JP2020199044A - Biological sensor - Google Patents

Biological sensor Download PDF

Info

Publication number
JP2020199044A
JP2020199044A JP2019107536A JP2019107536A JP2020199044A JP 2020199044 A JP2020199044 A JP 2020199044A JP 2019107536 A JP2019107536 A JP 2019107536A JP 2019107536 A JP2019107536 A JP 2019107536A JP 2020199044 A JP2020199044 A JP 2020199044A
Authority
JP
Japan
Prior art keywords
light
living body
pinhole
receiving element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019107536A
Other languages
Japanese (ja)
Other versions
JP7264462B2 (en
Inventor
廉士 澤田
Yasushi Sawada
廉士 澤田
大史 野上
Hiroshi Nogami
大史 野上
尾上 篤
Atsushi Onoe
篤 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019107536A priority Critical patent/JP7264462B2/en
Publication of JP2020199044A publication Critical patent/JP2020199044A/en
Application granted granted Critical
Publication of JP7264462B2 publication Critical patent/JP7264462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a high sensitivity blood flow rate sensor with less noise that reliably prevents direct reflection light from the surface (skin) of a living body and light from an optical element from entering a light receiving element as noise directly or in a bypassing manner, and allows the light in the vicinity of a central part where the intensity of emission light of the optical element is high in a light intensity distribution to be used effectively.SOLUTION: To enhance sensitivity of a biological sensor, a light receiving element 14 is covered with a light blocking structure having a pin hole 13 of a high aspect ratio, and the pin hole is disposed at a position where the incident angle at the pin hole of reflection light from the surface of a living body is larger than the distance Lth between the two optical elements determined by an angle θth=Arctan(d/h) restricted by an aspect ratio of the pin hole.SELECTED DRAWING: Figure 2

Description

本発明は、ノイズが少ない高感度の生体センサに関するものである。 The present invention relates to a highly sensitive biosensor with less noise.

レーザドップラ血流計の基本原理となるLDF(Laser Doppler flowmetry)法は、レーザ光照射に伴う生体組織からの後方散乱光スペックルにより非侵襲に微小循環血流を計測可能な方法として1980年代初頭から盛んに研究され始め、現在ではレーザ血流計という一般名称で商品化されている。最近では、皮膚科学研究や微小循環血流メカニズム解明などの医学系研究に用いられるのみならず、皮膚血流が交感神経支配であることを利用した自律神経機能障害などの臨床診断用途にも用いられるようになっている。糖尿病患者の末梢循環障害や閉塞性動脈疾患などによって発症する下肢の血行不全状態の診断などにも応用が進み、その有用性が認識されつつある。生体情報のウェアラブル計測は、健康管理や予防医学、または運転中やスポーツ中の危険防止などの観点から要望が高い。特に、血流量センサは、レーザ光を用いて末梢組織血流量を非侵襲に測定でき、臨床医用の分野において新たな治療指標として注目されている。また非侵襲モニタであることから、自動車や電器、化粧品、入浴剤、繊維メーカー等の研究部門において快適性などの生理学的研究に用いられるなど、医学以外の分野にもその応用が広がっている。 The LDF (Laser Doppler flowmetry) method, which is the basic principle of laser Doppler blood flow meters, is a method that can non-invasively measure microcirculatory blood flow by the backward scattered light speckle from living tissue associated with laser light irradiation in the early 1980s. It began to be actively researched from, and is now commercialized under the general name of laser blood flow meter. Recently, it is used not only for dermatological research and medical research such as elucidation of microcirculatory blood flow mechanism, but also for clinical diagnosis such as autonomic dysfunction utilizing the fact that skin blood flow is sympathetic innervation. It is designed to be used. It is also being applied to the diagnosis of blood circulation insufficiency of the lower limbs caused by peripheral circulatory disorders and obstructive arterial diseases in diabetic patients, and its usefulness is being recognized. Wearable measurement of biological information is highly requested from the viewpoints of health management, preventive medicine, and prevention of danger while driving or playing sports. In particular, the blood flow sensor can measure peripheral tissue blood flow non-invasively using laser light, and is attracting attention as a new therapeutic index in the field of clinicians. In addition, since it is a non-invasive monitor, its application is expanding to fields other than medicine, such as being used for physiological research such as comfort in research departments such as automobiles, electric appliances, cosmetics, bath salts, and textile manufacturers.

近年、MEMS(Micro-electro-mechanical systems)加工技術を用いて作製した微小な集積型レーザドップラ血流センサデバイスをプローブ先端部へ搭載することによってファイバを廃し、バッテリー駆動と信号処理部等システム部分の小型化設計によりシステム全体を身体に装着可能としたウェアラブルな携帯型レーザ血流計が実現されている。従来では考えられなかった運動時や日常生活時などの動的環境下において安定した末梢血流計測が可能になる。また、より振動に強い脈波センサとしても有望であることが報告されている。この研究成果に加え、最近、医学分野の研究者からも微小循環(末梢血管)が注目されるようになり、集積型レーザドップラ血流センサを搭載した携帯型レーザ血流計の今後の実用化と応用拡大が期待されている。 In recent years, by mounting a minute integrated laser Doppler blood flow sensor device manufactured using MEMS (Micro-electro-mechanical systems) processing technology on the tip of the probe, the fiber has been eliminated, and the system part such as the battery drive and signal processing unit has been eliminated. The miniaturized design of the system has realized a wearable portable laser blood flow meter that allows the entire system to be worn on the body. It enables stable peripheral blood flow measurement in a dynamic environment such as during exercise or daily life, which was unthinkable in the past. It has also been reported that it is promising as a pulse wave sensor that is more resistant to vibration. In addition to this research result, microcirculation (peripheral blood vessels) has recently attracted attention from researchers in the medical field, and future practical application of a portable laser blood flow meter equipped with an integrated laser Doppler blood flow sensor. It is expected that the application will be expanded.

しかし、医療分野でも常時モニタリングやヘルスケアへの適用を考慮する上で、装置の小型化、高感度化ならびに使用中に目に光が入ることによる生体への損傷等を防止するには光(レーザ光)の低出力化を実現する必要がある。そのためには、レーザ光のガウシアン形状の強度分布の中心部における光強度の高い部分を利用することが、小型化、高感度化ならびに発光の低出力化の課題を解決する方法の一つである。 However, even in the medical field, in consideration of constant monitoring and application to healthcare, it is necessary to reduce the size and sensitivity of the device and prevent damage to the living body due to light entering the eyes during use. It is necessary to reduce the output of laser light). For that purpose, utilizing the high light intensity portion in the central part of the Gaussian-shaped intensity distribution of the laser light is one of the methods for solving the problems of miniaturization, high sensitivity, and low light emission. ..

発光素子と受光素子の両素子を接近させ、装置の小型化、光強度分布の中央付近の強度の高い光を有効利用することは、小型化、高感度化ならびにレーザ光の低出力化の問題を解決する方法として有望であるが、被測定対象の生体の表面での反射光など、生体内部から以外の光が直接ならびに迂回してノイズとして受光素子に入るために高いSN比の信号を得ることができなかった。 Bringing both the light emitting element and the light receiving element close to each other to reduce the size of the device and effectively utilize the high-intensity light near the center of the light intensity distribution is a problem of miniaturization, high sensitivity, and low output of laser light. This is a promising method for solving the problem, but a signal with a high SN ratio is obtained because light other than from inside the living body, such as reflected light on the surface of the living body to be measured, directly and bypasses and enters the light receiving element as noise. I couldn't.

生体表面での反射に関しては、理論上は、生体表面と接触するガラス等透明体の屈折率差が小さければ、生体表面での反射を防ぐことが可能であるが、現実は生体の屈折率は被測定対象の生体によって大きくばらつきが大きく、生体表面での反射はノイズとして検出されるので無視できない課題である。 Regarding the reflection on the surface of the living body, in theory, if the difference in the refractive index of the transparent material such as glass that comes into contact with the surface of the living body is small, it is possible to prevent the reflection on the surface of the living body, but in reality, the refractive index of the living body is It is a problem that cannot be ignored because the reflection on the surface of the living body is detected as noise because it varies greatly depending on the living body to be measured.

特許文献1は発明者らによる先行技術であり、ピンホール(導光部)を受光素子の受光面上に載置することで発光部と受光部とを隔てる障壁を省略する可能とする技術が開示されている。この際、ピンホールを受光面に隙間無く連結することで受光部への散乱光の回り込み等を防止するために、ピンホールを載置した後、遮光性液体でピンホールと受光素子の外面等を覆い、乾燥させるポッティングを行う。しかしながら、小型血流量センサの場合は発光素子と受光素子とが近接するため、ポッティングによる遮光層が薄いため、発光素子から出射される自然光等の受光素子への透過を完全に防ぐのが困難であり、発光素子のレーザ光を出力が1mWでも透過光を受光素子の暗電流の1.5倍以内に抑えるのがやっとであり、高感度の血流量センサとすることが難しかった。 Patent Document 1 is a prior art by the inventors, and a technique capable of omitting a barrier separating a light emitting portion and a light receiving portion by placing a pinhole (light guide portion) on a light receiving surface of a light receiving element is provided. It is disclosed. At this time, in order to prevent scattered light from wrapping around to the light receiving portion by connecting the pinhole to the light receiving surface without a gap, after placing the pinhole, the pinhole and the outer surface of the light receiving element are used with a light-shielding liquid. Cover and dry the potting. However, in the case of a small blood flow sensor, since the light emitting element and the light receiving element are close to each other, the light blocking layer due to potting is thin, and it is difficult to completely prevent the transmission of natural light emitted from the light emitting element to the light receiving element. Therefore, even if the output of the laser beam of the light emitting element is 1 mW, the transmitted light can be suppressed within 1.5 times the dark current of the light receiving element, and it is difficult to obtain a highly sensitive blood flow sensor.

特許第4061409号(特願2004−324937)Patent No. 4061409 (Japanese Patent Application No. 2004-324937)

R. Inoue, H. Nogami, E. Higurashi, R. Sawada, A New Extremely Small Sensor for Measuring a Blood Flow and a Contact pressure Simultaneously, 2017 International Conference on Optical MEMS ad Nanophotonics (OMN), Session We-3R. Inoue, H. Nogami, E. Higurashi, R. Sawada, A New Extremely Small Sensor for Measuring a Blood Flow and a Contact pressure Simultaneously, 2017 International Conference on Optical MEMS ad Nanophotonics (OMN), Session We-3

本発明は上記のような課題を解決するためになされたものであり、生体の表面(皮膚)からの直接反射光や光学素子からの光が直接あるいは迂回して受光素子にノイズとして入ることを確実に防止し、光学素子の出射光の光強度分布の強度の高い中央部付近の光を有効に利用可能とすることで、ノイズの少ない高感度の血流量センサを提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and means that directly reflected light from the surface (skin) of a living body or light from an optical element directly or bypasses and enters the light receiving element as noise. It is an object of the present invention to provide a highly sensitive blood flow sensor with less noise by surely preventing the light and making it possible to effectively use the light near the central portion where the light intensity distribution of the emitted light of the optical element is high. ..

以上のような課題を解決するために、本発明の第1の態様による生体センサは、発光素子からの光で生体を照射した際に発生する生体内部組織からの散乱光を検出することで生体情報を得る生体センサにおいて、前記散乱光を受光素子へ向けて透過させるピンホールを有する遮光構造体で前記受光素子の上面及び側面を覆うとともに、前記発光素子からの前記光の一部が生体表面で反射して前記ピンホールに入射する反射光の生体表面での反射角θが、前記ピンホールのアスペクト比でd/hにより制限される角度θth=Arctan(d/h)よりも大きいことを特徴とする。ここで、θは前記反射光が前記生体表面の法線となす角度、dは前記ピンホールの幅、hは前記ピンホールの深さである。 In order to solve the above problems, the biosensor according to the first aspect of the present invention detects the scattered light from the internal tissue of the living body generated when the living body is irradiated with the light from the light emitting element. In a biological sensor that obtains information, a light-shielding structure having a pinhole that transmits the scattered light toward the light receiving element covers the upper surface and the side surface of the light receiving element, and a part of the light from the light emitting element is a biological surface. The angle θ of the reflected light reflected by the pinhole and incident on the pinhole on the surface of the living body is limited by d 0 / h 0 in the aspect ratio of the pinhole θ th = Arctan (d 0 / h 0 ). It is characterized by being larger than. Here, θ is the angle formed by the reflected light with the normal of the living body surface, d 0 is the width of the pinhole, and h 0 is the depth of the pinhole.

上記のような構成とすることで、前記生体表面(皮膚)で反射したいかなる光も前記ピンホールを通して直接前記受光素子に入ることはない。これにより生体の表面(皮膚)からの直接反射光が直接受光素子にノイズ光として入ることを確実に防止することができ、ノイズの少ない高感度の生体センサを実現できる。 With the above configuration, any light reflected by the living body surface (skin) does not directly enter the light receiving element through the pinhole. As a result, it is possible to reliably prevent the directly reflected light from the surface (skin) of the living body from directly entering the light receiving element as noise light, and it is possible to realize a highly sensitive biosensor with less noise.

本発明の第2の態様による生体センサは、発光素子からの光で生体を照射した際に発生する生体内部組織からの散乱光を検出することで生体情報を得る生体センサにおいて、キャビティ構造の基板凹部内に発光素子と受光素子とを配置し、さらに前記基板凹部内において、前記散乱光を受光素子へ向けて透過させるピンホールを有する遮光構造体で前記受光素子の上面及び側面を覆うとともに、前記生体との接触面積を一定にするための透明突起部を上面とした透明材料で前記基板凹部を封止し、前記発光素子からの前記光の一部が生体表面で反射して前記ピンホールに入射する反射光の生体表面での反射角θが、前記ピンホールのアスペクト比d/hにより制限される角度θ’th=Arcsin(sin(θth)/n)よりも大きいことを特徴とする。ここで、θは前記反射光が前記生体表面の法線となす角度、θth=Arctan(d/h)、dは前記ピンホールの幅、hは前記ピンホールの深さ、nは前記透明材料の屈折率である。 The biosensor according to the second aspect of the present invention is a substrate having a cavity structure in a biosensor that obtains biometric information by detecting scattered light from internal tissues of the living body generated when the living body is irradiated with light from a light emitting element. The light emitting element and the light receiving element are arranged in the recess, and the upper surface and the side surface of the light receiving element are covered with a light-shielding structure having a pin hole for transmitting the scattered light toward the light receiving element in the substrate recess. The substrate recess is sealed with a transparent material having a transparent protrusion on the upper surface to keep the contact area with the living body constant, and a part of the light from the light emitting element is reflected on the surface of the living body to form the pinhole. the reflection angle at the living body surface of the reflection light incident theta is greater than said pin hole aspect ratio d 0 / angle is limited by the h 0 θ 'th = Arcsin ( sin (θ th) / n) in It is a feature. Here, θ is the angle formed by the reflected light with the normal of the living body surface, θ th = Arctan (d 0 / h 0 ), d 0 is the width of the pinhole, and h 0 is the depth of the pinhole. n is the refractive index of the transparent material.

上記のような構成とすることで、前記生体表面(皮膚)で反射したいかなる光も前記ピンホールを通して直接前記受光素子に入ることはない。これにより生体の表面(皮膚)からの直接反射光が直接受光素子にノイズ光として入ることを確実に防止することができ、ノイズの少ない高感度の生体センサを実現できる。 With the above configuration, any light reflected by the living body surface (skin) does not directly enter the light receiving element through the pinhole. As a result, it is possible to reliably prevent the directly reflected light from the surface (skin) of the living body from directly entering the light receiving element as noise light, and it is possible to realize a highly sensitive biosensor with less noise.

前記第1と第2の生体センサにおいて、前記受光素子並びに遮光構造体を載置する部位の下地は、前記発光素子並びに前記受光素子をマウントするための金属膜と同じ金属膜あるいは他の材料で遮光することを特徴とする。 In the first and second biosensors, the base of the portion on which the light receiving element and the light-shielding structure are placed is the same metal film or other material as the metal film for mounting the light emitting element and the light receiving element. It is characterized by shading.

上記のような構成とすることで、受光素子下部からの自然光等のノイズ光の受光を確実に防止することができ、ノイズの少ない高感度の生体センサを実現できる。 With the above configuration, it is possible to reliably prevent the reception of noise light such as natural light from the lower part of the light receiving element, and it is possible to realize a highly sensitive biosensor with less noise.

前記キャビティ構造の基板凹部における前記発光素子の前記光の出射位置と前記光が入射する前記生体表面との距離が、前記受光素子の上面と前記生体表面との距離よりも短い距離としたことを特徴とする。 The distance between the light emitting position of the light emitting element and the living body surface on which the light is incident in the substrate recess of the cavity structure is set to be shorter than the distance between the upper surface of the light receiving element and the living body surface. It is a feature.

上記のような構成とすることで、前記発光素子からあらゆる方向に出射される自然光の受光することを防止することができ、ノイズの少ない高感度の生体センサを実現できる。 With the above configuration, it is possible to prevent receiving natural light emitted from the light emitting element in all directions, and it is possible to realize a highly sensitive biosensor with less noise.

前記生体センサにおいて、前記発光素子は、ガウシアンビームを出射する面発光レーザであることを特徴とする。 In the biosensor, the light emitting element is a surface emitting laser that emits a Gaussian beam.

上記のような構成とすることで、前記発光素子と前記受光素子とを接近配置が可能となり、小型の生体センサを実現できる。 With the above configuration, the light emitting element and the light receiving element can be arranged close to each other, and a small biosensor can be realized.

本発明は、生体表面(皮膚)での直接反射光であるノイズ光の受光を抑止し、血管等のある生体内部からの散乱光のみを受光素子で受光可能とするために、所定の幾何学的条件を満たす高アスペクト比のピンホールを形成した遮光構造体で受光素子を覆うことで、光学素子(半導体レーザチップ)と受光素子(フォトダイオードチップ)を接近させて配置可能とすることを特徴とする。これにより、発光素子から出射される中央部付近の光を有効に利用可能となり、従来と比較して大幅にノイズの少ない高感度の血流量センサを実現できる。 The present invention has a predetermined geometry in order to suppress the reception of noise light, which is directly reflected light on the surface of the living body (skin), and to allow the light receiving element to receive only the scattered light from the inside of the living body such as a blood vessel. By covering the light-receiving element with a light-shielding structure that forms pinholes with a high aspect ratio that satisfies the above conditions, the optical element (semiconductor laser chip) and the light-receiving element (photodiode chip) can be placed close to each other. And. As a result, the light emitted from the light emitting element near the central portion can be effectively used, and a highly sensitive blood flow sensor with significantly less noise than the conventional one can be realized.

本発明の血流量センサは、小型、低レーザ出力で、高い血流量信号出力(高いSN比信号)を得ることができる利点がある。 The blood flow sensor of the present invention has an advantage that a high blood flow signal output (high SN ratio signal) can be obtained with a small size and a low laser output.

本発明の第一実施形態に係わる血流量センサの概略構成を示す断面も式図A cross section showing a schematic configuration of a blood flow sensor according to the first embodiment of the present invention is also shown in the formula. 図1の発光素子2、受光素子14付近を拡大した図Enlarged view of the vicinity of the light emitting element 2 and the light receiving element 14 of FIG. ピンホールのアスペクト比に対するLthと光ビームの中央部の光ビーム強度に対しての強度割合Lth to the aspect ratio of the pinhole and the intensity ratio to the light beam intensity at the center of the light beam 本発明の第2実施形態に係わる血流量センサの概略構成を示す断面も式図A cross section showing a schematic configuration of a blood flow sensor according to a second embodiment of the present invention is also shown in the formula. 透明突起を形成したガラスにより光学素子を内蔵した凹部を封止した構造でのθ=θthとなる場合の設計値と各センサ設計A、B、Cの条件を表示したグラフ。設計Aは本発明を適用しない従来法、BとCは本発明を適用した実施例を示す。The graph which showed the design value at the time of θ = θth in the structure which sealed the concave part with built-in an optical element by the glass which formed a transparent protrusion, and the condition of each sensor design A, B, C. Design A shows a conventional method to which the present invention is not applied, and B and C show an example to which the present invention is applied.

本発明ではレーザ光の強度分布で最も強度がある中央部付近の光を使用し、生体表面(皮膚)からの直接反射を抑止するという目的を、最小の部品点数で、光学系構成部品を大きくすることなく実現した。 In the present invention, the light near the central part, which has the highest intensity in the intensity distribution of the laser beam, is used, and the purpose of suppressing direct reflection from the biological surface (skin) is to increase the number of optical system components with the minimum number of parts. Realized without doing.

以下、本発明のセンサ部及び生体センサを、その実施形態に基づいて説明する。以下においては、生体センサの一例として血流量センサに用いた場合について説明する。 Hereinafter, the sensor unit and the biosensor of the present invention will be described based on the embodiment thereof. In the following, a case where it is used as a blood flow sensor as an example of a biological sensor will be described.

図1は、本発明の第一実施形態に係わる血流量センサの概略構成を示す断面も式図である。血流量センサ1は発光素子2から出射した光の一部の光3が、血流量センサと生体間に配置された透明ガラス平板等(図示せず)を介して生体表面(皮膚)4で反射後(反射光5)受光素子14に向かって進む。他の光は生体内部6に拡散した後、生体内の血液7や静止組織8で反射し散乱する。その散乱光9と生体の静止組織8からの散乱光10の干渉光11が遮光構造体12に形成したピンホール13を通して、受光素子14で受光される。受光出力をフーリエ変換した後、血流量に比例するパワースペクトルの一次モーメントを算出する。また、発光素子からは、血流量の測定に有効な高い方向性を有する可干渉なレーザ光の他、ノイズ光となりうる、あらゆる方向に出射する自然光14も出射される。 FIG. 1 is also a schematic cross section showing a schematic configuration of a blood flow rate sensor according to the first embodiment of the present invention. In the blood flow sensor 1, a part of the light 3 emitted from the light emitting element 2 is reflected by the living body surface (skin) 4 via a transparent glass flat plate or the like (not shown) arranged between the blood flow sensor and the living body. After (reflected light 5), the process proceeds toward the light receiving element 14. After being diffused inside the living body 6, other light is reflected and scattered by the blood 7 and the stationary tissue 8 in the living body. The scattered light 9 and the interference light 11 of the scattered light 10 from the stationary tissue 8 of the living body are received by the light receiving element 14 through the pinhole 13 formed in the light-shielding structure 12. After Fourier transforming the received light output, the first moment of the power spectrum proportional to the blood flow rate is calculated. Further, from the light emitting element, in addition to the coherent laser light having a high directionality effective for measuring the blood flow, natural light 14 emitted in all directions which can be noise light is also emitted.

また、一般に発光素子(面発光レーザ)から出射する光の強度はガウシアン分布で近似される分布16を有し、発光素子(面発光レーザ)のレーザ光の光軸方向に対する広がり角度の関数としてあらわされ、中心部すなわち広がり角度がゼロ(光軸)17での光強度が最も高く、広がり角度が大きくなるにつれて強度は低下する。生体表面での反射位置が強度の高い中心部付近(中心部付近より若干ピンホール側に広がった角度)の位置になるようにすれば、強度の高い光を有効に使用できるが、生体表面からの反射光が直接ピンホールに入る場合、血流量信号成分を相対的に大幅に低下させることになり、かえってSN比の劣化を招く。
従って、SN比(Signal/Noise、 ノイズに対する信号出力比)を高めるには、できるだけ中心部付近の高い強度の光を使用し、かつ生体表面からの直接反射光がピンホールを通って受光素子に到達しないようにすることが必要である。
Further, in general, the intensity of the light emitted from the light emitting element (surface emitting laser) has a distribution 16 approximated by the Gaussian distribution, and appears as a function of the spread angle of the laser light of the light emitting element (surface emitting laser) with respect to the optical axis direction. The light intensity is highest at the central portion, that is, at the spread angle of zero (optical axis) 17, and the intensity decreases as the spread angle increases. If the reflection position on the surface of the living body is set to a position near the center where the intensity is high (an angle slightly wider toward the pinhole side than near the center), high-intensity light can be effectively used, but from the surface of the living body. When the reflected light of the above directly enters the pinhole, the blood flow signal component is relatively significantly reduced, which in turn causes deterioration of the SN ratio.
Therefore, in order to increase the signal-to-noise ratio (SN ratio, signal output ratio to noise), use high-intensity light as close to the center as possible, and direct reflected light from the biological surface passes through the pinhole to the light receiving element. It is necessary to prevent it from reaching.

図2は図1の発光素子2、受光素子14付近を拡大した図であり、発光素子2から出射した光3の生体表面(皮膚)4で反射した光5がピンホール13を通って受光素子14にて受光される様子を示した説明図である。本発明の主体は光学系の実装方法にあるので、電子、機構系の説明は省略する。 FIG. 2 is an enlarged view of the vicinity of the light emitting element 2 and the light receiving element 14 of FIG. 1, and the light 5 reflected by the biological surface (skin) 4 of the light 3 emitted from the light emitting element 2 passes through the pinhole 13 and receives the light receiving element. It is explanatory drawing which showed the state that the light is received at 14. Since the main subject of the present invention is the mounting method of the optical system, the description of the electronic and mechanical systems will be omitted.

(数1) θth =Arctan(d/h) (1) (Equation 1) θth = Arctan (d / h) (1)

上記の数式1におけるθth、dおよびhを表1に示す。Etlはピンホール13の上部の左端、Ebrはピンホール13の下の右端、fはEtlとEbrを結ぶ直線が受光素子14の受光面と交じあう点である。gはEbrから受光面に垂直におろした直線が受光面と交じ合う点である。dはピンホール13の幅d0と、gとfを結ぶ線分の長さl(g、f)との和である。hはピンホール13の高さh0とEbrとgを結ぶ線分(ギャップ)の長さl(Ebr、g)との和である。受光面がgとfを結ぶ線分の長さl(g、f)より小さい場合には、dはピンホールから見た際にみられる受光面の端の位置により決定される。図2に示すように受光面がピンホール13の幅dと、gとfを結ぶ線分の長さl(g、f)との和よりも大きい場合には、d/hはd0/h0で近似できる。角度θthは発光素子2からの出射光の一部の光が生体表面4にて反射された後、ピンホール13を通って受光される限界の角度を示す。Lは発光素子2の出射口位置とピンホール13の中心軸位置との距離で、生体表面4での反射角θがθthでピンホール13に入射するときの発光素子2の出射口位置とピンホール13の中心軸位置の距離Lを特にLthとする。LをLthよりも大きくすると、生体表面4で反射したいかなる光もピンホールには入ることはない。なお、図2では発光素子2の光軸とピンホール13の長手方向が互いに平行であるが、発光素子2の光軸がピンホール13の長手方向に対して傾いている場合にも、前記受光される限界の角度は、発光素子2の光軸の傾き角度とは無関係で生体表面4の法線となす角度θによりのみ決定される。なお、発光素子2から出射した光は、血流量センサと生体間に配置された透明ガラス平板等を介して生体表面(皮膚)4に到達するが、ここでは平板内部雰囲気との屈折率差は無いものとして説明した。 Table 1 shows θ th , d, and h in the above equation 1. Etl is the upper left end of the pinhole 13, Ebr is the right end below the pinhole 13, and f is the point where the straight line connecting Etl and Ebr intersects the light receiving surface of the light receiving element 14. g is a point where a straight line drawn from Ebr perpendicular to the light receiving surface intersects the light receiving surface. d is the sum of the width d0 of the pinhole 13 and the length l (g, f) of the line segment connecting g and f. h is the sum of the height h 0 of the pinhole 13 and the length l (Ebr, g) of the line segment (gap) connecting Ebr and g. When the light receiving surface is smaller than the length l (g, f) of the line segment connecting g and f, d is determined by the position of the edge of the light receiving surface seen from the pinhole. As shown in FIG. 2, when the light receiving surface is larger than the sum of the width d of the pinhole 13 and the length l (g, f) of the line segment connecting g and f, d / h is d0 / h0. Can be approximated by. The angle θth indicates the limit angle at which a part of the light emitted from the light emitting element 2 is reflected by the biological surface 4 and then received through the pinhole 13. L is the distance between the exit port position of the light emitting element 2 and the central axis position of the pinhole 13, and is the exit port position and pin of the light emitting element 2 when the reflection angle θ on the biological surface 4 is θth and is incident on the pinhole 13. Let Lth be the distance L at the center axis position of the hole 13. When L is made larger than Lth, any light reflected by the living body surface 4 does not enter the pinhole. In FIG. 2, the optical axis of the light emitting element 2 and the longitudinal direction of the pinhole 13 are parallel to each other, but even when the optical axis of the light emitting element 2 is tilted with respect to the longitudinal direction of the pinhole 13, the light receiving light is received. The limit angle to be set is determined only by the angle θ formed with the normal of the biological surface 4 regardless of the inclination angle of the optical axis of the light emitting element 2. The light emitted from the light emitting element 2 reaches the living body surface (skin) 4 via the blood flow sensor and the transparent glass flat plate arranged between the living body, but here, the difference in refractive index from the atmosphere inside the flat plate is Explained as not.

ピンホール13の穴の径を小さくすることによりアスペクト比を高めることができるが、ピンホール径を小さくすると受光される光量が低下し、受光部14の暗電流と同等程度まで光量が低下すると、信号が微弱となり、ノイズが増えるためにピンホール径を小さくするには限界がある。一方で、散乱光による干渉の結果発生するスペックルパターン(斑点)のサイズにも依存するため、ピンホール径を大きくしすぎると、生体からの散乱光9に基づいた血流量の変動に関する信号変化が小さくなり、血流量信号検出感度が低下(悪化)する。ピンホール径は通常、小型の携帯可能のセンサでは、レンズ等の光学系を設けない場合には、30μmから200μmの範囲である。 The aspect ratio can be increased by reducing the hole diameter of the pinhole 13, but if the pinhole diameter is reduced, the amount of light received is reduced, and if the amount of light is reduced to the same level as the dark current of the light receiving unit 14, There is a limit to reducing the pinhole diameter because the signal becomes weak and noise increases. On the other hand, since it also depends on the size of the speckle pattern (spots) generated as a result of interference by scattered light, if the pinhole diameter is made too large, the signal changes related to the fluctuation of blood flow rate based on the scattered light 9 from the living body. Decreases (deteriorates) the blood flow signal detection sensitivity. The pinhole diameter is usually in the range of 30 μm to 200 μm in a small portable sensor without an optical system such as a lens.

一般に、生体内の血管にある血液7からの反射散乱光9は、組織内を透過し微弱化すると同時に、血管内の血液でほんの一部の光が散乱光として生体外の受光素子14に入るために非常に微弱光である。従って、発光素子(面発光レーザ)2から出射され、直接生体の表面(皮膚)4にて反射する光5がピンホール13を通って受光素子14に入る光ならびに発光素子2からあらゆる方向に向かって発光する自然光、言い換えれば生体の内部から以外の光や散乱光の受光を抑止することが、取りもなおさず感度(SN比)を高めることになる。 In general, the reflected scattered light 9 from the blood 7 in the blood vessel in the living body passes through the tissue and is weakened, and at the same time, only a part of the light in the blood in the blood vessel enters the light receiving element 14 outside the living body as scattered light. Because of the very faint light. Therefore, the light 5 emitted from the light emitting element (surface emitting laser) 2 and directly reflected by the surface (skin) 4 of the living body passes through the pinhole 13 and enters the light receiving element 14 and is directed in all directions from the light emitting element 2. Suppressing the reception of natural light that emits light, in other words, light other than from the inside of the living body or scattered light, will increase the sensitivity (SN ratio) for the time being.

拡散角θが<Arctan (d/h)のとき、生体表面(皮膚)4からの反射光5が直接ピンホール13を通して受光素子14の受光面に到達することになり、相対的に血管の血液からの散乱光9の強度を低下させる。そこで、ピンホール13の位置を発光素子(面発光レーザ)2から離すこと、あるいは同じピンホール13の位置でh/dを大きくする、すなわち、θ>θthのとき、生体表面(皮膚)4からの反射光5が受光面に入ることを防ぐことができる。言い換えれば、生体表面(皮膚)4からの反射光5は一切ピンホール13を通って受光されることはない。一方、発光素子(面発光レーザ)2の中央部付近の強度が高い光を利用するには、ピンホール13の位置を発光素子(面発光レーザ)2に近づけて、θを小さくする必要がある。このように、生体表面(皮膚)4からの直接反射光5が受光面入らないようにした上で、かつ発光素子(面発光レーザ)2の中央部の強度の高い光を使用するためにはθthを小さく、すなわちh/dを大きくする必要がある。 When the diffusion angle θ is <Arctan (d / h), the reflected light 5 from the living body surface (skin) 4 directly reaches the light receiving surface of the light receiving element 14 through the pinhole 13, and the blood in the blood vessels is relatively relative. Decreases the intensity of the scattered light 9 from. Therefore, the position of the pinhole 13 is separated from the light emitting element (surface emitting laser) 2, or h / d is increased at the same pinhole 13 position, that is, when θ> θth, the living body surface (skin) 4 It is possible to prevent the reflected light 5 of the above from entering the light receiving surface. In other words, the reflected light 5 from the living body surface (skin) 4 is not received at all through the pinhole 13. On the other hand, in order to utilize high-intensity light near the center of the light emitting element (surface emitting laser) 2, it is necessary to move the pinhole 13 closer to the light emitting element (surface emitting laser) 2 to reduce θ. .. In this way, in order to prevent the directly reflected light 5 from the living body surface (skin) 4 from entering the light receiving surface and to use the high-intensity light in the central portion of the light emitting element (surface emitting laser) 2. It is necessary to reduce θth, that is, increase h / d.

θ>θthの時、発光素子(面発光レーザ)2と高アスペクト比のピンホール13を有する受光素子14を近づけることにより、発光素子(面発光レーザ)2の高い強度の光を有効に使用でき、生体表面(皮膚)4からの反射光5を抑止できる効果があるのは前述したが、発光素子(面発光レーザ)2と高アスペクト比のピンホール13を有する受光素子を近づける際には、特に皮膚4からの反射光4の他にもう一つ生体からの散乱光とは無関係の光、例えば、レーザ2からあらゆる角度に拡散される自然光15(レーザ光の出射の際に必ず自然発光も起こる)やレーザ光の一部が装置内部で反射した光が受光素子14に入ることを防ぐ必要がある。これらの光は高アスペクト比のピンホール13を有する構造体12を遮光体にすることにより、ピンホール13以外からの光が入らないようにすることができる。 When θ> θ th , the high intensity light of the light emitting element (surface emitting laser) 2 is effectively used by bringing the light emitting element (surface emitting laser) 2 and the light receiving element 14 having the pinhole 13 having a high aspect ratio close to each other. As mentioned above, it is possible to suppress the reflected light 5 from the surface (skin) 4 of the living body, but when the light emitting element (surface emitting laser) 2 and the light receiving element having the pinhole 13 having a high aspect ratio are brought close to each other, In particular, in addition to the reflected light 4 from the skin 4, another light unrelated to the scattered light from the living body, for example, the natural light 15 diffused from the laser 2 at all angles (natural light emission when the laser light is emitted). It is also necessary to prevent the light reflected from the inside of the device by a part of the laser light from entering the light receiving element 14. These lights can be prevented from entering light from other than the pinholes 13 by making the structure 12 having the pinholes 13 having a high aspect ratio a light-shielding body.

図3に、ピンホール13のアスペクト比を変化させたとき、皮膚4への反射角θ=θthおけるレーザ2の出射光位置とピンホール13の中心軸位置間の距離、ならびにθthにおける光ビームの中央部17の光ビーム強度に対しての強度割合を示す。θthは数式1で与えられる。 FIG. 3 shows the distance between the emission light position of the laser 2 and the central axis position of the pinhole 13 at the reflection angle θ = θ th to the skin 4 when the aspect ratio of the pinhole 13 is changed, and the light at θ th . The intensity ratio to the light beam intensity of the central portion 17 of the beam is shown. θ th is given by Equation 1.

本発明を実施するために、図4に示すように、キャビティ構造のセラミック基板19で形成した凹部の中にある発光素子2ならびに受光素子14等を気密封止ならびに生体との接触部の面積を一定にするために透明突起21を上面とした面が平行の透明ガラス(屈折率n=1.53)20によって凹部を封止した構造のセンサを作製した。この場合、ピンホール13によって反射光5を抑止できる限界の生体表面4における反射角度θ’thは前述のガラス20がない場合の数式1のθthではなく、下記の数式2で表される。なお、nは透明ガラスの屈折率である。 In order to carry out the present invention, as shown in FIG. 4, the light emitting element 2 and the light receiving element 14 and the like in the recess formed by the ceramic substrate 19 having a cavity structure are hermetically sealed and the area of the contact portion with the living body is adjusted. In order to make the sensor constant, a sensor having a structure in which the concave portion is sealed with transparent glass (refractive index n = 1.53) 20 having a surface with the transparent protrusion 21 as the upper surface parallel to the upper surface is manufactured. In this case, the reflection angle θ'th on the biological surface 4 at the limit where the reflected light 5 can be suppressed by the pinhole 13 is expressed by the following mathematical formula 2 instead of the θth of the mathematical formula 1 when the glass 20 is not present. In addition, n is the refractive index of transparent glass.

(数2)θth’=Arcsin (sin(θth)/n) (2) (Equation 2) θ th '= Arcsin (sin (θ th ) / n) (2)

使用したピンホール13を形成した遮光構造体12はシリコンをMEMS(Micro Electro Mechanical Systems)技術を用いて深堀エッチングにより作製し、シリコンだと近赤外を透過するので遮光のため外壁を約300nmの厚さのTiターゲットをスパッタリングプロセスでコートした。使用した最も高アスペクト比のピンホール13はd0(径)50μm、h0(高さ)700μmである。 The light-shielding structure 12 on which the pinhole 13 used was formed is made of silicon by deep etching using MEMS (Micro Electro Mechanical Systems) technology, and since silicon transmits near infrared rays, the outer wall is about 300 nm for light-shielding. Thick Ti targets were coated by a sputtering process. The pinhole 13 with the highest aspect ratio used is d 0 (diameter) 50 μm and h 0 (height) 700 μm.

ここで受光素子14の限界入射角θth を決めるパラメータhとdの比(すなわち受光素子における受光幅dによって、受光面とピンホール上部の高さhで割った値)は、ピンホール下部がほぼ受光面に接近していることから、h/d≒h0/d0と近似した。 The ratio of the parameter h and d for determining the critical incident angle theta th 'of the light receiving element 14 here (by the light-receiving width d in other words the light receiving element, divided by the light-receiving surface and the pinhole upper height h), the pin hole lower Is close to the light receiving surface, so it was approximated as h / d ≈ h 0 / d 0 .

この場合、数式1からθth=Arctan(50/700)=4.1度である。透明突起21と生体表面4の境界での反射角θth はArcsin (sin(θth)/n) = 2.6度である。使用した受光素子14は、暗電流20nAのフォトダイオードチップ、発光素子2として、波長860nm、e2分の1の広がり角度10度の発光素子(面発光レーザ)チップである。 In this case, from Equation 1, θ th = Arctan (50/700) = 4.1 degrees. Reflection angle theta th at the boundary of the transparent protrusions 21 and the biological surface 4 'is Arcsin (sin (θ th) / n) = 2.6 degrees. Light-receiving element 14 used is a photodiode chip dark current 20 nA, as the light emitting element 2, a wavelength 860 nm, a light-emitting element (the surface-emitting laser) chip 1 spread angle 10 degrees e 2 minutes.

ここで、本発明を適用しない従来法と、従来法に本発明の数式1の条件を適用した場合、ならびに高アスペクト比のピンホールを使用すると同時に、本発明の数式1の条件を適用した場合の3例の血流量センサを評価比較した結果を表2に示す。
ピンホール13を受光素子14の受光面上に載置(マウント)する従来法だと、ピンホールを載置した後、遮光液体でピンホール並びに受光素子を覆い乾燥させるポッティングという工程が加わる。その上に、小型のセンサの場合には受光素子と発光素子が近接するため、両者の間をポッティング液で両者間を埋めた場合の厚さが薄いため、発光素子から出射される自然光等の受光素子への透過を完全に防ぐのが困難で、発光素子のレーザ光を1mWの出力で発振させるだけで、透過光の受光を暗電流の1.5倍以内に抑えるのがやっとであった。一方で、本実施例に使用したTi−コートしたシリコン構造体を使用すると、ほぼ検出限界の暗電流検出となり、発光素子から出射されるあらゆる方向に出射される自然光も含めた光が遮光されているのが確認できた。
Here, a conventional method to which the present invention is not applied, a case where the condition of the formula 1 of the present invention is applied to the conventional method, and a case where a pinhole having a high aspect ratio is used and the condition of the formula 1 of the present invention is applied at the same time. Table 2 shows the results of evaluation and comparison of the blood flow sensors of the three cases.
In the conventional method of mounting the pinhole 13 on the light receiving surface of the light receiving element 14, a step of potting is added in which the pinhole and the light receiving element are covered with a light-shielding liquid and dried after the pinhole is placed. In addition, in the case of a small sensor, since the light receiving element and the light emitting element are close to each other, the thickness when the space between the two is filled with the potting liquid is thin, so that natural light emitted from the light emitting element, etc. It was difficult to completely prevent transmission to the light receiving element, and it was finally possible to suppress the reception of transmitted light within 1.5 times the dark current simply by oscillating the laser light of the light emitting element with an output of 1 mW. On the other hand, when the Ti-coated silicon structure used in this embodiment is used, the dark current is detected at almost the detection limit, and the light including the natural light emitted from the light emitting element in all directions is blocked. I was able to confirm that it was there.

また、これまでは、1)皮膚からの反射光をできるだけ受光しないように、受光素子をレーザ出射位置から離して配置させるか、2)あるいは、発光素子と受光素子を接近させたときに、生体表面(皮膚)からの反射光を含め受光した大きなDC成分が加わった信号から血流量に関わる成分のみを取り出す高度な信号処理を行っていた。 In addition, until now, 1) the light receiving element is placed away from the laser emission position so as not to receive the reflected light from the skin as much as possible, or 2) or when the light emitting element and the light receiving element are brought close to each other, the living body Advanced signal processing was performed to extract only the components related to blood flow from the signal to which a large DC component received, including the reflected light from the surface (skin), was added.

指を一定の接触圧で突起21に当てて測定した場合、Bのセンサにおいて、生体で反射された光5がピンホール13に入らないような位置、すなわちθ>θthを満足した位置関係となるようにピンホール13を形成した遮光構造体12で受光素子14を覆うことにより、θ<θthの場合と比べ7倍ほど向上させることができた。一方、高アスペクト比のピンホール13を形成した遮光構造体12で受光素子14を、θ>θthを満足した位置関係となるように覆ったセンサCは、遮光効果とVCSEL出射光の強度分布における高い強度の光利用が可能となり、従来法と比べSN比を51倍向上させることができた。 When a finger is applied to the protrusion 21 with a constant contact pressure for measurement, the position where the light 5 reflected by the living body does not enter the pinhole 13 in the sensor B, that is, the positional relationship satisfying θ> θth is obtained. By covering the light receiving element 14 with the light-shielding structure 12 having the pinhole 13 formed as described above, it was possible to improve the light-receiving element 14 by about 7 times as compared with the case of θ <θth. On the other hand, the sensor C in which the light receiving element 14 is covered with the light-shielding structure 12 having the pinhole 13 having a high aspect ratio so as to satisfy θ> θth has a light-shielding effect and the intensity distribution of the VCSEL emitted light. High-intensity light can be used, and the SN ratio can be improved 51 times compared to the conventional method.

さらに、受光部14並びに遮光構造体12を載置する下地は、受光素子14をマウントする金属膜と同じ金属膜(例えば、NiとAuの2層)22を形成しておくことにより、下部からの光の受光を防ぐことができる。 Further, the base on which the light receiving portion 14 and the light shielding structure 12 are placed is formed from the lower portion by forming the same metal film (for example, two layers of Ni and Au) 22 as the metal film on which the light receiving element 14 is mounted. It is possible to prevent the reception of light.

数式1と数式2は前述したように、出射光の光軸の傾きとは無関係に成立する。そこで、光軸を若干ピンホール13側に傾けることによりレーザ光出射位置とピンホール中心軸の位置の距離を接近させなくても接近させたと同様に、生体表面(皮膚)4からの反射光5を受光することなく出射光の強度が高い中央部の光を利用することができる。
光軸を傾けた場合でも、傾けていない場合と同様に、生体表面4からの反射光5が受光素子14に入射する角度θとピンホール13のアスペクト比等で求められるθthにより反射光5による影響の除去効果が決まる。傾けることによりSN比の大幅な改善があるのは確かであるが、その傾ける最適な角度については、生体の状態に大きく依存することもあって予め求めることは実際上難しい。本実施例では発光素子(VCSEL)チップを約0.5度、ピンホール形成構造体側へ傾けた結果、SN比がおよそ3倍向上した。
As described above, Equation 1 and Equation 2 hold regardless of the inclination of the optical axis of the emitted light. Therefore, by tilting the optical axis slightly toward the pinhole 13, the reflected light 5 from the biological surface (skin) 4 is brought closer without having to make the distance between the laser beam emission position and the pinhole central axis close. It is possible to use the light in the central portion where the intensity of the emitted light is high without receiving the light.
Even when the optical axis is tilted, the reflected light 5 is based on the angle θ at which the reflected light 5 from the biological surface 4 is incident on the light receiving element 14 and the θth obtained by the aspect ratio of the pinhole 13 and the like, as in the case where the optical axis is not tilted. The effect of removing the effect is determined. It is certain that tilting will significantly improve the signal-to-noise ratio, but it is practically difficult to determine the optimum angle for tilting in advance because it largely depends on the condition of the living body. In this example, as a result of tilting the light emitting element (VCSEL) chip about 0.5 degrees toward the pinhole forming structure side, the SN ratio was improved about 3 times.

本発明を適用することにより、より高感度で、小型化の血流量センサを実現できるために、より精度よく血流量や脈波高さの変化により炎天下時における作業や運動における脱水症、糖尿病時における抹消血流量の変化や運動時における血流量の変化の検知にも適用できる。 By applying the present invention, a more sensitive and miniaturized blood flow sensor can be realized. Therefore, due to changes in blood flow and pulse wave height with higher accuracy, dehydration in work and exercise under the scorching sun, and in diabetes. It can also be applied to detect changes in peripheral blood flow and changes in blood flow during exercise.

1 センサ
2 発光素子(面発光レーザ) チップ
3 発光素子から出射した光
4 生体表面(皮膚)
5 生体表面で反射した光
6 生体
7 血管内の血液
8 生体内の静止組織
9 血液で反射した散乱光
10 静止組織で反射した散乱光
11 血液で反射した散乱光と静止組織で反射した散乱光
12 遮光構造体
13 ピンホール
14 受光素子(フォトダイオード)チップ
15 発光素子からあらゆる方向に出射する自然光
16 発光素子から出射される光の強度分布
17 光の強度分布で最も強度が高い中心部(光軸方向)
18 生体表面で反射する光の強度
19 凹部を形成するセラミック基盤
20 封止ガラス
21 接触面積を一定にするための透明突起
22 金属膜
1 Sensor 2 Light emitting element (surface emitting laser) chip 3 Light emitted from the light emitting element 4 Living body surface (skin)
5 Light reflected on the surface of the living body
6 Living body 7 Blood in blood vessels 8 Static tissue in the living body 9 Scattered light reflected by blood 10 Scattered light reflected by static tissue 11 Scattered light reflected by blood and scattered light reflected by static tissue 12 Light-shielding structure 13 Pinhole 14 Light receiving element (photonode) chip 15 Natural light emitted from the light emitting element in all directions 16 Intensity distribution of light emitted from the light emitting element 17 Central part (optical axis direction) having the highest intensity in the light intensity distribution
18 Intensity of light reflected on the surface of the living body 19 Ceramic base forming recesses 20 Encapsulating glass 21 Transparent protrusions 22 Metal film to keep the contact area constant

Claims (5)

発光素子からの光で生体を照射した際に発生する生体内部組織からの散乱光を検出することで生体情報を得る生体センサにおいて、前記散乱光を受光素子へ向けて透過させるピンホールを有する遮光構造体で前記受光素子の上面及び側面を覆うとともに、前記発光素子からの前記光の一部が生体表面で反射して前記ピンホールに入射する反射光の生体表面での反射角θが、前記ピンホールのアスペクト比でd/hにより制限される角度θth=Arctan(d/h)よりも大きいことを特徴とする生体センサ。
ここで、θは前記反射光が前記生体表面の法線となす角度、dは前記ピンホールの幅、hは前記ピンホールの深さを示す。
In a biosensor that obtains biological information by detecting scattered light from internal tissues of the living body generated when the living body is irradiated with light from a light emitting element, light shielding having a pinhole that transmits the scattered light toward the light receiving element. The structure covers the upper surface and the side surface of the light receiving element, and the reflection angle θ of the reflected light incident on the pinhole is reflected on the surface of the living body by reflecting a part of the light from the light emitting element on the surface of the living body. biometric sensor being larger than the angle theta th = Arctan the aspect ratio of the pinhole is limited by d 0 / h 0 (d 0 / h 0).
Here, θ is the angle formed by the reflected light with the normal of the living body surface, d 0 is the width of the pinhole, and h 0 is the depth of the pinhole.
発光素子からの光で生体を照射した際に発生する生体内部組織からの散乱光を検出することで生体情報を得る生体センサにおいて、キャビティ構造の基板凹部内に発光素子と受光素子とを配置し、さらに前記基板凹部内において、前記散乱光を受光素子へ向けて透過させるピンホールを有する遮光構造体で前記受光素子の上面及び側面を覆うとともに、前記生体との接触面積を一定にするための透明突起部を上面とした透明材料で前記基板凹部を封止し、前記発光素子からの前記光の一部が生体表面で反射して前記ピンホールに入射する反射光の生体表面での反射角θが、前記ピンホールのアスペクト比d/hにより制限される角度θ‘th=Arcsin(sin(θth)/n)よりも大きいことを特徴とする生体センサ。
ここで、θは前記反射光が前記生体表面の法線となす角度、
θth=Arctan(d/h
は前記ピンホールの幅、hは前記ピンホールの深さ、
nは前記透明材料の屈折率。
In a biosensor that obtains biometric information by detecting scattered light from internal tissues of the living body generated when the living body is irradiated with light from the light emitting element, the light emitting element and the light receiving element are arranged in a substrate recess of a cavity structure. Further, in the recess of the substrate, the upper surface and the side surface of the light receiving element are covered with a light-shielding structure having a pin hole for transmitting the scattered light toward the light receiving element, and the contact area with the living body is made constant. The substrate recess is sealed with a transparent material having a transparent protrusion on the upper surface, and a part of the light from the light emitting element is reflected on the surface of the living body and the reflected light incident on the pinhole is reflected on the surface of the living body. biometric sensor theta, wherein greater than the pin hole of an aspect ratio d 0 / angle is limited by the h 0 θ 'th = Arcsin ( sin (θ th) / n).
Here, θ is the angle at which the reflected light forms the normal of the living body surface.
θ th = Arctan (d 0 / h 0 )
d 0 is the width of the pinhole, h 0 is the depth of the pinhole,
n is the refractive index of the transparent material.
前記受光素子並びに遮光構造体を載置する部位の下地は、前記発光素子並びに前記受光素子をマウントするための金属膜と同じ金属膜あるいは他の材料で遮光することを特徴とする請求項1と2のいずれかに記載の生体センサ。 The first aspect of the present invention is that the base of the portion on which the light receiving element and the light receiving structure are placed is light-shielded by the same metal film or other material as the metal film for mounting the light emitting element and the light receiving element. 2. The biosensor according to any one of 2. 前記キャビティ構造の基板凹部における前記発光素子の前記光の出射位置と前記光が入射する前記生体表面との距離が、前記受光素子の上面と前記生体表面との距離よりも短い距離としたことを特徴とする請求項1から3のいずれかに記載の生体センサ。 The distance between the light emitting position of the light emitting element and the living body surface on which the light is incident in the substrate recess of the cavity structure is set to be shorter than the distance between the upper surface of the light receiving element and the living body surface. The biosensor according to any one of claims 1 to 3. 前記発光素子は、ガウシアンビームを出射する面発光レーザであることを特徴とする請求項1から4のいずれかに記載の生体センサ。
The biosensor according to any one of claims 1 to 4, wherein the light emitting element is a surface emitting laser that emits a Gaussian beam.
JP2019107536A 2019-06-09 2019-06-09 biosensor Active JP7264462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019107536A JP7264462B2 (en) 2019-06-09 2019-06-09 biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019107536A JP7264462B2 (en) 2019-06-09 2019-06-09 biosensor

Publications (2)

Publication Number Publication Date
JP2020199044A true JP2020199044A (en) 2020-12-17
JP7264462B2 JP7264462B2 (en) 2023-04-25

Family

ID=73742938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019107536A Active JP7264462B2 (en) 2019-06-09 2019-06-09 biosensor

Country Status (1)

Country Link
JP (1) JP7264462B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000467A (en) * 2002-03-15 2004-01-08 U-Medica Inc Pulse wave sensor
JP2006130208A (en) * 2004-11-09 2006-05-25 Kyushu Univ Sensor part and biosensor
JP2016112279A (en) * 2014-12-17 2016-06-23 セイコーエプソン株式会社 Image acquisition device, biological information acquisition device, and electronic apparatus
JP2016123717A (en) * 2015-01-05 2016-07-11 セイコーエプソン株式会社 Biological information measurement module, and biological information measurement device
US20190086316A1 (en) * 2016-04-06 2019-03-21 Laser Associated Sciences, Inc. System for blood flow measurement with affixed laser speckle contrast analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000467A (en) * 2002-03-15 2004-01-08 U-Medica Inc Pulse wave sensor
JP2006130208A (en) * 2004-11-09 2006-05-25 Kyushu Univ Sensor part and biosensor
JP2016112279A (en) * 2014-12-17 2016-06-23 セイコーエプソン株式会社 Image acquisition device, biological information acquisition device, and electronic apparatus
JP2016123717A (en) * 2015-01-05 2016-07-11 セイコーエプソン株式会社 Biological information measurement module, and biological information measurement device
US20190086316A1 (en) * 2016-04-06 2019-03-21 Laser Associated Sciences, Inc. System for blood flow measurement with affixed laser speckle contrast analysis

Also Published As

Publication number Publication date
JP7264462B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
US11452448B2 (en) System, device, and method for determination of intraocular pressure
US9241644B2 (en) Biological information detector, biological information measuring device, and method for designing reflecting part in biological information detector
JP4475601B2 (en) Self-luminous sensor device and biological information detection method
Higurashi et al. An integrated laser blood flowmeter
JP2019164169A (en) Apparatus and methods for detecting optical signals from implanted sensors
CN109152544B (en) Blood flow measurement system using adherent laser speckle contrast analysis
US20160313244A1 (en) Optical sensing apparatus provided with light source and light detector
CN109069011B (en) Optical measuring device for cardiovascular diagnosis
US20150190058A1 (en) Biological information detector and biological information measuring device
EP2781186A1 (en) Biological information detection apparatus
JPH09173322A (en) Pulse oximeter sensor
WO2017094089A1 (en) Photosensor
WO2020194036A1 (en) Ppg sensor having a high signal to noise ratio
Omori et al. Integrated Blood Flowmeter Using Micromachining Technology
JP5031896B2 (en) Self-luminous sensor device
JP6507670B2 (en) Information acquisition device
JP2010200970A (en) Optical sensor and method for manufacturing the same
JP7264462B2 (en) biosensor
JP4460566B2 (en) Optical sensor and biological information measuring device
KR102348195B1 (en) Optical Analyte Monitering System and Method
JP2018183579A (en) Optical element, biomedical measurement apparatus using the same, and luminaire
US20210007604A1 (en) Sensor Device
JP2008289808A (en) Sensing apparatus for biological surface tissue
CN109199401A (en) Detection device and apparatus for measuring biological data
CN112006666B (en) Biological information measuring device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230406

R150 Certificate of patent or registration of utility model

Ref document number: 7264462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150