JP2020196109A - Gear cutting tool and method of manufacturing the same - Google Patents

Gear cutting tool and method of manufacturing the same Download PDF

Info

Publication number
JP2020196109A
JP2020196109A JP2019104813A JP2019104813A JP2020196109A JP 2020196109 A JP2020196109 A JP 2020196109A JP 2019104813 A JP2019104813 A JP 2019104813A JP 2019104813 A JP2019104813 A JP 2019104813A JP 2020196109 A JP2020196109 A JP 2020196109A
Authority
JP
Japan
Prior art keywords
tool
blade
gear cutting
cutting tool
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019104813A
Other languages
Japanese (ja)
Other versions
JP7451884B2 (en
Inventor
秀昭 宇野
Hideaki Uno
秀昭 宇野
佐藤 稔
Minoru Sato
稔 佐藤
誠一 大野
Seiichi Ono
誠一 大野
俊行 手嶋
Toshiyuki Teshima
俊行 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2019104813A priority Critical patent/JP7451884B2/en
Publication of JP2020196109A publication Critical patent/JP2020196109A/en
Priority to JP2023143109A priority patent/JP2023175733A/en
Application granted granted Critical
Publication of JP7451884B2 publication Critical patent/JP7451884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an inexpensive gear cutting tool capable of being easily handled, and a method of manufacturing the same.SOLUTION: A gear cutting tool 1A creates teeth of a gear in a workpiece. The gear cutting tool 1A comprises: a cylindrical or columnar tool body 2A; and a toric tool blade part 3A that is constituted as one member separate from the tool body 2A and that has an annular blade part body 30A coaxially connected to the side of one end of the tool body 2A and a plurality of blades 33A formed as an integrated region on an outer peripheral surface of the annular blade part body 30A.SELECTED DRAWING: Figure 1B

Description

本発明は、歯切り工具及び歯切り工具の製造方法に関するものである。 The present invention relates to a gear cutting tool and a method for manufacturing a gear cutting tool.

近年、コストの面から高速加工可能な歯車加工が望まれており、特許文献1に記載のようなスカイビング加工が知られている。スカイビング加工とは、歯切り工具の回転軸線と工作物の回転軸線とを傾斜させた状態(歯車加工における交差角を有する状態)とする。そして、歯切り工具及び工作物をそれぞれの回転軸線周りに同期回転させながら、歯切り工具を工作物の回転軸線方向に相対移動(パス)する加工である。 In recent years, gear machining capable of high-speed machining has been desired from the viewpoint of cost, and skiving machining as described in Patent Document 1 is known. The skiving process is a state in which the rotation axis of the gear cutting tool and the rotation axis of the workpiece are inclined (a state having an intersection angle in gear processing). Then, while rotating the gear cutting tool and the workpiece synchronously around their respective rotation axes, the gear cutting tool is relatively moved (passed) in the direction of the rotation axis of the workpiece.

スカイビング加工用の歯切り工具は、上記パスを複数回行うが、全てのパスにおいて歯切り工具の刃の刃先が加工を行うため、刃先の摩耗量が多くなる。対応策としては、刃の刃先の摩耗量が限界を超えたら、工具交換を行えばよいが、歯切り工具は、一般的にソリッド(無垢)の高速度工具鋼もしくは超硬合金で成るため非常にコスト高である。 The gear cutting tool for skiving machining performs the above-mentioned passes a plurality of times, but since the cutting edge of the gear cutting tool performs machining in all the passes, the amount of wear of the cutting edge increases. As a countermeasure, if the amount of wear on the cutting edge of the blade exceeds the limit, the tool may be replaced, but the gear cutting tool is generally made of solid high-speed tool steel or cemented carbide, so it is extremely difficult. The cost is high.

そこで、特許文献2,3には、工具本体に対し刃のみの交換が可能な歯切り工具が記載されている。これによれば、工具交換によるコストを無くして刃交換のみのコストとなるので、工具コストの上昇を抑制できる。 Therefore, Patent Documents 2 and 3 describe a gear cutting tool in which only the blade can be replaced with respect to the tool body. According to this, since the cost of tool replacement is eliminated and the cost is only blade replacement, an increase in tool cost can be suppressed.

特開2012−171020号公報Japanese Unexamined Patent Publication No. 2012-171020 特開2015−44282号公報Japanese Unexamined Patent Publication No. 2015-44282 特開2016−16514号公報Japanese Unexamined Patent Publication No. 2016-16514

上述の特許文献2,3に記載の歯切り工具では、工具本体に対し複数の刃をそれぞれ取り付け、各刃に対して同軸調整を行う作業が必要であり、非常に手間が掛かるという問題がある。 In the gear cutting tools described in Patent Documents 2 and 3 described above, it is necessary to attach a plurality of blades to the tool body and perform coaxial adjustment for each blade, which causes a problem that it takes a lot of time and effort. ..

本発明の目的は、低コストで取扱いが容易な歯切り工具及び歯切り工具の製造方法を提供することである。 An object of the present invention is to provide a gear cutting tool and a method for manufacturing a gear cutting tool that are easy to handle at low cost.

本発明に係る歯切り工具は、工作物に歯車の歯を創成する歯切り工具であって、円筒状又は円柱状の工具本体と、前記工具本体と別体の1つの部材として構成され、前記工具本体の一端側に同軸上に連結された環状刃部本体及び前記環状刃部本体の外周面に一体部位として形成された複数の刃を有する円環状の工具刃部と、を備える。 The gear cutting tool according to the present invention is a gear cutting tool that creates gear teeth in a workpiece, and is configured as a cylindrical or columnar tool body and one member separate from the tool body. It includes an annular blade portion main body coaxially connected to one end side of the tool main body, and an annular tool blade portion having a plurality of blades formed as an integral portion on the outer peripheral surface of the annular blade portion main body.

本発明に係る歯切り工具の製造方法は、工作物に歯車の歯を創成する歯切り工具の製造方法であって、円筒状又は円柱状の工具本体とは別体の1つの部材として構成される円環状の工具刃部を、前記工具本体の一端側に取り付ける取付工程と、前記取付工程の後に前記工具本体の回転軸線と前記工具刃部の回転軸線を軸調整部材で同軸に調整する同軸調整工程と、前記同軸調整工程の後に前記工具本体と前記工具刃部を締結部材で締結する締結工程と、前記締結工程の後に複数の刃を前記工具刃部の外周面に加工する加工工程と、を備える。 The method for manufacturing a gear cutting tool according to the present invention is a method for manufacturing a gear cutting tool that creates gear teeth in a workpiece, and is configured as one member separate from the cylindrical or columnar tool body. A mounting process in which the annular tool blade portion is attached to one end side of the tool body, and a coaxial adjustment in which the rotation axis of the tool body and the rotation axis of the tool blade portion are coaxially adjusted by an axis adjusting member after the mounting process. An adjustment step, a fastening step of fastening the tool body and the tool blade portion with a fastening member after the coaxial adjustment step, and a machining step of processing a plurality of blades on the outer peripheral surface of the tool blade portion after the fastening step. , Equipped with.

本発明に係る歯切り工具及び歯切り工具の製造方法によれば、工具本体と工具刃部は別体で構成され、複数の刃は工具刃部の環状刃部本体の外周面に一体部位として形成される。このため、工具本体と工具刃部の同軸調整を行うのみで、複数の刃の同軸調整も同時に行われることになる。よって、従来の工具本体に対し複数の刃をそれぞれ取り付け、各刃に対して同軸調整を行う作業が必要な歯切り工具と比較して、本発明の歯切り工具の取扱いは容易となり、創成する歯車の加工精度を従来よりも向上できる。 According to the gear cutting tool and the method for manufacturing a gear cutting tool according to the present invention, the tool body and the tool blade portion are formed as separate bodies, and the plurality of blades are integrated with the outer peripheral surface of the annular blade portion main body of the tool blade portion. It is formed. Therefore, only the coaxial adjustment of the tool body and the tool blade portion is performed, and the coaxial adjustment of the plurality of blades is also performed at the same time. Therefore, the handling of the gear cutting tool of the present invention becomes easier and is created as compared with the gear cutting tool which requires the work of attaching a plurality of blades to the conventional tool body and performing coaxial adjustment for each blade. The machining accuracy of gears can be improved more than before.

本発明の第一実施形態の歯切り工具の斜視図である。It is a perspective view of the gear cutting tool of the 1st Embodiment of this invention. 図1Aの歯切り工具を回転軸線と直角な方向から見た一部断面図である。It is a partial cross-sectional view of the gear cutting tool of FIG. 1A seen from the direction perpendicular to the rotation axis. 図1Aの歯切り工具の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the gear cutting tool of FIG. 1A. 図1Aの歯切り工具の製造過程において工具刃部の加工状態を示す一部断面図である。FIG. 3 is a partial cross-sectional view showing a machining state of a tool blade portion in the manufacturing process of the gear cutting tool of FIG. 1A. 図1Aの歯切り工具の製造過程において工具本体の加工状態を示す一部断面図である。It is a partial cross-sectional view which shows the processing state of the tool body in the manufacturing process of the gear cutting tool of FIG. 1A. 図1Aの歯切り工具の製造過程において工具刃部に工具本体を組み付けた状態を示す一部断面図である。FIG. 3 is a partial cross-sectional view showing a state in which a tool body is assembled to a tool blade portion in the manufacturing process of the gear cutting tool of FIG. 1A. 図1Aの歯切り工具の製造過程において工具刃部と工具本体を一体化した状態を示す一部断面図である。FIG. 3 is a partial cross-sectional view showing a state in which a tool blade portion and a tool body are integrated in the manufacturing process of the gear cutting tool of FIG. 1A. 図1Aの歯切り工具の製造過程において完成した歯切り工具を示す一部断面図である。It is a partial cross-sectional view which shows the gear cutting tool completed in the manufacturing process of the gear cutting tool of FIG. 1A. 歯切り工具の製造装置である研削装置を示す斜視図である。It is a perspective view which shows the grinding apparatus which is the manufacturing apparatus of a gear cutting tool. 図4Aの研削装置をIVB方向から見た図である。FIG. 4A is a view of the grinding device of FIG. 4A as viewed from the IVB direction. 本発明の第二実施形態の歯切り工具を回転軸線と直角な方向から見た一部断面図である。It is a partial cross-sectional view of the gear cutting tool of the second embodiment of this invention seen from the direction perpendicular to the rotation axis. 図5の歯切り工具の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the gear cutting tool of FIG. 図5の歯切り工具の製造過程において工具刃部の加工状態を示す一部断面図である。FIG. 5 is a partial cross-sectional view showing a machining state of a tool blade portion in the manufacturing process of the gear cutting tool of FIG. 図5の歯切り工具の製造過程において工具本体の加工状態を示す一部断面図である。It is a partial cross-sectional view which shows the processing state of the tool body in the manufacturing process of the gear cutting tool of FIG. 図5の歯切り工具の製造過程において工具刃部に工具本体を組み付けて一体化した状態を示す一部断面図である。FIG. 5 is a partial cross-sectional view showing a state in which a tool body is assembled and integrated with a tool blade portion in the manufacturing process of the gear cutting tool of FIG. 図5の歯切り工具の製造過程において完成した歯切り工具を示す一部断面図である。It is a partial cross-sectional view which shows the gear cutting tool completed in the manufacturing process of the gear cutting tool of FIG. 本発明の第三実施形態の歯切り工具を回転軸線と直角な方向から見た一部断面図である。It is a partial cross-sectional view of the gear cutting tool of the third embodiment of this invention seen from the direction perpendicular to the rotation axis. 図8の歯切り工具の製造装置である付加製造装置を研削装置に付設した概略図である。It is the schematic which attached the additional manufacturing apparatus which is the manufacturing apparatus of the gear cutting tool of FIG. 8 to the grinding apparatus.

本発明の実施形態の歯切り工具としては、スカイビング加工により工作物を加工して平歯車やはすば歯車等の歯を創成する外歯車型工具に適用する場合を説明するが、内歯車型工具にも適用可能である。 The gear cutting tool according to the embodiment of the present invention will be described when it is applied to an external gear type tool for creating teeth such as spur gears and helical gears by processing a workpiece by skiving. It can also be applied to mold tools.

<1.第一実施形態>
(1−1.歯切り工具の形状)
以下、図を参照して第一実施形態の歯切り工具の形状について説明する。図1A及び図1Bに示すように、歯切り工具1Aは、工具本体2Aと、工具刃部3Aとを備える。工具本体2Aと工具刃部3Aは、それぞれ別体の1つの部材として構成される。工具本体2Aは、中空円筒形状に形成される。なお、工具本体2Aは、円柱状に形成してもよい。
<1. First Embodiment>
(1-1. Shape of gear cutting tool)
Hereinafter, the shape of the gear cutting tool of the first embodiment will be described with reference to the drawings. As shown in FIGS. 1A and 1B, the gear cutting tool 1A includes a tool body 2A and a tool blade portion 3A. The tool body 2A and the tool blade 3A are configured as separate members. The tool body 2A is formed in a hollow cylindrical shape. The tool body 2A may be formed in a columnar shape.

工具刃部3Aは、円環状に形成され、工具本体2Aの一端側に同軸上に連結された環状刃部本体30A及び環状刃部本体30Aの外周面に位置調整不能な一体部位として形成された複数の刃33Aを有する。さらに、環状刃部本体30Aは、円環状の大径部31A及びこの大径部31Aの一端側に一体部位として突設された円環状の小径部32Aを有する。小径部32Aの内周には、工具本体2Aの外周が嵌入されて連結される。つまり、工具刃部3Aは、工具本体2Aの外周面を基準面として位置決めされる。 The tool blade portion 3A is formed in an annular shape, and is formed as an integral portion whose position cannot be adjusted on the outer peripheral surfaces of the annular blade portion main body 30A and the annular blade portion main body 30A coaxially connected to one end side of the tool main body 2A. It has a plurality of blades 33A. Further, the annular blade portion main body 30A has an annular large diameter portion 31A and an annular small diameter portion 32A projecting as an integral portion on one end side of the large diameter portion 31A. The outer circumference of the tool body 2A is fitted and connected to the inner circumference of the small diameter portion 32A. That is, the tool blade portion 3A is positioned with the outer peripheral surface of the tool body 2A as a reference surface.

環状刃部本体30Aの大径部31Aにおける刃33Aよりも内周部には、締結用ネジ4A(締結部材)を挿入可能な複数(本例では、4つ)の貫通孔41Aが、周方向に等角度(90°)間隔で回転軸線C方向に穿孔される。また、工具本体2Aの端面には、工具本体2Aの外周を環状刃部本体30Aの小径部32Aの内周に嵌入して連結したとき、4つの貫通孔41Aと対応する位置に、締結用ネジ4Aを螺合可能な4つのメネジ42Aが回転軸線C方向に螺設される。締結用ネジ4Aは、環状刃部本体30Aの大径部31Aと工具本体2Aの端面同士を密着させる機能を有する。 A plurality of (four in this example) through holes 41A into which fastening screws 4A (fastening members) can be inserted are provided in the circumferential direction in the inner peripheral portion of the large diameter portion 31A of the annular blade portion main body 30A than the blade 33A. It is drilled in the direction of the rotation axis C at equal angle (90 °) intervals. Further, when the outer circumference of the tool body 2A is fitted into the inner circumference of the small diameter portion 32A of the annular blade body 30A and connected to the end surface of the tool body 2A, the fastening screw is located at a position corresponding to the four through holes 41A. Four female screws 42A capable of screwing 4A are screwed in the rotation axis C direction. The fastening screw 4A has a function of bringing the end faces of the large diameter portion 31A of the annular blade portion main body 30A and the tool main body 2A into close contact with each other.

そして、連結された工具本体2Aと工具刃部3Aの環状刃部本体30Aは、締結用ネジ4Aの締付け力により直接的に締結される。ただし、詳細は後述するが、工具本体2Aの外周を工具刃部3Aの小径部32Aの内周に嵌入して連結した直後は、工具本体2Aの回転軸線と工具刃部3Aの回転軸線は軸ずれが生じている。このため、軸調整部材であるシュリンクディスク50(図3C参照)により、工具本体2Aの回転軸線と工具刃部3Aの回転軸線の同軸調整を行い、その後に締結用ネジ4Aを締め付けて工具本体2Aと工具刃部3Aの環状刃部本体30Aを同軸で締結する。 Then, the connected tool body 2A and the annular blade body 30A of the tool blade 3A are directly fastened by the tightening force of the fastening screw 4A. However, as will be described in detail later, immediately after the outer circumference of the tool body 2A is fitted into the inner circumference of the small diameter portion 32A of the tool blade portion 3A and connected, the rotation axis of the tool body 2A and the rotation axis of the tool blade portion 3A are axes. There is a gap. Therefore, the shrink disk 50 (see FIG. 3C), which is a shaft adjusting member, is used to coaxially adjust the rotation axis of the tool body 2A and the rotation axis of the tool blade 3A, and then the fastening screw 4A is tightened to tighten the tool body 2A. And the annular blade body 30A of the tool blade 3A are coaxially fastened.

ここで、図3Cに示すように、シュリンクディスク50は、一般的な軸調整部材であり、インナーリング51、2つのスラストリング52及び複数のボルト53を備える。インナーリング51は、円筒状の中空部を有する2つの円錐台の大径側を接合させた形状に形成される。すなわち、インナーリング51の外周は、中心軸線方向の中央が両端よりも凸になる山形状に形成される。インナーリング51の内径は、工具刃部3Aの小径部32Aの外径に対し、所定の嵌め合い公差を持って形成される。 Here, as shown in FIG. 3C, the shrink disc 50 is a general shaft adjusting member, and includes an inner ring 51, two thrust rings 52, and a plurality of bolts 53. The inner ring 51 is formed in a shape in which the large diameter side of two truncated cones having a cylindrical hollow portion is joined. That is, the outer circumference of the inner ring 51 is formed in a mountain shape in which the center in the central axis direction is convex from both ends. The inner diameter of the inner ring 51 is formed with a predetermined fitting tolerance with respect to the outer diameter of the small diameter portion 32A of the tool blade portion 3A.

スラストリング52は、円錐台状の中空部を有する円環状に形成される。スラストリング52の内周のテーパ角は、インナーリング51の外周のテーパ角と同一に形成される。そして、スラストリング52の最大内径は、インナーリング51の最大外径よりも小さく、スラストリング52の最小内径は、インナーリング51の最小外径よりも大きくなるように形成される。一方のスラストリング52には、複数のボルト53をそれぞれ挿入可能な複数の貫通穴52aが等角度間隔で穿孔され、他方のスラストリング52には、複数のボルト53をそれぞれ螺合可能な複数のメネジ52bが等角度間隔で螺設される。 The thrust ring 52 is formed in an annular shape having a truncated cone-shaped hollow portion. The taper angle of the inner circumference of the thrust ring 52 is formed to be the same as the taper angle of the outer circumference of the inner ring 51. The maximum inner diameter of the thrust ring 52 is smaller than the maximum outer diameter of the inner ring 51, and the minimum inner diameter of the thrust ring 52 is formed to be larger than the minimum outer diameter of the inner ring 51. A plurality of through holes 52a into which a plurality of bolts 53 can be inserted are drilled in one thrust ring 52 at equal angular intervals, and a plurality of bolts 53 into which a plurality of bolts 53 can be screwed into the other thrust string 52. Female screws 52b are screwed at equal intervals.

作業者は、2つのスラストリング52をインナーリング51の両端面側からテーパ面にそれぞれ嵌め込み、複数のボルト53を一方のスラストリング52の複数の貫通穴52aにそれぞれ挿入して、他方のスラストリング52の複数のメネジ52bにそれぞれ螺合する。そして、工具本体2Aと工具刃部3Aの環状刃部本体30Aを連結した状態で、インナーリング51の内周を工具刃部3Aの小径部32Aの外周に嵌入して連結する。なお、工具本体2Aに連結された段階の工具刃部3Aの環状刃部本体30Aの外周面には、複数の刃33Aがまだ形成されていない状態にある。つまり、環状刃部本体30Aの大径部31Aは、刃33Aの分だけ大径の円環状に形成されている。 The operator fits the two thrust strings 52 into the tapered surfaces from both end surfaces of the inner ring 51, inserts a plurality of bolts 53 into the plurality of through holes 52a of one thrust string 52, and inserts the other thrust string 52 into the plurality of through holes 52a of the other thrust string 52. It is screwed into each of the plurality of female screws 52b of 52. Then, in a state where the tool body 2A and the annular blade body 30A of the tool blade 3A are connected, the inner circumference of the inner ring 51 is fitted into the outer circumference of the small diameter portion 32A of the tool blade 3A and connected. It should be noted that a plurality of blades 33A are not yet formed on the outer peripheral surface of the annular blade portion main body 30A of the tool blade portion 3A at the stage of being connected to the tool main body 2A. That is, the large-diameter portion 31A of the annular blade portion main body 30A is formed in an annular shape having a large diameter by the amount of the blade 33A.

そして、複数のボルト53を徐々に締め付けて、2つのスラストリング52をインナーリング51のテーパ面に沿って回転軸線C方向に移動させる。これにより、インナーリング51は、2つのスラストリング52から径方向に締め付けられるので、工具本体2Aの回転軸線に対し工具刃部3Aの回転軸線を平行移動させる。よって、工具本体2Aの回転軸線と工具刃部3Aの回転軸線の同軸調整を行うことができる。そして、複数のボルト53の締付トルク管理を行うことで、同軸調整を容易に再現できるようになる。この同軸調整後、複数の刃33Aが、環状刃部本体30Aの外周面に形成される。 Then, the plurality of bolts 53 are gradually tightened to move the two thrust rings 52 in the direction of the rotation axis C along the tapered surface of the inner ring 51. As a result, the inner ring 51 is tightened in the radial direction from the two thrust rings 52, so that the rotation axis of the tool blade portion 3A is translated with respect to the rotation axis of the tool body 2A. Therefore, it is possible to coaxially adjust the rotation axis of the tool body 2A and the rotation axis of the tool blade 3A. Then, by managing the tightening torque of the plurality of bolts 53, the coaxial adjustment can be easily reproduced. After this coaxial adjustment, a plurality of blades 33A are formed on the outer peripheral surface of the annular blade portion main body 30A.

図1Bに示すように、歯切り工具1Aは、工具刃部3Aにおける回転軸線C方向の端面に、回転軸線Cと直交する面に対してすくい角θを有するすくい面34Aを備える。つまり、すくい面34Aは、歯切り工具1Aの回転軸線Cを中心としたテーパ状に形成される。また、歯切り工具1Aの複数の刃33Aの外接面は、円錐台形状に形成される。つまり、複数の刃33Aの先端面は、すくい面34Aに対して、前逃げ角αを有する前逃げ面35Aとなる。 As shown in FIG. 1B, the gear cutting tool 1A includes a rake face 34A having a rake angle θ with respect to a surface orthogonal to the rotation axis C at the end surface of the tool blade portion 3A in the rotation axis C direction. That is, the rake face 34A is formed in a tapered shape centered on the rotation axis C of the gear cutting tool 1A. Further, the circumscribed surfaces of the plurality of blades 33A of the gear cutting tool 1A are formed in a truncated cone shape. That is, the tip surfaces of the plurality of blades 33A are front escape surfaces 35A having a front escape angle α with respect to the rake surface 34A.

従って、刃33Aの一方端面から刃すじ方向(刃溝方向に等しい)に行くに従って、刃先面における歯切り工具1Aの回転軸線Cからの距離が徐々に小さくなっている。また、複数の刃33Aは、回転軸線Cに対してねじれ角βを有している。ただし、創成する歯車の歯のねじれ角と、切削加工における歯車と歯切り工具1Aとの交差角に応じて、刃33Aのねじれ角βは適宜異なる。よって、刃33Aは、ねじれ角βを有しない場合(ねじれ角βが0度)も存在する。 Therefore, the distance of the gear cutting tool 1A from the rotation axis C on the cutting edge surface gradually decreases from one end surface of the blade 33A toward the blade streak direction (equal to the blade groove direction). Further, the plurality of blades 33A have a twist angle β with respect to the rotation axis C. However, the twist angle β of the blade 33A is appropriately different depending on the twist angle of the tooth of the gear to be created and the intersection angle between the gear and the gear cutting tool 1A in the cutting process. Therefore, there is a case where the blade 33A does not have a twist angle β (twist angle β is 0 degrees).

以上のように、工具本体2Aと工具刃部3Aは別体で構成され、複数の刃33Aは工具刃部3Aの環状刃部本体30Aの外周面に一体部位として形成される。このため、工具本体2Aと工具刃部3Aの同軸調整を行うのみで、複数の刃33Aの同軸調整も同時に行われることになる。よって、従来の工具本体に対し複数の刃をそれぞれ取り付け、各刃に対して同軸調整を行う作業が必要な歯切り工具と比較して、本実施形態の歯切り工具1Aの取扱いは容易となり、創成する歯車の加工精度を従来よりも向上できる。 As described above, the tool body 2A and the tool blade 3A are formed as separate bodies, and the plurality of blades 33A are formed as an integral portion on the outer peripheral surface of the annular blade body 30A of the tool blade 3A. Therefore, only the coaxial adjustment of the tool body 2A and the tool blade portion 3A is performed, and the coaxial adjustment of the plurality of blades 33A is also performed at the same time. Therefore, the handling of the gear cutting tool 1A of the present embodiment becomes easier as compared with the gear cutting tool which requires the work of attaching a plurality of blades to the conventional tool body and performing coaxial adjustment for each blade. The machining accuracy of the gear to be created can be improved more than before.

また、工具本体2Aと工具刃部3Aは締結されたままで刃33Aの再研磨が可能となるので、調整した同軸を維持でき、創成する歯車の加工精度を向上できる。また、工具本体2Aは、例えば浸炭鋼で形成し、工具刃部3Aは、例えば高速度工具鋼もしくは超硬合金で形成できる。よって、従来のソリッド(無垢)の高速度工具鋼もしくは超硬合金で成る歯切り工具よりも低コスト化が図れる。 Further, since the tool body 2A and the tool blade 3A can be re-polished while the tool blade 3A is fastened, the adjusted coaxial can be maintained and the machining accuracy of the gear to be created can be improved. Further, the tool body 2A can be formed of, for example, carburized steel, and the tool blade portion 3A can be formed of, for example, high-speed tool steel or cemented carbide. Therefore, the cost can be reduced as compared with the conventional solid (solid) high-speed tool steel or the gear cutting tool made of cemented carbide.

(1−2.歯切り工具の製造装置)
上述の歯切り工具1Aの製造装置は、円筒状の工具本体2A及び円環状の工具刃部3Aの環状刃部本体30A(刃33Aの分だけ大径の大径部31A及び小径部32A)を加工する装置として、旋盤やマシニングセンタ等の切削装置が用いられ、詳細な説明は省略する。また、工具刃部3Aの刃33Aを加工する装置として、工具研削盤やアンギュラ研削盤等の研削装置が用いられ、図4A及び図4Bを参照して工具刃部3Aの刃33Aの刃側面の研削を行う場合について説明する。
(1-2. Gear cutting tool manufacturing equipment)
The above-mentioned manufacturing apparatus for the gear cutting tool 1A has an annular blade portion body 30A (a large diameter portion 31A and a small diameter portion 32A having a larger diameter by the amount of the blade 33A) of the cylindrical tool body 2A and the annular tool blade portion 3A. A cutting device such as a lathe or a machining center is used as the processing device, and detailed description thereof will be omitted. Further, as a device for processing the blade 33A of the tool blade portion 3A, a grinding device such as a tool grinder or an angular grinder is used, and the blade side surface of the blade 33A of the tool blade portion 3A is referred to with reference to FIGS. 4A and 4B. A case of performing grinding will be described.

研削装置60は、図示しないベッド上において、研削対象である歯切り工具1Aを、歯切り工具1Aの中心軸線C周り(θc)に回転可能に支持する主軸ユニット61を備える。さらに、研削装置60は、砥石車63を、砥石車63の中心軸線T周り(θt)に回転可能に支持する砥石台62を備える。砥石車63は、中心軸線T周りの円盤状に形成される。ただし、砥石車63の外周面は、歯切り工具1Aの刃溝の形状に応じた形状に形成される。 The grinding device 60 includes a spindle unit 61 that rotatably supports the gear cutting tool 1A to be ground around the central axis C (θc) of the gear cutting tool 1A on a bed (not shown). Further, the grinding device 60 includes a grindstone stand 62 that rotatably supports the grindstone wheel 63 around the central axis T (θt) of the grindstone wheel 63. The grindstone 63 is formed in a disk shape around the central axis T. However, the outer peripheral surface of the grindstone 63 is formed in a shape corresponding to the shape of the blade groove of the gear cutting tool 1A.

砥石台62は、主軸ユニット61に対して歯切り工具加工における交差角ηを調整可能(歯切り工具1Aの中心軸線Cと砥石車63の中心軸線Tとを直交させた状態から交差角ηだけ傾斜させる調整が可能)であると共に、主軸ユニット61に対して直交3軸方向に相対移動可能である。砥石台62と主軸ユニット61との交差角ηは、歯切り工具1Aのねじれ角βに合わせて調整される。本例では、ねじれ角βと交差角ηは同一である。なお、主軸ユニット61と砥石台62とは、相対移動すればよく、主軸ユニット61が移動可能な構成としてもよい。 The grindstone stand 62 can adjust the crossing angle η in gear cutting tool machining with respect to the spindle unit 61 (only the crossing angle η from the state where the central axis C of the gear cutting tool 1A and the central axis T of the grindstone 63 are orthogonal to each other. It can be adjusted to be tilted), and it can move relative to the spindle unit 61 in three directions orthogonal to it. The crossing angle η between the grindstone base 62 and the spindle unit 61 is adjusted according to the twist angle β of the gear cutting tool 1A. In this example, the twist angle β and the intersection angle η are the same. The spindle unit 61 and the grindstone base 62 may be relatively movable, and the spindle unit 61 may be movable.

そして、主軸ユニット61及び砥石台62が位置決めされることにより、歯切り工具1Aの中心軸線Cと砥石車63の中心軸線Tとが交差角ηを有する状態に位置決めされる。この状態で、歯切り工具1Aが中心軸線C周り(θc)に回転される。また、砥石車63は、中心軸線T周り(θt)に回転される。さらに、砥石車63は、歯切り工具1Aの回転に同期して、歯切り工具1Aの中心軸線C方向(Mc)、歯切り工具1Aの径方向(Mr)、及び、歯切り工具1Aの回転接線方向(並進方向)(Mm)に移動する。このようにして、歯切り工具1Aの刃33Aの刃側面が研削される。 Then, by positioning the spindle unit 61 and the grindstone base 62, the central axis C of the gear cutting tool 1A and the central axis T of the grindstone 63 are positioned so as to have an intersection angle η. In this state, the gear cutting tool 1A is rotated around the central axis C (θc). Further, the grindstone wheel 63 is rotated around the central axis T (θt). Further, the grindstone 63 synchronizes with the rotation of the gear cutting tool 1A, the central axis C direction (Mc) of the gear cutting tool 1A, the radial direction (Mr) of the gear cutting tool 1A, and the rotation of the gear cutting tool 1A. It moves in the tangential direction (translational direction) (Mm). In this way, the blade side surface of the blade 33A of the gear cutting tool 1A is ground.

この研削では、砥石車63は、歯切り工具1Aの刃溝に沿って回転しながら往復移動してもよいし、一方向のみに移動してもよい。また、砥石車63は、歯切り工具1Aの刃溝の両側を同時に研削するが、刃溝の片側を研削してもよいし、歯切り工具1Aの回転方向が変わっても歯切り工具1Aの回転方向に合わせて歯切り工具1Aの刃溝を研削できるように追従してもよい。 In this grinding, the grindstone 63 may reciprocate while rotating along the blade groove of the gear cutting tool 1A, or may move in only one direction. Further, the grindstone 63 grinds both sides of the blade groove of the gear cutting tool 1A at the same time, but one side of the blade groove may be ground, or even if the rotation direction of the gear cutting tool 1A changes, the gear cutting tool 1A The blade groove of the gear cutting tool 1A may be followed so as to be able to be ground according to the rotation direction.

(1−3.歯切り工具の製造方法)
次に、上述の歯切り工具1Aの製造方法について図を参照して説明する。先ず、図3A及び図3Bに示すように、円筒状の工具本体2A及び円環状の工具刃部3Aの環状刃部本体30A(刃33Aの分だけ大径の大径部31A及び小径部32A)を切削装置で加工する。このとき、工具本体2Aの端面において4つのメネジ42Aの加工も行う。また、工具刃部3Aの環状刃部本体30Aの大径部31Aの端面において4つの貫通孔41Aの加工も行う。(図2のステップS1)。
(1-3. Manufacturing method of gear cutting tool)
Next, the manufacturing method of the above-mentioned gear cutting tool 1A will be described with reference to the drawings. First, as shown in FIGS. 3A and 3B, the annular blade portion body 30A of the cylindrical tool body 2A and the annular tool blade portion 3A (large diameter portion 31A and small diameter portion 32A having a large diameter by the amount of the blade 33A). Is machined with a cutting device. At this time, four female screws 42A are also machined on the end face of the tool body 2A. In addition, four through holes 41A are also machined on the end surface of the large diameter portion 31A of the annular blade portion main body 30A of the tool blade portion 3A. (Step S1 in FIG. 2).

そして、図3Cに示すように、工具本体2Aを工具刃部3Aの小径部32Aに嵌入して連結し(図2のステップS2、連結工程)、工具刃部3Aの小径部32Aにシュリンクディスク50を取り付ける(図2のステップS3)。そして、シュリンクディスク50の複数のボルト53を徐々に締め付けて、工具本体2Aの回転軸線と工具刃部3Aの回転軸線の軸ずれを調整する(図2のステップS4、同軸調整工程)。 Then, as shown in FIG. 3C, the tool body 2A is fitted into the small diameter portion 32A of the tool blade portion 3A and connected (step S2 in FIG. 2, the connecting step), and the shrink disk 50 is connected to the small diameter portion 32A of the tool blade portion 3A. Is attached (step S3 in FIG. 2). Then, the plurality of bolts 53 of the shrink disc 50 are gradually tightened to adjust the misalignment between the rotation axis of the tool body 2A and the rotation axis of the tool blade 3A (step S4 in FIG. 2, coaxial adjustment step).

そして、工具本体2Aの回転軸線と工具刃部3Aの回転軸線の軸ずれが許容範囲内に入ったか否かを判断し(図2のステップS5)、工具本体2Aの回転軸線と工具刃部3Aの回転軸線の軸ずれが許容範囲内に入っていないといは、ステップS4に戻って、工具本体2Aの回転軸線と工具刃部3Aの回転軸線の軸ずれ調整を続行する。 Then, it is determined whether or not the misalignment between the rotation axis of the tool body 2A and the rotation axis of the tool blade 3A is within the allowable range (step S5 in FIG. 2), and the rotation axis of the tool body 2A and the tool blade 3A are determined. If the misalignment of the rotation axis of the tool is not within the permissible range, the process returns to step S4 and continues the misalignment adjustment of the rotation axis of the tool body 2A and the rotation axis of the tool blade 3A.

一方、工具本体2Aの回転軸線と工具刃部3Aの回転軸線の軸ずれが許容範囲内に入ったら、図3Dに示すように、締結用ネジ4Aを工具刃部3Aの貫通孔41Aから挿入し、工具本体2Aのメネジ42Aに螺合して締結する(図2のステップS6、締結工程)。これにより、工具本体2Aと工具刃部3Aは、同軸の状態を維持して締結される。 On the other hand, when the misalignment between the rotation axis of the tool body 2A and the rotation axis of the tool blade 3A falls within the allowable range, the fastening screw 4A is inserted through the through hole 41A of the tool blade 3A as shown in FIG. 3D. , Screw and fasten to the female screw 42A of the tool body 2A (step S6 in FIG. 2, fastening step). As a result, the tool body 2A and the tool blade 3A are fastened while maintaining a coaxial state.

そして、工具刃部3Aの小径部32Aからシュリンクディスク50を取り外し(図2のステップS7)、締結された工具本体2Aと工具刃部3Aを研削装置60に取り付け、工具刃部3Aの環状刃部本体30Aの大径部31Aの外周に刃33Aを荒加工する(図2のステップS8、加工工程)。そして、刃33Aの荒加工が完了したか否かを判断し(図2のステップS9)、刃33Aの荒加工が完了していないときは、ステップS8に戻って、刃33Aの荒加工を継続する。 Then, the shrink disk 50 is removed from the small diameter portion 32A of the tool blade portion 3A (step S7 in FIG. 2), the fastened tool body 2A and the tool blade portion 3A are attached to the grinding device 60, and the annular blade portion of the tool blade portion 3A is attached. The blade 33A is rough-processed on the outer periphery of the large-diameter portion 31A of the main body 30A (step S8 in FIG. 2, processing step). Then, it is determined whether or not the roughing of the blade 33A is completed (step S9 in FIG. 2), and if the roughing of the blade 33A is not completed, the process returns to step S8 and the roughing of the blade 33A is continued. To do.

一方、刃33Aの荒加工が完了したら、荒加工した刃33Aを切れ刃とする仕上げ加工を行う(図2のステップS10、加工工程)。そして、刃33Aを切れ刃とする仕上げ加工が完了したか否かを判断し(図2のステップS11)、刃33Aを切れ刃とする仕上げ加工が完了していないときは、ステップS10に戻って、刃33Aを切れ刃とする仕上げ加工を継続する。一方、刃33Aを切れ刃とする仕上げ加工が完了したら、全ての処理を終了する。以上により、図3Eに示す歯切り工具1Aが完成する。 On the other hand, when the roughing of the blade 33A is completed, a finishing process is performed using the roughed blade 33A as a cutting edge (step S10 in FIG. 2, processing step). Then, it is determined whether or not the finishing process using the blade 33A as the cutting edge is completed (step S11 in FIG. 2), and when the finishing process using the blade 33A as the cutting edge is not completed, the process returns to step S10. , Continue the finishing process with the blade 33A as the cutting edge. On the other hand, when the finishing process using the blade 33A as the cutting edge is completed, all the processes are completed. As a result, the gear cutting tool 1A shown in FIG. 3E is completed.

この歯切り工具1Aの製造方法によれば、工具本体2Aとこの工具本体2Aとは別体の1つの部材として構成される工具刃部3Aを同軸調整して締結した後、工具刃部3Aに複数の刃33Aを荒加工及び仕上げ加工するので、高精度な歯切り工具1Aが得られる。よって、歯切り工具1Aで創成する歯車の加工精度を向上できる。なお、単独の工具刃部3Aに対し複数の刃33Aを荒加工し、その工具刃部3Aと工具本体2Aを同軸調整して締結した後、荒加工した複数の刃33Aを仕上げ加工するようにしてもよい。この製造方法でも、高精度な歯切り工具1Aが得られ、歯切り工具1Aで創成する歯車の加工精度を向上できる。 According to the manufacturing method of the gear cutting tool 1A, the tool body 2A and the tool blade 3A, which is formed as a separate member of the tool body 2A, are coaxially adjusted and fastened, and then joined to the tool blade 3A. Since the plurality of blades 33A are roughened and finished, a highly accurate gear cutting tool 1A can be obtained. Therefore, the machining accuracy of the gear created by the gear cutting tool 1A can be improved. A plurality of blades 33A are roughly machined on a single tool blade 3A, and the tool blade 3A and the tool body 2A are coaxially adjusted and fastened, and then the roughened plurality of blades 33A are finished. You may. Even with this manufacturing method, a high-precision gear cutting tool 1A can be obtained, and the machining accuracy of the gear created by the gear cutting tool 1A can be improved.

<2.第二実施形態>
(2−1.歯切り工具の形状)
以下、図を参照して第二実施形態の歯切り工具の形状について説明する。図5に示すように、歯切り工具1Bは、工具本体2Bと、工具刃部3Bとを備える。工具本体2Bと工具刃部3Bは、それぞれ別体の1つの部材として構成される。工具本体2Bは、中空円筒形状の大径部21B及び大径部21Bの一端側に一体部位として突設された中空円筒形状の小径部22Bを有する。なお、工具本体2Bは、円柱状に形成してもよい。
<2. Second Embodiment>
(2-1. Shape of gear cutting tool)
Hereinafter, the shape of the gear cutting tool of the second embodiment will be described with reference to the drawings. As shown in FIG. 5, the gear cutting tool 1B includes a tool body 2B and a tool blade portion 3B. The tool body 2B and the tool blade portion 3B are configured as separate members. The tool body 2B has a hollow cylindrical large-diameter portion 21B and a hollow cylindrical small-diameter portion 22B projecting as an integral portion on one end side of the large-diameter portion 21B. The tool body 2B may be formed in a columnar shape.

工具刃部3Bは、円環状に形成され、工具本体2Bの一端側に同軸上に連結された環状刃部本体30B及び環状刃部本体30Bの外周面に位置調整不能に一体部位として形成された複数の刃33Bを有する。さらに、環状刃部本体30Bは、工具本体2Bの小径部22Bの外周が嵌入される小径内周部31Bと、小径内周部31Bに続く大径内周部32Bを有する。小径内周部31Bの内周には、工具本体2Bの小径部22Bの外周が嵌入されて連結される。つまり、工具刃部3Bは、工具本体2Bの外周面を基準面として位置決めされる。 The tool blade portion 3B is formed in an annular shape, and is formed as an integral portion on the outer peripheral surfaces of the annular blade portion main body 30B and the annular blade portion main body 30B coaxially connected to one end side of the tool main body 2B so that the positions cannot be adjusted. It has a plurality of blades 33B. Further, the annular blade portion main body 30B has a small diameter inner peripheral portion 31B into which the outer periphery of the small diameter portion 22B of the tool main body 2B is fitted, and a large diameter inner peripheral portion 32B following the small diameter inner peripheral portion 31B. The outer circumference of the small diameter portion 22B of the tool body 2B is fitted and connected to the inner circumference of the small diameter inner peripheral portion 31B. That is, the tool blade portion 3B is positioned with the outer peripheral surface of the tool body 2B as a reference surface.

工具本体2Bの小径部22Bと工具刃部3Bの環状刃部本体30Bの大径内周部32Bの間には、後述する締結部材であって軸調整部材であるシュパンリング70の2つのスラストリング71,72(摩擦締結要素)が挿入される。そして、工具刃部3Bの大径内周部32Bの端面には、シュパンリング70の押圧リング73(摩擦締結要素)が配置され、複数(ただし、図5では、1個のみ示す)のボルト74(摩擦用ネジ)が螺合されるメネジ75が等角度間隔で螺設される。 Between the small diameter portion 22B of the tool body 2B and the large diameter inner peripheral portion 32B of the annular blade portion body 30B of the tool blade portion 3B, there are two thrust rings of the spun ring 70, which is a fastening member and a shaft adjusting member described later. 71, 72 (friction fastening element) are inserted. A pressing ring 73 (friction fastening element) of the span ring 70 is arranged on the end surface of the large-diameter inner peripheral portion 32B of the tool blade portion 3B, and a plurality of (however, only one is shown in FIG. 5) bolts 74. Female screws 75 to which (friction screws) are screwed are screwed at equal angle intervals.

シュパンリング70は、一般的な締結部材であって軸調整部材であり、2つのスラストリング71,72、押圧リング73及び複数のボルト74を備える。スラストリング71は、円筒状の中空部を有する円錐台状に形成される。スラストリング72は、円錐台状の中空部を有する円環状に形成される。スラストリング71の外周のテーパ角は、スラストリング72の内周のテーパ角と同一に形成される。そして、スラストリング71は、スラストリング72の内周側に挿入され、工具本体2Bの小径部22Bの外周面と工具刃部3Bの環状刃部本体30Bの大径内周部32Bの内周面との径方向間に介在して摩擦力で締結する。 The span ring 70 is a general fastening member and a shaft adjusting member, and includes two thrust rings 71 and 72, a pressing ring 73, and a plurality of bolts 74. The thrust ring 71 is formed in a truncated cone shape having a cylindrical hollow portion. The thrust ring 72 is formed in an annular shape having a truncated cone-shaped hollow portion. The taper angle on the outer circumference of the thrust ring 71 is formed to be the same as the taper angle on the inner circumference of the thrust ring 72. Then, the thrust ring 71 is inserted into the inner peripheral side of the thrust ring 72, and the outer peripheral surface of the small diameter portion 22B of the tool body 2B and the inner peripheral surface of the large diameter inner peripheral portion 32B of the annular blade portion main body 30B of the tool blade portion 3B. It is fastened by frictional force, intervening in the radial direction with.

スラストリング71の内径は、工具本体2Bの小径部22Bの外径に対し、所定の嵌め合い公差を持って形成される。スラストリング72の外径は、工具刃部3Bの環状刃部本体30Bの大径内周部32Bの内径に対し、所定の嵌め合い公差を持って形成される。押圧リング73は、円環状に形成され、スラストリング71の端面及び工具刃部3Bの大径内周部32Bの端面に形成される複数のメネジ75を覆える大きさに形成される。そして、押圧リング73には、複数のメネジ75にそれぞれ対応する位置に、複数のボルト74をそれぞれ挿入可能な複数の貫通穴73aが等角度間隔で穿孔される。複数のボルト74は、締付け力で後述する2つのスラストリング71,72の摩擦力を発生させる。 The inner diameter of the thrust ring 71 is formed with a predetermined fitting tolerance with respect to the outer diameter of the small diameter portion 22B of the tool body 2B. The outer diameter of the thrust ring 72 is formed with a predetermined fitting tolerance with respect to the inner diameter of the large diameter inner peripheral portion 32B of the annular blade portion main body 30B of the tool blade portion 3B. The pressing ring 73 is formed in an annular shape so as to cover a plurality of female screws 75 formed on the end face of the thrust ring 71 and the end face of the large-diameter inner peripheral portion 32B of the tool blade portion 3B. Then, a plurality of through holes 73a into which a plurality of bolts 74 can be inserted are drilled in the pressing ring 73 at positions corresponding to the plurality of female screws 75 at equal angular intervals. The plurality of bolts 74 generate frictional forces of the two thrust rings 71 and 72, which will be described later, by the tightening force.

作業者は、工具本体2Bと工具刃部3Bの環状刃部本体30Aを連結した状態で、工具刃部3Bの環状刃部本体30Aの大径内周部32Bの内周に、テーパ面が上向きの状態のスラストリング72の外周を嵌入する。さらに、工具本体2Bの小径部22Bの外周に、テーパ面が下向きの状態のスラストリング71の内周を嵌入する。そして、押圧リング73をスラストリング71の端面上に載置し、複数のボルト74を押圧リング73の複数の貫通穴73aにそれぞれ挿入する。そして、工具刃部3Bの大径内周部32Bの端面に形成される複数のメネジ75にそれぞれ螺合する。なお、工具本体2Bに連結された段階の工具刃部3Bの環状刃部本体30Bの外周面には、複数の刃33Bがまだ形成されていない状態にある。つまり、環状刃部本体30Bの大径内周部32Bは、刃33Bの分だけ大径の円環状に形成されている。 The operator has the tapered surface facing upward on the inner circumference of the large-diameter inner peripheral portion 32B of the annular blade portion main body 30A of the tool blade portion 3B in a state where the tool main body 2B and the annular blade portion main body 30A of the tool blade portion 3B are connected. The outer circumference of the thrust ring 72 in the state of is fitted. Further, the inner circumference of the thrust ring 71 with the tapered surface facing downward is fitted into the outer circumference of the small diameter portion 22B of the tool body 2B. Then, the pressing ring 73 is placed on the end surface of the thrust ring 71, and the plurality of bolts 74 are inserted into the plurality of through holes 73a of the pressing ring 73, respectively. Then, it is screwed into a plurality of female screws 75 formed on the end faces of the large-diameter inner peripheral portion 32B of the tool blade portion 3B. It should be noted that a plurality of blades 33B have not yet been formed on the outer peripheral surface of the annular blade portion main body 30B of the tool blade portion 3B at the stage of being connected to the tool main body 2B. That is, the large-diameter inner peripheral portion 32B of the annular blade portion main body 30B is formed in an annular shape having a large diameter by the amount of the blade 33B.

そして、複数のボルト74を徐々に締め付けて、スラストリング71をスラストリング72のテーパ面に沿って回転軸線C方向に移動させる。これにより、工具本体2Bの小径部22Bは、スラストリング71から径方向に締め付けられるので、工具刃部3Bの環状刃部本体30Bは、工具本体2Bの小径部22Bに対し2つのスラストリング71,72の摩擦力で締結される。さらに、工具本体2Bの回転軸線に対し工具刃部3Bの回転軸線を平行移動させる。よって、工具本体2Bの回転軸線と工具刃部3Bの回転軸線の同軸調整を行うことができる。そして、複数のボルト74の締付トルク管理を行うことで、同軸調整を容易に再現できるようになる。この同軸調整後、複数の刃33Bが、環状刃部本体30Bの大径内周部32Bの外周面に形成される。 Then, the plurality of bolts 74 are gradually tightened to move the thrust ring 71 in the rotation axis C direction along the tapered surface of the thrust string 72. As a result, the small diameter portion 22B of the tool body 2B is tightened in the radial direction from the thrust ring 71, so that the annular blade portion body 30B of the tool blade portion 3B has two thrust rings 71, with respect to the small diameter portion 22B of the tool body 2B. It is fastened with a frictional force of 72. Further, the rotation axis of the tool blade portion 3B is translated with respect to the rotation axis of the tool body 2B. Therefore, the coaxial adjustment between the rotation axis of the tool body 2B and the rotation axis of the tool blade 3B can be performed. Then, by managing the tightening torque of the plurality of bolts 74, the coaxial adjustment can be easily reproduced. After this coaxial adjustment, a plurality of blades 33B are formed on the outer peripheral surface of the large-diameter inner peripheral portion 32B of the annular blade portion main body 30B.

また、工具刃部3Bにおける刃33Bの刃先とは反対側の端面には、キー81(回転規制部材)を嵌入可能なキー溝82(回転規制部材)が、径方向に1か所設けられる。また、工具本体2Bの大径部21Bにおける小径部22B側の端面には、小径部22Bの外周に工具刃部3Bの環状刃部本体30Bの小径内周部31Bの内周を嵌入したときキー溝82と対応する位置に、キー81を嵌入可能なキー溝83(回転規制部材)が、径方向に1か所設けられる。そして、工具本体2Bと工具刃部3Bは、キー溝82,83にキー81が嵌入されることで、工具刃部3Bの工具本体2Bに対する相対回転が規制される。つまり、複数の刃33B毎の回転規制は不要となる。 Further, on the end surface of the tool blade portion 3B opposite to the cutting edge of the blade 33B, one key groove 82 (rotation regulating member) into which the key 81 (rotation regulating member) can be fitted is provided in the radial direction. Further, when the inner circumference of the small diameter inner peripheral portion 31B of the annular blade portion main body 30B of the tool blade portion 3B is fitted to the outer circumference of the small diameter portion 22B on the end surface of the large diameter portion 21B of the tool body 2B on the small diameter portion 22B side At a position corresponding to the groove 82, a key groove 83 (rotation restricting member) into which the key 81 can be fitted is provided at one position in the radial direction. The tool body 2B and the tool blade 3B are restricted from rotating relative to the tool body 2B by inserting the key 81 into the key grooves 82 and 83. That is, it is not necessary to regulate the rotation of each of the plurality of blades 33B.

なお、歯切り工具1Bも第一実施形態の歯切り工具1Aと同様に、すくい角θを有するすくい面34B、前逃げ角αを有する前逃げ面35B、ねじれ角βを有する複数の刃33Bを有する。以上のように、第二実施形態の歯切り工具1Bも、第一実施形態の歯切り工具1Aと同様の効果が得られる。 Similar to the gear cutting tool 1A of the first embodiment, the gear cutting tool 1B also has a rake face 34B having a rake angle θ, a front clearance surface 35B having a front clearance angle α, and a plurality of blades 33B having a twist angle β. Have. As described above, the gear cutting tool 1B of the second embodiment also has the same effect as the gear cutting tool 1A of the first embodiment.

(2−2.歯切り工具の製造装置及び製造方法)
次に、上述の歯切り工具1Bの製造方法について図を参照して説明する。なお、歯切り工具1Bの製造装置としては、第一実施形態の歯切り工具1Aの製造装置と同様であり、詳細な説明は省略する。先ず、図7A及び図7Bに示すように、円筒状の工具本体2B(大径部21B及び小径部22B)及び円環状の工具刃部3Bの環状刃部本体30B(刃33Bの分だけ大径の大径内周部32B及び小径内周部31B)を切削装置で加工する。
(2-2. Manufacturing equipment and manufacturing method for gear cutting tools)
Next, the manufacturing method of the above-mentioned gear cutting tool 1B will be described with reference to the drawings. The manufacturing apparatus for the gear cutting tool 1B is the same as the manufacturing apparatus for the gear cutting tool 1A of the first embodiment, and detailed description thereof will be omitted. First, as shown in FIGS. 7A and 7B, the cylindrical tool body 2B (large diameter portion 21B and small diameter portion 22B) and the annular blade portion body 30B of the annular tool blade portion 3B (large diameter by the amount of the blade 33B). The large-diameter inner peripheral portion 32B and the small-diameter inner peripheral portion 31B) are machined by a cutting device.

このとき、工具本体2Bの大径部21Bの端面においてキー溝83の加工も行う。また、工具刃部3Bの大径内周部32Bの端面において複数のメネジ55の加工、及びキー溝83に対向するキー溝82の加工も行う(図6のステップS21)。 At this time, the key groove 83 is also machined on the end surface of the large diameter portion 21B of the tool body 2B. Further, a plurality of female threads 55 are machined on the end surface of the large-diameter inner peripheral portion 32B of the tool blade portion 3B, and the key groove 82 facing the key groove 83 is also machined (step S21 in FIG. 6).

そして、図7Cに示すように、工具本体2Bの小径部22Bを工具刃部3Bの小径内周部31Bに嵌入して連結する(図6のステップS22、連結工程)。そして、工具本体2Bと工具刃部3Bの間のキー溝82,83にキー81を嵌入するとともに、工具本体2Bの小径部22Bの外周と工具刃部3Bの大径内周部32Bの内周にシュパンリング70を挿入する(図6のステップS23)。そして、シュパンリング70の複数のボルト74を徐々に締め付けて、工具本体2Bの回転軸線と工具刃部3Bの回転軸線の軸ずれを調整する(図6のステップS24、同軸調整工程)。 Then, as shown in FIG. 7C, the small diameter portion 22B of the tool body 2B is fitted into the small diameter inner peripheral portion 31B of the tool blade portion 3B and connected (step S22 in FIG. 6, connection step). Then, the key 81 is fitted into the key grooves 82 and 83 between the tool body 2B and the tool blade 3B, and the outer circumference of the small diameter portion 22B of the tool body 2B and the inner circumference of the large diameter inner circumference 32B of the tool blade 3B. The span ring 70 is inserted into (step S23 in FIG. 6). Then, the plurality of bolts 74 of the spun ring 70 are gradually tightened to adjust the misalignment between the rotation axis of the tool body 2B and the rotation axis of the tool blade 3B (step S24 in FIG. 6, coaxial adjustment step).

そして、工具本体2Bの回転軸線と工具刃部3Bの回転軸線の軸ずれが許容範囲内に入ったか否かを判断し(図6のステップS25)、工具本体2Bの回転軸線と工具刃部3Bの回転軸線の軸ずれが許容範囲内に入っていないといは、ステップS24に戻って、工具本体2Bの回転軸線と工具刃部3Bの回転軸線の軸ずれ調整を続行する。一方、工具本体2Bの回転軸線と工具刃部3Bの回転軸線の軸ずれが許容範囲内に入ったら、この状態で工具本体2Bと工具刃部3Bは締結される(締結工程)。 Then, it is determined whether or not the misalignment between the rotation axis of the tool body 2B and the rotation axis of the tool blade 3B is within the allowable range (step S25 in FIG. 6), and the rotation axis of the tool body 2B and the tool blade 3B are determined. If the misalignment of the rotation axis of the tool is not within the permissible range, the process returns to step S24 and continues the misalignment adjustment of the rotation axis of the tool body 2B and the rotation axis of the tool blade 3B. On the other hand, when the axial deviation between the rotation axis of the tool body 2B and the rotation axis of the tool blade 3B falls within the allowable range, the tool body 2B and the tool blade 3B are fastened in this state (fastening step).

そして、締結された工具本体2Bと工具刃部3Bを研削装置60に取り付け、工具刃部3Bの環状刃部本体30Bの大径内周部32Bの外周に刃33Bを荒加工する(図6のステップS26、加工工程)。そして、刃33Bの荒加工が完了したか否かを判断し(図6のステップS27)、刃33Bの荒加工が完了していないときは、ステップS26に戻って、刃33Bの荒加工を継続する。 Then, the fastened tool body 2B and tool blade 3B are attached to the grinding device 60, and the blade 33B is roughly machined on the outer periphery of the large-diameter inner peripheral portion 32B of the annular blade body 30B of the tool blade 3B (FIG. 6). Step S26, processing step). Then, it is determined whether or not the roughing of the blade 33B is completed (step S27 in FIG. 6), and if the roughing of the blade 33B is not completed, the process returns to step S26 and the roughing of the blade 33B is continued. To do.

一方、刃33Bの荒加工が完了したら、荒加工した刃33Bを切れ刃とする仕上げ加工を行う(図6のステップS28、加工工程)。そして、刃33Bを切れ刃とする仕上げ加工が完了したか否かを判断し(図6のステップS29)、刃33Bを切れ刃とする仕上げ加工が完了していないときは、ステップS28に戻って、刃33Bを切れ刃とする仕上げ加工を継続する。一方、刃33Bを切れ刃とする仕上げ加工が完了したら、全ての処理を終了する。以上により、図7Dに示す歯切り工具1Bが完成する。 On the other hand, when the roughing of the blade 33B is completed, a finishing process is performed using the roughed blade 33B as a cutting edge (step S28 in FIG. 6, processing step). Then, it is determined whether or not the finishing process using the blade 33B as the cutting edge is completed (step S29 in FIG. 6), and when the finishing process using the blade 33B as the cutting edge is not completed, the process returns to step S28. , Continue finishing with the blade 33B as the cutting edge. On the other hand, when the finishing process using the blade 33B as the cutting edge is completed, all the processes are completed. As a result, the gear cutting tool 1B shown in FIG. 7D is completed.

この歯切り工具1Bの製造方法によっても、第一実施形態の歯切り工具1Aの製造方法と同様の効果が得られる。なお、単独の工具刃部3Bに対し複数の刃33Bを荒加工し、その工具刃部3Bと工具本体2Bを同軸調整して締結した後、荒加工した複数の刃33Bを仕上げ加工するようにしてもよい。この製造方法でも、高精度な歯切り工具1Bが得られ、歯切り工具1Bで創成する歯車の加工精度を向上できる。 The manufacturing method of the gear cutting tool 1B also has the same effect as the manufacturing method of the gear cutting tool 1A of the first embodiment. A plurality of blades 33B are roughly machined with respect to a single tool blade 3B, and the tool blade 3B and the tool body 2B are coaxially adjusted and fastened, and then the roughened plurality of blades 33B are finished. You may. Even with this manufacturing method, a high-precision gear cutting tool 1B can be obtained, and the machining accuracy of the gear created by the gear cutting tool 1B can be improved.

<3.第三実施形態>
(3−1.歯切り工具の形状)
以下、図を参照して第三実施形態の歯切り工具の形状について説明する。図8に示すように、歯切り工具1Cは、工具本体2Cと、環状刃部本体30Cと、刃33Cとを備える。工具本体2Cは、円筒状に形成される。なお、工具本体2Cは、円柱状に形成してもよい。環状刃部本体30Cは、工具本体2Cに一体部位として形成されており、工具本体2Cの一端側に同軸上に設けられる。
<3. Third Embodiment>
(3-1. Shape of gear cutting tool)
Hereinafter, the shape of the gear cutting tool of the third embodiment will be described with reference to the drawings. As shown in FIG. 8, the gear cutting tool 1C includes a tool body 2C, an annular blade portion body 30C, and a blade 33C. The tool body 2C is formed in a cylindrical shape. The tool body 2C may be formed in a columnar shape. The annular blade portion main body 30C is formed as an integral portion with the tool main body 2C, and is provided coaxially on one end side of the tool main body 2C.

刃33Cは、環状刃部本体30Cの外周面に一体部位として形成された荒刃型部331Cと、荒刃型部331Cの外面に付加造形物として形成された造形刃332Cとを備える。つまり、工具本体2Cと環状刃部本体30Cと荒刃型部331Cは、一体的に形成、すなわちソリッド(無垢)の例えば浸炭鋼で形成される。造形刃332Cは、高速度工具鋼もしくは超硬合金で形成される。 The blade 33C includes a rough blade mold portion 331C formed as an integral portion on the outer peripheral surface of the annular blade portion main body 30C, and a modeling blade 332C formed as an additional model on the outer surface of the rough blade mold portion 331C. That is, the tool body 2C, the annular blade body 30C, and the rough blade mold portion 331C are integrally formed, that is, they are formed of solid (solid), for example, carburized steel. The modeling blade 332C is made of high speed tool steel or cemented carbide.

なお、歯切り工具1Cも第一実施形態の歯切り工具1Aと同様に、すくい角θを有するすくい面34C、前逃げ角αを有する前逃げ面35C、ねじれ角βを有する複数の造形刃332Cを有する。以上のように、第三実施形態の歯切り工具1Cも、第一実施形態の歯切り工具1Aと同様の効果が得られる。また、工具本体2Cと環状刃部本体30Cと荒刃型部331Cは、一体的に形成された場合を説明したが、第一、第二実施形態の歯切り工具1A,1Bと同様に、工具本体2Cと、一体的に形成された環状刃部本体30C及び荒刃型部331Cとをそれぞれ別体の1つの部材として構成してもよい。 Similar to the gear cutting tool 1A of the first embodiment, the gear cutting tool 1C also has a rake face 34C having a rake angle θ, a front clearance surface 35C having a front clearance angle α, and a plurality of modeling blades 332C having a twist angle β. Has. As described above, the gear cutting tool 1C of the third embodiment also has the same effect as the gear cutting tool 1A of the first embodiment. Further, the case where the tool body 2C, the annular blade body 30C, and the rough blade mold portion 331C are integrally formed has been described, but the tools are the same as the gear cutting tools 1A and 1B of the first and second embodiments. The main body 2C, the integrally formed annular blade portion main body 30C, and the rough blade mold portion 331C may be configured as separate members.

(3−2.歯切り工具の製造装置及び製造方法)
上述の歯切り工具1Cの製造装置としては、第一実施形態の歯切り工具1Aの製造装置(詳細な説明は省略する)の他に、付加製造装置が用いられる。つまり、図9に示すように、付加製造装置90は、研削装置60に付設され、粉末供給装置91及び光照射装置92等を備える。
(3-2. Manufacturing equipment and manufacturing method for gear cutting tools)
As the manufacturing apparatus for the gear cutting tool 1C described above, an additional manufacturing apparatus is used in addition to the manufacturing apparatus for the gear cutting tool 1A of the first embodiment (detailed description is omitted). That is, as shown in FIG. 9, the additional manufacturing apparatus 90 is attached to the grinding apparatus 60 and includes a powder supply apparatus 91, a light irradiation apparatus 92, and the like.

粉末供給装置91は、主軸ユニット61に支持される歯切り工具1Cの環状刃部本体30Cの荒刃型部331Cの外面に、高速度工具鋼もしくは超硬合金の粉末材料を噴射して供給する。光照射装置92は、歯切り工具1Cの環状刃部本体30Cの荒刃型部331Cの外面及び供給される粉末材料に、例えばレーザ光を照射して溶融池を形成し、荒刃型部331Cの外面に付加造形物を付加する。なお、付加製造装置90は、切削装置に付設してもよく、単独の装置としてもよい。 The powder supply device 91 injects and supplies a high-speed tool steel or cemented carbide powder material onto the outer surface of the rough blade mold portion 331C of the annular blade portion main body 30C of the gear cutting tool 1C supported by the spindle unit 61. .. The light irradiation device 92 irradiates the outer surface of the rough blade mold portion 331C of the annular blade portion main body 30C of the gear cutting tool 1C and the supplied powder material with, for example, laser light to form a molten pool, and the rough blade mold portion 331C. An additional model is added to the outer surface of the. The additional manufacturing apparatus 90 may be attached to the cutting apparatus or may be a single apparatus.

歯切り工具1Cの製造方法は、先ず、切削装置で例えば浸炭鋼で成る無垢材から工具本体2Cと環状刃部本体30Cと荒刃型部331Cを加工する(加工工程)。このとき、荒刃型部331Cは荒加工でよい。そして、付加製造装置90で複数の荒刃型部331Cの外面に、例えば超硬合金で成る付加造形物を付加する(付加工程)。そして、研削装置60で付加造形物を切れ刃となる造形刃332Cとする仕上げ加工を行う(加工工程)。 In the method of manufacturing the gear cutting tool 1C, first, the tool body 2C, the annular blade portion body 30C, and the rough blade mold portion 331C are machined from a solid material made of carburized steel, for example, with a cutting device (machining step). At this time, the rough blade mold portion 331C may be rough-processed. Then, the addition manufacturing apparatus 90 adds an addition model made of, for example, a cemented carbide to the outer surface of the plurality of rough blade mold portions 331C (addition step). Then, the grinding device 60 performs a finishing process in which the additional modeled object is a modeling blade 332C that serves as a cutting edge (processing process).

なお、工具本体2Cと環状刃部本体30C及び荒刃型部331Cとをそれぞれ別体の部材として構成する場合は、第一、第二実施形態の歯切り工具1A,1Bの製造方法と同様の工程となる。また、第三実施形態では、付加製造装置90で付加造形物を付加して造形刃332Cを形成する場合を説明したが、高速度工具鋼もしくは超硬合金で成る切れ刃となるチップ(付加造形物)を造形刃332Cとして、複数の荒刃型部331Cの外面にろう付けするようにしてもよい。 When the tool body 2C, the annular blade body 30C, and the rough blade mold portion 331C are configured as separate members, the same as the manufacturing method of the gear cutting tools 1A and 1B of the first and second embodiments. It becomes a process. Further, in the third embodiment, the case where the additional modeled object is added by the additional manufacturing apparatus 90 to form the modeling blade 332C has been described, but the tip (additional modeling) which is a cutting edge made of high-speed tool steel or cemented carbide The object) may be used as a modeling blade 332C and brazed to the outer surface of a plurality of rough blade mold portions 331C.

1A,1B,1C:歯切り工具、 2A,2B,2C:工具本体、 3A,3B:工具刃部、 30A,30B,30C:環状刃部本体、 33A,33B,33C:刃、 331C:荒刃型部、 332C:造形刃、 50:シュリンクディスク、 60:研削装置、 70:シュパンリング、 81:キー、 90:付加製造装置 1A, 1B, 1C: Tooth cutting tool, 2A, 2B, 2C: Tool body, 3A, 3B: Tool blade, 30A, 30B, 30C: Circular blade body, 33A, 33B, 33C: Blade, 331C: Rough blade Mold part, 332C: Molding blade, 50: Shrink disc, 60: Grinding equipment, 70: Spanning, 81: Key, 90: Additional manufacturing equipment

Claims (11)

工作物に歯車の歯を創成する歯切り工具であって、
円筒状又は円柱状の工具本体と、
前記工具本体と別体の1つの部材として構成され、前記工具本体の一端側に同軸上に連結された環状刃部本体及び前記環状刃部本体の外周面に一体部位として形成された複数の刃を有する円環状の工具刃部と、
を備える、歯切り工具。
A gear cutting tool that creates gear teeth on a workpiece.
Cylindrical or columnar tool body and
A plurality of blades formed as one member separate from the tool body and coaxially connected to one end side of the tool body as an integral part on the outer peripheral surface of the annular blade body and the annular blade body. An annular tool blade with
A gear cutting tool.
前記歯切り工具は、さらに、前記工具本体に前記工具刃部の前記環状刃部本体を締結する締結部材、を備える、請求項1に記載の歯切り工具。 The gear cutting tool according to claim 1, further comprising a fastening member for fastening the annular blade portion main body of the tool blade portion to the tool body. 前記締結部材は、前記工具本体と前記工具本体に同軸に調整された前記工具刃部の前記環状刃部本体とを直接的に締付け力で締結する締結用ネジである、請求項2に記載の歯切り工具。 The fastening member according to claim 2, wherein the fastening member is a fastening screw that directly fastens the tool body and the annular blade body of the tool blade that is coaxially adjusted to the tool body with a tightening force. Tooth cutting tool. 前記締結部材は、前記工具本体の外周面と前記工具刃部の前記環状刃部本体の内周面との径方向間に介在して摩擦力で締結する摩擦締結要素を含む、請求項2に記載の歯切り工具。 The fastening member includes a friction fastening element that is interposed between the outer peripheral surface of the tool body and the inner peripheral surface of the annular blade portion body of the tool blade portion in the radial direction and is fastened by a frictional force. The described gear cutting tool. 前記締結部材は、前記摩擦締結要素の摩擦力を締付け力で発生させる摩擦用ネジを含む、請求項4に記載の歯切り工具。 The gear cutting tool according to claim 4, wherein the fastening member includes a friction screw that generates a frictional force of the frictional fastening element by a tightening force. 前記歯切り工具は、さらに、前記工具本体及び前記工具刃部の前記環状刃部本体に設けられ、前記工具本体と前記工具刃部の前記環状刃部本体との相対回転を規制する回転規制部材、を備える、請求項4又は5に記載の歯切り工具。 The gear cutting tool is further provided on the tool body and the annular blade body of the tool blade, and is a rotation restricting member that regulates the relative rotation of the tool body and the tool blade with the annular blade body. The gear cutting tool according to claim 4 or 5, further comprising. 前記工具刃部は、前記工具本体の外周面を基準面として位置決めされる、請求項2−6の何れか一項に記載の歯切り工具。 The gear cutting tool according to any one of claims 2-6, wherein the tool blade portion is positioned with the outer peripheral surface of the tool body as a reference surface. 工作物に歯車の歯を創成する歯切り工具であって、
円筒状又は円柱状の工具本体と、
前記工具本体と別体の1つの部材として構成され又は前記工具本体に一体部位として形成されており、前記工具本体の一端側に同軸上に設けられた環状刃部本体と、
前記環状刃部本体の外周面に少なくとも一部を付加造形物として形成された複数の刃と、
を備える、歯切り工具。
A gear cutting tool that creates gear teeth on a workpiece.
Cylindrical or columnar tool body and
An annular blade portion body that is configured as one member separate from the tool body or is formed as an integral part of the tool body and is provided coaxially on one end side of the tool body.
A plurality of blades formed on the outer peripheral surface of the annular blade main body, at least a part of which is an additional model,
A gear cutting tool.
前記複数の刃のそれぞれは、
前記環状刃部本体の外周面に一体部位として形成された荒刃型部と、
前記荒刃型部の外面に付加造形物として形成された造形刃と、
を備える、請求項1−8の何れか一項に記載の歯切り工具。
Each of the plurality of blades
A rough blade mold portion formed as an integral part on the outer peripheral surface of the annular blade portion main body,
A modeling blade formed as an additional model on the outer surface of the rough blade mold portion,
The gear cutting tool according to any one of claims 1-8.
工作物に歯車の歯を創成する歯切り工具の製造方法であって、
円筒状又は円柱状の工具本体とは別体の1つの部材として構成される円環状の工具刃部を、前記工具本体の一端側に連結する連結工程と、
前記連結工程の後に前記工具本体の回転軸線と前記工具刃部の回転軸線を軸調整部材で同軸に調整する同軸調整工程と、
前記同軸調整工程の後に前記工具本体と前記工具刃部を締結部材で締結する締結工程と、
前記締結工程の後に複数の刃を前記工具刃部の外周面に加工する加工工程と、
を備える、歯切り工具の製造方法。
A method of manufacturing a gear cutting tool that creates gear teeth in a workpiece.
A connecting step of connecting an annular tool blade portion formed as one member separate from the cylindrical or columnar tool body to one end side of the tool body.
After the connection step, a coaxial adjustment step of coaxially adjusting the rotation axis of the tool body and the rotation axis of the tool blade with an axis adjusting member,
After the coaxial adjustment step, a fastening step of fastening the tool body and the tool blade with a fastening member,
After the fastening process, a processing step of processing a plurality of blades on the outer peripheral surface of the tool blade portion and
A method of manufacturing a gear cutting tool.
工作物に歯車の歯を創成する歯切り工具の製造方法であって、
円筒状又は円柱状の工具本体とは別体の1つの部材として構成され又は前記工具本体に一体部位として形成されており、前記工具本体の一端側に同軸上に設けられた円環状の工具刃部の外周面に、複数の刃として機能する付加造形物を付加する付加工程と、
前記付加工程の後に前記付加造形物を造形刃として加工する加工工程と、
を備える、歯切り工具の製造方法。
A method of manufacturing a gear cutting tool that creates gear teeth in a workpiece.
An annular tool blade that is configured as a member separate from the cylindrical or columnar tool body or is formed as an integral part of the tool body and is coaxially provided on one end side of the tool body. An additional process of adding an additional model that functions as multiple blades to the outer peripheral surface of the part,
After the addition process, a processing step of processing the additional model as a modeling blade, and
A method of manufacturing a gear cutting tool.
JP2019104813A 2019-06-04 2019-06-04 Gear cutting tool and manufacturing method of gear cutting tool Active JP7451884B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019104813A JP7451884B2 (en) 2019-06-04 2019-06-04 Gear cutting tool and manufacturing method of gear cutting tool
JP2023143109A JP2023175733A (en) 2019-06-04 2023-09-04 Manufacturing method of gear cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104813A JP7451884B2 (en) 2019-06-04 2019-06-04 Gear cutting tool and manufacturing method of gear cutting tool

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023143109A Division JP2023175733A (en) 2019-06-04 2023-09-04 Manufacturing method of gear cutting tool

Publications (2)

Publication Number Publication Date
JP2020196109A true JP2020196109A (en) 2020-12-10
JP7451884B2 JP7451884B2 (en) 2024-03-19

Family

ID=73649319

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019104813A Active JP7451884B2 (en) 2019-06-04 2019-06-04 Gear cutting tool and manufacturing method of gear cutting tool
JP2023143109A Pending JP2023175733A (en) 2019-06-04 2023-09-04 Manufacturing method of gear cutting tool

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023143109A Pending JP2023175733A (en) 2019-06-04 2023-09-04 Manufacturing method of gear cutting tool

Country Status (1)

Country Link
JP (2) JP7451884B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165721A (en) * 1984-09-07 1986-04-04 Mitsubishi Heavy Ind Ltd Assembled pinion cutter
JPS62127723U (en) * 1986-02-05 1987-08-13
JPS62233217A (en) * 1986-04-04 1987-10-13 Fanuc Ltd Sprocket fitting mechanism of mold thickness adjusting equipment
JPS63274508A (en) * 1987-05-07 1988-11-11 Nomura Seisakusho:Kk Cutting machine
JPH0549215U (en) * 1991-12-03 1993-06-29 株式会社不二越 Shank type pinion cutter
JPH0957534A (en) * 1995-08-24 1997-03-04 Nachi Fujikoshi Corp Throwaway pinion cutter
US20030002928A1 (en) * 2001-06-28 2003-01-02 Wolfgang Soltau Hobbing cutter
DE202009009518U1 (en) * 2009-07-07 2010-09-02 Hartmetall-Werkzeugfabrik Paul Horn Gmbh Impact tool, in particular for splining
JP2017507794A (en) * 2013-11-25 2017-03-23 フェスタルピーネ プリシジョン ストリップ ゲーエムベーハー Manufacturing method of machining tool spare material and corresponding spare material
WO2019069701A1 (en) * 2017-10-02 2019-04-11 日立金属株式会社 Cemented carbide composite material, method for producing same, and cemented carbide tool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441711B (en) 2010-10-13 2013-05-22 长沙机床有限责任公司 Single-side edge tooth cutting tool for cylindrical gear
JP2014161972A (en) 2013-02-26 2014-09-08 Kashifuji:Kk Skiving cutter and creating method of internal gear
CN203330534U (en) 2013-06-28 2013-12-11 台州科利特工具有限公司 Spliced-type taper shank slotting cutter
JP2019042833A (en) 2017-08-31 2019-03-22 株式会社不二越 Skiving processing machine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165721A (en) * 1984-09-07 1986-04-04 Mitsubishi Heavy Ind Ltd Assembled pinion cutter
JPS62127723U (en) * 1986-02-05 1987-08-13
JPS62233217A (en) * 1986-04-04 1987-10-13 Fanuc Ltd Sprocket fitting mechanism of mold thickness adjusting equipment
JPS63274508A (en) * 1987-05-07 1988-11-11 Nomura Seisakusho:Kk Cutting machine
JPH0549215U (en) * 1991-12-03 1993-06-29 株式会社不二越 Shank type pinion cutter
JPH0957534A (en) * 1995-08-24 1997-03-04 Nachi Fujikoshi Corp Throwaway pinion cutter
US20030002928A1 (en) * 2001-06-28 2003-01-02 Wolfgang Soltau Hobbing cutter
DE202009009518U1 (en) * 2009-07-07 2010-09-02 Hartmetall-Werkzeugfabrik Paul Horn Gmbh Impact tool, in particular for splining
JP2017507794A (en) * 2013-11-25 2017-03-23 フェスタルピーネ プリシジョン ストリップ ゲーエムベーハー Manufacturing method of machining tool spare material and corresponding spare material
WO2019069701A1 (en) * 2017-10-02 2019-04-11 日立金属株式会社 Cemented carbide composite material, method for producing same, and cemented carbide tool

Also Published As

Publication number Publication date
JP2023175733A (en) 2023-12-12
JP7451884B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
KR101142081B1 (en) A cutting insert, an assembly including the cutting insert, and a method of machining a workpiece with the cutting insert
JP4047277B2 (en) Method and apparatus for grinding the central bearing position of a crankshaft
KR101690361B1 (en) Milling tool
JP2011506111A (en) Assembly for rotating cutting insert in lathe operation and insert used therefor
CN102785110B (en) Center aligning method and standard ring
US20200238398A1 (en) Stop for a drilling, milling or countersinking tool
JP6728203B2 (en) Placement of spindle using micro-feeding control and tilt of spindle rotation axis
JP2020196109A (en) Gear cutting tool and method of manufacturing the same
JP5780188B2 (en) Clamping mechanism of cutting member and blade part exchangeable cutting tool using the same
CN101870010B (en) Assembly for connecting a tool wheel and a tool holder
CN205614468U (en) Derailleur gear hole polishing frock
JP4330345B2 (en) Tool holder
KR100580235B1 (en) A cutting tool with a high speed cutter for cutting a face in radial type
KR102091818B1 (en) Method for manufacturing a shaft
KR20200040124A (en) Apparatus for manufacturing a shaft
WO2021019800A1 (en) Skiving cutter and skiving device
JP2006150535A (en) Cutting tool
JP2011011295A (en) Fine recessed part working method and fine recessed part working machine
JP5399651B2 (en) Cutting method using round piece insert
JP2008296311A (en) Whirling machining device
CN101020258A (en) Manually operated miller for notched screw surface inside hole
JP2020131401A (en) Lathe-turning method and lathe-turning jig
US7757373B2 (en) Method and tool head for machining optically active surfaces, particularly surfaces of progressive spectacle lenses, which are symmetrical in pairs
CN109304643B (en) Flange tip grinding method
JPH045204Y2 (en)

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R150 Certificate of patent or registration of utility model

Ref document number: 7451884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150