る縦型ウェハボートの製造方法は、上記縦型ウェハボートの製造方法であって、前記支柱に前記ウェハ支持部を形成する工程と、前記第2の領域の表面粗さを、前記第1の領域の表面粗さよりも小さく形成する工程と、を備えることを特徴としている。
前記第2の領域の表面粗さを、前記第1の領域の表面粗さよりも小さく形成する工程は、例えば、第2の領域を研磨等の機械的処理により、第1の領域の表面粗さより小さくすることができる。
尚、第1の領域は、素地の表面粗さであっても良いが、好ましくは、第2の領域と同様に、研磨等の機械的処理を行い、所定の表面粗さにするのが望ましい。
Further, the method for manufacturing a vertical wafer boat according to the present invention, which has been made to solve the above problems, is the above-mentioned method for manufacturing a vertical wafer boat, and includes a step of forming the wafer support portion on the support column and It is characterized by including a step of forming the surface roughness of the second region to be smaller than the surface roughness of the first region.
The step of forming the surface roughness of the second region to be smaller than the surface roughness of the first region is, for example, by mechanically treating the second region by polishing or the like to obtain the surface roughness of the first region. It can be made smaller.
The first region may have the surface roughness of the base material, but it is preferable that the first region has a predetermined surface roughness by performing a mechanical treatment such as polishing as in the second region. ..
本発明によれば、ウェハ支持部を備えた縦型ウェハボートにおいて、シリコンウェハの移動を抑制するとともに、シリコンウェハのスリップ及びパーティクルの発生を抑制できる縦型ウェハボート及びその製造方法を得ることができる。 According to the present invention, in a vertical wafer boat provided with a wafer support portion, it is possible to obtain a vertical wafer boat and a method for manufacturing the same, which can suppress the movement of a silicon wafer and suppress the slip of the silicon wafer and the generation of particles. it can.
以下、本発明に係る縦型ウェハボート及びその製造方法の実施形態について図面に基づき説明する。図1は、本実施形態に係る縦型ウェハボートの正面図であり、図2は、図1に示した縦型ウェハボートが有するウェハ支持部を拡大して示す斜視図である。また、図3は、図1の縦型ウェハボートが支持するウェハの外周部領域を示すシリコンウェハの平面図である。 Hereinafter, embodiments of a vertical wafer boat and a method for manufacturing the same according to the present invention will be described with reference to the drawings. FIG. 1 is a front view of the vertical wafer boat according to the present embodiment, and FIG. 2 is an enlarged perspective view showing a wafer support portion included in the vertical wafer boat shown in FIG. Further, FIG. 3 is a plan view of a silicon wafer showing an outer peripheral region of the wafer supported by the vertical wafer boat of FIG. 1.
図1に示すように、縦型ウェハボート1は、ウェハ挿入方向の始端側に配された2本の支持部材2と、ウェハ挿入方向の終端側(奥側)に配された1本の支持部材2とを具備している。前記各支持部材2の下端部は、円板形状の底板4に立設(固定)され、さらに各支持部材2の上端部は、円板状の天板3によって支持(固定)されている。
As shown in FIG. 1, the
図1、図2に示すように前記各支持部材2には、それぞれ多数のシリコンウェハWを支持するために複数の板状のウェハ支持部2aが形成されている。各支持部材2におけるウェハ支持部2aは、厚さL1=2〜3mm、長さ(奥行き)L2=10〜20mm、幅L3=15〜20mmであり、縦方向に例えば8mmピッチで50〜150個形成されている。
As shown in FIGS. 1 and 2, each of the
図3に示すように、このウェハ支持部材2aによるシリコンウェハWの保持可能領域W1(当接可能領域)は、いわゆるウェハ周縁部であるが、その径方向の幅d2は、例えば、ウェハWの直径d1とすると、(d1−d1×0.95)÷2の長さ寸法になされている。
言い換えると、ウェハWの一端から径方向に、0.025d1の幅をもって、ウェハ支持部材2aに接している。
As shown in FIG. 3, the holdable region W1 (contactable region) of the silicon wafer W by the
In other words, it is in contact with the
本実施の形態において各ウェハ支持部2aの上面は、その表面粗さRaが先端領域(第2の領域)2a2と、その他の領域(第1の領域)2a1とで異なるように形成されている。
具体的には、図2に示すようにウェハ支持部2aの先端から該ウェハ支持部2aの基端に向かった距離L4=1mm〜3mmまでの先端領域(第2の領域)2a2は、研磨加工により平滑化され、その表面粗さRaが0.4μm以下とされている。
In the present embodiment, the upper surface of each
Specifically, as shown in FIG. 2, the tip region (second region) 2a2 from the tip of the
一方、その他の領域(第1の領域)2a1は、平滑化処理はされず、その表面粗さRaは1.5μm以上と粗い状態となされる。
尚、その他の領域(第1の領域)2a1は、素地のまま、あるいは研磨加工等で1.5μm以上の表面粗さとしても良い。
On the other hand, the other region (first region) 2a1 is not smoothed, and its surface roughness Ra is as rough as 1.5 μm or more.
The other region (first region) 2a1 may have a surface roughness of 1.5 μm or more as it is or by polishing or the like.
このようにウェハ支持部2aの上面を2つの領域に分けるのは、ウェハの搭載後から加熱処理の初期段階(非加熱状態)では、図4(a)に示すようにウェハ外周部がウェハ支持部2aの表面粗さRaの大きい領域(第1の領域)2a1に接触し、ウェハWと第1の領域2a1との間の摩擦力が大きく、ウェハWの移動が抑制される。
また、加熱状態において、図4(b)のようにウェハWが反った場合、ウェハ外周部は最外周縁部が浮いて、表面粗さRaの大きい領域(第1の領域)2a1から離れ、表面粗さRaの小さい領域(第2の領域)2a2に接触する。
即ち、ウェハWと第2の領域2a2との間の摩擦力は小さいため、ウェハWの擦れが抑制され、ウェハ外周縁部のスリップやパーティクルの発生が抑制される。
The reason why the upper surface of the
Further, in the heated state, when the wafer W is warped as shown in FIG. 4B, the outermost peripheral edge of the wafer floats and is separated from the region (first region) 2a1 having a large surface roughness Ra. It contacts a region (second region) 2a2 having a small surface roughness Ra.
That is, since the frictional force between the wafer W and the second region 2a2 is small, the rubbing of the wafer W is suppressed, and the slip of the outer peripheral edge of the wafer and the generation of particles are suppressed.
また、この縦型ウェハボート1は、SiC質基材にSiC膜が被覆されているものが好ましい。前記SiC質基材としては、反応焼結SiCすなわちカーボン成分を含むSiC焼成体にSiを含浸し、前記カーボン成分とSiの一部とが反応し、SiC化されたSi−SiCであることが好ましい。
あるいはSiCの成形体を高温で熱処理した再結晶質SiC、焼結助剤を添加し焼結した自焼結SiC等でもよい。また、前記SiC膜としては、高純度で結晶質のSiC膜を形成することのできるCVDによるSiC膜が好ましい。
Further, the
Alternatively, recrystallized SiC obtained by heat-treating a molded body of SiC at a high temperature, self-sintered SiC obtained by adding a sintering aid and sintering, or the like may be used. Further, as the SiC film, a CVD SiC film capable of forming a high-purity crystalline SiC film is preferable.
このような縦型ウェハボート1は次のようにして製造することができる。
まず、SiC質基材を支柱2、天板3、底板4の所定の形状に機械加工して製作する。その後、支柱2、天板3、底板4を組み立て、表面にSiC被覆膜をCVD法により形成する。
Such a
First, the SiC material base material is machined into a predetermined shape of the
そして、まず、その他の領域2a1(第1の領域)に対して、粗く削る粗研磨処理により、その表面粗さRaを1.5μm以上とする。
尚、その他の領域(第1の領域)2a1の素地の表面粗さRaが1.5μm以上である場合には、研磨処理を行わなくても良い。
その後、ウェハ支持部2aの上面先端から該ウェハ支持部2aの基端に向かって1mm〜3mmまでの先端領域(第2の領域)2a2に対し研磨加工し、表面粗さRaを0.4μm以下として平滑化する。
Then, first, the surface roughness Ra of the other region 2a1 (first region) is set to 1.5 μm or more by rough polishing treatment for rough cutting.
When the surface roughness Ra of the base material of the other region (first region) 2a1 is 1.5 μm or more, the polishing treatment may not be performed.
Then, the tip region (second region) 2a2 from 1 mm to 3 mm from the upper surface tip of the
そして、全てのウェハ支持部2aの上面が、上記のように先端領域(第2の領域)2a2とその他の領域(第1の領域)とで表面粗さRaが異なるように形成されると、本発明の縦型ウェハボート1が得られる。
Then, when the upper surfaces of all the
以上のように本発明に係る実施の形態によれば、縦型ウェハボート1の各ウェハ支持部2aは、その上面の先端領域(第2の領域)2a2の表面粗さRaが0.4μm以下に平滑化され、その他の領域(第1の領域)2a1は表面粗さRaが1.5μm以上の粗い状態となされる。
そのため、縦型ウェハボート1にウェハWを載置後の熱処理初期段階(非加熱状態)においては、ウェハ外周部が前記表面粗さの大きい領域(第1の領域)2a1に当接し、ウェハWの移動が抑制され、熱処理状態(加熱状態)においては、ウェハWが反ってウェハ最外周縁部が浮き、前記表面粗さの大きい領域(第1の領域)2a1から離れる。そして、ウェハ外周部は、平滑化された先端領域(第2の領域)2a2に当接して支持されることになり、スリップ及びパーティクルの発生が防止される。
As described above, according to the embodiment of the present invention, each
Therefore, in the initial stage of heat treatment (non-heated state) after the wafer W is placed on the
尚、前記実施の形態においては、図4に示したように、ウェハ支持部2aは、その厚さ寸法が略均一な形状であるものとしたが、本発明にあっては、その形態に限定されるものではない。
例えば、図5(a)、(b)に示すように、ウェハ支持部2aの上面を、先端に向かって下方向に傾斜するテーパ面としてもよい。
In the above-described embodiment, as shown in FIG. 4, the
For example, as shown in FIGS. 5A and 5B, the upper surface of the
その場合、例えば図5(a)に示すように、熱処理の初期段階(非加熱状態)においては、ウェハ外周部が表面粗さRaの大きい領域(第1の領域)2a1に当接する上に、三方からのウェハ支持部2aのテーパ面で、ウェハ外周部を(すり鉢状に)保持するため、ウェハの移動がより抑制される。
In that case, for example, as shown in FIG. 5A, in the initial stage of the heat treatment (non-heated state), the outer peripheral portion of the wafer abuts on the region (first region) 2a1 having a large surface roughness Ra, and Since the outer peripheral portion of the wafer is held (in a mortar shape) by the tapered surface of the
また、熱処理中にウェハが反ると、図5(b)に示すようにウェハ最外周縁部は浮いて表面粗さRaの大きい領域(第1の領域)2a1から離れ、ウェハ支持部2aにおける表面粗さRaの小さの先端領域(第2の領域)2a2によりウェハ外周部が支持される。
これにより熱処理中におけるスリップ及びパーティクルの発生を抑制することができる。
Further, when the wafer is warped during the heat treatment, as shown in FIG. 5B, the outermost peripheral edge of the wafer floats and separates from the region (first region) 2a1 having a large surface roughness Ra, and the
This makes it possible to suppress the generation of slips and particles during the heat treatment.
本発明に係る縦型ウェハボートについて、実施例に基づきさらに説明する。本実施例では、前記実施の形態に示した縦型ウェハボートを製造し、得られた縦型ウェハボートを用いてウェハの熱処理を行うことによりその性能を検証する実験を行った。 The vertical wafer boat according to the present invention will be further described based on examples. In this example, an experiment was conducted in which the vertical wafer boat shown in the above embodiment was manufactured and its performance was verified by heat-treating the wafer using the obtained vertical wafer boat.
本実験では、ウェハ支持部における先端領域(第2の領域)とそれ以外の領域(第1の領域)の境界位置、及びそれぞれの領域の表面粗さRaを条件として、ウェハ移動距離、熱処理後のウェハへのパーティクル付着量について検証した。 In this experiment, the wafer moving distance and the heat treatment are performed on the condition that the boundary position between the tip region (second region) and the other region (first region) in the wafer support portion and the surface roughness Ra of each region are satisfied. The amount of particles adhering to the wafer was verified.
1回の熱処理に用いる縦型ボートには、直径300mmのシリコンウェハを50枚収容し、炉内において800℃で1時間加熱する熱処理を行った。
そして、ボート上部、中部、下部に設置された観察用ウェハを、熱処理後にシリコンウェハ外周とウェハ支持部の奥側との距離の変化を測定し、ウェハ平均移動量を求めた。
また、ウェハ表面に付着したパーティクルの個数(φ300mmシリコンウェハ表面に付着した0.2μm以上のパーティクル個数)を測定し、パーティクル付着量を求めた。
更に、シリコンウェハ裏面のスリップの発生状態を観察した。
The vertical boat used for one heat treatment contained 50 silicon wafers having a diameter of 300 mm and was heated in a furnace at 800 ° C. for 1 hour.
Then, after the heat treatment of the observation wafers installed at the upper part, the middle part, and the lower part of the boat, the change in the distance between the outer periphery of the silicon wafer and the inner side of the wafer support portion was measured, and the average wafer moving amount was obtained.
Further, the number of particles adhering to the wafer surface (the number of particles of 0.2 μm or more adhering to the surface of a φ300 mm silicon wafer) was measured, and the amount of particles adhering was determined.
Furthermore, the state of slip occurrence on the back surface of the silicon wafer was observed.
本実験の条件及び実験結果を表1に示す。
尚、表1に示す実験結果としてのウェハ平均移動量は、ウェハ中心の移動量が0.1mm以下の場合を○、0.1mm超1mm以下を△、1mm超を×とした。
また、スリップが発生しなかった場合を○、スリップが発生した場合を×とした。
また、ウェハへのパーティクル付着量は、0.2μm以上のパーティクルの付着が認められない場合には○、0.2μm以上のパーティクルの数が20個以下の場合には△、0.2μm以上のパーティクルの数が20個を超える場合には×とした。
Table 1 shows the conditions and results of this experiment.
The average wafer moving amount as an experimental result shown in Table 1 was defined as ◯ when the moving amount at the center of the wafer was 0.1 mm or less, Δ when it was more than 0.1 mm and 1 mm or less, and × when it was more than 1 mm.
In addition, the case where slip did not occur was marked with ◯, and the case where slip occurred was marked with x.
The amount of particles adhering to the wafer is ○ when no particles of 0.2 μm or more are observed, Δ when the number of particles of 0.2 μm or more is 20 or less, and 0.2 μm or more. When the number of particles exceeds 20, it is marked as x.
表1に示すようにウェハ支持部上面の先端部領域(第2の領域)を先端から1.0〜3.0mmまでの範囲とし、その先端領域(第2の領域)の表面粗さRaを0.4μm以下、該先端領域以外(第1の領域)の表面粗さRaを1.5μm以上とすることにより熱処理初期段階におけるウェハの移動を抑制し、熱処理中におけるスリップ及びパーティクルの発生を抑制できることを確認した。 As shown in Table 1, the tip region (second region) of the upper surface of the wafer support portion is set to a range of 1.0 to 3.0 mm from the tip, and the surface roughness Ra of the tip region (second region) is set. By setting the surface roughness Ra of 0.4 μm or less and other than the tip region (first region) to 1.5 μm or more, the movement of the wafer in the initial stage of heat treatment is suppressed, and slip and particle generation during heat treatment are suppressed. I confirmed that I could do it.
1 ウェハボート
2 支持部材
2a ウェハ支持部
2a1 他の領域(第1の領域)
2a2 先端領域(第2の領域)
3 天板
4 底板
W シリコンウェハ
1
2a2 Tip area (second area)
3
Claims (5)
シリコンウェハが載置される前記ウェハ支持部の上面が、非加熱処理状態のシリコンウェハが接触する第1の領域と、加熱処理状態のシリコンウェハが接触する第2の領域と、
を備え、
前記第1の領域の表面粗さが、前記第2の領域の表面粗さよりも大きく形成されていることを特徴とする縦型ウェハボート。 A vertical wafer boat having a top plate, a plurality of columns fixed to the top plate at one end and fixed to the bottom plate at the other end, and a wafer support portion that projects horizontally from the side surface of the columns.
The upper surface of the wafer support portion on which the silicon wafer is placed has a first region in which the silicon wafer in the non-heat-treated state contacts and a second region in which the silicon wafer in the heat-treated state contacts.
With
A vertical wafer boat characterized in that the surface roughness of the first region is formed to be larger than the surface roughness of the second region.
前記第2の領域は、前記ウェハ支持部の上面先端から該ウェハ支持部の基端に向かって1〜3mmまでの領域であることを特徴とする請求項1に記載された縦型ウェハボート。 On the upper surface of the wafer support on which the silicon wafer is placed,
The vertical wafer boat according to claim 1, wherein the second region is a region from the tip of the upper surface of the wafer support portion to 1 to 3 mm toward the base end of the wafer support portion.
前記第1の領域の表面粗さRaは小さくても1.5μmであり、
前記第2の領域の表面粗さRaは大きくても0.4μmであることを特徴とする請求項または請求項2に記載された縦型ウェハボート。 On the upper surface of the wafer support on which the silicon wafer is placed,
The surface roughness Ra of the first region is at least 1.5 μm.
The vertical wafer boat according to claim 2 or 2, wherein the surface roughness Ra of the second region is at most 0.4 μm.
前記支柱に前記ウェハ支持部を形成する工程と、
前記第2の領域の表面粗さを、前記第1の領域の表面粗さよりも小さく形成する工程と、を備えることを特徴とする縦型ウェハボートの製造方法。 The method for manufacturing a vertical wafer boat according to any one of claims 1 to 4.
The step of forming the wafer support portion on the support column and
A method for manufacturing a vertical wafer boat, which comprises a step of forming the surface roughness of the second region to be smaller than the surface roughness of the first region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019113261A JP7269798B2 (en) | 2019-06-19 | 2019-06-19 | Vertical wafer boat and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019113261A JP7269798B2 (en) | 2019-06-19 | 2019-06-19 | Vertical wafer boat and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020205384A true JP2020205384A (en) | 2020-12-24 |
JP7269798B2 JP7269798B2 (en) | 2023-05-09 |
Family
ID=73837525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019113261A Active JP7269798B2 (en) | 2019-06-19 | 2019-06-19 | Vertical wafer boat and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7269798B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115312433A (en) * | 2021-05-06 | 2022-11-08 | 弘塑科技股份有限公司 | Combined wafer boat structure |
KR20230062184A (en) * | 2021-10-29 | 2023-05-09 | 에스케이엔펄스 주식회사 | Wafer boat |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003188243A (en) * | 2001-12-17 | 2003-07-04 | Sumitomo Mitsubishi Silicon Corp | Wafer support |
JP2005005379A (en) * | 2003-06-10 | 2005-01-06 | Shin Etsu Handotai Co Ltd | Method and vertical boat for heat-treating semiconductor wafer |
JP2005311291A (en) * | 2004-03-26 | 2005-11-04 | Toshiba Ceramics Co Ltd | Vertical-type boat |
JP2008108926A (en) * | 2006-10-26 | 2008-05-08 | Bridgestone Corp | Jig for thermally treating wafer |
-
2019
- 2019-06-19 JP JP2019113261A patent/JP7269798B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003188243A (en) * | 2001-12-17 | 2003-07-04 | Sumitomo Mitsubishi Silicon Corp | Wafer support |
JP2005005379A (en) * | 2003-06-10 | 2005-01-06 | Shin Etsu Handotai Co Ltd | Method and vertical boat for heat-treating semiconductor wafer |
JP2005311291A (en) * | 2004-03-26 | 2005-11-04 | Toshiba Ceramics Co Ltd | Vertical-type boat |
JP2008108926A (en) * | 2006-10-26 | 2008-05-08 | Bridgestone Corp | Jig for thermally treating wafer |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115312433A (en) * | 2021-05-06 | 2022-11-08 | 弘塑科技股份有限公司 | Combined wafer boat structure |
KR20230062184A (en) * | 2021-10-29 | 2023-05-09 | 에스케이엔펄스 주식회사 | Wafer boat |
KR102709165B1 (en) * | 2021-10-29 | 2024-09-24 | 솔믹스 주식회사 | Wafer boat |
Also Published As
Publication number | Publication date |
---|---|
JP7269798B2 (en) | 2023-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3586031B2 (en) | Susceptor, heat treatment apparatus and heat treatment method | |
JP6469046B2 (en) | Vertical wafer boat | |
JP2004134761A (en) | Susceptor plate for high-temperature heat treatment | |
JP2000021796A (en) | Semiconductor wafer boat | |
KR20040010727A (en) | Apparatus and method of making a slip free wafer boat | |
JP2009543352A (en) | Wafer platform | |
JP7269798B2 (en) | Vertical wafer boat and manufacturing method thereof | |
JP4637475B2 (en) | Semiconductor substrate transfer system using removable susceptor, and semiconductor substrate transfer method | |
JP3900154B2 (en) | Semiconductor wafer manufacturing method and susceptor used therefor | |
JP2012510144A (en) | Supports for semiconductor wafers in high temperature environments. | |
JP5130808B2 (en) | Wafer heat treatment jig and vertical heat treatment boat equipped with the jig | |
TW201907050A (en) | Carrier disk, method for manufacturing epitaxial substrate, and epitaxial substrate | |
JP3831337B2 (en) | Slip-resistant horizontal wafer boat container | |
WO2005124848A1 (en) | Heat treatment jig and semiconductor wafer heat treatment method | |
JP2024082345A (en) | Vertical Wafer Boat | |
JP5087375B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
JP2023096291A (en) | Vertical wafer boat and silicon wafer heat treatment method using the same | |
JP2023089827A (en) | Vertical wafer boat and silicon wafer heat treatment method using the same | |
JP4589545B2 (en) | Wafer support member, wafer holder and wafer holding device | |
JP4007598B2 (en) | Susceptor and manufacturing method thereof | |
JP7150567B2 (en) | Wafer boat manufacturing method | |
JP4029611B2 (en) | Wafer support | |
JP4105640B2 (en) | Heat treatment method | |
JP4575570B2 (en) | Wafer holder, wafer holding apparatus and heat treatment furnace | |
JP2000124143A (en) | Heat treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230424 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7269798 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |