JP7382026B2 - Laser spot welding method - Google Patents

Laser spot welding method Download PDF

Info

Publication number
JP7382026B2
JP7382026B2 JP2020035902A JP2020035902A JP7382026B2 JP 7382026 B2 JP7382026 B2 JP 7382026B2 JP 2020035902 A JP2020035902 A JP 2020035902A JP 2020035902 A JP2020035902 A JP 2020035902A JP 7382026 B2 JP7382026 B2 JP 7382026B2
Authority
JP
Japan
Prior art keywords
laser
defocus amount
irradiation
time
spot welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020035902A
Other languages
Japanese (ja)
Other versions
JP2021137831A (en
Inventor
修平 澤部
宰 萩原
翔一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2020035902A priority Critical patent/JP7382026B2/en
Publication of JP2021137831A publication Critical patent/JP2021137831A/en
Application granted granted Critical
Publication of JP7382026B2 publication Critical patent/JP7382026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明はレーザスポット溶接方法に関する。 The present invention relates to a laser spot welding method.

ワークにレーザを照射しその光エネルギーによって照射部位の材料を加熱溶融するレーザ溶接は、非接触で高速溶接が行える利点があり、アーク溶接や抵抗スポット溶接からの代替が進んでいる。抵抗スポット溶接を代替するレーザスポット溶接として、特許文献1には、ブローホールなどの欠陥を除去するために、スポット領域内でレーザビームを円形状や渦巻状に走査する方法が開示されている。 Laser welding, in which a workpiece is irradiated with a laser and the material at the irradiated area is heated and melted by the light energy, has the advantage of non-contact, high-speed welding, and is increasingly replacing arc welding and resistance spot welding. As laser spot welding that replaces resistance spot welding, Patent Document 1 discloses a method in which a laser beam is scanned in a circular or spiral shape within a spot region in order to remove defects such as blowholes.

しかし、このような溶接方法は、スポット領域内でビーム走査を行うための俊敏なスキャナ操作が必要であり、制御動作が煩雑化するうえ、ビーム走査の分だけタクトタイムが長くなる問題があった。 However, this type of welding method requires agile scanner operation to scan the beam within the spot area, which makes the control operation complicated and has the problem of lengthening the takt time by the amount of beam scanning. .

特開2012-115876号公報Japanese Patent Application Publication No. 2012-115876

本発明は、このような実状に鑑みてなされたものであって、その目的は、簡潔な動作で安定的に接合強度が得られ、制御の複雑化やタクトタイムの増加を回避できるレーザスポット溶接方法を提供することにある。 The present invention was made in view of the above circumstances, and its purpose is to provide laser spot welding that can stably obtain joint strength with simple operation and avoid complicated control and increase in takt time. The purpose is to provide a method.

上記課題を解決するために、本発明の第1の態様に係るレーザスポット溶接方法は、
複数重ねた金属板の所定領域にレーザ光軸を設定した状態で、
レーザを第1のデフォーカス量で第1の時間照射する第1ステップと、
レーザを第2のデフォーカス量で第2の時間照射する第2ステップと、
を連続して実行することを含み、
前記第1の時間は前記第2の時間より短く、
前記第1のデフォーカス量は、前記第2のデフォーカス量より大きい。
In order to solve the above problems, a laser spot welding method according to a first aspect of the present invention includes:
With the laser optical axis set in a predetermined area of multiple stacked metal plates,
a first step of irradiating the laser with a first defocus amount for a first time;
a second step of irradiating the laser with a second defocus amount for a second time;
including successively executing
the first time period is shorter than the second time period;
The first defocus amount is larger than the second defocus amount.

また、本発明の第2の態様に係るレーザスポット溶接方法は、
複数重ねた金属板の所定領域にレーザ光軸を設定した状態で、
レーザを第1のデフォーカス量で第1の時間照射する第1ステップと、
レーザを第2のデフォーカス量で第2の時間照射する第2ステップと、
を連続して実行することを含み、
前記第1の時間は前記第2の時間より短く、
前記第2のデフォーカス量は、前記第1のデフォーカス量より大きい。
Further, the laser spot welding method according to the second aspect of the present invention includes:
With the laser optical axis set in a predetermined area of multiple stacked metal plates,
a first step of irradiating the laser with a first defocus amount for a first time;
a second step of irradiating the laser with a second defocus amount for a second time;
including successively executing
the first time period is shorter than the second time period;
The second defocus amount is larger than the first defocus amount.

本発明の第1の態様に係るレーザスポット溶接方法は、レーザを第2のデフォーカス量で第2の時間照射する第2ステップ(実質的な基本照射)の前に、第2のデフォーカス量より大きい第1のデフォーカス量で、第2の時間より短い第1の時間照射する第1ステップ(実質的なデフォーカス照射)を実行することで、予めデフォーカス照射で所定領域を加熱した状態で第2ステップの基本照射に移行でき、スパッタが抑制される利点がある。 In the laser spot welding method according to the first aspect of the present invention, before the second step (substantially basic irradiation) of irradiating the laser with a second defocus amount for a second time, the second defocus amount is A state in which a predetermined area is heated in advance by defocused irradiation by executing the first step (substantial defocused irradiation) of irradiating for a first time shorter than the second time with a larger first defocus amount. Then, the second step of basic irradiation can be performed, which has the advantage of suppressing spatter.

本発明の第2の態様に係るレーザスポット溶接方法は、レーザを第2のデフォーカス量で第2の時間照射する第2ステップ(実質的なデフォーカス照射)の前に、第2のデフォーカス量より小さい第1のデフォーカス量で、第2の時間より短い第1の時間照射する第1ステップ(実質的な基本照射)を実行することで、予め溶け込み深さを確保した状態で第2ステップのデフォーカス照射に移行でき、スパッタが抑制される利点がある。 In the laser spot welding method according to the second aspect of the present invention, before the second step (substantial defocus irradiation) of irradiating a laser with a second defocus amount for a second time, a second defocus is applied. By performing the first step (substantial basic irradiation) of irradiating for a first time shorter than the second time with a first defocus amount smaller than the It is possible to shift to defocused irradiation in steps, which has the advantage of suppressing spatter.

このように、何れの態様においても、レーザ光軸の走査を伴わない簡潔な動作でありなら、スパッタを抑制しつつ所望の接合強度と外観が得られ、制御の複雑化やタクトタイムの増加を回避できる。 In this way, in any aspect, if the operation is simple and does not involve scanning of the laser optical axis, the desired bonding strength and appearance can be obtained while suppressing spatter, and the complexity of control and increase in takt time can be avoided. It can be avoided.

本発明第1実施形態に係るレーザスポット溶接を示す側断面図である。FIG. 2 is a side sectional view showing laser spot welding according to the first embodiment of the present invention. 本発明第2実施形態に係るレーザスポット溶接を示す側断面図である。It is a side sectional view showing laser spot welding concerning a 2nd embodiment of the present invention. 本発明第1実施形態に係る各実施例のレーザスポット溶接におけるデフォーカス量を示す模式的なグラフである。It is a typical graph which shows the defocus amount in laser spot welding of each Example based on 1st Embodiment of this invention. 本発明第2実施形態に係る各実施例および比較例のレーザスポット溶接におけるデフォーカス量を示す模式的なグラフである。It is a typical graph which shows the defocus amount in laser spot welding of each Example and comparative example based on 2nd Embodiment of this invention.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

(第1実施形態)
図1は、3枚重ねた金属板11,12,13に対する本発明の第1実施形態に係るレーザスポット溶接10を示している。金属板11,12,13は、特に限定されるものではないが、板厚0.6~2.0mmの薄鋼板を想定している。
(First embodiment)
FIG. 1 shows laser spot welding 10 according to a first embodiment of the present invention for three stacked metal plates 11, 12, and 13. The metal plates 11, 12, and 13 are not particularly limited, but are assumed to be thin steel plates with a thickness of 0.6 to 2.0 mm.

3枚の金属板11,12,13は、それらの何れか(通常は隙間の下側の金属板12,13)に予め突起部(エンボス、不図示)をプレス加工しておき、突起部を介して重ね合されるか、または、金属板の間に挿入された不図示のスペーサを介して重ね合され、必要に応じてクランプなどの治具で保持されることによる間隔調整された隙間、および/または、プレス加工品のフランジ部などにスプリングバックで生じる間隔調整されていない隙間を有して重ねられている。 For the three metal plates 11, 12, 13, a protrusion (embossed, not shown) is pressed in advance on one of them (usually the metal plate 12, 13 below the gap), and the protrusion is pressed. or overlapped with a spacer (not shown) inserted between the metal plates, and held with a jig such as a clamp as necessary to adjust the spacing, and/ Alternatively, the press-formed products are stacked on each other with an unadjusted gap caused by springback in the flange portion, etc.

レーザスポット溶接10の実施に際しては、図1に示すように、最表面に位置した金属板11の上方にレーザ加工ヘッドを位置させ、光軸Lxを固定した状態で、先ず、デフォーカス量da(照射径Sa)にて所定時間Ta(合計照射時間の1/4以下)のレーザ照射La(実質的なデフォーカス照射)を行う(第1ステップ)。 When performing laser spot welding 10, as shown in FIG. Laser irradiation La (substantially defocused irradiation) is performed for a predetermined time Ta (1/4 or less of the total irradiation time) at an irradiation diameter Sa) (first step).

このデフォーカス量daは、溶接工程中で最大面積(最小パワー密度)もしくはそれに準じた照射領域に対応し、パワー密度が抑えられており、かつ、全体照射時間の1/4以下の照射時間Taであるため、この段階では3枚の金属板11,12,13を貫通する溶融部は形成されず、軟化した最表面の金属板11から下位の金属板12,13への熱伝導によって照射領域全体が予熱(Wa)される。 This defocus amount da corresponds to the maximum area (minimum power density) or an irradiation area similar to it in the welding process, the power density is suppressed, and the irradiation time Ta is 1/4 or less of the total irradiation time. Therefore, at this stage, a melted part that penetrates the three metal plates 11, 12, 13 is not formed, and the irradiation area is expanded by heat conduction from the softened outermost metal plate 11 to the lower metal plates 12, 13. The whole is preheated (Wa).

次に、光軸Lxを固定したまま、レーザ溶接機の光学系にて焦点制御を行い、デフォーカス量do(照射径So)にて所定時間Toのレーザ照射Lo(実質的な基本照射)を行う(第2ステップ)。 Next, with the optical axis Lx fixed, focus control is performed using the optical system of the laser welding machine, and laser irradiation Lo (substantive basic irradiation) is performed for a predetermined time To at a defocus amount do (irradiation diameter So). Do it (second step).

このデフォーカス量doは、溶接工程中で最小面積(最大パワー密度)の照射領域に対応し、エネルギー分布が高い照射領域の中央部から周辺部に溶融部分が拡大されるとともに、溶接部に最下の金属板13まで達する充分な溶け込み深さが得られるが、これに先立つ第1ステップ(実質的なデフォーカス照射)で金属板11,12,13が予熱されていることで、急激な昇温が緩和され、スパッタの発生が抑制される。 This defocus amount do corresponds to the irradiation area with the minimum area (maximum power density) during the welding process, and the molten part is expanded from the center to the periphery of the irradiation area where the energy distribution is high, and the welded part is the most Sufficient penetration depth can be obtained to reach the metal plate 13 below, but since the metal plates 11, 12, and 13 are preheated in the first step (substantially defocused irradiation) prior to this, a rapid increase in penetration can be achieved. The temperature is relaxed and spatter generation is suppressed.

なお、金属板11,12,13に低融点金属の表面処理層が存在する場合に、溶融部とその周辺で発生する金属蒸気は、第1ステップで最表面の金属板11から下位の金属板12,13への熱伝導(予熱Wa)によって、金属板11,12,13の間隙を通じて拡散され排出される。 Note that when the metal plates 11, 12, and 13 have a surface treatment layer of a low melting point metal, the metal vapor generated in and around the molten part is transferred from the outermost metal plate 11 to the lower metal plate in the first step. Due to heat conduction (preheating Wa) to the metal plates 12 and 13, the heat is diffused and discharged through the gaps between the metal plates 11, 12, and 13.

(第2実施形態)
図2は、3枚重ねた金属板11,12,13に対する本発明の第2実施形態に係るレーザスポット溶接20を示している。金属板11,12,13の構成および配置は第1実施形態と同様であり、デフォーカス量の制御のみが異なる。
(Second embodiment)
FIG. 2 shows laser spot welding 20 according to a second embodiment of the present invention for three stacked metal plates 11, 12, and 13. The configuration and arrangement of the metal plates 11, 12, and 13 are the same as in the first embodiment, and only the control of the defocus amount is different.

レーザスポット溶接20の実施に際しては、図2に示すように、最表面に位置した金属板11の上方にレーザ加工ヘッドを位置させ、光軸Lxを固定した状態で、先ず、デフォーカス量do(照射径So)にて所定時間To(合計照射時間の1/4~1/3)のレーザ照射Lo(実質的な基本照射)を行い、照射領域の中央で3枚の金属板11,12,13を貫通する溶融部Woを形成する(第1ステップ)。 When carrying out the laser spot welding 20, as shown in FIG. Laser irradiation Lo (substantial basic irradiation) is performed for a predetermined time To (1/4 to 1/3 of the total irradiation time) at the irradiation diameter So), and three metal plates 11, 12, 13 is formed (first step).

このデフォーカス量doは、溶接工程中で最小面積(最大パワー密度)の照射領域に対応し、溶接すべき3枚の金属板11,12,13のうち最表面側の2枚の金属板11,12を貫通し、最下の金属板13に対しても充分な溶け込み深さが得られる。 This defocus amount do corresponds to the irradiation area with the minimum area (maximum power density) during the welding process, and corresponds to the irradiation area of the two metal plates 11 on the outermost side among the three metal plates 11, 12, 13 to be welded. , 12, and a sufficient penetration depth can be obtained even into the lowest metal plate 13.

次に、光軸Lxを固定したまま、レーザ溶接機の光学系にて焦点制御を行い、デフォーカス量db(照射径Sb)にて所定時間Tbのレーザ照射Lb(実質的なデフォーカス照射)を行う(第2ステップ)。 Next, with the optical axis Lx fixed, focus control is performed using the optical system of the laser welding machine, and laser irradiation Lb (substantial defocus irradiation) is performed for a predetermined time Tb at a defocus amount db (irradiation diameter Sb). (second step).

このデフォーカス量dbは、溶接工程中で最大面積(最小パワー密度)もしくはそれに準じた照射領域に対応し、溶融部Woより広い範囲にレーザ照射Lb(実質的なデフォーカス照射)が実施されることで、中心部での急激な昇温とそれによるスパッタを抑制しつつ溶融部を拡大することができ、最終的な溶接部Wbが得られる。 This defocus amount db corresponds to the maximum area (minimum power density) or a similar irradiation area during the welding process, and laser irradiation Lb (substantial defocus irradiation) is performed over a wider area than the molten part Wo. By doing so, it is possible to expand the fusion zone while suppressing the rapid temperature rise in the center and the resulting spatter, and the final weld zone Wb can be obtained.

なお、金属板11,12,13に低融点金属の表面処理層が存在する場合に、溶融部とその周辺で発生する金属蒸気は、上記のような中央部から周辺部に向かう熱伝達とともに、金属板11,12,13の間隙を通じて拡散され排出される。 Note that when the metal plates 11, 12, and 13 have a surface treatment layer of a low-melting point metal, the metal vapor generated in the molten part and its surroundings causes heat transfer from the center to the periphery as described above. It is diffused and discharged through the gaps between the metal plates 11, 12, and 13.

なお、上記各実施形態では、レーザ光学系の制御によりデフォーカス量を変更する場合について述べたが、レーザ加工ヘッドの位置を機械的に上下動(直線移動)させることでデフォーカス量を変更することもできる。また、上記各実施形態(図1、図2)では、焦点位置(ビームウエスト)がワークの上方(近位側)にある正のデフォーカス量を用いる場合について述べたが、焦点位置がワークの下方(遠位側)にある負のデフォーカス量を用いることもできる。 In each of the above embodiments, a case has been described in which the defocus amount is changed by controlling the laser optical system, but the defocus amount is changed by mechanically moving the position of the laser processing head up and down (linear movement). You can also do that. Furthermore, in each of the above embodiments (FIGS. 1 and 2), a case was described in which a positive defocus amount was used in which the focus position (beam waist) was above (proximal to) the workpiece. A downward (distal) negative defocus amount can also be used.

(第1実施形態に係る実施例)
次に、第1実施形態に係るレーザスポット溶接10の効果を検証するために、第1ステップにおけるデフォーカス量daとその照射時間Taを変えてレーザスポット溶接10を実施し、溶接部の状況を比較する実験を行った。
(Example according to the first embodiment)
Next, in order to verify the effect of the laser spot welding 10 according to the first embodiment, the laser spot welding 10 was performed while changing the defocus amount da and the irradiation time Ta in the first step, and the situation of the welded part was examined. We conducted a comparative experiment.

実験では、金属板11,12,13として、最表面側(レーザ照射側)から、板厚t1=0.8mm、t2=0.8mm、t3=1.0mmの鋼板(合計板厚2.6mm)を使用し、金属板間の間隙g=0mm,0.5mm,1.0mmの各場合について、レーザ出力5kWとして第1ステップ、第2ステップ合計で0.4秒間のレーザ照射を行った。 In the experiment, the metal plates 11, 12, and 13 were steel plates with thicknesses t1 = 0.8 mm, t2 = 0.8 mm, and t3 = 1.0 mm from the outermost surface side (laser irradiation side) (total thickness 2.6 mm). ), laser irradiation was performed for a total of 0.4 seconds in the first and second steps at a laser output of 5 kW for each case where the gap g between the metal plates was 0 mm, 0.5 mm, and 1.0 mm.

(実施例1.1)
先ず、図3に符号La1で示すように、デフォーカス量da=65mm(照射径Sa=3.3mm)で照射時間Ta=0.1秒のレーザ照射La(第1ステップ)を行い、次いで、符号Loで示すように、デフォーカス量do=44mm(照射径So=2.3mm)で照射時間To=0.3秒のレーザ照射Lo(第2ステップ)を行ったところ、金属板間の間隙g=0mm,0.5mm,1.0mmの何れの場合にも、スパッタが生じず、外観強度ともに良好な溶接部が得られた。
(Example 1.1)
First, as shown by the symbol La1 in FIG. 3, laser irradiation La (first step) is performed with a defocus amount da = 65 mm (irradiation diameter Sa = 3.3 mm) and an irradiation time Ta = 0.1 seconds, and then, As shown by the symbol Lo, when laser irradiation Lo (second step) was performed with a defocus amount do = 44 mm (irradiation diameter So = 2.3 mm) and an irradiation time To = 0.3 seconds, the gap between the metal plates was In any case where g=0 mm, 0.5 mm, and 1.0 mm, no spatter occurred and welded parts with good appearance and strength were obtained.

(実施例1.2)
先ず、図3に符号La2で示すように、デフォーカス量da=55mm(照射径Sa=2.7mm)で照射時間Ta=0.1秒のレーザ照射La(第1ステップ)を行い、次いで、符号Loで示すように、デフォーカス量do=44mm(照射径So=2.3mm)で照射時間To=0.3秒のレーザ照射Lo(第2ステップ)を行ったところ、金属板間の間隙g=0mmの場合に、裏面側にスパッタが見られた。これは、第1ステップのデフォーカス量da=55mmが不足し、中央部のエネルギー密度が高いことに起因すると思われる。金属板間の間隙g=0.5mm,1.0mmの各場合は、外観強度ともに許容範囲内の溶接部が得られた。
(Example 1.2)
First, as shown by the symbol La2 in FIG. 3, laser irradiation La (first step) is performed with a defocus amount da = 55 mm (irradiation diameter Sa = 2.7 mm) and an irradiation time Ta = 0.1 seconds, and then, As shown by the symbol Lo, when laser irradiation Lo (second step) was performed with a defocus amount do = 44 mm (irradiation diameter So = 2.3 mm) and an irradiation time To = 0.3 seconds, the gap between the metal plates was When g=0 mm, spatter was observed on the back side. This is thought to be due to the fact that the defocus amount da=55 mm in the first step is insufficient and the energy density in the central portion is high. In each case where the gap g between the metal plates was 0.5 mm and 1.0 mm, welded parts with both external strength and strength within the allowable range were obtained.

(実施例1.3)
先ず、図3に符号La3で示すように、デフォーカス量da=65mm(照射径Sa=3.3mm)で照射時間Ta=0.05秒のレーザ照射La(第1ステップ)を行い、次いで、符号Loで示すように、デフォーカス量do=44mm(照射径So=2.3mm)で照射時間To=0.35秒のレーザ照射Lo(第2ステップ)を行ったところ、金属板間の間隙g=0mm,0.5mm,1.0mmの何れの場合にも、裏面側に僅かにスパッタを生じたものの、外観強度ともに良好な溶接部が得られた。
(Example 1.3)
First, as shown by the symbol La3 in FIG. 3, laser irradiation La (first step) is performed with a defocus amount da = 65 mm (irradiation diameter Sa = 3.3 mm) and an irradiation time Ta = 0.05 seconds, and then, As shown by the symbol Lo, when laser irradiation Lo (second step) was performed with a defocus amount do = 44 mm (irradiation diameter So = 2.3 mm) and an irradiation time To = 0.35 seconds, the gap between the metal plates was In all cases where g=0 mm, 0.5 mm, and 1.0 mm, welded parts with good appearance and strength were obtained, although slight spatter was generated on the back side.

(実施例1.4)
先ず、図3に符号La4で示すように、デフォーカス量da=65mm(照射径Sa=3.3mm)で照射時間Ta=0.01秒のレーザ照射La(第1ステップ)を行い、次いで、符号Loで示すように、デフォーカス量do=44mm(照射径So=2.3mm)で照射時間To=0.39秒のレーザ照射Lo(第2ステップ)を行ったところ、金属板間の間隙g=0mm,0.5mm,1.0mmの何れの場合にも、裏面側に僅かにスパッタを生じたものの、外観強度ともに良好な溶接部が得られた。
(Example 1.4)
First, as shown by the symbol La4 in FIG. 3, laser irradiation La (first step) is performed with a defocus amount da = 65 mm (irradiation diameter Sa = 3.3 mm) and an irradiation time Ta = 0.01 seconds, and then, As shown by the symbol Lo, when laser irradiation Lo (second step) was performed with a defocus amount do = 44 mm (irradiation diameter So = 2.3 mm) and an irradiation time To = 0.39 seconds, the gap between the metal plates was In all cases where g=0 mm, 0.5 mm, and 1.0 mm, welded parts with good appearance and strength were obtained, although slight spatter was generated on the back side.

(第2実施形態に係る実施例および比較例)
次に、第2実施形態に係るレーザスポット溶接20の効果を検証するために、前記同様の鋼板を使用し、金属板間の間隙gを0mm,0.5mm,1.0mmの各場合について、レーザ出力5kWとして、第2ステップにおけるデフォーカス量dbとその照射時間Tbを変えてレーザスポット溶接20を実施し、溶接部の状況を比較した。
(Example and comparative example according to the second embodiment)
Next, in order to verify the effect of the laser spot welding 20 according to the second embodiment, steel plates similar to those described above are used, and the gap g between the metal plates is 0 mm, 0.5 mm, and 1.0 mm. Laser spot welding 20 was performed with a laser output of 5 kW and the defocus amount db and the irradiation time Tb in the second step changed, and the conditions of the welded portion were compared.

(実施例2.1)
先ず、図4に符号Loで示すように、デフォーカス量do=44mm(照射径So=2.3mm)で照射時間To=0.1秒のレーザ照射Lo(第1ステップ)を行い、次いで、符号Lb1で示すように、デフォーカス量db=55mm(照射径Sb=2.7mm)で照射時間Tb=0.3秒のレーザ照射Lb(第2ステップ)を行ったところ、金属板間の間隙gを0mm,0.5mm,1.0mmの何れの場合にも、僅かにスパッタを確認できるものの、外観強度ともに良好な溶接部が得られた。
(Example 2.1)
First, as shown by the symbol Lo in FIG. 4, laser irradiation Lo (first step) is performed with a defocus amount do = 44 mm (irradiation diameter So = 2.3 mm) and an irradiation time To = 0.1 seconds, and then, As shown by symbol Lb1, when laser irradiation Lb (second step) was performed with defocus amount db = 55 mm (irradiation diameter Sb = 2.7 mm) and irradiation time Tb = 0.3 seconds, the gap between the metal plates was Even when g was set to 0 mm, 0.5 mm, and 1.0 mm, welded parts with good appearance and strength were obtained, although slight spatter was observed.

(実施例2.2)
先ず、図4に符号Loで示すように、デフォーカス量do=44mm(照射径So=2.3mm)で照射時間To=0.1秒のレーザ照射Lo(第1ステップ)を行い、次いで、符号Lb2で示すように、デフォーカス量db=65mm(照射径Sb=3.3mm)で照射時間Tb=0.3秒のレーザ照射Lb(第2ステップ)を行ったところ、金属板間の間隙gを0mm,0.5mm,1.0mmの何れの場合にも、僅かにスパッタを確認できるものの、外観強度ともに良好な溶接部が得られた。
(Example 2.2)
First, as shown by the symbol Lo in FIG. 4, laser irradiation Lo (first step) is performed with a defocus amount do = 44 mm (irradiation diameter So = 2.3 mm) and an irradiation time To = 0.1 seconds, and then, As shown by symbol Lb2, when laser irradiation Lb (second step) was performed with defocus amount db = 65 mm (irradiation diameter Sb = 3.3 mm) and irradiation time Tb = 0.3 seconds, the gap between the metal plates was Even when g was set to 0 mm, 0.5 mm, and 1.0 mm, welded parts with good appearance and strength were obtained, although slight spatter was observed.

(比較例)
比較例として、図4に符号Lo~Lo′で示すように、一定のデフォーカス量do=44mm(照射径So=2.3mm)で0.4秒のレーザ照射を行ったところ、金属板間の間隙g=0mm,0.5mmの各場合は表面側と裏面側の両方にスパッタが生じ、金属板間の間隙g=1.0mmの場合にも裏面側にスパッタが生じた。
(Comparative example)
As a comparative example, as shown by symbols Lo to Lo' in FIG. When the gap g=0 mm and 0.5 mm, spatter occurred on both the front side and the back side, and when the gap g between the metal plates was 1.0 mm, spatter also occurred on the back side.

なお、上記実施形態では、3枚の金属板を重ねてレーザスポット溶接する場合を示したが、2枚、あるいは、レーザ出力などの条件により4枚以上の金属板を重ねてレーザスポット溶接することも可能である。また、上記実施例に係る実験は3枚の金属板の合計板厚2.6mmで実施したが、それ以下の溶接も可能である。 In addition, in the above embodiment, the case where three metal plates are stacked and laser spot welded is shown, but depending on conditions such as laser output, two or four or more metal plates may be stacked and laser spot welded. is also possible. Further, although the experiment related to the above embodiment was conducted using three metal plates having a total thickness of 2.6 mm, it is also possible to weld a thickness smaller than that.

また、上記各実施形態では、最表面の金属板11に対して垂直上方からレーザ照射する場合を示したが、照射角度40度までは実用範囲の加工性が得られる。また、水平面以外の任意の角度で傾斜配置された金属板に対しても溶接可能である。 Further, in each of the above embodiments, a case is shown in which the outermost metal plate 11 is irradiated with a laser from vertically above, but workability within a practical range can be obtained at an irradiation angle of up to 40 degrees. Furthermore, it is also possible to weld metal plates tilted at any angle other than the horizontal plane.

以上、本発明のいくつかの実施の形態について述べたが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想に基づいてさらに各種の変形および変更が可能である。 Although several embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications and changes can be made based on the technical idea of the present invention.

11,12,13 金属板
da,db,do デフォーカス量
La,Lb,Lo レーザ照射
Lx レーザ光軸
Sa,Sb,So レーザ照射径
Wa 予熱
Wb,Wo 溶接部(溶融部)
11, 12, 13 Metal plate da, db, do Defocus amount La, Lb, Lo Laser irradiation Lx Laser optical axis Sa, Sb, So Laser irradiation diameter Wa Preheating Wb, Wo Welding part (molten part)

Claims (6)

レーザスポット溶接方法であって、
複数重ねた金属板の所定領域にレーザ光軸を設定した状態で、
レーザを第1のデフォーカス量で第1の時間照射する第1ステップと、
レーザを第2のデフォーカス量で第2の時間照射する第2ステップと、
を連続して実行することを含み、
前記第1の時間は前記第2の時間より短く、
前記第1のデフォーカス量は、前記第2のデフォーカス量より大きい、
レーザスポット溶接方法。
A laser spot welding method, comprising:
With the laser optical axis set in a predetermined area of multiple stacked metal plates,
a first step of irradiating the laser with a first defocus amount for a first time;
a second step of irradiating the laser with a second defocus amount for a second time;
including successively executing
the first time period is shorter than the second time period;
the first defocus amount is larger than the second defocus amount;
Laser spot welding method.
前記第1の時間は、前記第1~第2ステップの合計照射時間の1/4以下であり、前記第1のデフォーカス量は、前記第2のデフォーカス量の1.25~1.5倍である、請求項1記載のレーザスポット溶接方法。 The first time is 1/4 or less of the total irradiation time of the first and second steps, and the first defocus amount is 1.25 to 1.5 of the second defocus amount. The laser spot welding method according to claim 1, wherein the laser spot welding method is twice as large. レーザスポット溶接方法であって、
複数重ねた金属板の所定領域にレーザ光軸を設定した状態で、
レーザを第1のデフォーカス量で第1の時間照射する第1ステップと、
レーザを第2のデフォーカス量で第2の時間照射する第2ステップと、
を連続して実行することを含み、
前記第1の時間は前記第2の時間より短く、
前記第2のデフォーカス量は、前記第1のデフォーカス量より大きい、
レーザスポット溶接方法。
A laser spot welding method, comprising:
With the laser optical axis set in a predetermined area of multiple stacked metal plates,
a first step of irradiating the laser with a first defocus amount for a first time;
a second step of irradiating the laser with a second defocus amount for a second time;
including successively executing
the first time period is shorter than the second time period;
the second defocus amount is larger than the first defocus amount;
Laser spot welding method.
前記第1の時間は、前記第1~第2ステップの合計照射時間の1/4~1/3であり、前記第2のデフォーカス量は、前記第1のデフォーカス量の1.25~1.5倍である、請求項3記載のレーザスポット溶接方法。 The first time is 1/4 to 1/3 of the total irradiation time of the first and second steps, and the second defocus amount is 1.25 to 1/3 of the first defocus amount. The laser spot welding method according to claim 3, which is 1.5 times. 前記金属板の枚数は3枚、総板厚は2.6mm以下、各板間の隙間0.5mm以下であり、前記第1~第2ステップ合計照射時間は0.2~1.0秒である、請求項1~4の何れか一項記載のレーザスポット溶接方法。 The number of metal plates is 3, the total plate thickness is 2.6 mm or less, the gap between each plate is 0.5 mm or less, and the total irradiation time of the first to second steps is 0.2 to 1.0 seconds. The laser spot welding method according to any one of claims 1 to 4. 前記金属板の枚数は3枚、総板厚は2.6mm以下、各板間の隙間0.5~1.0mmであり、前記第1~第2ステップ合計照射時間は0.25~0.5秒である、請求項1~4の何れか一項記載のレーザスポット溶接方法。 The number of metal plates is 3, the total plate thickness is 2.6 mm or less, the gap between each plate is 0.5 to 1.0 mm, and the total irradiation time of the first to second steps is 0.25 to 0.5 mm. The laser spot welding method according to any one of claims 1 to 4, wherein the welding time is 5 seconds.
JP2020035902A 2020-03-03 2020-03-03 Laser spot welding method Active JP7382026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020035902A JP7382026B2 (en) 2020-03-03 2020-03-03 Laser spot welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020035902A JP7382026B2 (en) 2020-03-03 2020-03-03 Laser spot welding method

Publications (2)

Publication Number Publication Date
JP2021137831A JP2021137831A (en) 2021-09-16
JP7382026B2 true JP7382026B2 (en) 2023-11-16

Family

ID=77667329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020035902A Active JP7382026B2 (en) 2020-03-03 2020-03-03 Laser spot welding method

Country Status (1)

Country Link
JP (1) JP7382026B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154836A (en) 2002-11-07 2004-06-03 Nhk Spring Co Ltd Joining-treatment apparatus for parts and joined body consisting of a plurality of parts
JP2006224134A (en) 2005-02-17 2006-08-31 Nissan Motor Co Ltd Structure, method, and equipment for joining different kind of metals by high energy beam
JP2012170989A (en) 2011-02-22 2012-09-10 Suzuki Motor Corp Laser lap welding method
JP2018537289A (en) 2015-11-02 2018-12-20 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. Method of joining two components by at least one laser beam in the region of the joining area and method of forming a continuous joining seam
US20190118307A1 (en) 2016-04-08 2019-04-25 GM Global Technology Operations LLC Method for laser welding steel workpieces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154836A (en) 2002-11-07 2004-06-03 Nhk Spring Co Ltd Joining-treatment apparatus for parts and joined body consisting of a plurality of parts
JP2006224134A (en) 2005-02-17 2006-08-31 Nissan Motor Co Ltd Structure, method, and equipment for joining different kind of metals by high energy beam
JP2012170989A (en) 2011-02-22 2012-09-10 Suzuki Motor Corp Laser lap welding method
JP2018537289A (en) 2015-11-02 2018-12-20 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. Method of joining two components by at least one laser beam in the region of the joining area and method of forming a continuous joining seam
US20190118307A1 (en) 2016-04-08 2019-04-25 GM Global Technology Operations LLC Method for laser welding steel workpieces

Also Published As

Publication number Publication date
JP2021137831A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP5527526B2 (en) Laser welding method
JP2013530048A (en) Laser welding method
US11491577B2 (en) Method of and system for welding using an energy beam scanned repeatively in two dimensions
JP2012170989A (en) Laser lap welding method
JP2009148781A (en) Laser welding method
JPH0732180A (en) Laser beam welding method for galvanized steel sheets
JP6299136B2 (en) Laser welding method and laser welding apparatus for steel sheet
JP7382026B2 (en) Laser spot welding method
JP7340153B2 (en) Laser spot welding method
JP5600838B2 (en) Laser welding method
JP7429848B2 (en) Laser spot welding method
KR102087664B1 (en) Laser-welded joint and method for producing same
JP2011115836A (en) Method of laser welding metal plated plate
JP6191646B2 (en) Welding method
JP7137784B2 (en) Laser spot welding method
JP4386431B2 (en) Laser welding method
JP7180220B2 (en) Laser spot welding method
CN113967788A (en) Remote laser welding method for stacked steel workpieces
JP2012228716A (en) Laser welding apparatus and laser welding method
JPH07214360A (en) Laser beam machining
JP2016196016A (en) Welding method
KR20180013481A (en) Laser welding method
JP6947669B2 (en) Laser welding method
JP7491071B2 (en) Laser spot welding method
JP7416999B2 (en) Laser-arc hybrid welding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231019

R151 Written notification of patent or utility model registration

Ref document number: 7382026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151