JP2020197087A - Lateral pressure evaluation method of retaining wall, and lateral pressure evaluation device - Google Patents

Lateral pressure evaluation method of retaining wall, and lateral pressure evaluation device Download PDF

Info

Publication number
JP2020197087A
JP2020197087A JP2019104540A JP2019104540A JP2020197087A JP 2020197087 A JP2020197087 A JP 2020197087A JP 2019104540 A JP2019104540 A JP 2019104540A JP 2019104540 A JP2019104540 A JP 2019104540A JP 2020197087 A JP2020197087 A JP 2020197087A
Authority
JP
Japan
Prior art keywords
excavation
retaining wall
stress
lateral pressure
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019104540A
Other languages
Japanese (ja)
Inventor
直寛 濁川
Naohiro Nigirikawa
直寛 濁川
浅香 美治
Miharu Asaka
美治 浅香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2019104540A priority Critical patent/JP2020197087A/en
Publication of JP2020197087A publication Critical patent/JP2020197087A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a lateral pressure evaluation method of a retaining wall capable of easily obtaining realistic depth distribution of lateral pressure at the excavation side at each excavation stage, and a lateral pressure evaluation device.SOLUTION: The lateral pressure evaluation method of a retaining wall is a method for evaluating the lateral pressure at the excavation side, which acts on a retaining wall 3 when excavating the ground with predetermined excavation width B, depth L at a depth h. The excavation side lateral pressure is found at each excavation stage by apply a vertical stress σz at a position separated away by a predetermined distance from a retaining wall 3 at the excavation side to the formula of Rankine-Resal method. The vertical stress σz is a vertical stress at a predetermined depth z from the excavation bottom face 2 when the excavated soil mass 1 excavated and discharged, which acts on the excavation bottom face 2 as an unloading weight. It is preferable to subtract the unloading stress due to the stress solution of Steinbrenner from one-dimensional vertical soil cover pressure before excavation. The ground is alluvial ground, and the vertical stress σz is preferably vertical stress at a position 0.1 times the excavation width B from the retaining wall 3 at the excavation side.SELECTED DRAWING: Figure 1

Description

本発明は、例えば沖積地盤における山留め壁の側圧評価方法および側圧評価装置に関するものである。 The present invention relates to, for example, a lateral pressure evaluation method and a lateral pressure evaluation device for a retaining wall in an alluvial ground.

従来、山留め壁の応力および変形は、山留め壁に作用する荷重および抵抗を適切に評価し、各次掘削段階について力の釣り合いを解いて算定している。掘削側の抵抗にあたる掘削側側圧は、掘削土塊の排土による除荷や山留め壁の変形などの影響を受け、背面側土圧よりも複雑な力学挙動を示す。建築学会指針では、簡単かつ安全側の評価のため一次元除荷を想定し、掘削側側圧を各次掘削の根切り床から算定することを推奨している。 Conventionally, the stress and deformation of the retaining wall are calculated by appropriately evaluating the load and resistance acting on the retaining wall and balancing the forces at each next excavation stage. The excavation side pressure, which is the resistance of the excavation side, is affected by the unloading of excavated soil mass and the deformation of the retaining wall, and exhibits more complicated mechanical behavior than the back side earth pressure. The Architectural Institute of Japan guidelines recommend that one-dimensional unloading be assumed for easy and safe evaluation, and that the excavation side pressure be calculated from the root cutting floor of each next excavation.

しかしながら、この方法による山留め壁の変形計算は、最終掘削時での床付け付近での変位を過大に評価する傾向にあることが指摘されている。図5に示すように、軟弱な沖積粘性土が主体の地盤において、掘削幅:B=22.8m、奥行き:L=32.0mを深さ13m掘削した際の最終掘削時における山留め壁変位の実測値と、建築学会指針の推奨法による計算値(AIJ指針)を図6に示す。計算値は実測値と比べて相当大きな値を示していることから、建築学会指針の推奨法は掘削側側圧を過小評価しており、実際の現象と必ずしも整合しない可能性が示唆される。 However, it has been pointed out that the deformation calculation of the retaining wall by this method tends to overestimate the displacement near the flooring at the time of final excavation. As shown in FIG. 5, in the ground mainly composed of soft alluvial clay, the displacement of the retaining wall at the time of the final excavation when the excavation width: B = 22.8 m and the depth: L = 32.0 m are excavated at a depth of 13 m. Fig. 6 shows the measured values and the calculated values (AIJ guidelines) according to the recommended method of the Architectural Institute of Japan guidelines. Since the calculated value shows a considerably larger value than the measured value, it is suggested that the recommended method of the Architectural Institute of Japan guideline underestimates the side pressure on the excavation side and may not necessarily match the actual phenomenon.

なお、山留め工事の地盤掘削時における構造物の変状を確認するためのモニタリング技術としては、例えば特許文献1に記載のものが知られている。 As a monitoring technique for confirming the deformation of the structure at the time of excavating the ground for the retaining work, for example, the one described in Patent Document 1 is known.

特開平8−151633号公報Japanese Unexamined Patent Publication No. 8-151633

このため、沖積地盤の山留め壁において、各次掘削段階についてより現実に即した掘削側側圧の深度分布を簡易に求めることのできる方法が求められていた。 For this reason, there has been a demand for a method that can easily obtain a more realistic depth distribution of excavation side pressure for each next excavation stage in the alluvial ground retaining wall.

本発明は、上記に鑑みてなされたものであって、各次掘削段階についてより現実に即した掘削側側圧の深度分布を簡易に求めることのできる山留め壁の側圧評価方法および側圧評価装置を提供することを目的とする。 The present invention has been made in view of the above, and provides a lateral pressure evaluation method and a lateral pressure evaluation device for a retaining wall, which can easily obtain a more realistic depth distribution of excavation side pressure for each next excavation stage. The purpose is to do.

上記した課題を解決し、目的を達成するために、本発明に係る山留め壁の側圧評価方法は、地盤を所定の掘削幅、奥行き、深さで掘削した際の山留め壁に作用する掘削側側圧を評価する方法であって、ランキン・レザール法による計算式に、山留め壁から掘削側に所定の距離だけ離れた位置における鉛直応力を適用して、各次掘削段階の掘削側側圧を求めることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the method for evaluating the lateral pressure of the retaining wall according to the present invention is the excavation side pressure acting on the retaining wall when the ground is excavated at a predetermined excavation width, depth and depth. It is a method to evaluate the method, and to obtain the excavation side pressure at each next excavation stage by applying the normal stress at a position separated by a predetermined distance from the retaining wall to the excavation side to the calculation formula by the Rankin-Lesard method. It is a feature.

また、本発明に係る他の山留め壁の側圧評価方法は、上述した発明において、鉛直応力は、掘削して排土される掘削土塊を除荷重として根切り底面に作用させる場合の根切り底面から所定の深さにおける鉛直応力であって、掘削前の一次元鉛直土被り圧からSteinbrennerの応力解による除荷応力を差し引いて求められることを特徴とする。 Further, in the other method for evaluating the lateral pressure of the retaining wall according to the present invention, in the above-described invention, the normal stress is applied from the bottom surface of the root cutting when the excavated soil mass excavated and discharged is acted on the bottom surface of the root cutting as a deload. It is a normal stress at a predetermined depth, and is characterized in that it is obtained by subtracting the unloading stress due to the stress solution of Steinbrener from the one-dimensional vertical soil cover pressure before excavation.

また、本発明に係る他の山留め壁の側圧評価方法は、上述した発明において、地盤が沖積地盤であり、鉛直応力は、山留め壁から掘削側に掘削幅の0.1倍の距離だけ離れた位置における鉛直応力であることを特徴とする。 Further, in the other method for evaluating the lateral pressure of the retaining wall according to the present invention, in the above-mentioned invention, the ground is alluvial ground, and the normal stress is separated from the retaining wall to the excavation side by a distance of 0.1 times the excavation width. It is characterized by being a normal stress at the position.

また、本発明に係る山留め壁の側圧評価装置は、地盤を所定の掘削幅、奥行き、深さで掘削した際の山留め壁に作用する掘削側側圧を評価する装置であって、ランキン・レザール法による計算式に、山留め壁から掘削側に所定の距離だけ離れた位置における鉛直応力を適用して、各次掘削段階の掘削側側圧を求めることを特徴とする。 Further, the lateral pressure evaluation device for the retaining wall according to the present invention is an apparatus for evaluating the excavation side pressure acting on the retaining wall when the ground is excavated with a predetermined excavation width, depth and depth, and is the Rankin-Rezal method. It is characterized by applying the normal stress at a position separated by a predetermined distance from the retaining wall to the excavation side to obtain the excavation side pressure at each next excavation stage.

また、本発明に係る他の山留め壁の側圧評価装置は、上述した発明において、鉛直応力は、掘削して排土される掘削土塊を除荷重として根切り底面に作用させる場合の根切り底面から所定の深さにおける鉛直応力であって、掘削前の一次元鉛直土被り圧からSteinbrennerの応力解による除荷応力を差し引いて求められることを特徴とする。 Further, in the other lateral pressure evaluation device for the retaining wall according to the present invention, in the above-described invention, the normal stress is applied from the bottom surface of the root cutting when the excavated soil mass excavated and discharged is acted on the bottom surface of the root cutting as a deload. It is a normal stress at a predetermined depth, and is characterized in that it is obtained by subtracting the unloading stress due to the stress solution of Steinbrener from the one-dimensional vertical soil cover pressure before excavation.

また、本発明に係る他の山留め壁の側圧評価装置は、上述した発明において、地盤が沖積地盤であり、鉛直応力は、山留め壁から掘削側に掘削幅の0.1倍の距離だけ離れた位置における鉛直応力であることを特徴とする。 Further, in the other lateral pressure evaluation device for the retaining wall according to the present invention, in the above-mentioned invention, the ground is alluvial ground, and the normal stress is separated from the retaining wall to the excavation side by a distance of 0.1 times the excavation width. It is characterized by being a normal stress at the position.

本発明に係る山留め壁の側圧評価方法によれば、地盤を所定の掘削幅、奥行き、深さで掘削した際の山留め壁に作用する掘削側側圧を評価する方法であって、ランキン・レザール法による計算式に、山留め壁から掘削側に所定の距離だけ離れた位置における鉛直応力を適用して、各次掘削段階の掘削側側圧を求めるので、各次掘削段階についてより現実に即した掘削側側圧の深度分布を簡易に求めることができるという効果を奏する。 According to the method for evaluating the lateral pressure of the retaining wall according to the present invention, it is a method for evaluating the lateral pressure acting on the retaining wall when the ground is excavated at a predetermined excavation width, depth, and depth, and is the Rankin-Rezal method. Since the vertical stress at a position separated from the retaining wall by a predetermined distance from the retaining wall is applied to obtain the excavation side pressure at each next excavation stage, the excavation side is more realistic for each next excavation stage. It has the effect that the depth distribution of lateral pressure can be easily obtained.

また、本発明に係る他の山留め壁の側圧評価方法によれば、鉛直応力は、掘削して排土される掘削土塊を除荷重として根切り底面に作用させる場合の根切り底面から所定の深さにおける鉛直応力であって、掘削前の一次元鉛直土被り圧からSteinbrennerの応力解による除荷応力を差し引いて求められるので、掘削側側圧の評価に用いる鉛直応力を簡易に求めることができるという効果を奏する。 Further, according to another method for evaluating the lateral pressure of the retaining wall according to the present invention, the normal stress is a predetermined depth from the bottom surface of the root cutting when the excavated soil mass excavated and discharged is acted on the bottom surface of the root cutting as a deload. Since the normal stress is obtained by subtracting the unloading stress due to the stress solution of Steinbrenner from the one-dimensional vertical soil cover pressure before excavation, the normal stress used for the evaluation of the excavation side pressure can be easily obtained. It works.

また、本発明に係る他の山留め壁の側圧評価方法によれば、地盤が沖積地盤であり、鉛直応力は、山留め壁から掘削側に掘削幅の0.1倍の距離だけ離れた位置における鉛直応力であるので、評価の精度を高めることができるという効果を奏する。 Further, according to another method for evaluating the lateral pressure of the retaining wall according to the present invention, the ground is an alluvial ground, and the normal stress is vertical at a position separated from the retaining wall by 0.1 times the excavation width on the excavation side. Since it is a stress, it has the effect of improving the accuracy of evaluation.

また、本発明に係る山留め壁の側圧評価装置によれば、地盤を所定の掘削幅、奥行き、深さで掘削した際の山留め壁に作用する掘削側側圧を評価する装置であって、ランキン・レザール法による計算式に、山留め壁から掘削側に所定の距離だけ離れた位置における鉛直応力を適用して、各次掘削段階の掘削側側圧を求めるので、各次掘削段階についてより現実に即した掘削側側圧の深度分布を簡易に求めることができるという効果を奏する。 Further, according to the lateral pressure evaluation device for the retaining wall according to the present invention, it is an apparatus for evaluating the excavation side pressure acting on the retaining wall when the ground is excavated with a predetermined excavation width, depth, and depth. Since the normal stress at a position separated from the retaining wall by a predetermined distance from the retaining wall is applied to the calculation formula by the Rezal method to obtain the excavation side pressure at each next excavation stage, it is more realistic for each next excavation stage. It has the effect that the depth distribution of the excavation side pressure can be easily obtained.

また、本発明に係る他の山留め壁の側圧評価装置によれば、鉛直応力は、掘削して排土される掘削土塊を除荷重として根切り底面に作用させる場合の根切り底面から所定の深さにおける鉛直応力であって、掘削前の一次元鉛直土被り圧からSteinbrennerの応力解による除荷応力を差し引いて求められるので、掘削側側圧の評価に用いる鉛直応力を簡易に求めることができるという効果を奏する。 Further, according to another lateral pressure evaluation device for the retaining wall according to the present invention, the normal stress is a predetermined depth from the root cutting bottom surface when the excavated soil mass excavated and discharged is acted on the root cutting bottom surface as a deload. Since the normal stress is obtained by subtracting the unloading stress due to the stress solution of Steinbrenner from the one-dimensional vertical soil cover pressure before excavation, the normal stress used for the evaluation of the excavation side pressure can be easily obtained. It works.

また、本発明に係る他の山留め壁の側圧評価装置によれば、地盤が沖積地盤であり、鉛直応力は、山留め壁から掘削側に掘削幅の0.1倍の距離だけ離れた位置における鉛直応力であるので、評価の精度を高めることができるという効果を奏する。 Further, according to another lateral pressure evaluation device for the retaining wall according to the present invention, the ground is an alluvial ground, and the normal stress is vertical at a position separated from the retaining wall by 0.1 times the excavation width on the excavation side. Since it is a stress, it has the effect of improving the accuracy of evaluation.

図1は、本発明におけるSteinbrennerの応力解による鉛直除荷応力の計算モデルを示す図である。FIG. 1 is a diagram showing a calculation model of vertical unloading stress by the stress solution of Steinbrener in the present invention. 図2は、最終掘削時における山留め壁変位の実測値と計算値(実施例)を示す図である。FIG. 2 is a diagram showing actual measurement values and calculated values (examples) of the displacement of the retaining wall at the time of final excavation. 図3は、山留め壁から0.1B離れた位置における鉛直除荷応力の補正係数(α)を示す図である。FIG. 3 is a diagram showing a correction coefficient (α) of the vertical unloading stress at a position 0.1B away from the retaining wall. 図4は、山留め壁から0.1B離れた位置における鉛直除荷応力の補正係数(1−α)を示す図である。FIG. 4 is a diagram showing a correction coefficient (1-α) of the vertical unloading stress at a position 0.1B away from the retaining wall. 図5は、従来の軟弱な沖積粘性土が主体の地盤を掘削する事例を示す図であり、(1)は平面図、(2)は断面図である。FIG. 5 is a diagram showing an example of excavating the ground mainly composed of conventional soft alluvial clay, where (1) is a plan view and (2) is a cross-sectional view. 図6は、従来の最終掘削時における山留め壁変位の実測値と計算値を示す図である。FIG. 6 is a diagram showing actual measurement values and calculated values of the displacement of the retaining wall at the time of the conventional final excavation.

以下に、本発明に係る山留め壁の側圧評価方法および側圧評価装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a method for evaluating the lateral pressure of the retaining wall and an embodiment of the lateral pressure evaluation device according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.

<山留め壁の側圧評価方法>
まず、本発明の山留め壁の側圧評価方法の実施の形態について説明する。
本実施の形態に係る山留め壁の側圧評価方法は、地盤を所定の掘削幅、奥行き、深さで掘削した際の山留め壁に作用する掘削側側圧を評価する方法であって、ランキン・レザール法による計算式に、山留め壁から掘削側に所定の距離だけ離れた位置における鉛直応力を適用して、各次掘削段階の掘削側側圧を求めるものである。掘削される地盤としては、沖積地盤を想定している。
<Method of evaluating lateral pressure on the retaining wall>
First, an embodiment of the method for evaluating the lateral pressure of the retaining wall of the present invention will be described.
The method for evaluating the lateral pressure of the retaining wall according to the present embodiment is a method for evaluating the lateral pressure acting on the retaining wall when the ground is excavated at a predetermined excavation width, depth, and depth, and is the Rankin-Rezal method. The vertical stress at a position separated from the retaining wall by a predetermined distance from the retaining wall is applied to the calculation formula according to the above to obtain the excavation side pressure at each next excavation stage. The alluvial ground is assumed to be excavated.

本実施の形態が適用される計算モデルを図1に示す。この図に示すように、排土される掘削土塊1(奥行きL,掘削幅B,掘削深さh)を除荷重として根切り底面2に作用させる。山留め壁3から0.1Bの水平距離だけ離れた位置、かつ根切り底からの深さzにおける鉛直応力σ(=γtz−pwp)は、掘削前の一次元鉛直土被り圧σz0(=γ(z+h)−pwp)からSteinbrennerの応力解による除荷応力Δσz(e)を差し引いて求める。ここに、γ:土の湿潤単位体積重量、pwp:根切り底からの深さzにおける掘削側の水圧である。 A calculation model to which this embodiment is applied is shown in FIG. As shown in this figure, the excavated soil mass 1 (depth L, excavation width B, excavation depth h) to be discharged is acted on the root cutting bottom surface 2 as a deload. The vertical stress σ z (= γ tz −p ww ) at a position separated by a horizontal distance of 0.1 B from the retaining wall 3 and at a depth z from the root cutting bottom is the one-dimensional vertical soil cover pressure σ z0 before excavation. It is obtained by subtracting the unloading stress Δσ z (e) from the stress solution of the horizontal blender from (= γ t (z + h) -p ww ). Here, γ t : wet unit volume weight of the soil, p ww : water pressure on the excavation side at a depth z from the root cutting bottom.

山留め壁に作用する掘削側側圧Pの計算は、建築学会指針に倣いランキン・レザール式により求まる主働土圧に基づく方法(以下、ランキン・レザール法という。)を用いる。 For the calculation of the excavation side pressure P p acting on the retaining wall, a method based on the active soil pressure obtained by the Rankin-Rezal method (hereinafter referred to as the Rankin-Rezal method) is used in accordance with the guidelines of the Architectural Institute of Japan.

(AIJ指針による側圧P

Figure 2020197087
(Side pressure P p according to AIJ guideline)
Figure 2020197087

ここに、c:土の粘着力、φ:土の内部摩擦角である。ランキン・レザール法による計算に、Steinbrennerの応力解による除荷応力を取り入れた鉛直応力を用いると次式が得られる。 Here, c: the adhesive force of the soil, φ: the internal friction angle of the soil. The following equation can be obtained by using the normal stress that incorporates the unloading stress from the stress solution of Steinbrener in the calculation by the Rankin-Lesard method.

(本発明による側圧P’)

Figure 2020197087
Figure 2020197087
(Lateral pressure P p 'according to the present invention)
Figure 2020197087
Figure 2020197087

ここに、σ:根切り底からの深さzにおける鉛直土被り圧、Δσz(e):掘削土塊の排土による除荷応力である。(3)式を変形すると次式が得られる。 Here, σ z : vertical soil cover pressure at a depth z from the root cutting bottom, and Δσ z (e) : unloading stress due to excavated soil mass. The following equation is obtained by modifying the equation (3).

Figure 2020197087
Figure 2020197087

ここで、Δσz(e)/Δσz(1D)=αとして(4)式を整理すると次式が得られる。 Here, the following equation can be obtained by rearranging equation (4) with Δσ z (e) / Δσ z (1D) = α.

Figure 2020197087
Figure 2020197087
Figure 2020197087
Figure 2020197087

<本発明の効果の検証>
図5の地盤・施工条件において、掘削側側圧の計算に(6)式を、山留め壁に生じる変形の算定手法に弾塑性法(梁・ばねモデル)を用いて試行錯誤的に変形計算を行った。計算結果を図2に示す。
<Verification of the effect of the present invention>
Under the ground and construction conditions shown in Fig. 5, the deformation was calculated by trial and error using Eq. (6) for the calculation of the excavation side pressure and the elasto-plastic method (beam / spring model) for the calculation method of the deformation occurring on the retaining wall. It was. The calculation result is shown in FIG.

この図に示すように、山留め壁から2m(約0.1B)離れた位置における各次掘削段階の除荷応力を掘削側側圧の計算に採用することで、最終掘削時における山留め壁変位の計算値が実測値に近似する結果が得られた。 As shown in this figure, the displacement of the retaining wall at the time of final excavation is calculated by adopting the unloading stress at each next excavation stage at a position 2 m (about 0.1B) away from the retaining wall in the calculation of the excavation side pressure. The result that the value is close to the measured value was obtained.

ランキン・レザール法を修正した(6)式に用いられるαは、例えば図3に示すようなチャートから読み取ることができる。図3中の縦軸は根切り底からの深さzと掘削幅Bの比であり、横軸はSteinbrennerの応力解による除荷応力Δσz(e)と一次元除荷応力Δσz(1D)の比(=α:補正係数)である。 The α used in Eq. (6), which is a modification of the Rankin-Lesal method, can be read from, for example, a chart as shown in FIG. The vertical axis in FIG. 3 is the ratio of the depth z from the root cutting bottom to the excavation width B, and the horizontal axis is the unloading stress Δσ z (e) and the one-dimensional unloading stress Δσ z (1D ) due to the stress solution of Steinbrenner. ) Ratio (= α: correction coefficient).

図4は、山留め壁から0.1Bだけ離れた位置における鉛直除荷応力を簡単に読み取ることができるチャートである。実用上は、あらかじめ図4のチャートを作成しておき、このチャートから(6)式の補正係数にあたる1−αを読み取り、ランキン・レザール法を修正した(6)式を用いて掘削側側圧を計算することで、現実に即した掘削側側圧の深度分布を設定する。 FIG. 4 is a chart in which the vertical unloading stress at a position separated from the retaining wall by 0.1 B can be easily read. For practical use, the chart shown in FIG. 4 is created in advance, 1-α corresponding to the correction coefficient of equation (6) is read from this chart, and the excavation side pressure is calculated using equation (6) modified by the Rankin-Rezal method. By calculating, the depth distribution of the excavation side pressure that matches the reality is set.

本実施の形態によれば、沖積地盤に山留め壁を施工する際の設計計算において、山留め壁から0.1Bだけ離れた位置における鉛直除荷応力の補正係数1−αを求めるためのチャート(図4を参照)、およびランキン・レザール法を修正した(6)式を併用することで、各次掘削段階についてより現実に即した掘削側側圧の深度分布を簡易に求めることができる。現実に即した掘削側側圧の深度分布を設定することが可能なため、最終掘削時に山留め壁に生じる変形の計算精度が向上する。 According to the present embodiment, in the design calculation when constructing the alluvial ground, a chart for obtaining the correction coefficient 1-α of the vertical unloading stress at a position 0.1B away from the alluvial wall (Fig.) By using Eq. (6), which is a modification of the Rankin-Rezal method, together with (see 4), it is possible to easily obtain a more realistic depth distribution of the excavation side pressure for each next excavation stage. Since it is possible to set the depth distribution of the excavation side pressure according to the reality, the calculation accuracy of the deformation that occurs in the retaining wall during the final excavation is improved.

なお、上記の実施の形態においては、山留め壁から掘削側に0.1Bの距離だけ離れた位置における鉛直応力を用いる場合を例にとり説明したが、本発明の距離はこれに限るものではない。例えば、事前に地盤の特性等に応じて、最終掘削時における山留め壁変位の実測値を近似できる距離を検討しておき、その距離だけ離れた位置における鉛直応力を用いてもよい。このようにしても、上記と同様の作用効果を奏することができる。 In the above embodiment, the case where the normal stress at a position separated from the retaining wall by 0.1B on the excavation side is used as an example has been described, but the distance of the present invention is not limited to this. For example, a distance that can approximate the measured value of the displacement of the retaining wall at the time of final excavation may be examined in advance according to the characteristics of the ground, and the normal stress at a position separated by that distance may be used. Even in this way, the same effects as described above can be obtained.

<山留め壁の側圧評価装置>
次に、本発明の山留め壁の側圧評価装置の実施の形態について説明する。
本実施の形態に係る山留め壁の側圧評価装置は、上記の山留め壁の側圧評価方法を装置として具現化したものであり、例えばCPUを有するコンピュータと、データを記憶するメモリと、データを入力するキーボードと、データを出力するディスプレイなどにより構成される。コンピュータが、メモリやキーボード等を通じて入力された地盤・施工条件データ、図3や図4のデータに基づいて、上記の(6)式の計算を実行し、その結果をディスプレイなどに出力させることで、各次掘削段階についてより現実に即した掘削側側圧の深度分布を簡易に把握することができる。
<Side pressure evaluation device for retaining wall>
Next, an embodiment of the lateral pressure evaluation device for the retaining wall of the present invention will be described.
The lateral pressure evaluation device for the retaining wall according to the present embodiment embodies the above-mentioned lateral pressure evaluation method for the retaining wall as an apparatus. For example, a computer having a CPU, a memory for storing data, and data are input. It consists of a keyboard and a display that outputs data. The computer executes the calculation of the above equation (6) based on the ground / construction condition data input through the memory, keyboard, etc., and the data of FIGS. 3 and 4, and outputs the result to the display or the like. , It is possible to easily grasp the depth distribution of the excavation side pressure more realistically for each next excavation stage.

以上説明したように、本発明に係る山留め壁の側圧評価方法によれば、地盤を所定の掘削幅、奥行き、深さで掘削した際の山留め壁に作用する掘削側側圧を評価する方法であって、ランキン・レザール法による計算式に、山留め壁から掘削側に所定の距離だけ離れた位置における鉛直応力を適用して、各次掘削段階の掘削側側圧を求めるので、各次掘削段階についてより現実に即した掘削側側圧の深度分布を簡易に求めることができる。 As described above, according to the method for evaluating the lateral pressure of the retaining wall according to the present invention, it is a method for evaluating the excavation side pressure acting on the retaining wall when the ground is excavated at a predetermined excavation width, depth, and depth. Then, the normal stress at a position separated by a predetermined distance from the retaining wall to the excavation side is applied to the calculation formula by the Rankin-Lesard method to obtain the excavation side pressure at each next excavation stage. The depth distribution of the excavation side pressure can be easily obtained according to the actual situation.

また、本発明に係る他の山留め壁の側圧評価方法によれば、鉛直応力は、掘削して排土される掘削土塊を除荷重として根切り底面に作用させる場合の根切り底面から所定の深さにおける鉛直応力であって、掘削前の一次元鉛直土被り圧からSteinbrennerの応力解による除荷応力を差し引いて求められるので、掘削側側圧の評価に用いる鉛直応力を簡易に求めることができる。 Further, according to another method for evaluating the lateral pressure of the retaining wall according to the present invention, the normal stress is a predetermined depth from the bottom surface of the root cutting when the excavated soil mass excavated and discharged is acted on the bottom surface of the root cutting as a deload. Since the normal stress is obtained by subtracting the unloading stress due to the stress solution of Steinbrenner from the one-dimensional vertical soil cover pressure before excavation, the normal stress used for evaluating the excavation side pressure can be easily obtained.

また、本発明に係る他の山留め壁の側圧評価方法によれば、地盤が沖積地盤であり、鉛直応力は、山留め壁から掘削側に掘削幅の0.1倍の距離だけ離れた位置における鉛直応力であるので、評価の精度を高めることができる。 Further, according to another method for evaluating the lateral pressure of the retaining wall according to the present invention, the ground is an alluvial ground, and the normal stress is vertical at a position separated from the retaining wall by 0.1 times the excavation width on the excavation side. Since it is a stress, the accuracy of evaluation can be improved.

また、本発明に係る山留め壁の側圧評価装置によれば、地盤を所定の掘削幅、奥行き、深さで掘削した際の山留め壁に作用する掘削側側圧を評価する装置であって、ランキン・レザール法による計算式に、山留め壁から掘削側に所定の距離だけ離れた位置における鉛直応力を適用して、各次掘削段階の掘削側側圧を求めるので、各次掘削段階についてより現実に即した掘削側側圧の深度分布を簡易に求めることができる。 Further, according to the lateral pressure evaluation device for the retaining wall according to the present invention, it is an apparatus for evaluating the excavation side pressure acting on the retaining wall when the ground is excavated with a predetermined excavation width, depth, and depth. Since the normal stress at a position separated from the retaining wall by a predetermined distance from the retaining wall is applied to the calculation formula by the Rezal method to obtain the excavation side pressure at each next excavation stage, it is more realistic for each next excavation stage. The depth distribution of the excavation side pressure can be easily obtained.

また、本発明に係る他の山留め壁の側圧評価装置によれば、鉛直応力は、掘削して排土される掘削土塊を除荷重として根切り底面に作用させる場合の根切り底面から所定の深さにおける鉛直応力であって、掘削前の一次元鉛直土被り圧からSteinbrennerの応力解による除荷応力を差し引いて求められるので、掘削側側圧の評価に用いる鉛直応力を簡易に求めることができる。 Further, according to another lateral pressure evaluation device for the retaining wall according to the present invention, the normal stress is a predetermined depth from the root cutting bottom surface when the excavated soil mass excavated and discharged is acted on the root cutting bottom surface as a deload. Since the normal stress is obtained by subtracting the unloading stress due to the stress solution of Steinbrenner from the one-dimensional vertical soil cover pressure before excavation, the normal stress used for evaluating the excavation side pressure can be easily obtained.

また、本発明に係る他の山留め壁の側圧評価装置によれば、地盤が沖積地盤であり、鉛直応力は、山留め壁から掘削側に掘削幅の0.1倍の距離だけ離れた位置における鉛直応力であるので、評価の精度を高めることができる。 Further, according to another lateral pressure evaluation device for the retaining wall according to the present invention, the ground is an alluvial ground, and the normal stress is vertical at a position separated from the retaining wall by 0.1 times the excavation width on the excavation side. Since it is a stress, the accuracy of evaluation can be improved.

以上のように、本発明に係る山留め壁の側圧評価方法および側圧評価装置は、山留め壁の設計に有用であり、特に、沖積地盤における山留め工事の各次掘削段階についてより現実に即した掘削側側圧の深度分布を簡易に求めるのに適している。 As described above, the lateral pressure evaluation method and the lateral pressure evaluation device of the retaining wall according to the present invention are useful for the design of the retaining wall, and in particular, the excavation side more realistic for each next excavation stage of the retaining work in the alluvial ground. It is suitable for easily obtaining the depth distribution of lateral pressure.

1 掘削土塊
2 根切り底面
3 山留め壁
L 奥行き
B 掘削幅
h 掘削深さ
1 Excavated soil mass 2 Root cutting bottom 3 Mountain retaining wall L Depth B Excavation width h Excavation depth

Claims (6)

地盤を所定の掘削幅、奥行き、深さで掘削した際の山留め壁に作用する掘削側側圧を評価する方法であって、
ランキン・レザール法による計算式に、山留め壁から掘削側に所定の距離だけ離れた位置における鉛直応力を適用して、各次掘削段階の掘削側側圧を求めることを特徴とする山留め壁の側圧評価方法。
It is a method to evaluate the excavation side pressure acting on the retaining wall when excavating the ground with a predetermined excavation width, depth, and depth.
Evaluation of the lateral pressure of the retaining wall, which is characterized by applying the normal stress at a position separated from the retaining wall by a predetermined distance from the retaining wall to the calculation formula by the Rankin-Rezal method to obtain the excavation side pressure at each next excavation stage. Method.
鉛直応力は、掘削して排土される掘削土塊を除荷重として根切り底面に作用させる場合の根切り底面から所定の深さにおける鉛直応力であって、掘削前の一次元鉛直土被り圧からSteinbrennerの応力解による除荷応力を差し引いて求められることを特徴とする請求項1に記載の山留め壁の側圧評価方法。 The normal stress is the normal stress at a predetermined depth from the bottom of the root cutting when the excavated soil mass excavated and discharged is acted on the bottom of the root cutting as a deload, and is from the one-dimensional vertical soil cover pressure before excavation. The method for evaluating lateral pressure of a retaining wall according to claim 1, wherein the unloading stress due to the stress solution of Steinbrener is subtracted. 地盤が沖積地盤であり、鉛直応力は、山留め壁から掘削側に掘削幅の0.1倍の距離だけ離れた位置における鉛直応力であることを特徴とする請求項1または2に記載の山留め壁の側圧評価方法。 The retaining wall according to claim 1 or 2, wherein the ground is an alluvial ground, and the normal stress is a vertical stress at a position separated from the retaining wall by 0.1 times the excavation width on the excavation side. Lateral pressure evaluation method. 地盤を所定の掘削幅、奥行き、深さで掘削した際の山留め壁に作用する掘削側側圧を評価する装置であって、
ランキン・レザール法による計算式に、山留め壁から掘削側に所定の距離だけ離れた位置における鉛直応力を適用して、各次掘削段階の掘削側側圧を求めることを特徴とする山留め壁の側圧評価装置。
It is a device that evaluates the excavation side pressure acting on the retaining wall when excavating the ground with a predetermined excavation width, depth, and depth.
Evaluation of the lateral pressure of the retaining wall, which is characterized by applying the normal stress at a position separated from the retaining wall by a predetermined distance from the retaining wall to the calculation formula by the Rankin-Rezal method to obtain the excavation side pressure at each next excavation stage. apparatus.
鉛直応力は、掘削して排土される掘削土塊を除荷重として根切り底面に作用させる場合の根切り底面から所定の深さにおける鉛直応力であって、掘削前の一次元鉛直土被り圧からSteinbrennerの応力解による除荷応力を差し引いて求められることを特徴とする請求項4に記載の山留め壁の側圧評価装置。 The normal stress is the normal stress at a predetermined depth from the bottom of the root cutting when the excavated soil mass excavated and discharged is acted on the bottom of the root cutting as a deload, and is from the one-dimensional vertical soil cover pressure before excavation. The lateral pressure evaluation device for a retaining wall according to claim 4, wherein the unloading stress due to the stress solution of Steinbrenner is subtracted. 地盤が沖積地盤であり、鉛直応力は、山留め壁から掘削側に掘削幅の0.1倍の距離だけ離れた位置における鉛直応力であることを特徴とする請求項4または5に記載の山留め壁の側圧評価装置。 The retaining wall according to claim 4 or 5, wherein the ground is an alluvial ground, and the normal stress is a vertical stress at a position separated from the retaining wall by 0.1 times the excavation width on the excavation side. Side pressure evaluation device.
JP2019104540A 2019-06-04 2019-06-04 Lateral pressure evaluation method of retaining wall, and lateral pressure evaluation device Pending JP2020197087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019104540A JP2020197087A (en) 2019-06-04 2019-06-04 Lateral pressure evaluation method of retaining wall, and lateral pressure evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104540A JP2020197087A (en) 2019-06-04 2019-06-04 Lateral pressure evaluation method of retaining wall, and lateral pressure evaluation device

Publications (1)

Publication Number Publication Date
JP2020197087A true JP2020197087A (en) 2020-12-10

Family

ID=73648893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104540A Pending JP2020197087A (en) 2019-06-04 2019-06-04 Lateral pressure evaluation method of retaining wall, and lateral pressure evaluation device

Country Status (1)

Country Link
JP (1) JP2020197087A (en)

Similar Documents

Publication Publication Date Title
Bilotta et al. A numerical Round Robin on tunnels under seismic actions
Lin et al. Interaction between laterally loaded pile and surrounding soil
Chen et al. Simulation of earthquake‐induced slope deformation using SPH method
US10684392B2 (en) Method to generate the in-situ state of stress in a domain Ω in a geological structure
Jafarian et al. On the efficiency and predictability of strain energy for the evaluation of liquefaction potential: A numerical study
Yun et al. Evaluation of soil spring methods for response spectrum analysis of pile-supported structures via dynamic centrifuge tests
JP5092679B2 (en) Judgment method of building damage
Mu et al. Defining the soil parameters for computing deformations caused by braced excavation.
Yun et al. Evaluation of the virtual fixed-point method for seismic design of pile-supported structures
Elahi et al. Pseudostatic approach for seismic analysis of pile group
Zhang et al. Hysteretic damping model for laterally loaded piles
Ghanbari et al. An analytical technique for estimation of seismic displacements in reinforced slopes based on horizontal slices method (HSM)
JP4060784B2 (en) Earthquake motion prediction method and evaluation method thereof
Phillips et al. Significance of small strain damping and dilation parameters in numerical modeling of free-field lateral spreading centrifuge tests
JP4928094B2 (en) Ground survey method, ground survey system and ground survey sheet
JP2020197091A (en) Lateral pressure evaluation method of retaining wall, and lateral pressure evaluation device
Johari et al. Stochastic nonlinear ground response analysis: A case study site in Shiraz, Iran
JP6238043B2 (en) Simple calculation method of residual deformation during liquefaction of soil-structure system
JP2020197087A (en) Lateral pressure evaluation method of retaining wall, and lateral pressure evaluation device
Kim et al. Large-scale shake table testing of shallow tunnel-ground system
JP2011038338A (en) Ground deformation analysis device and ground deformation analysis program
Fellenius Analysis of results of an instrumented bidirectional-cell test
Lu et al. Analysis of soil–pile–structure interaction in a two‐layer ground during earthquakes considering liquefaction
Marrapu et al. Assessment of slope stability using multiple regression analysis
Strahler Bearing capacity and immediate settlement of shallow foundations on clay