JP2020198245A - Method for manufacturing lithium ion battery - Google Patents

Method for manufacturing lithium ion battery Download PDF

Info

Publication number
JP2020198245A
JP2020198245A JP2019104544A JP2019104544A JP2020198245A JP 2020198245 A JP2020198245 A JP 2020198245A JP 2019104544 A JP2019104544 A JP 2019104544A JP 2019104544 A JP2019104544 A JP 2019104544A JP 2020198245 A JP2020198245 A JP 2020198245A
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
negative electrode
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019104544A
Other languages
Japanese (ja)
Other versions
JP7422493B2 (en
Inventor
花歩 鈴木
Kaho Suzuki
花歩 鈴木
勇輔 中嶋
Yusuke Nakajima
勇輔 中嶋
山内 昇
Noboru Yamauchi
昇 山内
堀江 英明
Hideaki Horie
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Original Assignee
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Sanyo Chemical Industries Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2019104544A priority Critical patent/JP7422493B2/en
Publication of JP2020198245A publication Critical patent/JP2020198245A/en
Application granted granted Critical
Publication of JP7422493B2 publication Critical patent/JP7422493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a method for manufacturing a lithium ion battery, which enables the reduction in the battery internal resistance and stable manufacturing of a lithium ion battery superior in charge/discharge characteristic even if an electrode active material slurry containing an electrode active material and an electrolyte solution is used to manufacture an electrode.SOLUTION: A method for manufacturing a lithium ion battery having a positive electrode, a separator and a negative electrode which are laminated in this order comprises the steps of: coating a positive electrode current collector with a positive electrode active material slurry containing a positive electrode active material and an electrolyte solution and arranged to have an electrolyte concentration of 3-4 mol/L in the electrolyte solution, thereby obtaining the positive electrode; coating a negative electrode current collector with a negative electrode active material slurry containing a negative electrode active material and an electrolyte solution and arranged to have an electrolyte concentration of 0.1-2 mol/L in the electrolyte solution, thereby obtaining the negative electrode; and disposing the positive and negative electrodes so that they are opposed to each other through the separator.SELECTED DRAWING: None

Description

本発明は、リチウムイオン電池の製造方法に関する。 The present invention relates to a method for manufacturing a lithium ion battery.

近年、環境保護のため、二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が鋭意行われている。二次電池としては、高エネルギー密度、高出力密度が達成できるリチウムイオン電池に注目が集まっている。 In recent years, reduction of carbon dioxide emissions has been earnestly desired for environmental protection. In the automobile industry, expectations are high for the reduction of carbon dioxide emissions by introducing electric vehicles (EVs) and hybrid electric vehicles (HEVs), and the development of secondary batteries for driving motors, which holds the key to their practical application, is enthusiastic. It is done. As a secondary battery, attention is focused on a lithium ion battery that can achieve high energy density and high output density.

このようなリチウムイオン電池を製造する方法として、例えば、特許文献1には、正極集電体及び負極集電体上に正極活物質粒子と結着剤とを溶剤に溶解分散して得られる正極スラリーと負極活物質粒子と結着剤とを溶剤に溶解分散して得られる負極スラリーとをそれぞれ塗布して塗膜を形成した後、塗膜を乾燥、焼結等することなく、集電体に正極電極組成物又は負極電極組成物を直接配置することでリチウムイオン電池を得るリチウムイオン電池の製造方法が開示されている。 As a method for producing such a lithium ion battery, for example, Patent Document 1 describes a positive electrode obtained by dissolving and dispersing positive electrode active material particles and a binder in a solvent on a positive electrode current collector and a negative electrode current collector. A negative electrode slurry obtained by dissolving and dispersing the slurry, the negative electrode active material particles, and the binder in a solvent is applied to form a coating film, and then the current collector is not dried or sintered. Disclosed is a method for manufacturing a lithium ion battery, which obtains a lithium ion battery by directly arranging the positive electrode composition or the negative electrode composition.

特開2017−10937号公報JP-A-2017-10937

特許文献1に記載された方法では、電極活物質スラリーを塗布して塗膜を形成した後、塗膜を乾燥、焼結等をする必要が無いので、リチウムイオン電池を効率よく製造することができる。
しかしながら、正極活物質スラリーにおいて正極活物質の比重が大きいことに起因して、正極活物質スラリーに固液分離が起こり易いことや、正極活物質スラリーにおいて導電助剤の凝集が進み易いことがあり、得られるリチウムイオン電池の電池内部抵抗や、充放電特性にバラツキが生じることがあり、改善の余地があった。
In the method described in Patent Document 1, it is not necessary to dry, sinter, etc. the coating film after applying the electrode active material slurry to form the coating film, so that the lithium ion battery can be efficiently manufactured. it can.
However, due to the large specific gravity of the positive electrode active material in the positive electrode active material slurry, solid-liquid separation may easily occur in the positive electrode active material slurry, and aggregation of the conductive auxiliary agent may easily proceed in the positive electrode active material slurry. , The internal resistance of the obtained lithium-ion battery and the charge / discharge characteristics may vary, and there is room for improvement.

以上の状況を踏まえて、本発明は、電極活物質と電解液とを含む電極活物質スラリーを用いて電極を作製しても、電池内部抵抗を低減でき、充放電特性に優れるリチウムイオン電池を安定して製造することができるリチウムイオン電池の製造方法を提供することを目的とする。 Based on the above situation, the present invention provides a lithium ion battery that can reduce the internal resistance of the battery and has excellent charge / discharge characteristics even when the electrode is manufactured using the electrode active material slurry containing the electrode active material and the electrolytic solution. An object of the present invention is to provide a method for producing a lithium ion battery that can be stably produced.

本発明者らは、上記課題を解決するために鋭意検討した結果、正極活物質スラリーの電解質濃度と、負極活物質スラリーの電解質濃度とを制御することにより、正極活物質スラリーの安定性を向上することができ、正極活物質スラリーの固液分離や導電助剤の凝集といった問題を解決でき、電池内部抵抗を低減でき、充放電特性に優れるリチウムイオン電池を安定して製造することができることを見出し、本発明に到達した。 As a result of diligent studies to solve the above problems, the present inventors have improved the stability of the positive electrode active material slurry by controlling the electrolyte concentration of the positive electrode active material slurry and the electrolyte concentration of the negative electrode active material slurry. It is possible to solve problems such as solid-liquid separation of the positive electrode active material slurry and aggregation of the conductive auxiliary agent, reduce the internal resistance of the battery, and stably manufacture a lithium ion battery having excellent charge / discharge characteristics. The heading has reached the present invention.

すなわち、本発明は、正極、セパレータ及び負極がこの順に積層されたリチウムイオン電池の製造方法であって、正極活物質と電解液とを含み、該電解液の電解質濃度が2.5〜4mol/Lである正極活物質スラリーを正極集電体に塗工して上記正極を得る工程と、負極活物質と電解液とを含み、該電解液の電解質濃度が0.1〜2mol/Lである負極活物質スラリーを負極集電体に塗工して上記負極を得る工程と、上記正極と上記負極とを、上記セパレータを介して対向して配置する工程とを有することを特徴とするリチウムイオン電池の製造方法である。 That is, the present invention is a method for manufacturing a lithium ion battery in which a positive electrode, a separator and a negative electrode are laminated in this order, and includes a positive electrode active material and an electrolytic solution, and the electrolyte concentration of the electrolytic solution is 2.5 to 4 mol / mol /. The step of applying the positive electrode active material slurry of L to the positive electrode current collector to obtain the positive electrode, and the negative electrode active material and the electrolytic solution are included, and the electrolyte concentration of the electrolytic solution is 0.1 to 2 mol / L. A lithium ion having a step of applying a negative electrode active material slurry to a negative electrode current collector to obtain the negative electrode, and a step of arranging the positive electrode and the negative electrode so as to face each other via the separator. This is a method for manufacturing batteries.

本発明によれば、電極活物質と電解液とを含む電極活物質スラリーを用いて電極を作製しても、電池内部抵抗を低減でき、充放電特性に優れるリチウムイオン電池を安定して製造することができる。 According to the present invention, even if an electrode is manufactured using an electrode active material slurry containing an electrode active material and an electrolytic solution, the internal resistance of the battery can be reduced and a lithium ion battery having excellent charge / discharge characteristics can be stably manufactured. be able to.

本発明のリチウムイオン電池の製造方法は、正極活物質と電解液とを含み、該電解液の電解質濃度が2.5〜4mol/Lである正極活物質スラリーを正極集電体に塗工して上記正極を得る工程を有する。 In the method for producing a lithium ion battery of the present invention, a positive electrode active material slurry containing a positive electrode active material and an electrolytic solution and having an electrolyte concentration of 2.5 to 4 mol / L in the electrolytic solution is applied to a positive electrode current collector. Has a step of obtaining the positive electrode.

[正極活物質]
正極活物質としては、リチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO、LiNiO、LiAlMnO、LiMnO及びLiMn等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO、LiNi1−xCo、LiMn1−yCo、LiNi1/3Co1/3Al1/3及びLiNi0.8Co0.15Al0.05)及び金属元素が3種類以上である複合酸化物[例えばLiMM’M’’(M、M’及びM’’はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/3)等]等}、リチウム含有遷移金属リン酸塩(例えばLiFePO、LiCoPO、LiMnPO及びLiNiPO)、遷移金属酸化物(例えばMnO及びV)、遷移金属硫化物(例えばMoS及びTiS)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン及びポリ−p−フェニレン及びポリビニルカルバゾール)等が挙げられ、2種以上を併用してもよい。
なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであってもよい。
[Positive electrode active material]
As the positive electrode active material, composite oxide of lithium and transition metal {composite oxide is a transition metal is one (LiCoO 2, LiNiO 2, LiAlMnO 4, LiMnO 2 and LiMn 2 O 4, etc.), transition metal elements Two types of composite oxides (eg LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co y O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2) and a composite oxide metal element is three or more [e.g. LiM a M 'b M'' c O 2 (M, M' and M '' is different from the transition metal elements, respectively , Etc.}, lithium-containing transition metal phosphates (eg LiFePO 4 , LiCoPO 4 , LiMnPO 4 and LiNiPO 4 ), for example LiNi 1/3 Mn 1/3 Co 1/3 O 2 ), etc. ), Transition metal oxides (eg MnO 2 and V 2 O 5 ), transition metal sulfides (eg MoS 2 and TiS 2 ) and conductive polymers (eg polyaniline, polypyrrole, polythiophene, polyacetylene and poly-p-phenylene and (Polyvinylcarbazole) and the like, and two or more kinds may be used in combination.
The lithium-containing transition metal phosphate may be one in which a part of the transition metal site is replaced with another transition metal.

正極活物質の体積平均粒子径は、電池の電気特性の観点から、0.01〜100μmであることが好ましく、0.1〜35μmであることがより好ましく、2〜30μmであることがさらに好ましい。
本明細書において、体積平均粒子径は、マイクロトラック法(レーザー回折・散乱法)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、日機装(株)製のマイクロトラック等を用いることができる。
The volume average particle size of the positive electrode active material is preferably 0.01 to 100 μm, more preferably 0.1 to 35 μm, and further preferably 2 to 30 μm from the viewpoint of the electrical characteristics of the battery. ..
In the present specification, the volume average particle size means the particle size (Dv50) at an integrated value of 50% in the particle size distribution obtained by the microtrack method (laser diffraction / scattering method). The microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light. A microtrack or the like manufactured by Nikkiso Co., Ltd. can be used for measuring the volume average particle size.

正極活物質は、導電助剤及び被覆用樹脂で被覆された被覆正極活物質であることが好ましい。
正極活物質の周囲が被覆用樹脂で被覆されていると、電極の体積変化が緩和され、電極の膨張を抑制することができる。
The positive electrode active material is preferably a coated positive electrode active material coated with a conductive auxiliary agent and a coating resin.
When the periphery of the positive electrode active material is coated with the coating resin, the volume change of the electrode is alleviated and the expansion of the electrode can be suppressed.

導電助剤としては、金属系導電助剤[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、炭素系導電助剤[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック及びサーマルランプブラック等)等]、及びこれらの混合物等が挙げられる。
これらの導電助剤は1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物として用いられてもよい。
なかでも、電気的安定性の観点から、より好ましくはアルミニウム、ステンレス、銀、金、銅、チタン、炭素系導電助剤及びこれらの混合物であり、さらに好ましくは銀、金、アルミニウム、ステンレス及び炭素系導電助剤であり、特に好ましくは炭素系導電助剤である。
またこれらの導電助剤としては、粒子系セラミック材料や樹脂材料の周りに導電性材料[好ましくは、上記した導電助剤のうち金属のもの]をめっき等でコーティングしたものでもよい。
As the conductive auxiliary agent, metallic conductive auxiliary agent [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon-based conductive auxiliary agent [graphite and carbon black (acetylene black, ketjen black, furnace black, etc.), Channel black, thermal lamp black, etc.), etc.], and mixtures thereof, etc. may be mentioned.
These conductive aids may be used alone or in combination of two or more. Further, it may be used as these alloys or metal oxides.
Among them, from the viewpoint of electrical stability, aluminum, stainless steel, silver, gold, copper, titanium, carbon-based conductive aids and mixtures thereof are more preferable, and silver, gold, aluminum, stainless steel and carbon are more preferable. It is a system-based conductive auxiliary agent, and particularly preferably a carbon-based conductive auxiliary agent.
Further, as these conductive auxiliaries, a conductive material [preferably a metal one among the above-mentioned conductive auxiliaries] may be coated around a particle-based ceramic material or a resin material by plating or the like.

導電助剤の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノファイバー、カーボンナノチューブ等、いわゆるフィラー系導電助剤として実用化されている形態であってもよい。 The shape (form) of the conductive auxiliary agent is not limited to the particle form, and may be a form other than the particle form, and is a form practically used as a so-called filler-based conductive auxiliary agent such as carbon nanofibers and carbon nanotubes. You may.

導電助剤の平均粒子径は、特に限定されるものではないが、電池の電気特性の観点から、0.01〜10μm程度であることが好ましい。なお、本明細書中において、「粒子径」とは、導電助剤の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。 The average particle size of the conductive auxiliary agent is not particularly limited, but is preferably about 0.01 to 10 μm from the viewpoint of the electrical characteristics of the battery. In addition, in this specification, "particle diameter" means the maximum distance L among the distances between arbitrary two points on the contour line of a conductive auxiliary agent. The value of the "average particle size" is the average value of the particle size of the particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.

被覆用樹脂と導電助剤の比率は特に限定されるものではないが、電池の内部抵抗等の観点から、重量比率で被覆用樹脂(樹脂固形分重量):導電助剤が1:0.01〜1:50であることが好ましく、1:0.2〜1:3.0であることがより好ましい。 The ratio of the coating resin to the conductive auxiliary agent is not particularly limited, but from the viewpoint of the internal resistance of the battery, etc., the coating resin (resin solid content weight): conductive auxiliary agent is 1: 0.01 in terms of weight ratio. It is preferably ~ 1:50, more preferably 1: 0.2 ~ 1: 3.0.

被覆用樹脂としては、特開2017−054703号公報に非水系二次電池活物質被覆用樹脂として記載されたものを好適に用いることができる。 As the coating resin, those described as the non-aqueous secondary battery active material coating resin in Japanese Patent Application Laid-Open No. 2017-054703 can be preferably used.

[電解液]
電解液としては、電解質及び溶媒を含む。
[Electrolytic solution]
The electrolytic solution contains an electrolyte and a solvent.

電解質としては、公知の電解液に用いられているもの等が使用でき、例えば、LiPF、LiBF、LiSbF、LiAsF、LiClO及びLiN(FSO等の無機アニオンのリチウム塩、LiN(CFSO、LiN(CSO及びLiC(CFSO等の有機アニオンのリチウム塩が挙げられる。これらの内、電池出力及び充放電サイクル特性の観点から好ましいのはLiN(FSOである。 As the electrolyte, those used in known electrolytic solutions can be used. For example, lithium salts of inorganic anions such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 and LiN (FSO 2 ) 2 are used. Examples thereof include lithium salts of organic anions such as LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 . Of these, LiN (FSO 2 ) 2 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.

溶媒としては、公知の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状カーボネート、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。 As the solvent, those used in known electrolytic solutions can be used, for example, lactone compound, cyclic or chain carbonate, chain carboxylic acid ester, cyclic or chain ether, phosphoric acid ester, nitrile compound, amide. Compounds, sulfones, sulfolanes and the like and mixtures thereof can be used.

ラクトン化合物としては、5員環(γ−ブチロラクトン及びγ−バレロラクトン等)及び6員環のラクトン化合物(δ−バレロラクトン等)等を挙げることができる。 Examples of the lactone compound include a 5-membered ring (γ-butyrolactone, γ-valerolactone, etc.) and a 6-membered ring lactone compound (δ-valerolactone, etc.).

環状カーボネートとしては、プロピレンカーボネート、エチレンカーボネート及びブチレンカーボネート等が挙げられる。
鎖状カーボネートとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート及びジ−n−プロピルカーボネート等が挙げられる。
Examples of the cyclic carbonate include propylene carbonate, ethylene carbonate and butylene carbonate.
Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate and di-n-propyl carbonate.

鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。
環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン及び1,4−ジオキサン等が挙げられる。
鎖状エーテルとしては、ジメトキシメタン及び1,2−ジメトキシエタン等が挙げられる。
Examples of the chain carboxylic acid ester include methyl acetate, ethyl acetate, propyl acetate, methyl propionate and the like.
Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
Examples of the chain ether include dimethoxymethane and 1,2-dimethoxyethane.

リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、リン酸トリ(トリパーフルオロエチル)、2−エトキシ−1,3,2−ジオキサホスホラン−2−オン、2−トリフルオロエトキシ−1,3,2−ジオキサホスホラン−2−オン及び2−メトキシエトキシ−1,3,2−ジオキサホスホラン−2−オン等が挙げられる。
ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、DMF等が挙げられる。スルホンとしては、ジメチルスルホン及びジエチルスルホン等が挙げられる。
溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。
Examples of the phosphate ester include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, and so on. Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples thereof include dioxaphosphoran-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
Examples of the nitrile compound include acetonitrile and the like. Examples of the amide compound include DMF and the like. Examples of the sulfone include dimethyl sulfone and diethyl sulfone.
One type of solvent may be used alone, or two or more types may be used in combination.

溶媒の内、電池出力及び充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状カーボネート、鎖状カーボネート及びリン酸エステルであり、更に好ましいのはラクトン化合物、環状カーボネート及び鎖状カーボネートであり、特に好ましいのは環状カーボネートと鎖状カーボネートの混合液である。最も好ましいのはエチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合液、又は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液である。 Among the solvents, lactone compounds, cyclic carbonates, chain carbonates and phosphate esters are preferable from the viewpoint of battery output and charge / discharge cycle characteristics, and lactone compounds, cyclic carbonates and chain carbonates are more preferable. Particularly preferred is a mixed solution of cyclic carbonate and chain carbonate. The most preferable is a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC), or a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC).

また、溶媒の内、電極の耐久性を好適に付与する観点から、電解液の全溶媒に対する環状カーボネートの体積比率が、50体積%以上であることが好ましく、70体積%以上であることが更に好ましい。 Further, from the viewpoint of preferably imparting the durability of the electrode among the solvents, the volume ratio of the cyclic carbonate to the total solvent of the electrolytic solution is preferably 50% by volume or more, and more preferably 70% by volume or more. preferable.

正極活物質スラリーにおいて、電解液の電解質濃度は2.5〜4mol/Lである。
正極活物質スラリーにおいて、このような電解液を用いることにより、正極活物質スラリーが固液分離を起こしたり、導電助剤が凝集したりすることを抑制することができるので、耐久性に優れたリチウムイオン電池用正極、電池内部抵抗を低減でき、充放電特性に優れたリチウムイオン電池を安定して得ることができる。
正極活物質スラリーにおいて、電解液の電解質濃度は3.0〜4.0mol/Lであることが好ましく、3.2〜4.0mol/Lであることが更に好ましい。
In the positive electrode active material slurry, the electrolyte concentration of the electrolytic solution is 2.5 to 4 mol / L.
By using such an electrolytic solution in the positive electrode active material slurry, it is possible to prevent the positive electrode active material slurry from causing solid-liquid separation and the conductive auxiliary agent from aggregating, so that the durability is excellent. The positive electrode for a lithium ion battery and the internal resistance of the battery can be reduced, and a lithium ion battery having excellent charge / discharge characteristics can be stably obtained.
In the positive electrode active material slurry, the electrolyte concentration of the electrolytic solution is preferably 3.0 to 4.0 mol / L, and more preferably 3.2 to 4.0 mol / L.

正極活物質スラリーは、被覆正極活物質に含まれる導電助剤以外にも導電助剤を含んでもよい。
導電助剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。
炭素系導電助剤は、正極活物質スラリーの固液分離や導電助剤の凝集を抑制する観点及び正極の電子抵抗を低減する観点から、正極活物質スラリーの全固形分に対して、0.1〜10重量%であることが好ましく、3〜7重量%であることが更に好ましい。
なお、炭素系導電助剤の含有量は、正極活物質スラリーの全固形分に対する含有量であり、被覆正極活物質に含まれる炭素系導電助剤の含有量と、被覆正極活物質以外に含まれる炭素系導電助剤の含有量を合計した含有量である。
The positive electrode active material slurry may contain a conductive auxiliary agent in addition to the conductive auxiliary agent contained in the coated positive electrode active material.
As the conductive auxiliary agent, the same conductive auxiliary agent contained in the coated positive electrode active material described above can be preferably used.
From the viewpoint of suppressing solid-liquid separation of the positive electrode active material slurry and aggregation of the conductive auxiliary agent and reducing the electronic resistance of the positive electrode, the carbon-based conductive auxiliary agent has a ratio of 0 to the total solid content of the positive electrode active material slurry. It is preferably 1 to 10% by weight, more preferably 3 to 7% by weight.
The content of the carbon-based conductive auxiliary agent is the content of the positive electrode active material slurry with respect to the total solid content, and is contained in the content of the carbon-based conductive auxiliary agent contained in the coated positive electrode active material and other than the coated positive electrode active material. It is the total content of the carbon-based conductive auxiliary agents.

正極活物質スラリーは、例えば、上述した材料を混合し、混錬することにより得ることができる。 The positive electrode active material slurry can be obtained, for example, by mixing and kneading the above-mentioned materials.

[正極集電体]
正極活物質スラリーは、正極集電体上に付与されることにより、正極活物質層を形成することができる。
正極集電体を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料、並びに、焼成炭素、導電性高分子材料、導電性ガラス等が挙げられる。
正極集電体としては、軽量化、耐食性の観点から、樹脂組成物を成形した樹脂集電体であって、樹脂組成物が樹脂と導電性フィラーとを含み、樹脂中に導電性フィラーが分散されていることが好ましい。
正極集電体の形状は特に限定されず、上記の材料からなるシート状の集電体、及び、上記の材料で構成された微粒子からなる堆積層であってもよい。
正極集電体の厚さは、特に限定されないが、10〜200μmであることが好ましい。
[Positive current collector]
The positive electrode active material slurry can form a positive electrode active material layer by being applied onto the positive electrode current collector.
Examples of the material constituting the positive electrode current collector include metal materials such as copper, aluminum, titanium, stainless steel, nickel and alloys thereof, calcined carbon, a conductive polymer material, and conductive glass.
The positive electrode current collector is a resin current collector formed by molding a resin composition from the viewpoint of weight reduction and corrosion resistance. The resin composition contains a resin and a conductive filler, and the conductive filler is dispersed in the resin. It is preferable that it is.
The shape of the positive electrode current collector is not particularly limited, and may be a sheet-shaped current collector made of the above-mentioned material and a deposited layer made of fine particles made of the above-mentioned material.
The thickness of the positive electrode current collector is not particularly limited, but is preferably 10 to 200 μm.

樹脂集電体を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。
電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。
樹脂集電体を構成する導電性フィラーとしては例えば、被覆正極活物質の任意成分である導電助剤と同様のものを好適に用いることができる。
Examples of the resin constituting the resin current collector include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), and polytetra. Fluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethylacrylate (PMA), polymethylmethacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin, or a mixture thereof, etc. Can be mentioned.
From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).
As the conductive filler constituting the resin current collector, for example, the same conductive filler as an optional component of the coated positive electrode active material can be preferably used.

正極活物質スラリーを正極集電体に塗工する方法としては、例えば、正極活物質スラリーを、正極集電体上にバーコーター等の塗工装置で塗布後、必要により不織布を活物質上に静置して吸液すること等で、溶媒を除去し、必要によりプレス機でプレスする方法等が挙げられる。 As a method of applying the positive electrode active material slurry to the positive electrode current collector, for example, after applying the positive electrode active material slurry on the positive electrode current collector with a coating device such as a bar coater, a non-woven fabric is applied onto the active material if necessary. Examples thereof include a method of removing the solvent by allowing it to stand and absorbing the liquid, and pressing with a press machine if necessary.

正極の厚みは、電池性能の観点から、150〜600μmであることが好ましく、200〜450μmであることがより好ましい。 The thickness of the positive electrode is preferably 150 to 600 μm, more preferably 200 to 450 μm from the viewpoint of battery performance.

本発明のリチウムイオン電池の製造方法は、負極活物質と電解液とを含み、該電解液の電解質濃度が0.1〜2mol/Lである負極活物質スラリーを負極集電体に塗工して上記負極を得る工程を有する。
なお、上述した正極を得る工程と、負極を得る工程は、何れの工程を先に行っても、同時に行ってもよい。
In the method for producing a lithium ion battery of the present invention, a negative electrode active material slurry containing a negative electrode active material and an electrolytic solution and having an electrolyte concentration of 0.1 to 2 mol / L in the electrolytic solution is applied to a negative electrode current collector. It has a step of obtaining the negative electrode.
The above-mentioned step of obtaining the positive electrode and the step of obtaining the negative electrode may be performed first or at the same time.

[負極活物質]
負極としては、負極活物質、導電助剤及び集電体等を含むものが挙げられる。
負極活物質としては、公知のリチウムイオン電池用負極活物質が使用でき、炭素系材料[黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)及び炭素繊維等]、珪素系材料[珪素、酸化珪素(SiOx)、珪素−炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素−アルミニウム合金、珪素−リチウム合金、珪素−ニッケル合金、珪素−鉄合金、珪素−チタン合金、珪素−マンガン合金、珪素−銅合金及び珪素−スズ合金等)等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物等)及び金属合金(例えばリチウム−スズ合金、リチウム−アルミニウム合金及びリチウム−アルミニウム−マンガン合金等)等及びこれらと炭素系材料との混合物等が挙げられる。
また、負極活物質は、上述した被覆正極活物質と同様の被覆樹脂により被覆されていてもよい。
また、導電助剤は、上述した被覆正極活物質と同様の導電助剤を好適に用いることができる。
[Negative electrode active material]
Examples of the negative electrode include those containing a negative electrode active material, a conductive auxiliary agent, a current collector, and the like.
As the negative electrode active material, a known negative electrode active material for lithium ion batteries can be used, and carbon-based materials [graphite, refractory carbon, amorphous carbon, resin calcined material (for example, phenol resin, furan resin, etc.) are calcined and carbonized. , Coke (for example, pitch coke, needle coke, petroleum coke, etc.) and carbon fiber, etc.], silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composite (the surface of carbon particles is silicon and / Or those coated with silicon carbide, those in which the surface of silicon particles or silicon oxide particles are coated with carbon and / or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon-nickel) Alloys, silicon-iron alloys, silicon-titanium alloys, silicon-manganese alloys, silicon-copper alloys, silicon-tin alloys, etc.], conductive polymers (eg, polyacetylene and polypyrrole, etc.), metals (tin, aluminum, zirconium, etc.) And titanium, etc.), metal oxides (titanium oxide and lithium-titanium oxide, etc.) and metal alloys (for example, lithium-tin alloy, lithium-aluminum alloy, lithium-aluminum-manganese alloy, etc.) and carbon-based materials. Examples include a mixture with.
Further, the negative electrode active material may be coated with the same coating resin as the above-mentioned coated positive electrode active material.
Further, as the conductive auxiliary agent, the same conductive auxiliary agent as the above-mentioned coated positive electrode active material can be preferably used.

負極活物質の体積平均粒子径は、電池の電気特性の観点から、0.1〜100μmであることが好ましく、1〜50μmであることがより好ましく、2〜20μmであることがさらに好ましい。
負極活物質の体積平均粒子径は、レーザー回折・散乱法(マイクロトラック法ともいう)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。レーザー回折・散乱法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法であり、体積平均粒子径の測定には、日機装株式会社製のマイクロトラック等を用いることができる。
The volume average particle size of the negative electrode active material is preferably 0.1 to 100 μm, more preferably 1 to 50 μm, and even more preferably 2 to 20 μm from the viewpoint of the electrical characteristics of the battery.
The volume average particle size of the negative electrode active material means the particle size (Dv50) at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method (also referred to as the microtrack method). The laser diffraction / scattering method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light, and for measuring the volume average particle size, a microtrack manufactured by Nikkiso Co., Ltd., etc. Can be used.

負極活物質スラリーにおいて、電解液の電解質濃度は0.1〜2mol/Lである。
負極活物質スラリーにおいて、電解液の電解質濃度は0.4〜2mol/Lであることが好ましく、0.8〜1.8mol/Lであることが更に好ましい。
なお、電解液としては、上述した正極活物質スラリーで記載した電解質及び溶媒と同様のものを好適に用いることができる。
In the negative electrode active material slurry, the electrolyte concentration of the electrolytic solution is 0.1 to 2 mol / L.
In the negative electrode active material slurry, the electrolyte concentration of the electrolytic solution is preferably 0.4 to 2 mol / L, more preferably 0.8 to 1.8 mol / L.
As the electrolytic solution, the same electrolyte and solvent as those described in the above-mentioned positive electrode active material slurry can be preferably used.

負極活物質スラリーは、例えば、上述した材料を混合し、混錬することにより得ることができる。 The negative electrode active material slurry can be obtained, for example, by mixing and kneading the above-mentioned materials.

[負極集電体]
負極活物質スラリーは、負極集電体上に付与されることにより、負極活物質層を形成することができる。
負極集電体を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料、並びに、焼成炭素、導電性高分子及び導電性ガラス等が挙げられる。
負極集電体としては、軽量化、耐食性の観点から、樹脂組成物を成形した樹脂集電体であって、樹脂組成物が樹脂と導電性フィラーとを含み、樹脂中に導電性フィラーが分散されていることが好ましい。なお、樹脂集電体としては、上述した正極集電体で記載したものと同様のものが挙げられる。
負極集電体の厚さは、特に限定されないが、10〜200μmであることが好ましい。
[Negative electrode current collector]
The negative electrode active material slurry can form a negative electrode active material layer by being applied onto the negative electrode current collector.
Examples of the material constituting the negative electrode current collector include metal materials such as copper, aluminum, titanium, stainless steel, nickel and alloys thereof, and calcined carbon, conductive polymer and conductive glass.
The negative electrode current collector is a resin current collector formed by molding a resin composition from the viewpoint of weight reduction and corrosion resistance. The resin composition contains a resin and a conductive filler, and the conductive filler is dispersed in the resin. It is preferable that it is. Examples of the resin current collector include the same as those described in the above-mentioned positive electrode current collector.
The thickness of the negative electrode current collector is not particularly limited, but is preferably 10 to 200 μm.

負極活物質スラリーを負極集電体に塗工する方法としては、例えば、負極活物質スラリーを、負極集電体上にバーコーター等の塗工装置で塗布後、必要により不織布を活物質上に静置して吸液すること等で、溶媒を除去し、必要によりプレス機でプレスする方法等が挙げられる。 As a method of applying the negative electrode active material slurry to the negative electrode current collector, for example, after applying the negative electrode active material slurry on the negative electrode current collector with a coating device such as a bar coater, a non-woven fabric is applied onto the active material if necessary. Examples thereof include a method of removing the solvent by allowing it to stand and absorbing the liquid, and pressing with a press machine if necessary.

負極の厚みは、電池性能の観点から、150〜600μmであることが好ましく、200〜450μmであることがより好ましい。 From the viewpoint of battery performance, the thickness of the negative electrode is preferably 150 to 600 μm, more preferably 200 to 450 μm.

[セパレータ]
本発明のリチウムイオン電池の製造方法は、正極と負極とを、セパレータを介して対向して配置する工程を有する。
[Separator]
The method for manufacturing a lithium ion battery of the present invention includes a step of arranging a positive electrode and a negative electrode facing each other with a separator interposed therebetween.

セパレータとしては、ポリエチレン又はポリプロピレン製の多孔性フィルム、多孔性ポリエチレンフィルムと多孔性ポリプロピレンとの積層フィルム、合成繊維(ポリエステル繊維及びアラミド繊維等)又はガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン電池用のセパレータが挙げられる。 As the separator, a porous film made of polyethylene or polypropylene, a laminated film of a porous polyethylene film and a porous polypropylene, a non-woven fabric made of synthetic fibers (polyester fiber, aramid fiber, etc.) or glass fiber, and silica on the surface thereof. , Known separators for lithium ion batteries, such as those to which ceramic fine particles such as alumina and titania are attached.

[リチウムイオン電池]
本発明のリチウムイオン電池の製造方法では、正極と負極とを、セパレータを介して対向して配置し、セル容器に収納し、セル容器を密封することでリチウムイオン電池を得ることができる。なお、セルを容器に収納する際には、必要に応じて、電解液を注入してもよい。
また、集電体の一方の面に正極を形成し、もう一方の面に負極を形成してバイポーラ(双極)型電極を作製し、バイポーラ(双極)型電極をセパレータと積層してセル容器に収納し、電解液を注入し、セル容器を密封することでも得られる。
[Lithium-ion battery]
In the method for manufacturing a lithium ion battery of the present invention, a lithium ion battery can be obtained by arranging a positive electrode and a negative electrode facing each other via a separator, storing the battery in a cell container, and sealing the cell container. When the cell is stored in the container, an electrolytic solution may be injected as needed.
Further, a positive electrode is formed on one surface of the current collector and a negative electrode is formed on the other surface to produce a bipolar (bipolar) type electrode, and the bipolar (bipolar) type electrode is laminated with a separator to form a cell container. It can also be obtained by storing, injecting an electrolytic solution, and sealing the cell container.

本発明のリチウムイオン電池の製造方法は、電池内部抵抗を低減でき、優れた充放電特性を好適に付与する観点から、電解質濃度が1.5〜3.5mol/Lの電解液を有するリチウムイオン電池の製造方法であることが好ましい。
なお、上記電解質濃度は、リチウムイオン電池を作製し、該リチウムイオン電池内の電解液の電解質濃度が均一化した後、遠心分離等で電解液を抽出し、得られた電解液をLi−NMRでLi塩濃度を定量することにより測定することができる。
The method for producing a lithium ion battery of the present invention has a lithium ion having an electrolytic solution having an electrolyte concentration of 1.5 to 3.5 mol / L from the viewpoint of being able to reduce the internal resistance of the battery and preferably imparting excellent charge / discharge characteristics. It is preferably a method of manufacturing a battery.
As for the electrolyte concentration, a lithium ion battery is manufactured, the electrolyte concentration of the electrolyte solution in the lithium ion battery is made uniform, the electrolyte solution is extracted by centrifugation or the like, and the obtained electrolyte solution is Li-NMR. It can be measured by quantifying the Li salt concentration in.

本発明のリチウムイオン電池の製造方法において、正極集電体及び負極集電体が、樹脂組成物を成形した樹脂集電体であって、樹脂組成物が樹脂と導電性フィラーとを含むことが好ましい。
このような構成にすることにより、リチウムイオン電池を軽量化でき、耐食性を好適に付与することができる。
In the method for producing a lithium ion battery of the present invention, the positive electrode current collector and the negative electrode current collector are resin current collectors obtained by molding a resin composition, and the resin composition contains a resin and a conductive filler. preferable.
With such a configuration, the weight of the lithium ion battery can be reduced, and corrosion resistance can be suitably imparted.

次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。 Next, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the Examples as long as the gist of the present invention is not deviated. Unless otherwise specified, parts mean parts by weight and% means% by weight.

以下の実施例で使用した材料は下記の通りである。 The materials used in the following examples are as follows.

[製造例1:電解液の作製]
<電解液(E−1)の作製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)にLiN(FSOを4.0mol/Lの割合で溶解させて電解液(E−1)を準備した。
[Production Example 1: Preparation of electrolytic solution]
<Preparation of electrolyte (E-1)>
An electrolytic solution (E-1) was prepared by dissolving LiN (FSO 2 ) 2 in a mixed solvent (volume ratio 1: 1) of ethylene carbonate (EC) and propylene carbonate (PC) at a ratio of 4.0 mol / L. ..

<電解液(E−2)の作製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)にLiN(FSOを3.0mol/Lの割合で溶解させて電解液(E−2)を準備した。
<Preparation of electrolyte (E-2)>
An electrolytic solution (E-2) was prepared by dissolving LiN (FSO 2 ) 2 in a mixed solvent (volume ratio 1: 1) of ethylene carbonate (EC) and propylene carbonate (PC) at a ratio of 3.0 mol / L. ..

<電解液(E−3)の作製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)にLiN(FSOを2.0mol/Lの割合で溶解させて電解液(E−3)を準備した。
<Preparation of electrolyte (E-3)>
An electrolytic solution (E-3) was prepared by dissolving LiN (FSO 2 ) 2 in a mixed solvent (volume ratio 1: 1) of ethylene carbonate (EC) and propylene carbonate (PC) at a ratio of 2.0 mol / L. ..

<電解液(E−4)の作製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)にLiN(FSOを1.5mol/Lの割合で溶解させて電解液(E−4)を準備した。
<Preparation of electrolyte (E-4)>
An electrolytic solution (E-4) was prepared by dissolving LiN (FSO 2 ) 2 in a mixed solvent (volume ratio 1: 1) of ethylene carbonate (EC) and propylene carbonate (PC) at a ratio of 1.5 mol / L. ..

<電解液(E−5)の作製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)にLiN(FSOを1.0mol/Lの割合で溶解させて電解液(E−5)を準備した。
<Preparation of electrolyte (E-5)>
An electrolytic solution (E-5) was prepared by dissolving LiN (FSO 2 ) 2 in a mixed solvent (volume ratio 1: 1) of ethylene carbonate (EC) and propylene carbonate (PC) at a ratio of 1.0 mol / L. ..

<電解液(E−6)の作製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)にLiN(FSOを0.3mol/Lの割合で溶解させて電解液(E−6)を準備した。
<Preparation of electrolyte (E-6)>
An electrolytic solution (E-6) was prepared by dissolving LiN (FSO 2 ) 2 in a mixed solvent (volume ratio 1: 1) of ethylene carbonate (EC) and propylene carbonate (PC) at a ratio of 0.3 mol / L. ..

[製造例2:正極活物質スラリーの作製]
<被覆用樹脂を構成する高分子化合物の作製>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF150.0部を仕込み75℃に昇温した。次いで、メタクリル酸メチル10.0部、アクリル酸90.0部及びDMF50部を配合した単量体組成物と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.3部及び2,2’−アゾビス(2−メチルブチロニトリル)0.8部をDMF30部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂濃度30%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して150℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の高分子化合物を得た。
[Production Example 2: Preparation of Positive Electrode Active Material Slurry]
<Manufacturing of polymer compounds constituting coating resin>
150.0 parts of DMF was placed in a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, and the temperature was raised to 75 ° C. Next, a monomer composition containing 10.0 parts of methyl methacrylate, 90.0 parts of acrylic acid and 50 parts of DMF, and 0.3 parts and 2 parts of 2,2'-azobis (2,4-dimethylvaleronitrile). , 2'-Azobis (2-methylbutyronitrile) 0.8 parts dissolved in 30 parts of DMF and an initiator solution are continuously blown into a four-necked flask while stirring with a dropping funnel for 2 hours. Radical polymerization was carried out by dropping the mixture. After completion of the dropping, the reaction was continued at 75 ° C. for 3 hours. Then, the temperature was raised to 80 ° C. and the reaction was continued for 3 hours to obtain a copolymer solution having a resin concentration of 30%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 150 ° C. and 0.01 MPa for 3 hours, and DMF was distilled off to obtain a copolymer. This copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery polymer compound.

<被覆正極活物質の作製>
電極活物質粉末(LiNi0.8Co0.15Al0.05粉末、体積平均粒子径4μm)100部を万能混合機ハイスピードミキサーFS25[アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、得られた高分子化合物をDMFに3.0重量%の濃度で溶解して得られた高分子化合物溶液10.0部を2分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電助剤としてアセチレンブラック[電気化学工業(株)製 デンカブラック(登録商標)]6.2部を分割しながら2分間で投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を150℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き212μmの篩いで分級し、被覆正極活物質を得た。
<Preparation of coated positive electrode active material>
100 parts of electrode active material powder (LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, volume average particle diameter 4 μm) was placed in a universal mixer high-speed mixer FS25 [manufactured by Arstecnica] and stirred at room temperature at 720 rpm. In this state, the obtained polymer compound was dissolved in DMF at a concentration of 3.0% by weight, 10.0 parts of the obtained polymer compound solution was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes.
Then, in a stirred state, 6.2 parts of acetylene black [Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.] was added as a conductive auxiliary agent in 2 minutes while being divided, and stirring was continued for 30 minutes. Then, the pressure was reduced to 0.01 MPa while maintaining the stirring, then the temperature was raised to 150 ° C. while maintaining the stirring and the degree of pressure reduction, and the stirring, the degree of pressure reduction and the temperature were maintained for 8 hours to distill off the volatile matter. .. The obtained powder was classified by a sieve having a mesh size of 212 μm to obtain a coated positive electrode active material.

<正極活物質スラリー1の作製>
上記被覆正極活物質99部と電解液(E−1)46部と炭素繊維[昭和電工(株)製VGCF:平均繊維長10μm、平均繊維径150nm]1部とを遊星撹拌型混合混練装置{あわとり練太郎[(株)シンキー製]}を用いて2000rpmで5分間混合して、正極活物質スラリー1を作製した。
<Preparation of positive electrode active material slurry 1>
99 parts of the coated positive electrode active material, 46 parts of the electrolytic solution (E-1), and 1 part of carbon fiber [VGCF manufactured by Showa Denko KK: average fiber length 10 μm, average fiber diameter 150 nm] are mixed and kneaded by a planetary stirring type { A positive electrode active material slurry 1 was prepared by mixing with Awatori Rentaro [manufactured by Shinky Co., Ltd.] at 2000 rpm for 5 minutes.

<正極活物質スラリー2の作製>
電解液(E−2)を用いたこと以外は、正極活物質スラリー1と同様の方法により、正極活物質スラリー2を作製した。
<Preparation of positive electrode active material slurry 2>
The positive electrode active material slurry 2 was prepared by the same method as that of the positive electrode active material slurry 1 except that the electrolytic solution (E-2) was used.

<正極活物質スラリー3の作製>
電解液(E−3)を用いたこと以外は、正極活物質スラリー1と同様の方法により、正極活物質スラリー3を作製した。
<Preparation of positive electrode active material slurry 3>
The positive electrode active material slurry 3 was prepared by the same method as that of the positive electrode active material slurry 1 except that the electrolytic solution (E-3) was used.

<正極活物質スラリーの貯蔵安定性>
正極活物質スラリー1〜3を作製直後にМicrоtrac社製マイクロトラックMT3000により粒度分布測定した。正極活物質スラリー1〜3作製直後の粒度分布では、粒子径20〜100μm領域に存在する粒子の割合はいずれも0%以上、0.5%未満であった。
その後、正極活物質スラリー1〜3を温度25℃、露点−45℃環境下で12時間静置後にも粒度分布測定を実施した。静置後の粒度分布のうち、粒子径20〜100μm領域に存在する粒子の割合を貯蔵安定性の指標とした。粒子径20〜100μmの粗大粒子は、正極活物質及び/又は導電助剤の凝集によるものと推定され、この割合が多いことは貯蔵安定性が悪いことを意味する。
◎:0%以上、0.5%未満
〇:0.5%以上、1%未満
×:1%以上
<Storage stability of positive electrode active material slurry>
Immediately after the positive electrode active material slurries 1 to 3 were prepared, the particle size distribution was measured with Microtrac MT3000 manufactured by Мicrоtrac. In the particle size distribution immediately after the production of the positive electrode active material slurries 1 to 3, the proportions of the particles present in the particle diameter region of 20 to 100 μm were 0% or more and less than 0.5%.
Then, the particle size distribution measurement was carried out even after allowing the positive electrode active material slurries 1 to 3 to stand at a temperature of 25 ° C. and a dew point of −45 ° C. for 12 hours. The proportion of particles present in the particle size region of 20 to 100 μm in the particle size distribution after standing was used as an index of storage stability. Coarse particles having a particle diameter of 20 to 100 μm are presumed to be due to the aggregation of the positive electrode active material and / or the conductive auxiliary agent, and a large proportion means poor storage stability.
⊚: 0% or more, less than 0.5% 〇: 0.5% or more, less than 1% ×: 1% or more

[製造例3:負極活物質スラリーの作製]
<被覆負極活物質の作製>
負極活物質として難黒鉛化性炭素[(株)クレハ・バッテリー・マテリアルズ・ジャパン製 カーボトロン(登録商標)PS(F)]100部を万能混合機ハイスピードミキサーFS25[アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、高分子化合物(P−1)をDMFに5.0重量%の濃度で溶解して得られた高分子化合物溶液6.0部を2分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電助剤としてアセチレンブラック[電気化学工業(株)製 デンカブラック(登録商標)]5.1部を分割しながら2分間で投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を150℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き212μmの篩いで分級し、被覆負極活物質を得た。
[Production Example 3: Preparation of Negative Electrode Active Material Slurry]
<Preparation of coated negative electrode active material>
Put 100 parts of non-graphitizable carbon [Carbotron (registered trademark) PS (F) manufactured by Kureha Battery Materials Japan Co., Ltd.] as a negative electrode active material into the universal mixer high-speed mixer FS25 [manufactured by Arstecnica]. With stirring at room temperature and 720 rpm, 6.0 parts of the polymer compound solution obtained by dissolving the polymer compound (P-1) in DMF at a concentration of 5.0% by weight was added dropwise over 2 minutes. The mixture was further stirred for 5 minutes.
Then, in a stirred state, 5.1 parts of acetylene black [Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.] was added as a conductive auxiliary agent in 2 minutes while being divided, and stirring was continued for 30 minutes. Then, the pressure was reduced to 0.01 MPa while maintaining the stirring, then the temperature was raised to 150 ° C. while maintaining the stirring and the degree of pressure reduction, and the stirring, the degree of pressure reduction and the temperature were maintained for 8 hours to distill off the volatile matter. .. The obtained powder was classified by a sieve having a mesh size of 212 μm to obtain a coated negative electrode active material.

<負極活物質スラリー1の作製>
上記被覆負極活物質98部と電解液(E−5)46部と炭素繊維[昭和電工(株)製VGCF:平均繊維長10μm、平均繊維径150nm]2部とを遊星撹拌型混合混練装置{あわとり練太郎[(株)シンキー製]}を用いて2000rpmで5分間混合して、負極活物質スラリー1を作製した。
<Preparation of negative electrode active material slurry 1>
98 parts of the coated negative electrode active material, 46 parts of the electrolytic solution (E-5), and 2 parts of carbon fiber [VGCF manufactured by Showa Denko KK: average fiber length 10 μm, average fiber diameter 150 nm] are mixed and kneaded by a planetary stirring type { Negative electrode active material slurry 1 was prepared by mixing with Awatori Rentaro [manufactured by Shinky Co., Ltd.] at 2000 rpm for 5 minutes.

<負極活物質スラリー2の作製>
電解液(E−4)を用いたこと以外は、負極活物質スラリー1と同様の方法により、負極活物質スラリー2を作製した。
<Preparation of negative electrode active material slurry 2>
The negative electrode active material slurry 2 was prepared by the same method as the negative electrode active material slurry 1 except that the electrolytic solution (E-4) was used.

<負極活物質スラリー3の作製>
電解液(E−1)を用いたこと以外は、負極活物質スラリー1と同様の方法により、負極活物質スラリー3を作製した。
<Preparation of negative electrode active material slurry 3>
The negative electrode active material slurry 3 was prepared by the same method as the negative electrode active material slurry 1 except that the electrolytic solution (E-1) was used.

<負極活物質スラリー4の作製>
電解液(E−3)を用いたこと以外は、負極活物質スラリー1と同様の方法により、負極活物質スラリー4を作製した。
<Preparation of negative electrode active material slurry 4>
The negative electrode active material slurry 4 was prepared by the same method as the negative electrode active material slurry 1 except that the electrolytic solution (E-3) was used.

<負極活物質スラリー5の作製>
電解液(E−6)を用いたこと以外は、負極活物質スラリー1と同様の方法により、負極活物質スラリー5を作製した。
<Preparation of negative electrode active material slurry 5>
The negative electrode active material slurry 5 was prepared by the same method as the negative electrode active material slurry 1 except that the electrolytic solution (E-6) was used.

[製造例4:樹脂集電体1の作製]
2軸押出機にて、ポリプロピレン[商品名「サンアロマーPL500A」、サンアロマー(株)製]70部、カーボンナノチューブ[商品名:「FloTube9000」、CNano社製]25部及び分散剤[商品名「ユーメックス1001」、三洋化成工業(株)製]5部を200℃、200rpmの条件で溶融混練して樹脂混合物を得た。
得られた樹脂混合物を、Tダイ押出しフィルム成形機に通して、それを延伸圧延することで、厚みが200μmの樹脂集電体用導電性フィルムを得た。次いで、得られた樹脂集電体用導電性フィルムを60mm×60mmとなるように切断し、樹脂集電体1を得た。
[Manufacturing Example 4: Production of Resin Current Collector 1]
With a twin-screw extruder, 70 parts of polypropylene [trade name "SunAllomer PL500A", manufactured by SunAllomer Ltd.], 25 parts of carbon nanotubes [trade name: "FloTube9000", manufactured by CNano] and a dispersant [trade name "Umex 1001" , Sanyo Kasei Kogyo Co., Ltd.] 5 parts were melt-kneaded under the conditions of 200 ° C. and 200 rpm to obtain a resin mixture.
The obtained resin mixture was passed through a T-die extrusion film molding machine and stretched and rolled to obtain a conductive film for a resin current collector having a thickness of 200 μm. Next, the obtained conductive film for a resin current collector was cut so as to have a size of 60 mm × 60 mm to obtain a resin current collector 1.

(実施例1)
正極活物質スラリー1を温度25℃、露点−45℃環境下に1時間静置した後に、樹脂集電体1の片面に塗布し、0.9MPaの圧力で約10秒プレスし、厚みが250μmの用正極(50mm×40mm)を作製した。
その一方で、負極活物質スラリー1を温度25℃、露点−45℃環境下に1時間静置した後に、樹脂集電体1の片面に塗布し、1.4MPaの圧力で約10秒プレスし、厚さが350μmの負極(52mm×42mm)を作製した。
得られた正極及び負極を、セパレータ(セルガード製#3501)を介して配置し、樹脂集電体の外周部をシール材が介した状態で真空シールした。得られた構造物を銅箔タブが付いたアルミラミネートフィルムで両面を覆い、再度、外周部を真空シールすることでリチウムイオン電池を作製した。
(Example 1)
After allowing the positive electrode active material slurry 1 to stand at a temperature of 25 ° C. and a dew point of −45 ° C. for 1 hour, it is applied to one side of the resin current collector 1 and pressed at a pressure of 0.9 MPa for about 10 seconds to a thickness of 250 μm. A positive electrode (50 mm × 40 mm) for use was prepared.
On the other hand, after allowing the negative electrode active material slurry 1 to stand at a temperature of 25 ° C. and a dew point of −45 ° C. for 1 hour, it is applied to one side of the resin current collector 1 and pressed at a pressure of 1.4 MPa for about 10 seconds. A negative electrode (52 mm × 42 mm) having a thickness of 350 μm was prepared.
The obtained positive electrode and negative electrode were arranged via a separator (Celguard # 3501), and the outer peripheral portion of the resin current collector was vacuum-sealed with a sealing material interposed therebetween. A lithium ion battery was produced by covering both sides of the obtained structure with an aluminum laminate film having copper foil tabs and vacuum-sealing the outer peripheral portion again.

(実施例2〜3、比較例1〜2)
正極活物質スラリー1及び/又は負極活物質スラリー1を表1に記載のものに変更したこと以外は、実施例1と同様にしてリチウムイオン電池を作製した。
(Examples 2 and 3, Comparative Examples 1 and 2)
A lithium ion battery was produced in the same manner as in Example 1 except that the positive electrode active material slurry 1 and / or the negative electrode active material slurry 1 was changed to those shown in Table 1.

<リチウムイオン電池の電解質濃度>
得られたリチウムイオン電池について、25℃環境下で12時間静置した後、遠心分離機を用いて電解液を抽出した。得られた電解液をLi−NMRでLi塩を定量することにより、リチウムイオン電池の電解質濃度を測定した。
<Electrolyte concentration of lithium-ion battery>
The obtained lithium ion battery was allowed to stand in an environment of 25 ° C. for 12 hours, and then the electrolytic solution was extracted using a centrifuge. The electrolyte concentration of the lithium ion battery was measured by quantifying the Li salt of the obtained electrolytic solution by Li-NMR.

<リチウムイオン電池評価>
(電池内部抵抗の測定)
25℃に温調した恒温槽内で、充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いてリチウムイオン電池の充放電を実施した。
0.1Cの電流で電圧4.2Vまで充電し、10分間の休止後、0.1Cの電流で電池電圧を2.5Vまで放電した。
0.1C放電時における放電0秒後の電圧及び電流、並びに、0.1Cにおける放電10秒後の電圧及び電流を測定し、以下の式により電池内部抵抗(Ω・cm)を算出した。電池内部抵抗の数値が小さいほど電池性能が良好であることを示す。
[内部抵抗(Ω)]×[電極面積(cm)]={[(0.1Cにおける放電0秒後の電圧)−(0.1Cにおける放電10秒後の電圧)]/[(0.1Cにおける放電0秒後の電流)−(0.1Cにおける放電10秒後の電流)]}×[電極面積(cm)]
<Lithium-ion battery evaluation>
(Measurement of battery internal resistance)
A lithium-ion battery was charged and discharged using a charge / discharge measuring device "Battery Analyzer 1470" [manufactured by Toyo Corporation] in a constant temperature bath adjusted to 25 ° C.
The battery was charged to a voltage of 4.2 V with a current of 0.1 C, and after a 10-minute rest, the battery voltage was discharged to 2.5 V with a current of 0.1 C.
The voltage and current after 0 seconds of discharge at 0.1 C discharge and the voltage and current after 10 seconds of discharge at 0.1 C were measured, and the battery internal resistance (Ω · cm 2 ) was calculated by the following formula. The smaller the value of the internal resistance of the battery, the better the battery performance.
[Internal resistance (Ω)] × [Electrode area (cm 2 )] = {[(voltage after 0 seconds of discharge at 0.1 C)-(voltage after 10 seconds of discharge at 0.1 C)] / [(0. Current after 0 seconds of discharge at 1C)-(Current after 10 seconds of discharge at 0.1C)]} × [Electrode area (cm 2 )]

(放電レート特性)
上記電気内部抵抗の測定と同様にして、リチウムイオン電池の充放電を実施した。
1サイクル目は、0.1Cの電流で電圧4.2Vまで充電し、10分間の休止後、0.1Cの電流で電池電圧を2.5Vまで放電した。
2サイクル目は、0.1Cの電流で電圧4.2Vまで充電し、10分間の休止後、1Cの電流で電池電圧を2.5Vまで放電し、10分間の休止後にさらに0.1Cの電流値で電池電圧2.5Vまで放電した。2サイクル目に得られた1C放電容量と0.1C放電容量の比率[(2サイクル目1C放電容量)/(2サイクル目0.1C放電容量)×100]から放電レート特性(%)を評価した。放電レート特性の数値が大きいほど電池性能が良好であることを示す。
なお、2サイクル目の放電は、1C放電後に0.1C放電を実施しているので、0.1C放電容量は、すでに放電している1C放電容量に追加で放電した0.1C放電容量を足した値を用いた。
(Discharge rate characteristics)
The lithium ion battery was charged and discharged in the same manner as in the above measurement of the internal electrical resistance.
In the first cycle, the battery was charged to a voltage of 4.2 V with a current of 0.1 C, and after a 10-minute rest, the battery voltage was discharged to 2.5 V with a current of 0.1 C.
In the second cycle, the battery voltage is charged to 4.2V with a current of 0.1C, the battery voltage is discharged to 2.5V with a current of 1C after a 10-minute pause, and a current of 0.1C is further charged after a pause of 10 minutes. The value was discharged to a battery voltage of 2.5V. The discharge rate characteristic (%) is evaluated from the ratio of the 1C discharge capacity and the 0.1C discharge capacity obtained in the second cycle [(1C discharge capacity in the second cycle) / (0.1C discharge capacity in the second cycle) × 100]. did. The larger the value of the discharge rate characteristic, the better the battery performance.
Since the discharge in the second cycle is 0.1C discharge after 1C discharge, the 0.1C discharge capacity is the sum of the already discharged 1C discharge capacity and the 0.1C discharge capacity additionally discharged. The value was used.

(100サイクル容量維持率)
上記電気内部抵抗の測定と同様にして、リチウムイオン電池の充放電を実施した。
1サイクル目は、0.1Cの電流で電圧4.2Vまで充電し、10分間の休止後、0.1Cの電流で電池電圧を2.5Vまで放電し、初回充放電容量を測定した。
その後、初回充放電と同様の条件で100サイクル充放電を実施し、初回放電容量に対する100サイクル目放電容量の割合[(100サイクル目放電容量)/(初回放電容量)×100]から100サイクル容量維持率(%)を評価した。100サイクル容量維持率の数値が大きいほど電池性能が良好であることを示す。
(100 cycle capacity retention rate)
The lithium ion battery was charged and discharged in the same manner as in the above measurement of the internal electrical resistance.
In the first cycle, the battery was charged to a voltage of 4.2 V with a current of 0.1 C, and after a 10-minute rest, the battery voltage was discharged to 2.5 V with a current of 0.1 C, and the initial charge / discharge capacity was measured.
After that, 100-cycle charge / discharge is performed under the same conditions as the initial charge / discharge, and the ratio of the 100th cycle discharge capacity to the initial discharge capacity [(100th cycle discharge capacity) / (initial discharge capacity) × 100] to 100 cycle capacity. The maintenance rate (%) was evaluated. The larger the value of the 100-cycle capacity retention rate, the better the battery performance.

Figure 2020198245
Figure 2020198245

表1より、正極活物質スラリー1及び2は、貯蔵安定性に優れることが確認された。
このような貯蔵安定性に優れる正極活物質スラリーを用い、所定の範囲に電解質濃度が制御された負極活物質スラリーを用いた実施例1〜3では、電池内部抵抗を低減でき、放電レート特性及び100サイクル容量維持率に優れたリチウムイオン電池を得ることができることが確認された。
一方で、電解質濃度が高い負極活物質スラリー3を用いた比較例1では、電池内部抵抗が高く、放電レート特性においても劣っていた。また、電解質濃度が低い正極活物質スラリー3は、貯蔵安定性に劣っており、このような正極活物質スラリーを用いた比較例2では、放電レート特性及び100サイクル容量維持率において劣っていた。
From Table 1, it was confirmed that the positive electrode active material slurries 1 and 2 were excellent in storage stability.
In Examples 1 to 3 using such a positive electrode active material slurry having excellent storage stability and using a negative electrode active material slurry in which the electrolyte concentration is controlled within a predetermined range, the internal resistance of the battery can be reduced, and the discharge rate characteristics and the discharge rate characteristics and It was confirmed that a lithium ion battery having an excellent 100-cycle capacity retention rate can be obtained.
On the other hand, in Comparative Example 1 using the negative electrode active material slurry 3 having a high electrolyte concentration, the internal resistance of the battery was high and the discharge rate characteristics were also inferior. Further, the positive electrode active material slurry 3 having a low electrolyte concentration was inferior in storage stability, and in Comparative Example 2 using such a positive electrode active material slurry, the discharge rate characteristics and the 100-cycle capacity retention rate were inferior.

本発明のリチウムイオン電池の製造方法は、特に、携帯電話、パーソナルコンピューター及びハイブリッド自動車、電気自動車用に用いられるリチウムイオン電池の製造方法として有用である。 The method for producing a lithium ion battery of the present invention is particularly useful as a method for producing a lithium ion battery used for mobile phones, personal computers, hybrid vehicles, and electric vehicles.

Claims (5)

正極、セパレータ及び負極がこの順に積層されたリチウムイオン電池の製造方法であって、
正極活物質と電解液とを含み、該電解液の電解質濃度が2.5〜4mol/Lである正極活物質スラリーを正極集電体に塗工して前記正極を得る工程と、
負極活物質と電解液とを含み、該電解液の電解質濃度が0.1〜2mol/Lである負極活物質スラリーを負極集電体に塗工して前記負極を得る工程と、
前記正極と前記負極とを、前記セパレータを介して対向して配置する工程とを有する
ことを特徴とするリチウムイオン電池の製造方法。
A method for manufacturing a lithium ion battery in which a positive electrode, a separator, and a negative electrode are laminated in this order.
A step of applying a positive electrode active material slurry containing a positive electrode active material and an electrolytic solution and having an electrolyte concentration of 2.5 to 4 mol / L to the positive electrode current collector to obtain the positive electrode.
A step of applying a negative electrode active material slurry containing a negative electrode active material and an electrolytic solution and having an electrolyte concentration of 0.1 to 2 mol / L to the negative electrode current collector to obtain the negative electrode.
A method for manufacturing a lithium ion battery, which comprises a step of arranging the positive electrode and the negative electrode so as to face each other via the separator.
前記電解液は、電解質としてLiN(FSOを含む請求項1に記載のリチウムイオン電池の製造方法。 The method for producing a lithium ion battery according to claim 1, wherein the electrolytic solution contains LiN (FSO 2 ) 2 as an electrolyte. 電解質濃度が1.5〜3.5mol/Lの電解液を有するリチウムイオン電池の製造方法である請求項1又は2に記載のリチウムイオン電池の製造方法。 The method for producing a lithium ion battery according to claim 1 or 2, which is a method for producing a lithium ion battery having an electrolytic solution having an electrolyte concentration of 1.5 to 3.5 mol / L. 前記正極及び前記負極の厚みが、それぞれ150〜600μmである請求項1〜3のいずれか1項に記載のリチウムイオン電池の製造方法。 The method for manufacturing a lithium ion battery according to any one of claims 1 to 3, wherein the thickness of the positive electrode and the negative electrode are 150 to 600 μm, respectively. 前記正極集電体及び前記負極集電体が、樹脂組成物を成形した樹脂集電体であって、前記樹脂組成物が樹脂と導電性フィラーとを含む請求項1〜4のいずれか1項に記載のリチウムイオン電池の製造方法。 Any one of claims 1 to 4, wherein the positive electrode current collector and the negative electrode current collector are resin current collectors obtained by molding a resin composition, and the resin composition contains a resin and a conductive filler. The method for manufacturing a lithium ion battery according to.
JP2019104544A 2019-06-04 2019-06-04 Lithium ion battery manufacturing method Active JP7422493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019104544A JP7422493B2 (en) 2019-06-04 2019-06-04 Lithium ion battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104544A JP7422493B2 (en) 2019-06-04 2019-06-04 Lithium ion battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2020198245A true JP2020198245A (en) 2020-12-10
JP7422493B2 JP7422493B2 (en) 2024-01-26

Family

ID=73648522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104544A Active JP7422493B2 (en) 2019-06-04 2019-06-04 Lithium ion battery manufacturing method

Country Status (1)

Country Link
JP (1) JP7422493B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081907A (en) * 2016-11-07 2018-05-24 三洋化成工業株式会社 Positive electrode for lithium ion battery, and lithium ion battery
JP2018101623A (en) * 2016-12-20 2018-06-28 三洋化成工業株式会社 Negative electrode for lithium-ion battery and lithium-ion battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711636B (en) 2018-06-01 2020-01-14 南京大学 Combined electrolyte type dual-ion rocking chair type secondary battery and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081907A (en) * 2016-11-07 2018-05-24 三洋化成工業株式会社 Positive electrode for lithium ion battery, and lithium ion battery
JP2018101623A (en) * 2016-12-20 2018-06-28 三洋化成工業株式会社 Negative electrode for lithium-ion battery and lithium-ion battery

Also Published As

Publication number Publication date
JP7422493B2 (en) 2024-01-26

Similar Documents

Publication Publication Date Title
EP3054509B1 (en) Graphite secondary particle, and lithium secondary battery comprising same
JP7145672B2 (en) lithium ion battery
JP7022539B2 (en) Method for manufacturing electrodes for lithium-ion batteries and equipment for manufacturing electrodes for lithium-ion batteries
JP2009302058A (en) Lithium battery
JP2010009799A (en) Nonaqueous electrolyte secondary battery
CN104170120B (en) Lithium secondary battery and employ its electronic equipment, charging system and charging method
JPWO2012144177A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
KR20110088373A (en) Lithium ion polymer battery
WO2019230912A1 (en) Method for manufacturing lithium ion cell
JP7034777B2 (en) Lithium-ion battery manufacturing method
JP7058525B2 (en) Electrodes for lithium-ion batteries
JP2008251523A (en) Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2019160789A (en) Negative electrode for lithium ion battery and lithium ion battery
JP7267131B2 (en) Positive electrode active material slurry for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6893822B2 (en) Method for manufacturing electrode active material molded product and method for manufacturing lithium ion battery
JP7224787B2 (en) Non-aqueous electrolyte for secondary battery containing specific additive and secondary battery using the same
JP6375843B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP6375842B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP6978259B2 (en) Positive electrode for lithium-ion batteries and lithium-ion batteries
JP7130541B2 (en) Negative electrode for lithium ion battery and lithium ion battery
JP7286489B2 (en) Method for producing lithium-containing carbon-based negative electrode active material and method for producing lithium-ion battery
JP7422493B2 (en) Lithium ion battery manufacturing method
JP2023520193A (en) Negative electrode active material for lithium secondary battery, negative electrode and lithium secondary battery
JP2022547282A (en) BATTERY SYSTEM, USAGE THEREOF AND BATTERY PACK INCLUDING THE SAME
JP6839028B2 (en) Lithium-ion battery manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240116

R150 Certificate of patent or registration of utility model

Ref document number: 7422493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150