JP2020193678A - Device for estimating abrasion amount of seal part, and machine tool - Google Patents

Device for estimating abrasion amount of seal part, and machine tool Download PDF

Info

Publication number
JP2020193678A
JP2020193678A JP2019100539A JP2019100539A JP2020193678A JP 2020193678 A JP2020193678 A JP 2020193678A JP 2019100539 A JP2019100539 A JP 2019100539A JP 2019100539 A JP2019100539 A JP 2019100539A JP 2020193678 A JP2020193678 A JP 2020193678A
Authority
JP
Japan
Prior art keywords
pressure
wear
air
rotary seal
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019100539A
Other languages
Japanese (ja)
Other versions
JP7263125B2 (en
Inventor
章一 森村
Shoichi Morimura
章一 森村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2019100539A priority Critical patent/JP7263125B2/en
Publication of JP2020193678A publication Critical patent/JP2020193678A/en
Application granted granted Critical
Publication of JP7263125B2 publication Critical patent/JP7263125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Sealing With Elastic Sealing Lips (AREA)
  • Sealing Devices (AREA)

Abstract

To provide a device capable of estimating an abrasion amount of a contact type rotary seal to clarify timing for maintenance.SOLUTION: A contact type rotary seal 40 is placed on joints of a robot of a machine tool. The inside of the rotary seal 40 is air purged with compressed air. When an abrasion amount of the rotary seal 40 is estimated, the pressure of the compressed air is temporarily increased to detect the presence or absence of air leakage. When a contact part 46 of the rotary seal 40 is worn, air leakage occurs at a pressure value corresponding to the abrasion amount. When an air leakage is detected, the abrasion amount of the rotary seal 40 is estimated and output based on the relation between a predetermined abrasion amount and the air leakage.SELECTED DRAWING: Figure 2

Description

本発明は、シール部の摩耗量推定装置及び工作機械に関する。 The present invention relates to a wear amount estimation device for a seal portion and a machine tool.

近年、工作機械にはさらなる自動化が求められており、その1つの解決策として、工作機械の機内にロボットを搭載することが提案されている。機内ロボットを用いることで、工具やワークの着脱、機内や工具、ワークの洗浄、切粉の巻き付き防止、ワークのビビリ防止等の多くの作業を自動化し得る。 In recent years, machine tools are required to be further automated, and as one solution, it has been proposed to mount a robot inside the machine tool. By using the in-flight robot, many operations such as attachment / detachment of tools and workpieces, cleaning of in-flight tools and workpieces, prevention of wrapping of chips, and prevention of chattering of workpieces can be automated.

工作機械の機内にロボットを搭載する場合、機内ロボットは切粉や切削水に対する耐久性が必須となり、このため機内ロボットの関節の回転機構部等には接触式の回転シールが必要となる。但し、接触式の回転シールは時間の経過とともに少しずつ摩耗してしまい、そのまま放置すればいずれは切粉や切削水が外部から回転機構部の内部に侵入してしまう。 When a robot is mounted in a machine tool, the in-flight robot must be durable against chips and cutting water, and therefore a contact-type rotary seal is required for the rotation mechanism of the joint of the in-flight robot. However, the contact-type rotary seal gradually wears over time, and if left as it is, chips and cutting water will eventually enter the inside of the rotary mechanism from the outside.

特許文献1には、回転軸部と嵌合孔との摺動隙間内に異物が混入して堆積固化することに起因する不具合を防止することを目的として、摺動隙間内に流体の下流側方向への流動のみを選択的にシールするリップシールと、摺動隙間内の圧力を加圧する加圧手段を備えたロータリジョイントが記載されている。 Patent Document 1 describes the downstream side of the fluid in the sliding gap for the purpose of preventing a defect caused by foreign matter being mixed in the sliding gap between the rotating shaft portion and the fitting hole and being deposited and solidified. A rotary joint is described that includes a lip seal that selectively seals only the flow in the direction and a pressurizing means that pressurizes the pressure in the sliding gap.

特許文献2には、シール特性の変化に伴うハウジングの漏洩検査が可能な流体機械の漏れ検査を行うことを目的として、ハウジング内にガスを封入して漏れ量を検出し、漏れ量に基づいてハウジングの可否を判定する工程と、ハウジング内に封入されたガスをハウジングの外部に放出し、ハウジング内の圧力を大気圧近傍に減圧する工程と、ハウジング内にガスを改めて封入して漏れ量を検出し、漏れ量に基づいてハウジングの可否を判定する工程を備えることが記載されている。 In Patent Document 2, for the purpose of performing a leak inspection of a fluid machine capable of leak inspection of a housing due to a change in sealing characteristics, a gas is sealed in the housing to detect the leak amount, and the leak amount is detected based on the leak amount. The process of determining the suitability of the housing, the process of releasing the gas enclosed in the housing to the outside of the housing and reducing the pressure inside the housing to near the atmospheric pressure, and the process of re-encapsulating the gas in the housing to reduce the amount of leakage. It is described that a step of detecting and determining whether or not the housing is possible based on the amount of leakage is provided.

特許文献3には、シール装置の異常及び異常の原因である劣化原因及び劣化度を診断することを目的として、圧力系や流量計等の検出器群と、検出器群に接続され、内蔵したシール装置の計算モデルを使用して仮定状態のシール流量を算出するコンピュータを有し、異常がないと仮定したときの計算シール流量と実シール流量とを対比して異常兆候を検出することが記載されている。 Patent Document 3 includes a group of detectors such as a pressure system and a flow meter, and a group of detectors connected to the detector group for the purpose of diagnosing the cause of deterioration and the degree of deterioration which are the causes of the abnormality and the abnormality of the sealing device. It is described that it has a computer that calculates the sealed flow rate in the assumed state using the calculation model of the sealing device, and detects abnormal signs by comparing the calculated sealing flow rate and the actual sealing flow rate when it is assumed that there is no abnormality. Has been done.

特許文献4には、軸封装置のシール機能の劣化による大量の漏洩の発生を事前に予知することを目的として、容量式リークセンサと、リークセンサに並列に接続された基準容量コンデンサと、リークセンサと基準容量コンデンサとの容量差を検出する差動増幅器を備えた軸封装置用漏れ検出装置が記載されている。 Patent Document 4 describes a capacitive leak sensor, a reference capacitance capacitor connected in parallel to the leak sensor, and a leak for the purpose of predicting in advance the occurrence of a large amount of leakage due to deterioration of the sealing function of the shaft sealing device. A leak detection device for a shaft seal device including a differential amplifier for detecting a capacitance difference between a sensor and a reference capacitance capacitor is described.

特開2014−9720号公報Japanese Unexamined Patent Publication No. 2014-9720 特開2007−78630号公報JP-A-2007-78630 特開2001−241550号公報Japanese Unexamined Patent Publication No. 2001-241550 特開平5−45246号公報Japanese Unexamined Patent Publication No. 5-45246

既述したように、接触式の回転シールは時間の経過とともに少しずつ摩耗するため、その摩耗状態を把握し、切粉や切削水が外部から侵入する前にメンテナンスを行い得ることが極めて重要である。 As mentioned above, the contact type rotary seal wears little by little over time, so it is extremely important to understand the wear condition and perform maintenance before chips and cutting water enter from the outside. is there.

本発明は、接触式の回転シールの摩耗量を推定し、もってメンテナンスの時期を明らかにし得る装置を提供することを目的とする。 An object of the present invention is to provide an apparatus capable of estimating the amount of wear of a contact type rotary seal and thereby clarifying the timing of maintenance.

本発明のシール部の摩耗量推定装置は、工作機械内に設けられた回転機構部のシール部の摩耗量を推定する装置であって、前記シール部は、外部から前記回転機構部の内部への異物侵入を防止する接触式の回転シールを備え、前記回転シールの内部には圧縮エアが供給され、前記圧縮エアの圧力を調整する圧力調整手段と、前記圧力調整手段により前記圧力を調整した場合の前記圧縮エアのエア漏れを検出するエア漏れ検出手段と、前記圧力調整手段により調整された圧力値と、前記エア漏れ検出手段により検出されたエア漏れに基づき、前記回転シールの摩耗量を推定する推定手段を備える。 The seal portion wear estimation device of the present invention is a device for estimating the wear amount of the seal portion of the rotation mechanism portion provided in the machine tool, and the seal portion is from the outside to the inside of the rotation mechanism portion. A contact-type rotary seal for preventing foreign matter from entering is provided, and compressed air is supplied to the inside of the rotary seal, and the pressure is adjusted by a pressure adjusting means for adjusting the pressure of the compressed air and the pressure adjusting means. Based on the air leak detecting means for detecting the air leak of the compressed air, the pressure value adjusted by the pressure adjusting means, and the air leak detected by the air leak detecting means, the amount of wear of the rotary seal is determined. It is provided with an estimation means for estimating.

本発明の1つの実施形態では、前記回転シールは、未摩耗状態では前記圧縮エアの圧力が所定圧力以下では接触状態を維持して内部から外部へのエア漏れがなく、前記所定圧力を超えると非接触状態となって前記圧縮エアのエア漏れが生じる。 In one embodiment of the present invention, the rotary seal maintains a contact state when the pressure of the compressed air is equal to or lower than a predetermined pressure in an unworn state, and there is no air leakage from the inside to the outside, and the pressure exceeds the predetermined pressure. In a non-contact state, air leakage of the compressed air occurs.

本発明の他の実施形態では、前記回転シールの摩耗量とエア漏れが生じる圧力値との対応関係を記憶する記憶手段をさらに備え、前記推定手段は、前記記憶手段に記憶された対応関係に基づき、前記回転シールの摩耗量を推定する。 In another embodiment of the present invention, a storage means for storing the correspondence relationship between the amount of wear of the rotary seal and the pressure value at which air leakage occurs is further provided, and the estimation means is stored in the correspondence relationship stored in the storage means. Based on this, the amount of wear of the rotary seal is estimated.

本発明のさらに他の実施形態では、前記圧力調整手段は、前記圧縮エアの圧力を初期圧力から第1圧力まで増大させ、前記エア漏れ検出手段でエア漏れが検出されない場合に前記第1圧力からさらに第2圧力まで増大させる。 In still another embodiment of the present invention, the pressure adjusting means increases the pressure of the compressed air from the initial pressure to the first pressure, and when the air leak detecting means does not detect an air leak, the pressure is increased from the first pressure. Further increase to a second pressure.

本発明のさらに他の実施形態では、前記エア漏れ検出手段は、圧力計又は流量計である。 In yet another embodiment of the present invention, the air leak detecting means is a pressure gauge or a flow meter.

また、本発明の工作機械は、上記のいずれかに記載のシール部の摩耗量推定装置と、前記シール部が関節に設けられた機内ロボットとを備える。 Further, the machine tool of the present invention includes the wear amount estimation device for the seal portion according to any one of the above, and an in-flight robot in which the seal portion is provided at a joint.

本発明によれば、接触式の回転シールの摩耗量を推定することができる。また、本発明によれば、推定した摩耗量によりメンテナンスの時期を明らかにすることができ、工作時に生じる切粉や切削水の侵入をより確実に防止できるようになる。 According to the present invention, the amount of wear of the contact type rotary seal can be estimated. Further, according to the present invention, the maintenance time can be clarified from the estimated wear amount, and the intrusion of chips and cutting water generated during machining can be more reliably prevented.

実施形態の工作機械の構成図である。It is a block diagram of the machine tool of embodiment. 実施形態の回転シールの断面図である。It is sectional drawing of the rotary seal of embodiment. 実施形態の回転シールの摩耗説明図である。It is a wear explanatory drawing of the rotary seal of an embodiment. 実施形態の未摩耗回転シールの圧力とエア漏れとの関係を示すグラフ図である。It is a graph which shows the relationship between the pressure of the wearless rotary seal of embodiment and air leakage. 実施形態の摩耗回転シールの圧力とエア漏れとの関係を示すグラフ図である。It is a graph which shows the relationship between the pressure of the wear rotation seal of an embodiment, and an air leak. 実施形態の装置の構成ブロック図である。It is a block diagram of the structure of the apparatus of embodiment. 実施形態の圧力調整手段及びエア漏れ検出手段の回路図である。It is a circuit diagram of the pressure adjusting means and the air leakage detecting means of embodiment. 実施形態の処理フローチャートである。It is a processing flowchart of an embodiment.

以下、図面に基づき本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、工作機械10の概略構成を示す図である。なお、以下の説明では、ワーク主軸装置14の回転軸方向をZ軸、刃物台4のZ軸と直交する移動方向をX軸、Z軸およびX軸に直交する方向をY軸と呼ぶ。 FIG. 1 is a diagram showing a schematic configuration of a machine tool 10. In the following description, the rotation axis direction of the work spindle device 14 is referred to as a Z axis, the moving direction orthogonal to the Z axis of the tool post 4 is referred to as an X axis, and the Z axis and the direction orthogonal to the X axis are referred to as a Y axis.

工作機械10は、工具でワークを切削加工する機械である。具体的には、工作機械10は、ワーク3を回転させながら旋削工具を当ててワーク3を切削する旋削機能と、回転工具でワークを切削する転削機能とを有している。 The machine tool 10 is a machine that cuts a workpiece with a tool. Specifically, the machine tool 10 has a turning function of cutting the work 3 by applying a turning tool while rotating the work 3 and a turning function of cutting the work with the rotating tool.

工作機械10の周囲は、カバー(図示せず)で覆われている。このカバーで区画される空間が、ワーク3の加工が行われる加工室となる。カバーを設けることで、切粉等が外部に飛散することが防止される。カバーには、少なくとも一つの開口部と、当該開口部を開閉するドア(いずれも図示せず)が設けられている。オペレータは、この開口部を介して、工作機械10の内部やワーク3等にアクセスする。加工中、開口部に設けられたドアは閉鎖される。これは、安全性や環境性等を担保するためである。 The circumference of the machine tool 10 is covered with a cover (not shown). The space partitioned by this cover becomes a processing room in which the work 3 is processed. By providing the cover, chips and the like are prevented from being scattered to the outside. The cover is provided with at least one opening and a door (neither shown) that opens and closes the opening. The operator accesses the inside of the machine tool 10, the work 3, and the like through the opening. During processing, the door provided at the opening is closed. This is to ensure safety and environmental friendliness.

工作機械10は、ワーク3を自転可能に保持するワーク主軸装置14と、工具100を保持する刃物台4を備えている。ワーク主軸装置14は、基台22に設置された主軸台と、当該主軸台に取り付けられたワーク主軸を備えている。ワーク主軸は、ワーク3を把持及び解放自在に保持するチャックを備えており、把持するワーク3を適宜、交換することができる。図では、チャックに設けられた3つの爪を開閉することでワーク3を把持/解放する構成を例示しているが、爪の数は任意であり、互いに対向する位置に設けられた2つの爪を開閉することでワーク3を把持/解放する構成でもよい。ワーク主軸は、水平方向(Z軸方向)に延びるワーク回転軸を中心として自転する。 The machine tool 10 includes a work spindle device 14 that holds the work 3 so that it can rotate, and a tool post 4 that holds the tool 100. The work spindle device 14 includes a spindle base installed on the base 22 and a work spindle attached to the headstock. The work spindle is provided with a chuck that holds the work 3 so that it can be gripped and released freely, and the gripped work 3 can be replaced as appropriate. The figure illustrates a configuration in which the work 3 is gripped / released by opening and closing the three claws provided on the chuck, but the number of claws is arbitrary and the two claws provided at positions facing each other are arbitrary. The work 3 may be gripped / released by opening and closing. The work spindle rotates around a work rotation axis extending in the horizontal direction (Z-axis direction).

刃物台4は、旋削工具、例えば、バイトと呼ばれる工具を保持する。この刃物台4およびバイトは、駆動機構により、XZ軸方向に直線移動可能となっている。 The tool post 4 holds a turning tool, for example, a tool called a cutting tool. The tool post 4 and the bite can be linearly moved in the XZ axis direction by a drive mechanism.

加工室内の底部には、切削加工の際に飛散した切粉を、回収して排出する排出機構が設けられている。排出機構としては、種々の形態が考えられるが、例えば、排出機構は、重力により落下した切粉を、外部に搬送するコンベア等で構成される。 At the bottom of the processing chamber, a discharge mechanism is provided for collecting and discharging chips scattered during cutting. Various forms can be considered as the discharge mechanism. For example, the discharge mechanism is composed of a conveyor or the like that conveys chips that have fallen due to gravity to the outside.

工作機械10は、各種演算を行う制御装置を備えている。工作機械10における制御装置は、数値制御装置(NC)とも呼ばれており、オペレータからの指示に応じて、工作機械10の各部の駆動を制御する。制御装置は、例えば、各種演算を行う1個または複数個のCPUと、各種制御プログラムや制御パラメータを記憶するメモリと、入出力インターフェイスと、入力装置及び出力装置で構成される。入力装置は例えばタッチパネルやキーボードであり、出力装置は液晶ディスプレイや有機ELディスプレイ等である。入力装置と出力装置をともにタッチパネルで構成してもよい。また、制御装置は、通信機能を有しており、他の装置との間で各種データ、例えば、NCプログラムデータ等を授受できる。制御装置は、例えば、工具100やワーク3の位置を随時演算する数値制御装置を含んでもよい。制御装置は、単一の装置でもよいし、複数の演算装置を組み合わせて構成されてもよい。 The machine tool 10 includes a control device that performs various calculations. The control device in the machine tool 10 is also called a numerical control device (NC), and controls the drive of each part of the machine tool 10 in response to an instruction from an operator. The control device is composed of, for example, one or a plurality of CPUs that perform various operations, a memory that stores various control programs and control parameters, an input / output interface, an input device, and an output device. The input device is, for example, a touch panel or a keyboard, and the output device is a liquid crystal display, an organic EL display, or the like. Both the input device and the output device may be configured by a touch panel. Further, the control device has a communication function and can exchange various data, for example, NC program data, etc. with other devices. The control device may include, for example, a numerical control device that calculates the positions of the tool 100 and the work 3 at any time. The control device may be a single device or may be configured by combining a plurality of arithmetic units.

また、本実施形態の工作機械10は、機内ロボット20を備えている。機内ロボット20は、関節と、節と、ハンド20dとを備えている。本実施形態では、加工室内の所定位置に配置されたロボットを機内ロボットと称する。所定位置は必ずしも固定位置を意味するものではなく、初期状態ではある位置に配置されていても、ワークの加工中その他において所望の位置まで移動し得るものをその概念に含むものとする。機内ロボット20を駆動制御することで、工具やワーク3の着脱、機内、工具及びワーク3の洗浄、切粉の巻き付き防止、ワーク3のビビリ防止等を行うことができる。 Further, the machine tool 10 of the present embodiment includes an in-flight robot 20. The in-flight robot 20 includes joints, nodes, and a hand 20d. In the present embodiment, a robot arranged at a predetermined position in the processing chamber is referred to as an in-flight robot. The predetermined position does not necessarily mean a fixed position, and even if it is arranged at a certain position in the initial state, the concept includes a position that can move to a desired position during machining of the work or the like. By driving and controlling the in-flight robot 20, it is possible to attach / detach tools and workpieces 3, clean the inside of the in-flight, tools and workpieces 3, prevent chips from wrapping around, and prevent chattering of the workpieces 3.

機内ロボット20の回転機構部、例えば関節には、外部からの切粉や切削水の侵入を防ぐためのシール部が設けられており、シール部は、例えば接触式の回転シールが用いられる。 The rotation mechanism portion of the in-flight robot 20, for example, a joint, is provided with a seal portion for preventing the intrusion of chips and cutting water from the outside, and for the seal portion, for example, a contact type rotary seal is used.

図2は、機内ロボット20の関節に用いられる接触式の回転シールの一例を示す断面図である。回転軸30と固定部32との間に接触式の回転シール40が設けられる。具体的には、固定部32の回転軸30の対向面に溝34が形成され、この溝34内に断面形状がU字型又はコの字型の回転シール40が配置される。回転シール40は、回転側シール部42及び固定側シール部44の2つのシール部が、外部側がU字あるいはコの字の開口側となるようにU字状あるいはコの字状に延出した断面形状を有しており、回転側シール部42の先端部の回転軸30の対向面には回転軸30側に突出する接触部46を有する。接触部46は、回転側シール部42から回転軸30に向かう方向に徐々に先細るようにテーパ状に形成される。また、回転側シール部42及び固定側シール部44は、回転シール40の屈曲内面に沿って配置された弾性部材等によりそれぞれ固定部32側及び回転軸30側に付勢されている。すなわち、回転側シール部42は、弾性部材により回転軸30側に押し付けられ、固定側シール部44は、弾性部材により固定部32側に押し付けられる。図では、弾性部材による付勢をばねとして示しているが、U字又はコの字の内側に配置されたバネ部材で構成され得る。 FIG. 2 is a cross-sectional view showing an example of a contact-type rotary seal used for a joint of the in-flight robot 20. A contact-type rotary seal 40 is provided between the rotary shaft 30 and the fixed portion 32. Specifically, a groove 34 is formed on the facing surface of the rotating shaft 30 of the fixing portion 32, and a rotating seal 40 having a U-shaped or U-shaped cross section is arranged in the groove 34. In the rotary seal 40, the two seal portions of the rotary side seal portion 42 and the fixed side seal portion 44 extend in a U shape or a U shape so that the outer side is the opening side of the U shape or the U shape. It has a cross-sectional shape, and has a contact portion 46 projecting toward the rotating shaft 30 on the opposite surface of the rotating shaft 30 at the tip of the rotating side seal portion 42. The contact portion 46 is formed in a tapered shape so as to gradually taper in the direction from the rotation side seal portion 42 toward the rotation shaft 30. Further, the rotary side seal portion 42 and the fixed side seal portion 44 are urged to the fixed portion 32 side and the rotary shaft 30 side, respectively, by an elastic member or the like arranged along the bent inner surface of the rotary seal 40. That is, the rotating side seal portion 42 is pressed against the rotating shaft 30 side by the elastic member, and the fixed side sealing portion 44 is pressed against the fixed portion 32 side by the elastic member. In the figure, the urging by the elastic member is shown as a spring, but it may be composed of a spring member arranged inside the U-shape or the U-shape.

回転シール40で密封された関節の内部には、さらに図示しないエア経路を介して圧縮エアが供給され、内部からエアパージが行われる。このエアパージは、通常は大気圧より若干高い程度の圧力(以下、この圧力をP0と称する)で行われる。エアパージにより、外部からの異物、すなわち切粉や切削水等の異物の侵入が防止される。 Compressed air is further supplied to the inside of the joint sealed by the rotary seal 40 via an air path (not shown), and air purging is performed from the inside. This air purge is usually performed at a pressure slightly higher than the atmospheric pressure (hereinafter, this pressure is referred to as P0). The air purge prevents the intrusion of foreign matter from the outside, that is, foreign matter such as chips and cutting water.

通常状態では、回転シール40の回転側シール部42及び固定側シール部44はそれぞれ弾性部材により回転軸側と固定部側に付勢されているため圧縮エアによるエアパージでも接触状態が維持されて圧縮エアが外部に漏れることはないが、圧縮エアの圧力をP0から増大させると、回転側シール部42がその付勢力に抗して回転軸30から離間する方向に変位し、テーパ状の接触部46が回転軸30から離間して非接触状態となって隙間が生じる。すると、圧縮エアがこの隙間を通って外部に漏れることになる。テーパ状の接触部46が未摩耗状態であれば、接触部46の接触面圧は十分に高いため、圧縮エアの圧力が当該接触面圧に応じた十分に高い圧力値でない限り、エア漏れは生じない。 In the normal state, the rotary side seal portion 42 and the fixed side seal portion 44 of the rotary seal 40 are urged to the rotary shaft side and the fixed portion side by elastic members, respectively, so that the contact state is maintained even by air purging with compressed air and compression is performed. Air does not leak to the outside, but when the pressure of the compressed air is increased from P0, the rotating side seal portion 42 is displaced in the direction away from the rotating shaft 30 against the urging force, and the tapered contact portion. The 46 is separated from the rotating shaft 30 to be in a non-contact state, and a gap is created. Then, the compressed air leaks to the outside through this gap. If the tapered contact portion 46 is in an unworn state, the contact surface pressure of the contact portion 46 is sufficiently high, so that air leakage does not occur unless the pressure of the compressed air is a sufficiently high pressure value corresponding to the contact surface pressure. Does not occur.

ところが、接触部46は回転軸30に接触しているため、時間の経過とともに接触部46が徐々に劣化し、テーパ状の接触部46の接触面圧が低下することになる。 However, since the contact portion 46 is in contact with the rotating shaft 30, the contact portion 46 gradually deteriorates with the passage of time, and the contact surface pressure of the tapered contact portion 46 decreases.

図3は、接触部46の摩耗の様子を模式的に示す。図3(a)は未摩耗状態の回転シール40を示し、図3(b)は接触部46の一部拡大断面図を示す。テーパ状の接触部46は未摩耗であり、接触面圧は相対的に大きい。 FIG. 3 schematically shows the state of wear of the contact portion 46. FIG. 3A shows a rotary seal 40 in an unworn state, and FIG. 3B shows a partially enlarged cross-sectional view of the contact portion 46. The tapered contact portion 46 is not worn and the contact surface pressure is relatively large.

図3(c)は未摩耗状態から摩耗した接触部46の一部拡大断面図を示す。テーパ状の接触部46の接触部位が摩耗し、接触面圧は未摩耗状態に比べて相対的に小さくなる。図3(d)は未摩耗状態からさらに摩耗した接触部46の一部拡大断面図を示す。テーパ状の接触部46の接触部位がさらに摩耗し、接触面圧は図3(c)の場合と比べて相対的にさらに小さくなる。 FIG. 3C shows a partially enlarged cross-sectional view of the contact portion 46 worn from the non-wear state. The contact portion of the tapered contact portion 46 is worn, and the contact surface pressure becomes relatively smaller than in the unworn state. FIG. 3D shows a partially enlarged cross-sectional view of the contact portion 46 that has been further worn from the unworn state. The contact portion of the tapered contact portion 46 is further worn, and the contact surface pressure becomes relatively smaller than in the case of FIG. 3C.

このように、摩耗が進むにつれて接触部46の接触面圧が低下すると、圧縮エアの圧力が低い場合にもエア漏れが生じ得る。すなわち、未摩耗状態において圧縮エアの圧力がP0であればエア漏れが生じず、圧縮エアの圧力をP1まで増大させたときにエア漏れが生じていたとしても、接触部46の摩耗が進むと、未摩耗状態でのエア漏れが生じる圧力P1よりも低い圧力でエア漏れが生じることになる。摩耗が進むと接触部46の接触面圧が低下することを考慮すると、摩耗量とエア漏れが生じる圧力との間に一定の相関関係があり、この相関関係を用いることで、エア漏れが生じた圧力から接触部46の摩耗量、すなわち回転シール40の摩耗量を推定することができる。 As described above, if the contact surface pressure of the contact portion 46 decreases as the wear progresses, air leakage may occur even when the pressure of the compressed air is low. That is, if the pressure of the compressed air is P0 in the unworn state, no air leakage occurs, and even if an air leak occurs when the pressure of the compressed air is increased to P1, the wear of the contact portion 46 progresses. , Air leakage occurs at a pressure lower than the pressure P1 at which air leakage occurs in the unweared state. Considering that the contact surface pressure of the contact portion 46 decreases as the wear progresses, there is a certain correlation between the amount of wear and the pressure at which air leakage occurs, and by using this correlation, air leakage occurs. The amount of wear of the contact portion 46, that is, the amount of wear of the rotary seal 40 can be estimated from the pressure.

図4は、回転シール40が未摩耗状態における圧縮エアの圧力とエア漏れとの関係を例示的に示す。エアパージの圧力P0ではエア漏れは生じず、圧力をP0から増大させると、圧力P1においてエア漏れが生じ、圧力をP1からさらに増大させると圧力値に応じてエア漏れ量が増大する。 FIG. 4 schematically shows the relationship between the pressure of compressed air and air leakage when the rotary seal 40 is in an unwear state. Air leakage does not occur at the pressure P0 of the air purge, and when the pressure is increased from P0, air leakage occurs at the pressure P1, and when the pressure is further increased from P1, the amount of air leakage increases according to the pressure value.

図5は、回転シール40が摩耗し劣化した状態における圧縮エアの圧力とエア漏れとの関係を示す。回転シール40が摩耗すると、圧力とエア漏れとの関係を示すグラフが図中左側にシフトし、より低い圧力でエア漏れが生じるようになる。具体的には、圧力をP0から増大させると、圧力P2(P0<P2<P1)においてエア漏れが生じ、圧力をP2からさらに増大させると圧力値に応じてエア漏れ量が増大する。回転シール40がさらに摩耗すると、図に示すようにグラフがさらに左側にシフトし、圧力P0においてもエア漏れが生じるようになる。この状態は、圧縮エアのエアパージでもエア漏れが生じてしまうことを意味しており、異物侵入防止の機能を発揮できないことを意味する。なお、図では便宜上グラフの傾きを同一としているが、摩耗に応じてグラフの傾きも変化し得る。 FIG. 5 shows the relationship between the pressure of compressed air and air leakage in a state where the rotary seal 40 is worn and deteriorated. When the rotary seal 40 is worn, the graph showing the relationship between pressure and air leakage shifts to the left side in the figure, and air leakage occurs at a lower pressure. Specifically, when the pressure is increased from P0, air leakage occurs at the pressure P2 (P0 <P2 <P1), and when the pressure is further increased from P2, the amount of air leakage increases according to the pressure value. When the rotary seal 40 is further worn, the graph shifts further to the left as shown in the figure, and air leakage occurs even at the pressure P0. This state means that air leakage occurs even when the compressed air is purged, and it means that the function of preventing foreign matter from entering cannot be exhibited. In the figure, the slope of the graph is the same for convenience, but the slope of the graph may change depending on the wear.

そこで、本実施形態では、圧縮エアの圧力を一時的にエアパージ圧力のP0以上に増大させたときのエア漏れの有無を検出し、エア漏れが生じた場合の圧力値に基づいて、回転シール40がどの程度摩耗しているかを推定する。 Therefore, in the present embodiment, the presence or absence of air leakage when the pressure of the compressed air is temporarily increased to P0 or more of the air purge pressure is detected, and the rotary seal 40 is based on the pressure value when the air leakage occurs. Estimate how much is worn.

図6は、本実施形態における摩耗量推定装置の構成ブロック図を示す。摩耗量推定装置は、圧力調整手段50と、エア漏れ検出手段52と、摩耗量推定手段54と、記憶手段56とを備える。 FIG. 6 shows a block diagram of the wear amount estimation device according to the present embodiment. The wear amount estimation device includes a pressure adjusting means 50, an air leak detecting means 52, a wear amount estimating means 54, and a storage means 56.

圧力調整手段50は、回転シール40のエアパージを行う圧縮エアの圧力を増減調整する。圧力調整手段50は、調整後の圧力値を摩耗量推定手段54に出力する。圧力調整手段50は、例えば複数のソレノイド及び複数のレギュレータからなる複数の圧力経路を備え、これら複数の圧力経路を順次切り替えることで圧力を複数段に変化させる。圧力調整手段50は、エアパージの圧力P0から順次圧力を増大させる。 The pressure adjusting means 50 adjusts the pressure of the compressed air for purging the air of the rotary seal 40 by increasing or decreasing. The pressure adjusting means 50 outputs the adjusted pressure value to the wear amount estimating means 54. The pressure adjusting means 50 includes, for example, a plurality of pressure paths including a plurality of solenoids and a plurality of regulators, and the pressure is changed in a plurality of stages by sequentially switching the plurality of pressure paths. The pressure adjusting means 50 sequentially increases the pressure from the pressure P0 of the air purge.

エア漏れ検出手段52は、回転シール40のエア漏れを検出する。エア漏れ検出手段52は、エア漏れの有無を摩耗量推定手段54に出力する。エア漏れ検出手段52は、例えば絞りを挟んだ差圧計を備え、差圧ΔPが検出されればエアの流れ、つまりエア漏れ有りと検出する。 The air leak detecting means 52 detects an air leak in the rotary seal 40. The air leak detecting means 52 outputs the presence or absence of an air leak to the wear amount estimating means 54. The air leak detecting means 52 includes, for example, a differential pressure gauge sandwiching a diaphragm, and if the differential pressure ΔP is detected, it detects an air flow, that is, there is an air leak.

記憶手段56は、予め計算や実験等により圧力値とエア漏れとの対応関係をテーブル58として記憶しておく。図5に示すグラフは、記憶手段56に記憶されるテーブル58の一例である。テーブル58は、摩耗量毎に、圧縮エアの圧力値とエア漏れ量との対応関係を規定する。なお、エア漏れ量=0はエア漏れがないことを意味する。テーブル58は、エア漏れした圧力値と摩耗量との対応関係を規定してもよい。例えば、
エア漏れ圧力PL1→摩耗量f1
エア漏れ圧力PL2→摩耗量f2
エア漏れ圧力PL3→摩耗量f3
・・・
の如くである。
The storage means 56 stores in advance the correspondence between the pressure value and the air leak as a table 58 by calculation, experiment, or the like. The graph shown in FIG. 5 is an example of the table 58 stored in the storage means 56. The table 58 defines the correspondence between the pressure value of the compressed air and the amount of air leakage for each amount of wear. The amount of air leakage = 0 means that there is no air leakage. The table 58 may specify the correspondence between the pressure value of air leakage and the amount of wear. For example
Air leakage pressure PL1 → wear amount f1
Air leakage pressure PL2 → wear amount f2
Air leakage pressure PL3 → wear amount f3
・ ・ ・
It is like.

摩耗量推定手段54は、圧力調整手段50からの圧力値と、エア漏れ検出手段52からのエア漏れの検出結果に基づき、回転シール40の摩耗量を推定する。摩耗量推定手段54は、エア漏れ検出手段52から出力された検出結果がエア漏れなしの場合には、圧力調整手段50に対してさらなる圧力の増大を指令する制御信号を出力する。圧力調整手段50は、摩耗量推定手段54からの指令に応じて圧力を増大させる。他方、摩耗量推定手段54は、エア漏れ検出手段52から出力された検出結果がエア漏れありの場合、圧力調整手段50から出力された圧力値に基づき、記憶手段56に記憶されたテーブル58を参照することで当該圧力に対応する摩耗量を推定する。摩耗量推定手段54は、推定した摩耗量を工作機械の出力装置に表示して出力する。 The wear amount estimating means 54 estimates the wear amount of the rotary seal 40 based on the pressure value from the pressure adjusting means 50 and the detection result of the air leak from the air leak detecting means 52. When the detection result output from the air leak detecting means 52 is no air leak, the wear amount estimating means 54 outputs a control signal instructing the pressure adjusting means 50 to further increase the pressure. The pressure adjusting means 50 increases the pressure in response to a command from the wear amount estimating means 54. On the other hand, when the detection result output from the air leak detecting means 52 is an air leak, the wear amount estimating means 54 stores the table 58 stored in the storage means 56 based on the pressure value output from the pressure adjusting means 50. The amount of wear corresponding to the pressure is estimated by reference. The wear amount estimating means 54 displays the estimated wear amount on the output device of the machine tool and outputs it.

摩耗量推定手段54及び記憶手段56は、具体的にはCPU及びメモリで構成される。摩耗量推定手段54及び記憶手段56は、工作機械10の動作を制御する制御装置で構成されていてもよく、この場合には制御装置のCPUが摩耗量推定手段54として機能し、制御装置のメモリが記憶手段56として機能する。また、摩耗量推定手段54及び記憶手段56は、工作機械10の制御装置とは別個の制御装置で構成されていてもよい。 Specifically, the wear amount estimation means 54 and the storage means 56 are composed of a CPU and a memory. The wear amount estimation means 54 and the storage means 56 may be composed of a control device that controls the operation of the machine tool 10. In this case, the CPU of the control device functions as the wear amount estimation means 54, and the wear amount estimation means 54 of the control device. The memory functions as the storage means 56. Further, the wear amount estimating means 54 and the storage means 56 may be configured by a control device separate from the control device of the machine tool 10.

摩耗量推定手段54は、推定した摩耗量を工作機械10の出力装置に表示して出力するが、推定した摩耗量の出力態様は任意であり、例えば推定した摩耗量の絶対値、例えば摩耗量=1mm等と出力してもよく、推定した摩耗量を相対的に、例えば摩耗量=小、摩耗量=中、あるいは摩耗量=大等と出力してもよい。さらに、摩耗量がある閾値を超えた場合に、回転シール40の交換が必要であるとしてその旨のメッセージを摩耗量とともに出力してもよい。要するに、摩耗量とともに、当該摩耗量に基づくメンテナンス時期をメッセージとして出力してもよい。 The wear amount estimating means 54 displays and outputs the estimated wear amount on the output device of the machine tool 10, but the output mode of the estimated wear amount is arbitrary. For example, the absolute value of the estimated wear amount, for example, the wear amount. It may be output as = 1 mm or the like, and the estimated amount of wear may be relatively output as, for example, wear amount = small, wear amount = medium, or wear amount = large. Further, when the wear amount exceeds a certain threshold value, a message to that effect that the rotary seal 40 needs to be replaced may be output together with the wear amount. In short, the maintenance time based on the wear amount may be output as a message together with the wear amount.

図7は、圧力調整手段50及びエア漏れ検出手段52の具体例を示す。 FIG. 7 shows a specific example of the pressure adjusting means 50 and the air leak detecting means 52.

圧力調整手段50は、フィルタ510と、ソレノイド520,530,540,560と、レギュレータ521,531,541と、逆止め弁522,532,542を備える。 The pressure adjusting means 50 includes a filter 510, solenoids 520, 530, 540, 560, regulators 521, 531, 541, and check valves 522, 532, 542.

フィルタ510は、圧縮器からの圧縮エアを濾過して下流側に供給する。 The filter 510 filters the compressed air from the compressor and supplies it to the downstream side.

3つのソレノイド520,530,540は、フィルタ510の下流側にフィルタ510に対して互いに並列接続される。ソレノイド520の下流側にはレギュレータ521が接続され、圧縮エアの圧力を第1の圧力まで減圧する。レギュレータ521の下流側には逆止め弁522を介して絞りを挟んだ差圧計550が接続される。 The three solenoids 520, 530, and 540 are connected to each other in parallel with respect to the filter 510 on the downstream side of the filter 510. A regulator 521 is connected to the downstream side of the solenoid 520 to reduce the pressure of the compressed air to the first pressure. A differential pressure gauge 550 sandwiching a throttle is connected to the downstream side of the regulator 521 via a check valve 522.

また、ソレノイド530の下流側にはレギュレータ531が接続され、圧縮エアの圧力を第2の圧力まで減圧する。レギュレータ531の下流側には逆止め弁532を介して差圧計550が接続される。 A regulator 531 is connected to the downstream side of the solenoid 530 to reduce the pressure of the compressed air to a second pressure. A differential pressure gauge 550 is connected to the downstream side of the regulator 531 via a check valve 532.

また、ソレノイド540の下流側にはレギュレータ541が接続され、圧縮エアの圧力を第3の圧力まで減圧する。レギュレータ541の下流側には逆止め弁542を介して差圧計550が接続される。 A regulator 541 is connected to the downstream side of the solenoid 540 to reduce the pressure of the compressed air to a third pressure. A differential pressure gauge 550 is connected to the downstream side of the regulator 541 via a check valve 542.

フィルタ510に対して互いに並列接続されたソレノイド520,530,540は、摩耗量推定手段54からの制御信号により順次ON/OFF制御される。すなわち、まずソレノイド520がON制御されてソレノイド530及びソレノイド540がOFF制御される。これにより、フィルタ510からの圧縮エアは、レギュレータ521により第1の圧力まで減圧されて出力される。次に、ソレノイド530がON制御されてソレノイド520及びソレノイド540がOFF制御される。これにより、フィルタ510からの圧縮エアは、レギュレータ531により第2の圧力まで減圧されて出力される。次に、ソレノイド540がON制御されてソレノイド520及びソレノイド530がOFF制御される。これにより、フィルタ510からの圧縮エアは、レギュレータ541により第3の圧力まで減圧されて出力される。第1の圧力<第2の圧力<第3の圧力とすると、ソレノイド520,530,540を順次ON制御することで、圧縮エアの圧力が段階的に増大する。第1の圧力をエアパージ圧力P0とすると、ソレノイド520をON制御し、ソレノイド530及びソレノイド540をOFF制御することで、回転シール40を内部からエアパージする。 The solenoids 520, 530, and 540 connected in parallel to the filter 510 are sequentially ON / OFF controlled by a control signal from the wear amount estimation means 54. That is, first, the solenoid 520 is ON-controlled, and the solenoid 530 and the solenoid 540 are OFF-controlled. As a result, the compressed air from the filter 510 is decompressed to the first pressure by the regulator 521 and output. Next, the solenoid 530 is ON-controlled and the solenoid 520 and the solenoid 540 are OFF-controlled. As a result, the compressed air from the filter 510 is decompressed to the second pressure by the regulator 531 and output. Next, the solenoid 540 is ON-controlled and the solenoid 520 and the solenoid 530 are OFF-controlled. As a result, the compressed air from the filter 510 is decompressed to the third pressure by the regulator 541 and output. When the first pressure <second pressure <third pressure, the pressure of the compressed air is gradually increased by sequentially turning on the solenoids 520, 530, and 540. When the first pressure is the air purge pressure P0, the solenoid 520 is ON-controlled and the solenoid 530 and the solenoid 540 are OFF-controlled to air-purge the rotary seal 40 from the inside.

絞りを挟んだ差圧計550の下流側には回転機構部が接続されるともに、ソレノイド560が並列接続される。ソレノイド560の下流側は絞り570を介して大気側に接続される。ソレノイド560は脱圧弁として機能する。 A rotation mechanism unit is connected to the downstream side of the differential pressure gauge 550 sandwiching the diaphragm, and a solenoid 560 is connected in parallel. The downstream side of the solenoid 560 is connected to the atmosphere side via a diaphragm 570. The solenoid 560 functions as a decompression valve.

エア漏れ検出手段52としての差圧計550は、絞りの上流側と下流側の差圧ΔPを計測する。エア漏れがない場合にはエアの流れがないため差圧ΔP=0であるが、エア漏れが生じた場合にはエアの流れが生じるため差圧ΔPが検出される。すなわち、ΔP=0はエア漏れなしに相当し、ΔP≠0はエア漏れ有りに相当する。差圧計550は、検出した差圧ΔPをエア漏れ検出結果として摩耗量推定手段54に出力する。 The differential pressure gauge 550 as the air leak detecting means 52 measures the differential pressure ΔP on the upstream side and the downstream side of the diaphragm. When there is no air leak, the differential pressure ΔP = 0 because there is no air flow, but when an air leak occurs, the differential pressure ΔP is detected because an air flow occurs. That is, ΔP = 0 corresponds to no air leakage, and ΔP ≠ 0 corresponds to the presence of air leakage. The differential pressure gauge 550 outputs the detected differential pressure ΔP to the wear amount estimating means 54 as an air leak detection result.

図8は、本実施形態の処理フローチャートを示す。なお、図8では、説明の都合上、ソレノイド520をSOL1、ソレノイド530をSOL2、ソレノイド540をSOL3、ソレノイド560をSOL4と略称する。 FIG. 8 shows a processing flowchart of the present embodiment. In FIG. 8, for convenience of explanation, the solenoid 520 is abbreviated as SOL1, the solenoid 530 is abbreviated as SOL2, the solenoid 540 is referred to as SOL3, and the solenoid 560 is abbreviated as SOL4.

まず、摩耗量推定手段54は、SOL1、SOL2、SOL3に制御信号を出力し、SOL1をON制御し、SOL2及びSOL3をOFF制御する(S101)。また、摩耗量推定手段54は、SOL4に制御信号を出力し、SOL4をON制御する(S102)。SOL4をON制御した後、所定の短時間だけ待機状態に移行し(S103)、所定の短時間が経過すると、SOL4をOFF制御して脱圧を終了し(S104)、その後所定の長時間だけ待機する(S105)。短時間及び長時間の待機時間は、具体的には記憶手段56に制御パラメータとして記憶しておく。 First, the wear amount estimation means 54 outputs control signals to SOL1, SOL2, and SOL3, controls SOL1 ON, and controls SOL2 and SOL3 OFF (S101). Further, the wear amount estimation means 54 outputs a control signal to the SOL 4 and controls the SOL 4 ON (S102). After ON control of SOL4, the state shifts to the standby state for a predetermined short time (S103), and when a predetermined short time elapses, SOL4 is OFF controlled to end decompression (S104), and then only for a predetermined long time. Stand by (S105). Specifically, the short-time and long-time standby times are stored in the storage means 56 as control parameters.

この長時間の待機状態において、SOL1がON制御されているため、回転シール40の内部には第1の圧力が印加され、差圧計550で差圧ΔPを計測する。計測された差圧ΔPは摩耗量推定手段54に出力され、摩耗量推定手段54は、差圧ΔPが0であるか否かを判定する(S106)。 Since SOL1 is ON-controlled in this long-time standby state, a first pressure is applied to the inside of the rotary seal 40, and the differential pressure ΔP is measured by the differential pressure gauge 550. The measured differential pressure ΔP is output to the wear amount estimating means 54, and the wear amount estimating means 54 determines whether or not the differential pressure ΔP is 0 (S106).

ΔP=0でなければ(S106でNO)、第1の圧力を印加した時点で既にエア漏れが検出されていることになるから、摩耗量推定手段54は、テーブル58を参照して回転シール40の摩耗量=特大、すなわち摩耗がかなり進んでいるものと判定する(S107)。 If ΔP = 0 (NO in S106), air leakage has already been detected when the first pressure is applied. Therefore, the wear amount estimating means 54 refers to the table 58 and the rotary seal 40. Amount of wear = extra large, that is, it is determined that the wear has progressed considerably (S107).

ΔP=0であれば(S106でYES)、摩耗量推定手段54は、エア漏れがないと判定し、SOL1、SOL2、SOL3に再び制御信号を出力し、SOL1をOFF制御し、SOL2をON制御し、SOL3をOFF制御する(S108)。なお、SOL4はOFF制御のままである。その後、S105と同様に所定の長時間だけ待機する(S109)。 If ΔP = 0 (YES in S106), the wear amount estimation means 54 determines that there is no air leakage, outputs a control signal to SOL1, SOL2, and SOL3 again, controls SOL1 to OFF, and controls SOL2 to ON. Then, SOL3 is turned off (S108). The SOL4 remains OFF control. After that, like S105, it waits for a predetermined long time (S109).

この長時間の待機状態において、SOL2がON制御されているため、回転シール40の内部には第2の圧力が印加され、差圧計550で差圧ΔPを計測する。計測された差圧ΔPは摩耗量推定手段54に出力され、摩耗量推定手段54は、差圧ΔPが0であるか否かを判定する(S110)。 Since SOL2 is ON-controlled in this long standby state, a second pressure is applied to the inside of the rotary seal 40, and the differential pressure ΔP is measured by the differential pressure gauge 550. The measured differential pressure ΔP is output to the wear amount estimating means 54, and the wear amount estimating means 54 determines whether or not the differential pressure ΔP is 0 (S110).

ΔP=0でなければ(S110でNO)、第1の圧力ではエア漏れが検出されず、第2の圧力を印加した時点でエア漏れが検出されたことになるから、摩耗量推定手段54は、テーブル58を参照して回転シール40の摩耗量=大、すなわち摩耗が進んでいるものと判定する(S111)。 If ΔP = 0 (NO in S110), no air leak is detected at the first pressure, and an air leak is detected when the second pressure is applied. Therefore, the wear amount estimating means 54 , It is determined that the amount of wear of the rotary seal 40 = large, that is, the wear is progressing with reference to the table 58 (S111).

ΔP=0であれば(S110でYES)、摩耗量推定手段54は、エア漏れがないと判定し、SOL1、SOL2、SOL3に再び制御信号を出力し、SOL1及びSOL2をOFF制御し、SOL3をON制御する(S112)。SOL4はOFF制御のままである。その後S105、S109と同様に所定の長時間だけ待機する(S113)。 If ΔP = 0 (YES in S110), the wear amount estimation means 54 determines that there is no air leakage, outputs a control signal to SOL1, SOL2, and SOL3 again, controls SOL1 and SOL2 to OFF, and sets SOL3. ON control (S112). SOL4 remains OFF control. After that, like S105 and S109, it waits for a predetermined long time (S113).

この長時間の待機状態において、SOL3がON制御されているため、回転シール40の内部には第3の圧力が印加され、差圧計550で差圧ΔPを計測する。計測された差圧ΔPは摩耗量推定手段54に出力され、摩耗量推定手段54は、差圧ΔPが0であるか否かを判定する(S114)。 Since the SOL3 is ON-controlled in this long standby state, a third pressure is applied to the inside of the rotary seal 40, and the differential pressure ΔP is measured by the differential pressure gauge 550. The measured differential pressure ΔP is output to the wear amount estimating means 54, and the wear amount estimating means 54 determines whether or not the differential pressure ΔP is 0 (S114).

ΔP=0でなければ(S114でNO)、第1、第2の圧力ではエア漏れが検出されず、第3の圧力を印加した時点でエア漏れが検出されたことになるから、摩耗量推定手段54は、回転シール40の摩耗量=中、すなわち摩耗がある程度進んでいるものと判定する(S115)。 If ΔP = 0 (NO in S114), no air leakage is detected at the first and second pressures, and air leakage is detected when the third pressure is applied. Therefore, the amount of wear is estimated. The means 54 determines that the amount of wear of the rotary seal 40 = medium, that is, the wear has progressed to some extent (S115).

他方で、ΔP=0であれば(S114でYES)、摩耗量推定手段54は、エア漏れがないと判定して回転シール40の摩耗量=小、すなわち摩耗はほとんど進んでいないものと判定する(S116)。 On the other hand, if ΔP = 0 (YES in S114), the wear amount estimating means 54 determines that there is no air leakage, and determines that the wear amount of the rotary seal 40 is small, that is, the wear has hardly progressed. (S116).

このように、印加圧力を第1の圧力から第2の圧力、さらには第3の圧力と段階的に増大させ、そのときのエア漏れの検出結果に応じて回転シール40の摩耗量を特大、大、中、小の4段階で推定し、推定結果を工作機械の出力装置に出力する。既述したように出力形態は任意であるが、例えば、摩耗量=特大と推定された場合に
「回転シールが摩耗しています。直ちに交換して下さい」
等のメッセージを出力し、摩耗量=大と推定された場合に
「回転シールの摩耗量は大です。交換して下さい」
等のメッセージを出力し、摩耗量=中と推定された場合に
「回転シールの摩耗量は中です。もうすぐ交換が必要です」
等のメッセージを出力し、摩耗量=小と推定された場合に
「回転シールの摩耗量は小です」
等のメッセージを出力してもよい。
In this way, the applied pressure is gradually increased from the first pressure to the second pressure and then to the third pressure, and the amount of wear of the rotary seal 40 is oversized according to the detection result of air leakage at that time. Estimates are made in four stages of large, medium, and small, and the estimation results are output to the output device of the machine tool. As mentioned above, the output form is arbitrary, but for example, when it is estimated that the amount of wear = oversized, "The rotating seal is worn. Replace it immediately."
Etc. is output, and when it is estimated that the amount of wear = large, "The amount of wear of the rotating seal is large. Please replace it."
When it is estimated that the amount of wear = medium, the amount of wear of the rotating seal is medium. It needs to be replaced soon.
Etc. is output, and when it is estimated that the amount of wear = small, "the amount of wear of the rotary seal is small".
Etc. may be output.

図8の処理は、所定の制御周期で繰り返し実行して回転シール40の摩耗量を推定して出力する。 The process of FIG. 8 is repeatedly executed at a predetermined control cycle to estimate and output the amount of wear of the rotary seal 40.

本実施形態によれば、回転シール40の内部を圧縮エアでエアパージするとともに、この圧縮エアの圧力を利用し、圧縮エアの圧力を一時的に増大させてエア漏れの有無を検出することで、簡易に回転シール40の摩耗量を推定して出力することができる。また、エアパージの圧力を一時的に増大させて摩耗量を推定する処理は、定期的または非定期の任意タイミングで実行することができ、実際に回転シール40の摩耗による劣化で切粉や切削水が内部に侵入してしまう前に、回転シール40の摩耗量を把握して必要なメンテナンス時期を明確にし得る。 According to the present embodiment, the inside of the rotary seal 40 is air-purged with compressed air, and the pressure of the compressed air is used to temporarily increase the pressure of the compressed air to detect the presence or absence of air leakage. The amount of wear of the rotary seal 40 can be easily estimated and output. Further, the process of temporarily increasing the pressure of the air purge to estimate the amount of wear can be executed at an arbitrary timing of regular or irregular timing, and chips and cutting water are actually deteriorated due to wear of the rotary seal 40. It is possible to grasp the amount of wear of the rotary seal 40 and clarify the necessary maintenance time before the shavings invade the inside.

以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、種々の変形が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to this, and various modifications are possible.

例えば、本実施形態では図2に示すようなU字型又はコの字型の断面形状を有する回転シール40を例示したが、これに限らず、方向性を有する回転シールであれば任意の形状を用いることができ、Uパッキン状のものやオイルシール状のものを用いることができる。 For example, in the present embodiment, the rotary seal 40 having a U-shaped or U-shaped cross-sectional shape as shown in FIG. 2 is illustrated, but the present invention is not limited to this, and any shape can be used as long as it is a directional rotary seal. Can be used, and a U-packing type or an oil seal type can be used.

ここで、「方向性を有する」とは、回転機構部の外部から内部への異物の侵入を防止することを意味する。また、回転シール40は多段とすることもでき、ラビリンスシール等と組み合わせてもよい。 Here, "having directional" means preventing foreign matter from entering the inside of the rotation mechanism portion from the outside. Further, the rotary seal 40 may have multiple stages, and may be combined with a labyrinth seal or the like.

また、本実施形態では、SOL1,SOL2,及びSOL3を順次ON制御することで印加圧力を調整しているが、必要に応じて4個以上のソレノイドを並列接続し、これらを順次ON制御して印加圧力をより細かく調整してもよい。 Further, in the present embodiment, the applied pressure is adjusted by sequentially ON-controlling SOL1, SOL2, and SOL3, but if necessary, four or more solenoids are connected in parallel and these are sequentially ON-controlled. The applied pressure may be adjusted more finely.

また、本実施形態では、エア漏れ検出手段52として図7に示すような絞りと差圧計550の組合せを用いているが、エア流量計を用いてもよい。 Further, in the present embodiment, the combination of the diaphragm and the differential pressure gauge 550 as shown in FIG. 7 is used as the air leak detecting means 52, but an air flow meter may also be used.

また、本実施形態では、回転シール40の摩耗量を推定しているが、推定した摩耗量から回転シール40の寿命をさらに推定して出力してもよい。すなわち、推定した摩耗量からあとどの程度寿命(摩耗量が所定の閾値に達した時点を寿命=0とする)が残っているかを推定して出力してもよい。 Further, in the present embodiment, the wear amount of the rotary seal 40 is estimated, but the life of the rotary seal 40 may be further estimated and output from the estimated wear amount. That is, it is possible to estimate and output how much life (life = 0 is defined as the time when the wear reaches a predetermined threshold value) remains from the estimated wear amount.

さらに、本実施形態では、摩耗量推定手段54が定期的あるいは非定期で図8に示す処理を実行して回転シール40の摩耗量を推定して出力しているが、工作機械10のオペレータからの操作指示に応じて摩耗量推定手段54が図8の処理を実行してもよい。この場合、オペレータは、例えばワーク3を加工する際に当該加工に先立って摩耗量推定手段54としての制御装置に図8の処理の実行開始を指示し、推定された摩耗量の出力結果を確認した後に加工を行ってもよい。勿論、制御装置は、加工に先立って自動的に図8の処置を実行し、摩耗量の推定結果に応じてワーク3の加工を実行するか否かを判定してもよい。 Further, in the present embodiment, the wear amount estimating means 54 periodically or irregularly executes the process shown in FIG. 8 to estimate and output the wear amount of the rotary seal 40, but the operator of the machine tool 10 informs the machine tool 10. The wear amount estimation means 54 may execute the process of FIG. 8 in response to the operation instruction of FIG. In this case, for example, when machining the work 3, the operator instructs the control device as the wear amount estimating means 54 to start executing the process of FIG. 8 prior to the machining, and confirms the output result of the estimated wear amount. After that, processing may be performed. Of course, the control device may automatically execute the treatment shown in FIG. 8 prior to machining, and may determine whether or not machining of the work 3 is executed according to the estimation result of the amount of wear.

3 ワーク、4 刃物台、10 工作機械、14 ワーク主軸装置、20 機内ロボット、50 圧力調整手段、52 エア漏れ検出手段、54 摩耗量推定手段、56 記憶手段、58 テーブル、100 工具。 3 work, 4 tool post, 10 machine tool, 14 work spindle device, 20 in-machine robot, 50 pressure adjusting means, 52 air leak detecting means, 54 wear amount estimating means, 56 storage means, 58 tables, 100 tools.

Claims (6)

工作機械内に設けられた回転機構部のシール部の摩耗量を推定する装置であって、
前記シール部は、外部から前記回転機構部の内部への異物侵入を防止する接触式の回転シールを備え、前記回転シールの内部には圧縮エアが供給され、
前記圧縮エアの圧力を調整する圧力調整手段と、
前記圧力調整手段により前記圧力を調整した場合の前記圧縮エアのエア漏れを検出するエア漏れ検出手段と、
前記圧力調整手段により調整された圧力値と、前記エア漏れ検出手段により検出されたエア漏れに基づき、前記回転シールの摩耗量を推定する推定手段と、
を備えるシール部の摩耗量推定装置。
It is a device that estimates the amount of wear of the seal part of the rotating mechanism part provided in the machine tool.
The seal portion includes a contact-type rotary seal that prevents foreign matter from entering the inside of the rotary mechanism portion from the outside, and compressed air is supplied to the inside of the rotary seal.
A pressure adjusting means for adjusting the pressure of the compressed air and
An air leak detecting means for detecting an air leak of the compressed air when the pressure is adjusted by the pressure adjusting means, and an air leak detecting means.
An estimation means for estimating the amount of wear of the rotary seal based on the pressure value adjusted by the pressure adjusting means and the air leak detected by the air leak detecting means.
A wear amount estimation device for a seal portion provided with.
前記回転シールは、未摩耗状態では前記圧縮エアの圧力が所定圧力以下では接触状態を維持して内部から外部へのエア漏れがなく、前記所定圧力を超えると非接触状態となって前記圧縮エアのエア漏れが生じる
請求項1に記載のシール部の摩耗量推定装置。
When the pressure of the compressed air is less than a predetermined pressure, the rotary seal maintains a contact state and there is no air leakage from the inside to the outside when the pressure of the compressed air is not worn. The wear amount estimation device for a seal portion according to claim 1, wherein air leakage occurs.
前記回転シールの摩耗量とエア漏れが生じる圧力値との対応関係を記憶する記憶手段をさらに備え、
前記推定手段は、前記記憶手段に記憶された対応関係に基づき、前記回転シールの摩耗量を推定する
請求項1,2のいずれかに記載の摩耗量推定装置。
Further provided with a storage means for storing the correspondence between the amount of wear of the rotary seal and the pressure value at which air leakage occurs.
The wear amount estimation device according to any one of claims 1 and 2, wherein the estimation means estimates the wear amount of the rotary seal based on the correspondence relationship stored in the storage means.
前記圧力調整手段は、前記圧縮エアの圧力を初期圧力から第1圧力まで増大させ、前記エア漏れ検出手段でエア漏れが検出されない場合に前記第1圧力からさらに第2圧力まで増大させる
請求項1〜3のいずれかに記載のシール部の摩耗量推定装置。
The pressure adjusting means increases the pressure of the compressed air from the initial pressure to the first pressure, and when the air leak detecting means does not detect the air leak, the pressure is further increased from the first pressure to the second pressure. The device for estimating the amount of wear of the seal portion according to any one of ~ 3.
前記エア漏れ検出手段は、圧力計又は流量計である
請求項1〜4のいずれかに記載のシール部の摩耗量推定装置。
The wear amount estimation device for a seal portion according to any one of claims 1 to 4, wherein the air leak detecting means is a pressure gauge or a flow meter.
請求項1〜5のいずれかに記載のシール部の摩耗量推定装置と、
前記シール部が関節に設けられた機内ロボットと、
を備える工作機械。
The wear amount estimation device for the seal portion according to any one of claims 1 to 5,
An in-flight robot with the seal portion provided at the joint, and
Machine tool equipped with.
JP2019100539A 2019-05-29 2019-05-29 Abrasion amount estimator of seal part and machine tool Active JP7263125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019100539A JP7263125B2 (en) 2019-05-29 2019-05-29 Abrasion amount estimator of seal part and machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019100539A JP7263125B2 (en) 2019-05-29 2019-05-29 Abrasion amount estimator of seal part and machine tool

Publications (2)

Publication Number Publication Date
JP2020193678A true JP2020193678A (en) 2020-12-03
JP7263125B2 JP7263125B2 (en) 2023-04-24

Family

ID=73547909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019100539A Active JP7263125B2 (en) 2019-05-29 2019-05-29 Abrasion amount estimator of seal part and machine tool

Country Status (1)

Country Link
JP (1) JP7263125B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176508A1 (en) * 2021-02-19 2022-08-25 日本スピンドル製造株式会社 Wear condition prediction device, prediction method, and prediction program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153765U (en) * 1983-04-01 1984-10-15 株式会社神戸製鋼所 Hydraulic cylinder seal monitoring device
JP2009264301A (en) * 2008-04-25 2009-11-12 Hitachi Ltd Reciprocating type compressor
JP2018034268A (en) * 2016-08-31 2018-03-08 ファナック株式会社 Joint structure and robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153765U (en) * 1983-04-01 1984-10-15 株式会社神戸製鋼所 Hydraulic cylinder seal monitoring device
JP2009264301A (en) * 2008-04-25 2009-11-12 Hitachi Ltd Reciprocating type compressor
JP2018034268A (en) * 2016-08-31 2018-03-08 ファナック株式会社 Joint structure and robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176508A1 (en) * 2021-02-19 2022-08-25 日本スピンドル製造株式会社 Wear condition prediction device, prediction method, and prediction program

Also Published As

Publication number Publication date
JP7263125B2 (en) 2023-04-24

Similar Documents

Publication Publication Date Title
EP1931962B1 (en) Leak detector for process valve
CA2562920C (en) Method and apparatus for operating a control valve by means of a control loop and performing diagnostics of the same
JP6240208B2 (en) Work seat detection device and adjustment method thereof
CN107965496B (en) Method and apparatus for stabilizing a valve positioner when testing a solenoid valve
KR102550368B1 (en) Vacuum valve with acoustic sensor
JP7263125B2 (en) Abrasion amount estimator of seal part and machine tool
JPH0615545A (en) Position monitoring device
US20190024682A1 (en) Piston assembly
TW201802364A (en) Method for diagnosing state of rolling guide device
JP2006336770A (en) Pneumatic lubrication oil supply device and its oil supply pipe leakage detecting method
KR101626458B1 (en) Apparatus for detecting malfunction of tool for machine tool
CN101151485A (en) Safety valve testing
JP5335057B2 (en) Gas leakage detection and supply control system and gas leakage detection and supply control method
JP3668169B2 (en) Control valve operation diagnosis device
JP7346216B2 (en) Seal wear estimation device and machine tool
JP3675535B2 (en) Rotary joint and fluid supply device to rotating body
KR101787347B1 (en) Control method of numerical control machine tool
US20220009048A1 (en) Detection device for the seating detection of an object on a clamping device
KR20080073518A (en) Semiconductor manufacturing equipment and method for detecting leak
KR20070062330A (en) A perforation inspection system of oil hole
WO2002017028A1 (en) Method for detecting plug wear
KR20200046985A (en) Testing Apparatus for Rotary Joint Unit
WO2019058965A1 (en) Method for diagnosing state of rolling guide device
KR100752325B1 (en) Coolant inflowing preventing device of a spindle and preventing method thereof
WO2022025017A1 (en) Pressurized fluid supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230412

R150 Certificate of patent or registration of utility model

Ref document number: 7263125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150