JP2020199525A - Laser spot welding method - Google Patents
Laser spot welding method Download PDFInfo
- Publication number
- JP2020199525A JP2020199525A JP2019108061A JP2019108061A JP2020199525A JP 2020199525 A JP2020199525 A JP 2020199525A JP 2019108061 A JP2019108061 A JP 2019108061A JP 2019108061 A JP2019108061 A JP 2019108061A JP 2020199525 A JP2020199525 A JP 2020199525A
- Authority
- JP
- Japan
- Prior art keywords
- irradiation
- laser
- spot welding
- laser spot
- defocus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 30
- 230000003287 optical effect Effects 0.000 claims abstract description 13
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- 230000007704 transition Effects 0.000 claims 2
- 230000035515 penetration Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0626—Energy control of the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
- B23K26/22—Spot welding
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
本発明はレーザスポット溶接方法に関する。 The present invention relates to a laser spot welding method.
ワークにレーザを照射しその光エネルギーによって照射部位の材料を加熱溶融するレーザ溶接は、非接触で高速溶接が行える利点があり、アーク溶接や抵抗スポット溶接からの代替が進んでいる。抵抗スポット溶接を代替するレーザスポット溶接としては、例えば特許文献1に記載されるように、スポット領域内でレーザビームを円形状や渦巻状に走査することで、ブローホールなどの欠陥を除去して接合強度を得ている。 Laser welding, in which the work is irradiated with a laser and the material of the irradiated portion is heated and melted by the light energy, has the advantage of being able to perform high-speed welding without contact, and is being replaced by arc welding and resistance spot welding. As laser spot welding that replaces resistance spot welding, for example, as described in Patent Document 1, a laser beam is scanned in a circular shape or a spiral shape in a spot region to remove defects such as blow holes. Welding strength is obtained.
しかし、このような溶接方法は、スポット領域内でビーム走査を行うための俊敏なスキャナ操作が必要であり、制御動作が煩雑であるうえ、ビーム走査の分だけタクトタイムが長くなる問題があった。 However, such a welding method requires agile scanner operation for performing beam scanning in the spot region, the control operation is complicated, and there is a problem that the tact time becomes longer by the amount of beam scanning. ..
本発明は、このような実状に鑑みてなされたものであって、その目的は、簡潔な動作で安定的に接合強度が得られ、制御の複雑化やタクトタイムの増加を回避できるレーザスポット溶接方法を提供することにある。 The present invention has been made in view of such an actual situation, and an object of the present invention is laser spot welding, which can stably obtain a joint strength with a simple operation and avoid complicated control and an increase in tact time. To provide a method.
上記課題を解決するために、本発明に係るレーザスポット溶接方法は、
複数重ねた金属板の所定領域にレーザ光軸を設定した状態で、
所定時間に亘りレーザをデフォーカス照射するステップ、および、
前記所定時間の途中で焦点制御してレーザを単発的にフォーカス照射するステップ、
を実行することを含む。
In order to solve the above problems, the laser spot welding method according to the present invention is used.
With the laser optical axis set in a predetermined area of multiple stacked metal plates,
A step of defocusing the laser for a predetermined time, and
A step of controlling the focus in the middle of the predetermined time to irradiate the laser with a single focus.
Includes executing.
本発明に係るレーザスポット溶接方法は、上記のように、所定時間に亘りレーザをデフォーカス照射するステップの途中で焦点制御してレーザを単発的にフォーカス照射するステップを実行するので、先ず、デフォーカス照射領域が予熱されるとともに、中心部から溶融が開始され、その状態で、単発的にフォーカス照射されることで、スパッタを抑制しつつ溶け込み深さが確保されるとともに、キーホールを通じて金属蒸気が排出され、次いで、更なるデフォーカス照射により、キーホールが緩和され、溶融部が熱伝導により予熱領域全体に拡大されることで、キーホールの急激な崩壊による気泡残留が抑制され、レーザ光軸の走査を伴わない簡潔な動作でありなら、所望の接合強度が得られ、制御の複雑化やタクトタイムの増加を回避できる利点がある。 In the laser spot welding method according to the present invention, as described above, the step of focusing and irradiating the laser in a single shot is executed in the middle of the step of defocusing the laser for a predetermined time. As the focus irradiation area is preheated, melting starts from the center, and in that state, the focus irradiation is performed sporadically to secure the penetration depth while suppressing spatter, and metal vapor through the keyhole. Is discharged, and then the keyhole is relaxed by further defocus irradiation, and the molten part is expanded to the entire preheated region by heat conduction, so that the bubble residue due to the rapid collapse of the keyhole is suppressed and the laser beam is emitted. A simple operation that does not involve scanning the axis has the advantage that the desired junction strength can be obtained, and control complexity and an increase in tact time can be avoided.
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1および図2は、3枚重ねた金属板11,12,13に対する本発明の第1実施形態に係るレーザスポット溶接を示している。金属板11,12,13は、特に限定されるものではないが、板厚0.6〜2.0mmの薄鋼板を想定している。 1 and 2 show laser spot welding according to the first embodiment of the present invention for three stacked metal plates 11, 12, and 13. The metal plates 11, 12, and 13 are not particularly limited, but are assumed to be thin steel plates having a plate thickness of 0.6 to 2.0 mm.
3枚の金属板11,12,13は、それらの何れか(通常は隙間の下側の金属板12,13)に予め突起部(エンボス、不図示)をプレス加工しておき、突起部を介して重ね合されるか、または、金属板の間に挿入された不図示のスペーサを介して重ね合され、必要に応じてクランプなどの治具で保持されることによる間隔調整された隙間、および/または、プレス加工品のフランジ部などにスプリングバックで生じる間隔調整されていない隙間を有して重ねられている。 For the three metal plates 11, 12 and 13, a protrusion (embossed, not shown) is press-processed in advance on any one of them (usually the metal plate 12 or 13 below the gap) to form the protrusion. Spacing-adjusted clearances, which are superposed via, or superposed via spacers (not shown) inserted between metal plates and held by jigs such as clamps as needed, and / Alternatively, they are stacked on the flange of the pressed product with a gap that is not adjusted by the springback.
レーザスポット溶接の実施に際しては、図1(a)に示すように、最表面に位置した金属板11の上方にレーザ加工ヘッドを位置させ、光軸Lxを固定した状態で、デフォーカス量dx(照射径Dx)にてレーザ照射Laを行う(第1ステップ)。 When performing laser spot welding, as shown in FIG. 1A, the laser processing head is positioned above the metal plate 11 located on the outermost surface, the optical axis Lx is fixed, and the defocus amount dx ( Laser irradiation La is performed with an irradiation diameter Dx) (first step).
このレーザ照射径Dxは、1回の溶接工程中で最大面積(最小パワー密度)もしくはそれに準じた照射領域に対応し、パワー密度が抑えられているため、この段階では3枚の金属板11,12,13を貫通する溶融部は形成されず、最表面の金属板11から下位の金属板12,13への熱伝導によって照射領域全体が予熱Haされるとともに、エネルギー分布が高い金属板11の中心部から溶融Waが開始される。 This laser irradiation diameter Dx corresponds to the maximum area (minimum power density) or an irradiation region equivalent thereto in one welding process, and the power density is suppressed. Therefore, at this stage, three metal plates 11, A molten portion penetrating 12 and 13 is not formed, and the entire irradiation region is preheated by heat conduction from the outermost metal plate 11 to the lower metal plates 12 and 13, and the metal plate 11 having a high energy distribution has a high energy distribution. The molten Wa is started from the central part.
次いで、図1(b)に示すように、光軸Lxを固定したまま、レーザ溶接機の光学系にて焦点制御を行い、実質的にフォーカス状態(デフォーカス量do、照射径Do)としてレーザ照射Lbを行う(第2ステップ)。 Next, as shown in FIG. 1 (b), the focus is controlled by the optical system of the laser welder while the optical axis Lx is fixed, and the laser is substantially in the focus state (defocus amount do, irradiation diameter Do). Irradiation Lb is performed (second step).
このレーザ照射径Doは、1回の溶接工程中で最小面積(最大パワー密度)の照射領域に対応するが、これに先立つ第1ステップで金属板11,12,13が予熱Haされ、かつ照射領域に溶接部Wbが形成されていることで、急激な昇温が緩和され、スパッタの発生が抑制される。この状態で、溶接部Wbの中央で3枚の金属板11,12,13にキーホールKbが形成され、このキーホールKbを通じて金属蒸気が排出されるとともに、溶接部Wbに最下の金属板13まで達する充分な溶け込み深さが得られる。 This laser irradiation diameter Do corresponds to the irradiation region of the minimum area (maximum power density) in one welding process, but the metal plates 11, 12, and 13 are preheated Ha and irradiated in the first step prior to this. Since the welded portion Wb is formed in the region, the rapid temperature rise is alleviated and the generation of spatter is suppressed. In this state, keyholes Kb are formed in the three metal plates 11, 12, and 13 at the center of the welded portion Wb, metal vapor is discharged through the keyholes Kb, and the lowest metal plate is formed in the welded portion Wb. A sufficient penetration depth up to 13 can be obtained.
続いて、図1(d)に示すように、光軸Lxを固定したまま、レーザ溶接機の光学系にて焦点制御を行い、デフォーカス量dx(照射径Dx)にてレーザ照射Laを行い、溶融部Wbを最終的にWdまで拡大してレーザ照射Laを終了する(第3ステップ)。 Subsequently, as shown in FIG. 1 (d), while the optical axis Lx is fixed, the focus is controlled by the optical system of the laser welder, and the laser irradiation La is performed with the defocus amount dx (irradiation diameter Dx). , The molten portion Wb is finally expanded to Wd to end the laser irradiation La (third step).
このように、第2ステップで高パワー密度のレーザ照射LbによりキーホールKbが形成された後、低パワー密度のデフォーカス・レーザ照射Laが実施され、入熱が継続されることで、キーホールKbの急激な崩壊による気泡の残留が抑制される。 In this way, after the keyhole Kb is formed by the high power density laser irradiation Lb in the second step, the low power density defocus laser irradiation La is performed and the heat input is continued, so that the keyhole is formed. Residual bubbles due to rapid decay of Kb are suppressed.
また、図2(b)〜(d)に示すように、中心部から周辺部に向けての熱伝達により、加熱領域Hc内での安定的な溶融Wcが促され、レーザ照射径Dxに対応する最終的な溶接部Wdが得られる。 Further, as shown in FIGS. 2 (b) to 2 (d), the heat transfer from the central portion to the peripheral portion promotes stable molten Wc in the heating region Hc, which corresponds to the laser irradiation diameter Dx. The final welded portion Wd is obtained.
なお、金属板11,12,13に低融点金属の表面処理層が存在する場合に、溶融部とその周辺で発生する表面処理層の金属蒸気は、上記のような中心部から周辺部に向かう熱伝達と、溶融径の拡大に際し、間隙を利用して拡散され排出が促進される。 When the surface-treated layer of the low melting point metal is present on the metal plates 11, 12, and 13, the metal vapor of the surface-treated layer generated in the molten portion and its periphery goes from the central portion to the peripheral portion as described above. During heat transfer and expansion of the melt diameter, the gaps are used to diffuse and promote discharge.
図3は、上述した実施形態のレーザスポット溶接における照射径Dの変化と溶融部の拡大を示しており、図示のように、本発明に係るレーザスポット溶接は、
複数重ねた金属板11,12,13の所定領域にレーザ光軸Lxを固定した状態で、
(i)照射径Dxで時間Taに亘りレーザをデフォーカス照射Laし、照射領域を予熱Haするとともに中央に溶融部Waを形成する第1ステップ、
(ii)焦点制御してレーザを単発的にフォーカス照射Lbし、キーホール型貫通溶接により溶融部Wbの溶け込み深さを確保する第2ステップ、
(iii)照射径Dxで時間Tdまでレーザをデフォーカス照射Laし、熱伝導型溶接により溶融部をWdまで拡大する第3ステップ
を連続して実行することにより、レーザ光軸Lxの走査を伴わない簡潔な動作にて、スパッタやブローホールを抑制しつつ所望の接合強度の溶接部Wdを得るものである。
FIG. 3 shows a change in the irradiation diameter D and an enlargement of the molten portion in the laser spot welding of the above-described embodiment, and as shown in the figure, the laser spot welding according to the present invention
With the laser optical axis Lx fixed in a predetermined region of a plurality of stacked metal plates 11, 12, 13
(I) The first step of defocusing the laser with the irradiation diameter Dx for time Ta to preheat the irradiation region and forming the molten portion Wa in the center.
(Ii) The second step of controlling the focus, irradiating the laser with focus irradiation Lb in a single shot, and securing the penetration depth of the molten portion Wb by keyhole type through welding.
(Iii) Defocus irradiation La of the laser to the time Td with the irradiation diameter Dx, and continuously executing the third step of expanding the molten portion to Wd by thermal conductivity welding, accompanied by scanning of the laser optical axis Lx. It is possible to obtain a welded portion Wd having a desired bonding strength while suppressing spatter and blowholes by a simple operation.
上記第1、第3ステップにおいて、デフォーカス照射Laの照射径Dxは、第2ステップにおけるフォーカス照射Lbの照射径Doの1.5倍以上、好適には2倍以上、より好適には4倍以上になるようにデフォーカスされることが好ましい。フォーカス照射径Doに対するデフォーカス照射径Dxの拡大率が小さい場合、最終的な溶接部Wdの径が不足し、実用的な溶接部が得られない。 In the first and third steps, the irradiation diameter Dx of the defocus irradiation La is 1.5 times or more, preferably 2 times or more, more preferably 4 times the irradiation diameter Do of the focus irradiation Lb in the second step. It is preferable to defocus as described above. When the enlargement ratio of the defocus irradiation diameter Dx with respect to the focus irradiation diameter Do is small, the diameter of the final welded portion Wd is insufficient, and a practical welded portion cannot be obtained.
上記第1ステップにおけるデフォーカス・レーザLaの照射時間Taは、金属板11,12,13の各板厚や合計板厚にも依るが、0.01〜0.1秒、好適には0.02〜0.05秒であることが好ましい。第1ステップにおける照射時間Taが短すぎる場合、予熱や中央溶融部の形成が不充分になり、第2ステップでフォーカス状態のレーザ照射Lbに移行した際にスパッタを生じる虞がある。また、第2ステップにおける単発的フォーカス照射Lbの照射時間は、第1〜第3ステップ合計照射時間Tdの10〜20%であることが好ましい。 The irradiation time Ta of the defocus laser La in the first step depends on the thickness of each of the metal plates 11, 12, and 13, and the total plate thickness, but is 0.01 to 0.1 seconds, preferably 0. It is preferably 02 to 0.05 seconds. If the irradiation time Ta in the first step is too short, the preheating and the formation of the central molten portion become insufficient, and there is a possibility that sputtering may occur when the laser irradiation Lb in the focused state is transferred in the second step. Further, the irradiation time of the single-shot focus irradiation Lb in the second step is preferably 10 to 20% of the total irradiation time Td in the first to third steps.
上記実施形態に係るレーザスポット溶接の効果を検証するために、金属板11,12,13として、最表面側(レーザ照射側)から、板厚t1=0.6mm、t2=1.2mm、t3=0.8mmの鋼板を使用し、レーザ出力6kW、デフォーカス照射径Dx=4.0mm、フォーカス照射径Do=1.0mmとして、Ta=0.02秒、Td=0.4秒間のレーザ照射を行ったところ、スパッタやブローホールのない良好な溶接部Wdが得られた。 In order to verify the effect of laser spot welding according to the above embodiment, the metal plates 11, 12, and 13 have plate thicknesses t1 = 0.6 mm, t2 = 1.2 mm, and t3 from the outermost surface side (laser irradiation side). Using a steel plate of = 0.8 mm, laser output 6 kW, defocus irradiation diameter Dx = 4.0 mm, focus irradiation diameter Do = 1.0 mm, laser irradiation for Ta = 0.02 seconds, Td = 0.4 seconds As a result, a good welded portion Wd without spatter or blow holes was obtained.
なお、上記第1実施形態では、所定時間のデフォーカス照射Laの途中で1回の単発的フォーカス照射Lbを実施する場合を示したが、単発的フォーカス照射Lbを2回実施することもでき、さらに、1回のレーザスポット溶接のベースとなるデフォーカス照射にける照射径の設定により、種々の実施形態が存在する。以下、代表的な実施形態について、図面を参照しながら説明する。 In the first embodiment, the case where one single focus irradiation Lb is performed in the middle of the defocus irradiation La for a predetermined time is shown, but the single focus irradiation Lb can also be performed twice. Further, there are various embodiments depending on the setting of the irradiation diameter in the defocus irradiation which is the base of one laser spot welding. Hereinafter, typical embodiments will be described with reference to the drawings.
図4に示す第2実施形態のレーザスポット溶接では、一定の照射径Dxのデフォーカス照射Laの途中、時刻T1で1回目の単発的フォーカス照射Lbを行った後、時刻T2で2回目の単発的フォーカス照射Lbを行う場合を示している。 In the laser spot welding of the second embodiment shown in FIG. 4, during the defocus irradiation La of a constant irradiation diameter Dx, the first single focus irradiation Lb is performed at time T1, and then the second single shot at time T2. The case where the target focus irradiation Lb is performed is shown.
図5に示す第3実施形態のレーザスポット溶接では、フォーカス状態の照射径Doからレーザ照射Laを開始し、時刻Tcで照射径Dcとなるように、デフォーカス照射径を漸次拡大し、その後、最終的に最大照射径Dxまで照射径を漸次拡大するレーザ照射Lcの途中で1回の単発的フォーカス照射Lbを実施する場合を示している。 In the laser spot welding of the third embodiment shown in FIG. 5, the laser irradiation La is started from the irradiation diameter Do in the focused state, the defocus irradiation diameter is gradually increased so as to reach the irradiation diameter Dc at the time Tc, and then the defocus irradiation diameter is gradually increased. The case where one single focus irradiation Lb is performed in the middle of the laser irradiation Lc in which the irradiation diameter is finally gradually expanded to the maximum irradiation diameter Dx is shown.
図6に示す第4実施形態のレーザスポット溶接では、一定の照射径Dxで時刻T1までデフォーカス照射Laを行い、1回目の単発的フォーカス照射Lbを行った後、照射径をフォーカス状態の照射径Doまで漸次縮小する途中の時刻T2で、2回目の単発的フォーカス照射Lbを行う場合を示している。 In the laser spot welding of the fourth embodiment shown in FIG. 6, defocus irradiation La is performed at a constant irradiation diameter Dx until time T1, and after the first single-shot focus irradiation Lb is performed, the irradiation diameter is irradiated in the focused state. The case where the second single-shot focus irradiation Lb is performed at the time T2 in the middle of gradually reducing to the diameter Do is shown.
図7に示す第5実施形態のレーザスポット溶接では、デフォーカス照射径Dc1からレーザ照射Lc1を開始し、時刻T1で1回目の単発的フォーカス照射Lbを行った後、最初のデフォーカス照射径Dc1よりも大きいデフォーカス照射径Dc2にて時刻T2までレーザ照射Lc2を行い、時刻T2で2回目の単発的フォーカス照射Lbを行った後、デフォーカス照射径Dxでレーザ照射Laを行う場合を示している。 In the laser spot welding of the fifth embodiment shown in FIG. 7, the laser irradiation Lc1 is started from the defocus irradiation diameter Dc1, the first single focus irradiation Lb is performed at time T1, and then the first defocus irradiation diameter Dc1. The case where the laser irradiation Lc2 is performed until the time T2 at the defocus irradiation diameter Dc2 larger than that, the second single focus irradiation Lb is performed at the time T2, and then the laser irradiation La is performed at the defocus irradiation diameter Dx is shown. There is.
図8に示す第6実施形態のレーザスポット溶接では、最大の照射径Dxにてデフォーカス照射Laを開始し、時刻T1で1回目の単発的フォーカス照射Lbを行った後、最初のデフォーカス照射径Dxよりも小さいデフォーカス照射径Dcにて時刻T2までレーザ照射Lcを行い、時刻T2で2回目の単発的フォーカス照射Lbを行った後、再びデフォーカス照射径Dxでレーザ照射Laを行い時刻Tdでレーザ照射Laを終了する場合を示している。 In the laser spot welding of the sixth embodiment shown in FIG. 8, the defocus irradiation La is started at the maximum irradiation diameter Dx, the first single focus irradiation Lb is performed at time T1, and then the first defocus irradiation is performed. Laser irradiation Lc is performed until time T2 at a defocus irradiation diameter Dc smaller than the diameter Dx, a second single focus irradiation Lb is performed at time T2, and then laser irradiation La is performed again at the defocus irradiation diameter Dx. The case where the laser irradiation La is terminated at Td is shown.
図9に示す第7実施形態のレーザスポット溶接では、図5に示した第3実施形態と同様に、フォーカス状態の照射径Doからレーザ照射Laを開始し、デフォーカス照射径Dcまで照射径を漸次拡大し、その後、最終的に最大照射径Dxまで照射径を漸次拡大するレーザ照射Lcの途中、時刻T1で1回目の単発的フォーカス照射Lbを行った後、時刻T2で、フォーカス状態よりやや大きい照射径Do2にて2回目の単発的フォーカス照射Lb2を行う場合を示している。 In the laser spot welding of the seventh embodiment shown in FIG. 9, the laser irradiation La is started from the irradiation diameter Do in the focused state and the irradiation diameter is increased to the defocus irradiation diameter Dc, as in the third embodiment shown in FIG. In the middle of the laser irradiation Lc that gradually expands and then gradually expands the irradiation diameter to the maximum irradiation diameter Dx, after performing the first one-shot focus irradiation Lb at time T1, it is slightly larger than the focus state at time T2. The case where the second single-shot focus irradiation Lb2 is performed with a large irradiation diameter Do2 is shown.
なお、上記実施形態では、レーザ光学系の制御によりデフォーカス量dx〜doを変化させる場合について述べたが、レーザ加工ヘッドの位置を機械的に上下動(直線移動)させることでデフォーカス量を変化させることもできる。 In the above embodiment, the case where the defocus amount dx to do is changed by controlling the laser optical system has been described, but the defocus amount is changed by mechanically moving the position of the laser processing head up and down (linear movement). It can also be changed.
また、上記各実施形態では、2枚ないし3枚の金属板を重ねてレーザスポット溶接する場合を示したが、4枚以上の金属板を重ねてレーザスポット溶接することも可能である。実験では合計板厚4.2mmまで確認しているが、レーザ出力などの条件によりそれ以上の溶接も可能と思われる。 Further, in each of the above embodiments, the case where two or three metal plates are stacked and laser spot welded is shown, but it is also possible to stack four or more metal plates and perform laser spot welding. In the experiment, the total plate thickness was confirmed to be 4.2 mm, but it seems that more welding is possible depending on the conditions such as laser output.
また、上記各実施形態では、最表面の金属板11に対して垂直上方からレーザ照射する場合を示したが、照射角度40度までは実用範囲の加工性が得られる。また、水平面以外の任意の角度で傾斜配置された金属板に対しても溶接可能である。 Further, in each of the above embodiments, the case where the laser irradiation is performed from vertically above the metal plate 11 on the outermost surface is shown, but workability within a practical range can be obtained up to an irradiation angle of 40 degrees. In addition, it is possible to weld to a metal plate that is inclined at an arbitrary angle other than the horizontal plane.
以上、本発明のいくつかの実施の形態について述べたが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想に基づいてさらに各種の変形および変更が可能である。 Although some embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications and modifications can be made based on the technical idea of the present invention.
11,12,13 金属板
dx,do デフォーカス量
La,Lb,Lb1,Lb2,Lc,Lc2,Ld レーザ照射
Lx レーザ光軸
Dx,Do,Do2,Dc,Dc1,Dc2 レーザ照射径
Ha,Hb 予熱部
Kb キーホール
Wa,Wb,Wc 溶融部
Wd 溶接部
11,12,13 Metal plate dx, do Defocus amount La, Lb, Lb1, Lb2, Lc, Lc2, Ld Laser irradiation Lx Laser optical axis Dx, Do, Do2, Dc, Dc1, Dc2 Laser irradiation diameter Ha, Hb Preheating Part Kb Keyhole Wa, Wb, Wc Melted part Wd Welded part
Claims (8)
複数重ねた金属板の所定領域にレーザ光軸を設定した状態で、
所定時間に亘りレーザをデフォーカス照射するステップ、および、
前記所定時間の途中で焦点制御してレーザを単発的にフォーカス照射するステップ、
を実行することを含む、レーザスポット溶接方法。 Laser spot welding method
With the laser optical axis set in a predetermined area of multiple stacked metal plates,
A step of defocusing the laser for a predetermined time, and
A step of controlling the focus in the middle of the predetermined time to irradiate the laser with a single focus.
Laser spot welding methods, including performing.
複数重ねた金属板の所定領域にレーザ光軸を設定した状態で、
第1の照射径で第1の時間に亘りレーザをデフォーカス照射するステップと、
焦点制御してレーザを単発的にフォーカス照射するステップと、
第2の照射径で第2の時間に亘りレーザをデフォーカス照射するステップと、
を連続して実行することを含む、レーザスポット溶接方法。 Laser spot welding method
With the laser optical axis set in a predetermined area of multiple stacked metal plates,
The step of defocusing the laser for the first time with the first irradiation diameter,
The step of controlling the focus and irradiating the laser with a single focus,
A step of defocusing the laser for a second time with a second irradiation diameter,
Laser spot welding methods, including the continuous execution of.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019108061A JP7429848B2 (en) | 2019-06-10 | 2019-06-10 | Laser spot welding method |
DE102020107857.9A DE102020107857A1 (en) | 2019-06-10 | 2020-03-23 | LASER SPOT WELDING PROCESS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019108061A JP7429848B2 (en) | 2019-06-10 | 2019-06-10 | Laser spot welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020199525A true JP2020199525A (en) | 2020-12-17 |
JP7429848B2 JP7429848B2 (en) | 2024-02-09 |
Family
ID=73460149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019108061A Active JP7429848B2 (en) | 2019-06-10 | 2019-06-10 | Laser spot welding method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7429848B2 (en) |
DE (1) | DE102020107857A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7465241B2 (en) | 2021-03-24 | 2024-04-10 | 日立Astemo株式会社 | Laser welding device control device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939491A (en) * | 1982-08-30 | 1984-03-03 | Matsushita Electric Works Ltd | Laser welding method of thin metallic sheet |
JPH09141470A (en) * | 1995-11-20 | 1997-06-03 | Toshiba Corp | Laser welding method for metallic member for electron tube |
JP2017042790A (en) * | 2015-08-26 | 2017-03-02 | トヨタ自動車株式会社 | Laser welding method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006224134A (en) | 2005-02-17 | 2006-08-31 | Nissan Motor Co Ltd | Structure, method, and equipment for joining different kind of metals by high energy beam |
JP5224349B2 (en) | 2008-07-15 | 2013-07-03 | 日新製鋼株式会社 | Laser welding method for thin plate |
JP5527526B2 (en) | 2010-02-24 | 2014-06-18 | マツダ株式会社 | Laser welding method |
JP6314310B2 (en) | 2013-08-05 | 2018-04-25 | パナソニックIpマネジメント株式会社 | Laser welding method and laser welding apparatus |
-
2019
- 2019-06-10 JP JP2019108061A patent/JP7429848B2/en active Active
-
2020
- 2020-03-23 DE DE102020107857.9A patent/DE102020107857A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939491A (en) * | 1982-08-30 | 1984-03-03 | Matsushita Electric Works Ltd | Laser welding method of thin metallic sheet |
JPH09141470A (en) * | 1995-11-20 | 1997-06-03 | Toshiba Corp | Laser welding method for metallic member for electron tube |
JP2017042790A (en) * | 2015-08-26 | 2017-03-02 | トヨタ自動車株式会社 | Laser welding method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7465241B2 (en) | 2021-03-24 | 2024-04-10 | 日立Astemo株式会社 | Laser welding device control device |
Also Published As
Publication number | Publication date |
---|---|
JP7429848B2 (en) | 2024-02-09 |
DE102020107857A1 (en) | 2020-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5527526B2 (en) | Laser welding method | |
JP5531623B2 (en) | Laser lap welding method of galvanized steel sheet | |
US11491577B2 (en) | Method of and system for welding using an energy beam scanned repeatively in two dimensions | |
JP2012170989A (en) | Laser lap welding method | |
JP2013530048A (en) | Laser welding method | |
JP5600837B2 (en) | Narrow groove multi-layer laser welding method | |
JP5954009B2 (en) | Manufacturing method of welded steel pipe | |
JP7429848B2 (en) | Laser spot welding method | |
JP5600838B2 (en) | Laser welding method | |
JP7340153B2 (en) | Laser spot welding method | |
JP5381221B2 (en) | Laser welding apparatus and laser welding method | |
JP5245972B2 (en) | Laser welding method and laser welding apparatus | |
JP7382026B2 (en) | Laser spot welding method | |
CN113967788B (en) | Remote laser welding method for stacked steel workpieces | |
JP7137784B2 (en) | Laser spot welding method | |
JP7180220B2 (en) | Laser spot welding method | |
KR20180013481A (en) | Laser welding method | |
JP2012228716A (en) | Laser welding apparatus and laser welding method | |
JPH07214360A (en) | Laser beam machining | |
JP7482502B2 (en) | Welding equipment and method for plated steel sheets | |
JP2020093285A (en) | Method of joining dissimilar metals | |
JP2020078819A (en) | Lap fillet welding method for aluminium alloy plate | |
JP6947669B2 (en) | Laser welding method | |
JP6954970B2 (en) | Manufacturing method of parts | |
JP2018069258A (en) | Laser welding method and laser welding equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220427 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230921 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240104 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7429848 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |