JP2020191440A - Electronic component and manufacturing method - Google Patents

Electronic component and manufacturing method Download PDF

Info

Publication number
JP2020191440A
JP2020191440A JP2019230735A JP2019230735A JP2020191440A JP 2020191440 A JP2020191440 A JP 2020191440A JP 2019230735 A JP2019230735 A JP 2019230735A JP 2019230735 A JP2019230735 A JP 2019230735A JP 2020191440 A JP2020191440 A JP 2020191440A
Authority
JP
Japan
Prior art keywords
fluororesin
base material
electronic component
less
electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019230735A
Other languages
Japanese (ja)
Other versions
JP6998362B2 (en
Inventor
岳 吉川
Takeshi Yoshikawa
岳 吉川
邦彦 中田
Kunihiko Nakada
邦彦 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to CN202080035263.XA priority Critical patent/CN113853690A/en
Priority to KR1020217040898A priority patent/KR20220009993A/en
Priority to PCT/JP2020/018654 priority patent/WO2020230715A1/en
Priority to TW109115496A priority patent/TW202043389A/en
Publication of JP2020191440A publication Critical patent/JP2020191440A/en
Application granted granted Critical
Publication of JP6998362B2 publication Critical patent/JP6998362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a manufacturing method of an electronic component having good heat-resistant deformation of a fluororesin sealing member.SOLUTION: A manufacturing method of an electronic component includes the steps of covering an electronic element 2 attached to a wiring substrate with fluororesin, and irradiating the fluororesin covering the electronic element with radiation. The fluororesin is preferably a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer. The radiation is preferably an electron beam. An accelerating voltage of an electron beam is preferably 50 kV or more. The irradiation energy of the electron beam is preferably 20 kGy or more in terms of absorbed dose.SELECTED DRAWING: Figure 3

Description

本発明は電子部品とその製造方法に関する。 The present invention relates to electronic components and methods for manufacturing them.

LED(Light Emitting Diode)等の電子素子を備えた電子部品では、電子素子の劣化を防ぐために該電子素子をエポキシ樹脂やシリコーン樹脂により封止することが多く、フッ素樹脂により封止する例もある。 In electronic components equipped with electronic elements such as LEDs (Light Emitting Diodes), the electronic elements are often sealed with epoxy resin or silicone resin in order to prevent deterioration of the electronic elements, and there are cases where they are sealed with fluororesin. ..

例えば非特許文献1には、CF3末端を有するパーフルオロ(4−ビニルオキシ−1−ブテン)(BVE)系重合体は深紫外線に対する耐久性に優れるため、深紫外AlGaN系LEDの封止に用いることができることが記載されている。また特許文献1には、非晶質フッ素樹脂により紫外線発光素子が封止された紫外線発光装置が開示されている。特許文献2には、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)及びビニリデンフルオライド(VdF)を少なくとも含むフッ素ポリマー(THV)をLED素子の封止に用いることが開示されている。 For example, in Non-Patent Document 1, a perfluoro (4-vinyloxy-1-butene) (BVE) polymer having a CF 3 terminal is used for encapsulating a deep ultraviolet AlGaN LED because it has excellent durability against deep ultraviolet rays. It is stated that it can be done. Further, Patent Document 1 discloses an ultraviolet light emitting device in which an ultraviolet light emitting element is sealed with an amorphous fluororesin. Patent Document 2 discloses that a fluoropolymer (THV) containing at least tetrafluoroethylene (TFE), hexafluoropropylene (HFP) and vinylidene fluoride (VdF) is used for encapsulating an LED element.

国際公開第2014/178288号International Publication No. 2014/178288 特開2009−51876号公報Japanese Unexamined Patent Publication No. 2009-51876

Shoko Nagai et al., “Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study”, Japanese Journal of Applied Physics, 2016年, 55巻, 082101Shoko Nagai et al., “Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study”, Japanese Journal of Applied Physics, 2016, Vol. 55, 082101

ところで電子素子は、その種類や使用状態によっては発熱することがあり、その一例として深紫外線を発光するLED素子が知られている。一方、封止剤で使用するフッ素樹脂は一般的に熱可塑性樹脂であり、素子から発せられた熱により変形する場合がある。従って本発明の目的は、フッ素樹脂封止部材の耐熱変形性が良好な電子部品を提供することにある。 By the way, an electronic element may generate heat depending on its type and usage state, and an LED element that emits deep ultraviolet rays is known as an example. On the other hand, the fluororesin used in the sealant is generally a thermoplastic resin, and may be deformed by the heat generated from the element. Therefore, an object of the present invention is to provide an electronic component having good heat-resistant deformation of the fluororesin sealing member.

上記課題を解決することのできた本発明の電子部品及びその製造方法は、以下の構成からなる。
[1] 配線基材に取り付けられた電子素子をフッ素樹脂で覆う工程と、
電子素子を覆った前記フッ素樹脂に放射線を照射する工程とを有する電子部品の製造方法。
[2] 前記フッ素樹脂が、テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体である[1]に記載の製造方法。
[3] 前記放射線が電子線である[1]又は[2]に記載の製造方法。
[4] 前記電子線の加速電圧が50kV以上である[3]に記載の製造方法。
[5] 前記電子線の照射エネルギーが吸収線量で20kGy以上である[3]又は[4]に記載の製造方法。
[6] 配線基材と、該配線基材に封止部として充填されたフッ素樹脂とを有する電子部品であり、
前記電子部品を、充填されたフッ素樹脂と空気との界面が下になる状態で、温度150℃で60時間保持した時、下記式(1)で算出される平均変形率Vが1.30未満である電子部品。
平均変形率V=(RS×Rd1/2 (1)
(式中、RSは、封止部の単位正面投影面積あたりの配線基材から突出したフッ素樹脂の側面投影面積を規格化面積としたとき、保持前の当該規格化面積に対する保持後の当該規格化面積の比を表し、Rdは、封止部の単位正面投影面積あたりの配線基材から突出したフッ素樹脂の高さを規格化高さとしたとき保持前の当該規格化高さに対する保持後の当該規格化高さの比を表す。電子部品の電子素子実装面又は電子素子実装予定面を電子部品の正面といい、該電子素子実装面又は電子素子実装予定面と直交する面を側面という。)
[7] 前記フッ素樹脂が、テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体である[6]に記載の電子部品。
The electronic component of the present invention and the manufacturing method thereof, which have been able to solve the above problems, have the following configurations.
[1] A process of covering an electronic element attached to a wiring substrate with a fluororesin,
A method for manufacturing an electronic component, which comprises a step of irradiating the fluororesin covering the electronic element with radiation.
[2] The production method according to [1], wherein the fluororesin is a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer.
[3] The production method according to [1] or [2], wherein the radiation is an electron beam.
[4] The manufacturing method according to [3], wherein the accelerating voltage of the electron beam is 50 kV or more.
[5] The production method according to [3] or [4], wherein the irradiation energy of the electron beam is 20 kGy or more in absorbed dose.
[6] An electronic component having a wiring base material and a fluororesin filled in the wiring base material as a sealing portion.
When the electronic component is held at a temperature of 150 ° C. for 60 hours with the interface between the filled fluororesin and air facing down, the average deformation rate V calculated by the following formula (1) is less than 1.30. Electronic components that are.
Average deformation rate V = ( RS × R d ) 1/2 (1)
(In the formula, RS is the standardized area of the fluororesin protruding from the wiring base material per unit frontal projected area of the sealing portion, and the RS is the said after holding with respect to the standardized area before holding. Represents the ratio of standardized area, and R d is the retention with respect to the standardized height before holding when the height of the fluororesin protruding from the wiring base material per unit front projected area of the sealing portion is defined as the normalized height. It represents the later ratio of the standardized height. The electronic element mounting surface or the electronic element mounting planned surface of the electronic component is referred to as the front surface of the electronic component, and the surface orthogonal to the electronic element mounting surface or the electronic element mounting planned surface is the side surface. )
[7] The electronic component according to [6], wherein the fluororesin is a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer.

本発明によれば、フッ素樹脂封止部材の耐熱変形性が良好な電子部品を提供することができる。 According to the present invention, it is possible to provide an electronic component having good heat-resistant deformability of the fluororesin sealing member.

図1は従来の電子素子の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a conventional electronic device. 図2は従来の電子素子を実装した配線基材の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a wiring base material on which a conventional electronic element is mounted. 図3は本発明の電子部品の一例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing an example of the electronic component of the present invention. 図4は本発明の電子部品の他の例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing another example of the electronic component of the present invention. 図5は本発明の電子部品のその他の例を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing another example of the electronic component of the present invention. 図6は本発明の電子部品の別の例を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing another example of the electronic component of the present invention. 図7は従来の配線基材の一例を示す概略図である。FIG. 7 is a schematic view showing an example of a conventional wiring base material. 図8は本発明の電子部品の試験状況を説明するための概略図である。FIG. 8 is a schematic view for explaining a test situation of the electronic component of the present invention. 図9は本発明の電子部品の試験状況を説明するための他の概略図である。FIG. 9 is another schematic view for explaining the test status of the electronic component of the present invention.

本発明は、配線基材に取り付けられた電子素子をフッ素樹脂で覆う工程と、電子素子を覆った前記フッ素樹脂に放射線を照射する工程とを有する電子部品の製造方法に関する。
(1)電子素子
前記電子素子としては、一般的に半導体でありトランジスタ、ダイオードなどが挙げられ、半導体ダイオードが好ましい。半導体ダイオードとしては、発光ダイオードが好ましく、特に紫外線発光ダイオード(以下、紫外線発光素子という場合もある)が好ましい。紫外線発光ダイオードをエポキシ樹脂やシリコーン樹脂で封止すると、紫外線によって樹脂の劣化が大きくなるのに対して、フッ素樹脂で封止すると樹脂の劣化を抑制できる。また紫外線発光ダイオードは発熱が大きくて封止部が熱変形する恐れがあるが、本発明によれば封止部の耐熱変形性を良好にできる。
The present invention relates to a method for manufacturing an electronic component, which comprises a step of covering an electronic element attached to a wiring base material with a fluororesin and a step of irradiating the fluororesin covering the electronic element with radiation.
(1) Electronic Element The electronic element is generally a semiconductor, and examples thereof include a transistor and a diode, and a semiconductor diode is preferable. As the semiconductor diode, a light emitting diode is preferable, and an ultraviolet light emitting diode (hereinafter, may be referred to as an ultraviolet light emitting element) is particularly preferable. When the ultraviolet light emitting diode is sealed with an epoxy resin or a silicone resin, the deterioration of the resin is increased by ultraviolet rays, whereas when it is sealed with a fluororesin, the deterioration of the resin can be suppressed. Further, the ultraviolet light emitting diode generates a large amount of heat and may cause thermal deformation of the sealing portion. However, according to the present invention, the heat resistant deformation of the sealing portion can be improved.

図1は前記紫外線発光素子の一例を示す概略断面図である。電子素子としての紫外線発光素子2はフリップチップタイプの素子であり、下側面の一部にアノード側のp電極10を備え、該p電極10の上にp層12が形成されている。更に紫外線発光素子2の下側面の別の一部に、カソード側のn電極11を備え、n電極11の上にn層14が形成されている。これらn電極11とn層14は、前記p電極10とp層12よりも上方にシフトして形成されており、上方に存在するn層14と下方に存在するp層12との間に活性層13が形成されている。加えて上方に存在するn層14のさらに上に素子基板15が存在する。 FIG. 1 is a schematic cross-sectional view showing an example of the ultraviolet light emitting element. The ultraviolet light emitting element 2 as an electronic element is a flip-chip type element, has a p electrode 10 on the anode side on a part of the lower side surface, and a p layer 12 is formed on the p electrode 10. Further, another part of the lower side surface of the ultraviolet light emitting element 2 is provided with an n electrode 11 on the cathode side, and an n layer 14 is formed on the n electrode 11. The n-electrode 11 and the n-layer 14 are formed by shifting upward from the p-electrode 10 and the p-layer 12, and are active between the n-layer 14 existing above and the p-layer 12 existing below. Layer 13 is formed. In addition, the element substrate 15 exists above the n layer 14 existing above.

紫外線発光素子2におけるn層14は、例えばSi含有AlGaN層が挙げられる。p層12は、例えばMg含有GaN層が挙げられる。このp層12は、必要に応じて電子ブロック層などと積層構造にしてもよい。活性層13は、例えばAlGaN層が挙げられる。 Examples of the n-layer 14 in the ultraviolet light emitting device 2 include a Si-containing AlGaN layer. Examples of the p-layer 12 include a Mg-containing GaN layer. The p-layer 12 may have a laminated structure with an electron block layer or the like, if necessary. Examples of the active layer 13 include an AlGaN layer.

p電極10、p層12からn層14、n電極11に向けて順方向電流を流すことにより活性層13におけるバンドギャップエネルギーに応じた発光が生じる。バンドギャップエネルギーは、活性層13の例えばAlNモル分率を調整することにより、GaNとAlNが取り得るバンドギャップエネルギー(約3.4eVと約6.2eV)の範囲内で制御することができ、発光波長が約200nmから約365nmまでの紫外線発光を得ることができる。 By passing a forward current from the p electrode 10 and the p layer 12 toward the n layer 14 and the n electrode 11, light emission corresponding to the bandgap energy in the active layer 13 is generated. The bandgap energy can be controlled within the range of the bandgap energy (about 3.4 eV and about 6.2 eV) that GaN and AlN can take by adjusting, for example, the AlN mole fraction of the active layer 13. Ultraviolet light emission having an emission wavelength of about 200 nm to about 365 nm can be obtained.

なお素子基板15には、サファイア基板、窒化アルミニウム基板等が使用可能である。p電極10の素材としてNi/Au、n電極11の素材としてTi/Al/Ti/Au等が使用できる。またp電極10とn電極11の間の露出面は、短絡を防止するためにSiO2等の保護絶縁膜(図示せず)により被覆されていてもよい。 A sapphire substrate, an aluminum nitride substrate, or the like can be used as the element substrate 15. Ni / Au can be used as the material of the p electrode 10, Ti / Al / Ti / Au and the like can be used as the material of the n electrode 11. Further, the exposed surface between the p electrode 10 and the n electrode 11 may be covered with a protective insulating film (not shown) such as SiO 2 in order to prevent a short circuit.

紫外線発光素子2の発光ピーク波長は200〜365nmの範囲で適宜設定でき、300nm以下であることが好ましい。発光ピーク波長が300nm以下であることにより殺菌効果が発揮され易くなるため、殺菌用の発光装置に紫外線発光素子2を用いることができる。発光ピーク波長は、より好ましくは280nm以下である。 The emission peak wavelength of the ultraviolet light emitting element 2 can be appropriately set in the range of 200 to 365 nm, and is preferably 300 nm or less. Since the sterilization effect is easily exhibited when the emission peak wavelength is 300 nm or less, the ultraviolet light emitting element 2 can be used as a light emitting device for sterilization. The emission peak wavelength is more preferably 280 nm or less.

(2)配線基材
配線基材は、表面に電極配線が形成された基材であり、パッケージと称されることがある。該配線基材は、表面実装型、チップオンボード型のいずれでもよく、電子素子を実装する面にバンプが形成されていることが好ましい。配線基材の基材には、窒化アルミニウム(AlN)、アルミナ(Al23)等のセラミックスが使用できる。
(2) Wiring base material The wiring base material is a base material having electrode wiring formed on its surface, and is sometimes referred to as a package. The wiring base material may be either a surface mount type or a chip-on-board type, and it is preferable that bumps are formed on the surface on which the electronic element is mounted. Ceramics such as aluminum nitride (AlN) and alumina (Al 2 O 3 ) can be used as the base material of the wiring base material.

図2は表面実装型配線基材に図1の紫外線発光素子を実装した状態を示す概略断面図である。図2の紫外線発光素子実装配線基材6は、基材4上の図示しない配線に、金属製のバンプ5を介して、紫外線発光素子2のp電極10、n電極11とがそれぞれ電気接続できるように固定されている。なお上述した様に、本発明には、チップオンボード型の配線基材も使用可能であり、図示例に限定されない。 FIG. 2 is a schematic cross-sectional view showing a state in which the ultraviolet light emitting element of FIG. 1 is mounted on a surface mount type wiring base material. In the ultraviolet light emitting element mounting wiring base material 6 of FIG. 2, the p electrode 10 and the n electrode 11 of the ultraviolet light emitting element 2 can be electrically connected to a wiring (not shown) on the base material 4 via a metal bump 5, respectively. It is fixed as. As described above, a chip-on-board type wiring base material can also be used in the present invention, and the present invention is not limited to the illustrated examples.

(3)フッ素樹脂
本発明では、上述した様に、配線基材に取り付けられた電子素子をフッ素樹脂で覆うことで電子素子を封止する。本明細書で「フッ素樹脂」とは、フッ素を含むオレフィンの重合体又はその変性物を意味し、前記変性物には、例えば、主鎖末端に−OHや−COOHなどの極性基が結合するものが含まれる。フッ素樹脂としては、−SO3H基などの極性基を側鎖に有さないフッ素樹脂が電子部品の性能維持の観点から好ましく、例えば、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、クロロトリフルオロエチレン重合体(PCTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体(THV)などの結晶性フッ素樹脂;テフロンAF(商標;三井・ケマーズフロロプロダクツ社製)、サイトップ(商標;AGC社製)などの非晶質フッ素樹脂などが挙げられ、これらフッ素樹脂は、1種で用いてもよく、2種以上を併用してもよい。前記フッ素樹脂としては、結晶性フッ素樹脂がより好ましく、テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体(THV)がよりさらに好ましい。結晶性フッ素樹脂、特にテトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体(THV樹脂)は、基材や電子素子に対する密着性が優れている。
(3) Fluororesin In the present invention, as described above, the electronic element is sealed by covering the electronic element attached to the wiring base material with the fluororesin. As used herein, the term "fluororesin" means a polymer of an olefin containing fluorine or a modified product thereof, and a polar group such as -OH or -COOH is bonded to the modified product, for example, at the end of the main chain. Things are included. As the fluorine resin, fluorine resin having no polar group such as -SO 3 H group in the side chain are preferable from the viewpoint of maintaining the performance of electronic components, for example, tetrafluoroethylene - perfluoroalkyl vinyl ether copolymer (PFA) , Tetrafluoroethylene-hexafluoropropylene copolymer (FEP), chlorotrifluoroethylene polymer (PCTFE), tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer (THV) and other crystalline fluororesins; Examples include amorphous fluororesins such as AF (trademark; manufactured by Mitsui-Kemers Fluoroproducts) and Cytop (trademark; manufactured by AGC). These fluororesins may be used alone or in combination of two types. The above may be used together. As the fluororesin, a crystalline fluororesin is more preferable, and a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer (THV) is even more preferable. Crystalline fluororesins, particularly tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymers (THV resins), have excellent adhesion to substrates and electronic devices.

前記THV樹脂としては、テトラフルオロエチレン由来の構成単位T、ヘキサフルオロプロピレン由来の構成単位H、及びフッ化ビニリデン由来の構成単位Vを含み、構成単位T、構成単位H、及び構成単位Vの合計に対する構成単位Tのモル比(T)が0.25以上であり、構成単位T、構成単位H、及び構成単位Vの合計に対する構成単位Vのモル比(V)が0.60以下である樹脂が好ましい。これにより紫外線発光素子の発熱に対する耐熱性、および紫外線発光装置の基材等に対する密着性を向上することができる。 The THV resin includes a structural unit T derived from tetrafluoroethylene, a structural unit H derived from hexafluoropropylene, and a structural unit V derived from vinylidene fluoride, and is the sum of the structural unit T, the structural unit H, and the structural unit V. The molar ratio (T) of the structural unit T to the component T is 0.25 or more, and the molar ratio (V) of the structural unit V to the total of the structural unit T, the structural unit H, and the structural unit V is 0.60 or less. Is preferable. This makes it possible to improve the heat resistance of the ultraviolet light emitting element to heat generation and the adhesion of the ultraviolet light emitting device to the base material and the like.

構成単位T、構成単位H、及び構成単位Vの合計に対する構成単位Tのモル比(T)は0.25以上であることが好ましい。これにより密着性が向上する傾向となる。そのため構成単位Tのモル比(T)の下限は、より好ましくは0.28以上、更に好ましくは0.30以上である。一方、構成単位Tのモル比(T)の上限は、透明性の観点から好ましくは0.75以下、より好ましくは0.60以下、更に好ましくは0.50以下である。 The molar ratio (T) of the structural unit T to the total of the structural unit T, the structural unit H, and the structural unit V is preferably 0.25 or more. This tends to improve the adhesion. Therefore, the lower limit of the molar ratio (T) of the structural unit T is more preferably 0.28 or more, still more preferably 0.30 or more. On the other hand, the upper limit of the molar ratio (T) of the constituent unit T is preferably 0.75 or less, more preferably 0.60 or less, still more preferably 0.50 or less from the viewpoint of transparency.

構成単位T、構成単位H、及び構成単位Vの合計に対する構成単位Vのモル比(V)は0.60以下であることが好ましい。これにより密着性が向上する傾向となる。そのため構成単位Vのモル比(V)の上限は、好ましくは0.58以下、より好ましくは0.56以下である。一方、構成単位Vのモル比(V)の下限は、好ましくは0.20以上であることが好ましい。これにより、有機溶媒に対する溶解性が向上するため、紫外線発光素子を封止するに当たって樹脂組成物の塗布回数を低減することができる。そのため構成単位Vのモル比(V)の下限は、より好ましくは0.30以上、更に好ましくは0.40以上、更により好ましくは0.50以上である。 The molar ratio (V) of the structural unit V to the total of the structural unit T, the structural unit H, and the structural unit V is preferably 0.60 or less. This tends to improve the adhesion. Therefore, the upper limit of the molar ratio (V) of the constituent unit V is preferably 0.58 or less, more preferably 0.56 or less. On the other hand, the lower limit of the molar ratio (V) of the constituent unit V is preferably 0.20 or more. As a result, the solubility in an organic solvent is improved, so that the number of times the resin composition is applied can be reduced when sealing the ultraviolet light emitting element. Therefore, the lower limit of the molar ratio (V) of the structural unit V is more preferably 0.30 or more, still more preferably 0.40 or more, and even more preferably 0.50 or more.

構成単位T、構成単位H、及び構成単位Vの合計に対する構成単位Hのモル比(H)は0.05以上、0.50以下であることが好ましい。構成単位Hのモル比(H)の下限は溶解性の観点から、より好ましくは0.07以上、更に好ましくは0.09以上である。一方、構成単位Bのモル比(H)の上限は、耐熱性の観点からより好ましくは0.40以下、更に好ましくは0.30以下、更により好ましくは0.20以下である。 The molar ratio (H) of the structural unit H to the total of the structural unit T, the structural unit H, and the structural unit V is preferably 0.05 or more and 0.50 or less. The lower limit of the molar ratio (H) of the structural unit H is more preferably 0.07 or more, still more preferably 0.09 or more, from the viewpoint of solubility. On the other hand, the upper limit of the molar ratio (H) of the constituent unit B is more preferably 0.40 or less, still more preferably 0.30 or less, still more preferably 0.20 or less from the viewpoint of heat resistance.

モル比(V)のモル比(T)に対する比(モル比(V)/モル比(T))は、0.20以上、3.50以下であることが好ましい。モル比(V)/モル比(T)を上記範囲に制御することによって、密着性が向上する傾向となる。また、高温加熱時の樹脂の着色を防止できる。モル比(V)/モル比(T)の下限は、より好ましくは0.50以上、更に好ましくは1.00以上、更により好ましくは1.30以上である。一方、モル比(V)/モル比(T)の上限は、より好ましくは3.00以下、更に好ましくは2.50以下、更により好ましくは2.00以下である。 The ratio of the molar ratio (V) to the molar ratio (T) (molar ratio (V) / molar ratio (T)) is preferably 0.20 or more and 3.50 or less. By controlling the molar ratio (V) / molar ratio (T) within the above range, the adhesion tends to be improved. In addition, coloring of the resin during high-temperature heating can be prevented. The lower limit of the molar ratio (V) / molar ratio (T) is more preferably 0.50 or more, still more preferably 1.00 or more, and even more preferably 1.30 or more. On the other hand, the upper limit of the molar ratio (V) / molar ratio (T) is more preferably 3.00 or less, still more preferably 2.50 or less, and even more preferably 2.00 or less.

モル比(H)のモル比(T)に対する比(モル比(H)/モル比(T))は、0.10以上、0.80以下であることが好ましい。モル比(H)/モル比(T)を上記範囲に制御することにより、密着性が向上する傾向となる。モル比(H)/モル比(T)の下限は、より好ましくは0.20以上、更に好ましくは0.24以上、更により好ましくは0.28以上である。一方、モル比(H)/モル比(T)の上限は、より好ましくは0.60以下、更に好ましくは0.50以下、更により好ましくは0.40以下である。 The ratio of the molar ratio (H) to the molar ratio (T) (molar ratio (H) / molar ratio (T)) is preferably 0.10 or more and 0.80 or less. By controlling the molar ratio (H) / molar ratio (T) within the above range, the adhesion tends to be improved. The lower limit of the molar ratio (H) / molar ratio (T) is more preferably 0.20 or more, still more preferably 0.24 or more, and even more preferably 0.28 or more. On the other hand, the upper limit of the molar ratio (H) / molar ratio (T) is more preferably 0.60 or less, still more preferably 0.50 or less, and even more preferably 0.40 or less.

フッ素樹脂の各構成単位のモル比は、後記する実施例に記載のNMR測定により求めることができる。モル比の算出に当たっては、例えばEric B. Twum et al., “Multidimensional 19F NMR Analyses of Terpolymers from Vinylidene Fluoride (VDF)-Hexafluoropropylene(HFP)-Tetrafluoroethylene (TFE)”, Macromolecules、2015年, 48巻, 11号, p.3563-3576を参照することができる。 The molar ratio of each structural unit of the fluororesin can be determined by the NMR measurement described in Examples described later. In calculating the molar ratio, for example, Eric B. Twum et al., “Multidimensional 19F NMR Analyses of Terpolymers from Vinylidene Fluoride (VDF) -Hexafluoropropylene (HFP) -Tetrafluoroethylene (TFE)”, Macromolecules, 2015, Vol. 48, 11 No., p.3563-3576 can be referred to.

前記THV樹脂は、構成単位T、構成単位H、及び構成単位V以外の他の構成単位を含む樹脂であってもよい。他の構成単位としては、例えばエチレン由来の構成単位、パーフルオロアルキルビニルエーテル由来の構成単位、クロロトリフルオロエチレン由来の構成単位等が挙げられる。 The THV resin may be a resin containing a structural unit T, a structural unit H, and other structural units other than the structural unit V. Examples of other structural units include ethylene-derived structural units, perfluoroalkyl vinyl ether-derived structural units, and chlorotrifluoroethylene-derived structural units.

前記THV樹脂の全構成単位に対する構成単位T、構成単位H、及び構成単位Vの合計モル比は、好ましくは0.70以上、より好ましくは0.80以上、更に好ましくは0.90以上、特に好ましくは0.95以上、最も好ましくは1である。即ち変性されていないTHV樹脂であることが最も好ましい。これにより耐熱変形性を向上し易くすることができる。 The total molar ratio of the structural unit T, the structural unit H, and the structural unit V to all the structural units of the THV resin is preferably 0.70 or more, more preferably 0.80 or more, still more preferably 0.90 or more, particularly. It is preferably 0.95 or more, and most preferably 1. That is, it is most preferably an unmodified THV resin. This makes it easier to improve the heat-resistant deformability.

前記フッ素樹脂(好ましくは前記THV樹脂)の重量平均分子量は50,000以上、1,000,000以下であることが好ましい。重量平均分子量を50,000以上とすることにより融解時の粘度を高くすることができるため、LED点灯時の封止樹脂の形状変化を抑制することができる。前記フッ素樹脂(好ましくは前記THV樹脂)の重量平均分子量の下限は、より好ましくは100,000以上、更に好ましくは200,000以上、更により好ましくは250,000以上、特に好ましくは300,000以上である。一方、前記フッ素樹脂(好ましくは前記THV樹脂)の重量平均分子量を1,000,000以下とすることにより溶解性が良くなる。前記フッ素樹脂(好ましくは前記THV樹脂)の重量平均分子量の上限は、より好ましくは800,000以下、更に好ましくは500,000以下、更により好ましくは450,000以下、特に好ましくは400,000以下である。なお、重量平均分子量は標準ポリスチレン換算値である。 The weight average molecular weight of the fluororesin (preferably the THV resin) is preferably 50,000 or more and 1,000,000 or less. By setting the weight average molecular weight to 50,000 or more, the viscosity at the time of melting can be increased, so that the shape change of the sealing resin at the time of lighting the LED can be suppressed. The lower limit of the weight average molecular weight of the fluororesin (preferably the THV resin) is more preferably 100,000 or more, still more preferably 200,000 or more, still more preferably 250,000 or more, and particularly preferably 300,000 or more. Is. On the other hand, the solubility is improved by setting the weight average molecular weight of the fluororesin (preferably the THV resin) to 1,000,000 or less. The upper limit of the weight average molecular weight of the fluororesin (preferably the THV resin) is more preferably 800,000 or less, still more preferably 500,000 or less, even more preferably 450,000 or less, and particularly preferably 400,000 or less. Is. The weight average molecular weight is a standard polystyrene conversion value.

前記フッ素樹脂が共重合体である場合、該共重合体は、ランダム共重合体、またはブロック共重合体のいずれであってもよいが、ランダム共重合体であることが好ましい。特にTHV樹脂をランダム共重合体樹脂にすることにより、構成単位Tや構成単位Vの結晶化度を抑制することができ、透明性を確保しやすい。 When the fluororesin is a copolymer, the copolymer may be either a random copolymer or a block copolymer, but a random copolymer is preferable. In particular, by changing the THV resin to a random copolymer resin, the crystallinity of the structural unit T and the structural unit V can be suppressed, and transparency can be easily ensured.

前記フッ素樹脂の屈折率は、好ましくは1.34超、より好ましくは1.35以上、更に好ましくは1.36以上である。これにより、後述する発光素子(好ましくは紫外線発光素子)と封止部の屈折率の差を小さくすることができ、発光素子と封止部との界面における全反射を低減して、光取出し効率を向上させることができる。なお光取出し効率とは、発光素子で発生した光が発光素子の外部に取り出される効率のことである。一方、フッ素樹脂の屈折率の上限は、例えば1.45以下、好ましくは 1.40以下であってもよい。屈折率は、カタログ値や一般的な物性表に記載の数値を使用しても良いし、アッベ屈折率計、エリプソメーターなどにより測定することができる。 The refractive index of the fluororesin is preferably more than 1.34, more preferably 1.35 or more, still more preferably 1.36 or more. As a result, the difference in the refractive index between the light emitting element (preferably an ultraviolet light emitting element) described later and the sealing portion can be reduced, the total reflection at the interface between the light emitting element and the sealing portion is reduced, and the light extraction efficiency is reduced. Can be improved. The light extraction efficiency is the efficiency at which the light generated by the light emitting element is extracted to the outside of the light emitting element. On the other hand, the upper limit of the refractive index of the fluororesin may be, for example, 1.45 or less, preferably 1.40 or less. The refractive index may be a value described in a catalog value or a general physical property table, or can be measured by an Abbe refractive index meter, an ellipsometer, or the like.

前記フッ素樹脂は、融点が90℃以上、278℃以下であることが好ましい。融点が90℃以上であることにより、電子素子の発熱による封止部材の溶融を防止できる。フッ素樹脂の融点の下限は、より好ましくは100℃以上、更に好ましくは110℃以上、更により好ましくは115℃以上である。一方、一般的なハンダ材であるAu−Sn(20質量%)の融点が278℃であることから、樹脂の融点が278℃以下であることにより、フッ素樹脂の加熱溶融による電子素子の封止を容易にできる。また加熱溶融で封止するときの後述のバンプの溶融を防止できる。フッ素樹脂の融点の上限は、より好ましくは200℃以下、更に好ましくは170℃以下、更により好ましくは150℃以下、特に好ましくは130℃以下である。本発明のフッ素樹脂の融点は、例えば示差走査熱量計(DSC、株式会社日立ハイテクサイエンス製)を用いて、昇温速度10℃/分で−50℃から200℃の温度まで変化させ、これにより得られる融解曲線から融解ピーク温度(Tm)を測定することにより求めることができる。 The fluororesin preferably has a melting point of 90 ° C. or higher and 278 ° C. or lower. When the melting point is 90 ° C. or higher, melting of the sealing member due to heat generation of the electronic element can be prevented. The lower limit of the melting point of the fluororesin is more preferably 100 ° C. or higher, still more preferably 110 ° C. or higher, and even more preferably 115 ° C. or higher. On the other hand, since the melting point of Au-Sn (20% by mass), which is a general solder material, is 278 ° C., the melting point of the resin is 278 ° C. or less, so that the electronic element is sealed by heating and melting the fluororesin. Can be easily done. Further, it is possible to prevent the bumps described later from melting when sealing by heating and melting. The upper limit of the melting point of the fluororesin is more preferably 200 ° C. or lower, still more preferably 170 ° C. or lower, still more preferably 150 ° C. or lower, and particularly preferably 130 ° C. or lower. The melting point of the fluororesin of the present invention is changed from −50 ° C. to 200 ° C. at a heating rate of 10 ° C./min using, for example, a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Co., Ltd.). It can be obtained by measuring the melting peak temperature (Tm) from the obtained melting curve.

前記フッ素樹脂は、必要に応じて、フィラー、及びその他の成分を含む樹脂組成物としてもよい。フッ素樹脂組成物がフィラーを含有することによってフッ素樹脂の熱分解を防止できる。なお、樹脂組成物中、フッ素樹脂は、マトリックス成分又は主成分であることが好ましく、樹脂組成物中のフッ素樹脂の含有量は、例えば、40質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上であり、より更に好ましくは70質量%以上であり、100質量%であってもよい。 The fluororesin may be a resin composition containing a filler and other components, if necessary. When the fluororesin composition contains a filler, thermal decomposition of the fluororesin can be prevented. In the resin composition, the fluororesin is preferably a matrix component or a main component, and the content of the fluororesin in the resin composition is, for example, 40% by mass or more, preferably 50% by mass or more, more preferably. Is 60% by mass or more, more preferably 70% by mass or more, and may be 100% by mass.

フィラーとしては、例えば、金属フッ化物、金属酸化物、金属リン酸塩、金属炭酸塩、金属スルホン酸塩、金属硝酸塩、金属窒化物、窒化ホウ素等の無機フィラーが挙げられる。フィラーは、1種で用いてもよいし、2種以上を併用してもよい。好ましいフィラーは、金属フッ化物である。金属フッ化物は、フッ素樹脂との屈折率差が小さく、発光素子を封止する際に、光の取り出し効率を高めることができる。 Examples of the filler include inorganic fillers such as metal fluoride, metal oxide, metal phosphate, metal carbonate, metal sulfonate, metal nitrate, metal nitride, and boron nitride. The filler may be used alone or in combination of two or more. A preferred filler is metal fluoride. The metal fluoride has a small difference in refractive index from the fluororesin, and can improve the light extraction efficiency when sealing the light emitting element.

金属フッ化物としては、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウム、フッ化リチウム、フッ化マグネシウム、フッ化ナトリウム、氷晶石等が挙げられ、フッ化マグネシウムが好ましい。これら金属フッ化物は1種で用いてもよいし、2種以上を併用してもよい。 Examples of the metal fluoride include calcium fluoride, barium fluoride, strontium fluoride, lithium fluoride, magnesium fluoride, sodium fluoride, glacial stone and the like, and magnesium fluoride is preferable. These metal fluorides may be used alone or in combination of two or more.

無機フィラーの粒径は300μm以下であることが好ましい。無機フィラーが300μm以下であることによりフッ素樹脂の温度上昇に伴う変色を低減することができる。無機フィラーの粒径は、より好ましくは200μm以下、更に好ましくは100μm以下、更により好ましくは50μm以下、殊更好ましくは30μm以下、特に好ましくは20μm以下である。一方、無機フィラーの粒径は0.5μm以上であることが好ましい。無機フィラーの粒径を0.5μm以上とすることにより樹脂とフィラー間での光の散乱を抑えることができ、樹脂の透明性が優れる。無機フィラーの粒径の下限は、より好ましくは1μm以上、更に好ましくは5μm以上である。この無機フィラーの粒径とは、レーザー回析法による体積累積頻度50%の粒子径D50である。 The particle size of the inorganic filler is preferably 300 μm or less. When the inorganic filler is 300 μm or less, discoloration due to an increase in the temperature of the fluororesin can be reduced. The particle size of the inorganic filler is more preferably 200 μm or less, still more preferably 100 μm or less, even more preferably 50 μm or less, particularly preferably 30 μm or less, and particularly preferably 20 μm or less. On the other hand, the particle size of the inorganic filler is preferably 0.5 μm or more. By setting the particle size of the inorganic filler to 0.5 μm or more, it is possible to suppress light scattering between the resin and the filler, and the transparency of the resin is excellent. The lower limit of the particle size of the inorganic filler is more preferably 1 μm or more, still more preferably 5 μm or more. The particle size of the inorganic filler is a particle size D 50 having a volume accumulation frequency of 50% by a laser diffraction method.

本発明のフッ素樹脂と無機フィラーとの屈折率の差は、0.05以下であることが好ましい。このように屈折率の差を低減することにより、無機フィラーの表面(組成物中における、無機フィラーの表面とフッ素樹脂との界面)での光の散乱を抑制できるため、光取出し効率を向上することができる。本発明のフッ素樹脂と無機フィラーとの屈折率の差は、より好ましくは0.04以下、更に好ましくは0.03以下であることが更により好ましい。一方、本発明のフッ素樹脂と無機フィラーとの屈折率の差の下限は特に限定されないが例えば0.001以上であってもよい。本発明の無機フィラーの屈折率は、カタログ値や一般的な物性表に記載の数値を使用しても良いし、アッベ屈折率計、エリプソメーターなどにより測定することができる。 The difference in refractive index between the fluororesin of the present invention and the inorganic filler is preferably 0.05 or less. By reducing the difference in refractive index in this way, it is possible to suppress light scattering on the surface of the inorganic filler (the interface between the surface of the inorganic filler and the fluororesin in the composition), thereby improving the light extraction efficiency. be able to. The difference in refractive index between the fluororesin of the present invention and the inorganic filler is more preferably 0.04 or less, still more preferably 0.03 or less. On the other hand, the lower limit of the difference in refractive index between the fluororesin of the present invention and the inorganic filler is not particularly limited, but may be, for example, 0.001 or more. The refractive index of the inorganic filler of the present invention may be a value described in a catalog value or a general physical property table, or can be measured by an Abbe refractive index meter, an ellipsometer or the like.

フッ素樹脂がフィラーを含有する場合、フッ素樹脂及びフィラーの合計100質量部に対するフィラーの量は1質量部以上、60質量部以下であることが好ましい。フィラーの量が1質量部以上であることにより、フッ素樹脂の熱分解を防止し易くできる。フィラー量の下限は、より好ましくは10質量部以上、更に好ましくは15質量部以上である。一方、フィラーの量が60質量部以下であることにより、フッ素樹脂の密着性が発揮され易くなる。フィラーの量の上限は、より好ましくは50質量部以下、更に好ましくは45質量部以下である。 When the fluororesin contains a filler, the amount of the filler with respect to 100 parts by mass of the total of the fluororesin and the filler is preferably 1 part by mass or more and 60 parts by mass or less. When the amount of the filler is 1 part by mass or more, it is possible to easily prevent thermal decomposition of the fluororesin. The lower limit of the amount of filler is more preferably 10 parts by mass or more, still more preferably 15 parts by mass or more. On the other hand, when the amount of the filler is 60 parts by mass or less, the adhesion of the fluororesin is easily exhibited. The upper limit of the amount of the filler is more preferably 50 parts by mass or less, still more preferably 45 parts by mass or less.

フィラーを含有するフッ素樹脂組成物は、フッ素樹脂と無機フィラーを混合することによって調製できる。調製方法としては、例えば、溶融状態のフッ素樹脂とフィラーを混合して冷却する方法、フッ素樹脂を溶解又は分散する溶媒の存在下で無機フィラーと混合する方法、前記溶媒存在下での混合後、溶媒を、ろ過、濃縮などによって除去する方法などがある。 The fluororesin composition containing the filler can be prepared by mixing the fluororesin and the inorganic filler. Examples of the preparation method include a method of mixing and cooling a molten fluororesin and a filler, a method of mixing with an inorganic filler in the presence of a solvent that dissolves or disperses the fluororesin, and a method of mixing in the presence of the solvent. There is a method of removing the solvent by filtration, concentration, or the like.

溶媒としては、酢酸エチル、酢酸メチル、酢酸プロピル、酢酸ブチル、プロピオン酸エチル、グリコールエーテルに酢酸基を付加したグリコールエステル等のエステル系溶媒;アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;ジエチルエーテル、ジプロピルエーテル、ブチルエーテル、グリコールエーテル、テロラヒドロフラン等のエーテル類系溶媒;N,N−ジメチルホルムアミド、N,N−ジブチルホルムアミド、N,N−ジメチルアセトアミド等のアミド系溶媒;N−メチル−2−ピロリドンなどのラクタム系溶媒;等が挙げられる。このうちエステル系溶媒、ケトン系溶媒、エーテル系溶媒が好ましく、エステル系溶媒がより好ましい。これら有機溶媒は1種で用いてもよいし、2種以上を併用してもよい。 Examples of the solvent include ester solvents such as ethyl acetate, methyl acetate, propyl acetate, butyl acetate, ethyl propionate, and glycol esters obtained by adding an acetate group to glycol ether; acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, cyclohexanone and the like. Ketone-based solvent; ether-based solvent such as diethyl ether, dipropyl ether, butyl ether, glycol ether, terrorahydrofuran; amide-based solvent such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide Solvents; lactam solvents such as N-methyl-2-pyrrolidone; and the like. Of these, ester-based solvents, ketone-based solvents, and ether-based solvents are preferable, and ester-based solvents are more preferable. These organic solvents may be used alone or in combination of two or more.

混合に溶媒を用いる場合、フッ素樹脂100質量部に対する溶媒の量は、好ましくは100質量部以上であり、また5000質量部以下である。100質量部以上であることにより本発明のフッ素樹脂を溶解又は分散し易くすることができる。溶媒の量は、より好ましくは200質量部以上、更に好ましくは400質量部以上、更により好ましくは600質量部以上である。一方、5000質量部以下であることにより、紫外線発光装置を封止するに当たっての塗布回数を減らすことができる。溶媒の量は、より好ましくは2000質量部以下、更に好ましくは1200質量部以下、更により好ましくは1000質量部以下である。 When a solvent is used for mixing, the amount of the solvent with respect to 100 parts by mass of the fluororesin is preferably 100 parts by mass or more and 5000 parts by mass or less. When the amount is 100 parts by mass or more, the fluororesin of the present invention can be easily dissolved or dispersed. The amount of the solvent is more preferably 200 parts by mass or more, further preferably 400 parts by mass or more, and even more preferably 600 parts by mass or more. On the other hand, when the amount is 5000 parts by mass or less, the number of times of coating for sealing the ultraviolet light emitting device can be reduced. The amount of the solvent is more preferably 2000 parts by mass or less, further preferably 1200 parts by mass or less, and even more preferably 1000 parts by mass or less.

混合後に、溶媒を除去する場合、除去後の溶媒の残存量は、フッ素樹脂100質量部に対して、好ましくは200質量部以下、より好ましくは100質量部以下、更に好ましくは50質量部以下、更により好ましくは20質量部以下である。 When the solvent is removed after mixing, the residual amount of the solvent after removal is preferably 200 parts by mass or less, more preferably 100 parts by mass or less, still more preferably 50 parts by mass or less, based on 100 parts by mass of the fluororesin. Even more preferably, it is 20 parts by mass or less.

フッ素樹脂にテトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体又はその変性物(THV樹脂)を用いる好ましい形態において、フッ素樹脂組成物は、THV樹脂以外のフッ素樹脂(以下、フッ素樹脂Xという場合がある)を含有していてもよい。 In a preferred embodiment in which a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer or a modified product thereof (THV resin) is used as the fluororesin, the fluororesin composition is a fluororesin other than the THV resin (hereinafter referred to as fluororesin X). In some cases) may be contained.

フッ素樹脂Xとして、結晶性フッ素樹脂が挙げられ、具体的には、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、クロロトリフルオロエチレン(PCTFE)等が挙げられる。これらフッ素樹脂Xは、1種で用いてもよいし、2種以上を併用してもよい。 Examples of the fluororesin X include crystalline fluororesins, and specifically, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and chlorotrifluoro. Examples thereof include ethylene (PCTFE). These fluororesins X may be used alone or in combination of two or more.

THV樹脂とフッ素樹脂Xとを併用する場合、THV100質量部に対するフッ素樹脂Xの量は、好ましくは10質量部以下、より好ましくは5質量部以下、更に好ましくは2質量部以下、特に好ましくは1質量部以下、最も好ましくは0質量部である。即ち、本発明の樹脂組成物に含まれるフッ素樹脂は、THV樹脂からなることが最も好ましい。これにより樹脂間の屈折率差が低減されて光取出し効率を向上することができる。 When the THV resin and the fluororesin X are used in combination, the amount of the fluororesin X with respect to 100 parts by mass of THV is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 2 parts by mass or less, and particularly preferably 1. It is less than or equal to parts by mass, most preferably 0 parts by mass. That is, the fluororesin contained in the resin composition of the present invention is most preferably made of THV resin. As a result, the difference in refractive index between the resins can be reduced and the light extraction efficiency can be improved.

樹脂組成物(固形分)の総質量に対するフッ素樹脂、及び無機フィラーの合計含量は90質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることが更により好ましく、99質量%以上であることが特に好ましい。これにより、フッ素樹脂の密着性と無機フィラーの熱伝導性が発揮され易く、またフッ素樹脂部材の耐熱変形性が良好となる。 The total content of the fluororesin and the inorganic filler with respect to the total mass of the resin composition (solid content) is preferably 90% by mass or more, more preferably 95% by mass or more, and preferably 97% by mass or more. Even more preferably, it is 99% by mass or more. As a result, the adhesiveness of the fluororesin and the thermal conductivity of the inorganic filler are easily exhibited, and the heat-resistant deformation property of the fluororesin member is improved.

(4)封止
フッ素樹脂による封止は、前記電子素子を固定できる限り特に限定されないが、電子素子が発光素子である場合、活性層を外部の酸素や水分から遮断できることが好ましく、発光素子全体を外部の酸素や水分から遮断できることがより好ましい。図3、図4、図5、図6は、図2の紫外線発光素子実装配線基材6を封止して電子部品にした例を示す概略断面図である。
(4) Sealing Sealing with a fluororesin is not particularly limited as long as the electronic element can be fixed, but when the electronic element is a light emitting element, it is preferable that the active layer can be shielded from external oxygen and moisture, and the entire light emitting element. Is more preferable to be able to block from external oxygen and moisture. 3, FIG. 4, FIG. 5, and FIG. 6 are schematic cross-sectional views showing an example in which the ultraviolet light emitting element mounting wiring base material 6 of FIG. 2 is sealed to form an electronic component.

図3の電子部品1aは、図2に示した紫外線発光素子実装配線基材6の紫外線発光素子2の下面(電極10、11)から上面(素子基板15まで)までをフッ素樹脂で被覆して封止部3aにすることで形成できる。なお紫外線発光素子を有する電子部品では、フッ素樹脂が紫外線発光素子2を封止している限り、種々の形状をとることができ、例えば、その上面を凸状の曲面として集光レンズとして使用することが好ましい。図4の電子部品1bは、フッ素樹脂による封止部3b自体が上面に盛り上がって凸状の曲面を形成している例である。図5の電子部品1cは、上面が平坦な封止部3aの上部に凸状の曲面を有する集光レンズ7aを積層した例である。図6の電子部品1dは、紫外線発光素子2の上面に集光レンズ7bを積層し、この集光レンズ7bの途中から下を封止部3dで封止した例である。また図示しないが、チップオンボード型の配線基材に電子素子を実装し、かつ封止してもよい。 The electronic component 1a of FIG. 3 is coated with a fluororesin from the lower surface (electrodes 10 and 11) to the upper surface (up to the element substrate 15) of the ultraviolet light emitting element 2 of the ultraviolet light emitting element mounting wiring base material 6 shown in FIG. It can be formed by forming the sealing portion 3a. An electronic component having an ultraviolet light emitting element can take various shapes as long as the fluororesin seals the ultraviolet light emitting element 2. For example, the upper surface thereof is used as a condensing lens as a convex curved surface. Is preferable. The electronic component 1b of FIG. 4 is an example in which the sealing portion 3b itself made of fluororesin is raised on the upper surface to form a convex curved surface. The electronic component 1c of FIG. 5 is an example in which a condenser lens 7a having a convex curved surface is laminated on the sealing portion 3a having a flat upper surface. The electronic component 1d of FIG. 6 is an example in which a condenser lens 7b is laminated on the upper surface of the ultraviolet light emitting element 2 and the condensing lens 7b is sealed from the middle to the bottom with a sealing portion 3d. Further, although not shown, an electronic element may be mounted and sealed on a chip-on-board type wiring base material.

フッ素樹脂による封止は、例えば、以下のa)〜c)の方法により行うことができる。作業効率の観点から、b)の溶融封止法が好ましい。特に図4の電子部品1bの様に、封止部の上面を凸状に盛り上がった形状にする場合、溶融封止法が好ましい。
a)フッ素樹脂を適当な溶媒と混合して得られるスラリー又は溶液(以下、塗布液という場合がある)を塗布し、乾燥する工程を1回以上繰り返す方法(以下、塗布法という場合がある)。
b)フッ素樹脂を、必要に応じてシート状に成形した後、フッ素樹脂又はそのシートを配線基材の電子素子実装側に積層した後、フッ素樹脂又はそのシートを融点以上に加熱して溶融し、冷却する方法(以下、溶融封止法という場合がある)。
c)前記塗布法と溶融封止法とを適宜組み合わせた方法。
Sealing with a fluororesin can be performed by, for example, the following methods a) to c). From the viewpoint of work efficiency, the melt sealing method of b) is preferable. In particular, when the upper surface of the sealing portion is formed to have a convexly raised shape as in the electronic component 1b of FIG. 4, the melt sealing method is preferable.
a) A method of applying a slurry or solution obtained by mixing a fluororesin with an appropriate solvent (hereinafter, may be referred to as a coating solution) and repeating the process of drying once or more (hereinafter, may be referred to as a coating method). ..
b) After molding the fluororesin into a sheet shape as needed, the fluororesin or its sheet is laminated on the electronic element mounting side of the wiring base material, and then the fluororesin or its sheet is heated to a temperature equal to or higher than the melting point to be melted. , Cooling method (hereinafter, may be referred to as melt sealing method).
c) A method in which the coating method and the melt sealing method are appropriately combined.

前記塗布液の調製に使用し得る溶媒としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトンなどのケトン系溶媒、酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル系溶媒、テロラヒドロフランなどの環状エーテル、N−メチル−2−ピロリドンなどのラクタム類が挙げられる。 Examples of the solvent that can be used for preparing the coating liquid include ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone and methyl isobutyl ketone, ester solvents such as methyl acetate, ethyl acetate and butyl acetate, and terrorahydrofuran. Examples thereof include lactams such as cyclic ether and N-methyl-2-pyrrolidone.

塗布液中のフッ素樹脂の濃度は、例えば、1質量%以上である。濃度を高くするほど、塗布回数を減らすことができる。好ましい濃度は5質量%以上であり、より好ましくは7質量%以上である。また前記濃度は、例えば、50質量%以下である。濃度を低くするほど、塗布液の粘性の向上を防ぐことができ、処理精度を高めることができる。好ましい濃度は40質量%以下であり、より好ましくは30質量%以下である。 The concentration of the fluororesin in the coating liquid is, for example, 1% by mass or more. The higher the concentration, the less the number of coatings can be applied. The preferable concentration is 5% by mass or more, and more preferably 7% by mass or more. The concentration is, for example, 50% by mass or less. The lower the concentration, the more the viscosity of the coating liquid can be prevented from being improved, and the processing accuracy can be improved. The preferable concentration is 40% by mass or less, and more preferably 30% by mass or less.

溶融封止法を行う場合のフッ素樹脂の加熱温度は、フッ素樹脂の融点より10℃以上高い温度が好ましく、融点より20℃以上高い温度がより好ましい。加熱温度の上限は、例えば、278℃であり、より好ましくは250℃であり、更により好ましくは200℃であり、特に好ましくは150℃である。上記の加熱温度であれば、熱による配線基材の劣化などを抑制することができる。 The heating temperature of the fluororesin when the melt sealing method is performed is preferably a temperature 10 ° C. or higher higher than the melting point of the fluororesin, and more preferably 20 ° C. or higher higher than the melting point. The upper limit of the heating temperature is, for example, 278 ° C., more preferably 250 ° C., even more preferably 200 ° C., and particularly preferably 150 ° C. At the above heating temperature, deterioration of the wiring base material due to heat can be suppressed.

フッ素樹脂の加熱は、大気中などの酸素含有雰囲気下で行ってもよいが、窒素雰囲気中、アルゴン雰囲気中などの不活性ガス雰囲気下で行う方が好ましい。さらにフッ素樹脂の加熱は、大気圧下で行ってもよいが、真空中などの減圧下で行うことも好ましい。減圧下でフッ素樹脂を加熱すると、封止後の樹脂中に残存する気泡が低減されて透明性が向上する。 The fluororesin may be heated in an oxygen-containing atmosphere such as the atmosphere, but it is preferably performed in an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere. Further, the fluororesin may be heated under atmospheric pressure, but it is also preferable to heat the fluororesin under reduced pressure such as in vacuum. When the fluororesin is heated under reduced pressure, the bubbles remaining in the resin after sealing are reduced and the transparency is improved.

(5)放射線照射
上記の様にしてフッ素樹脂で封止した後は、該フッ素樹脂に放射線を照射する。フッ素樹脂に放射線を照射すると、フッ素樹脂表面(封止部表面)を硬化することができ、電子素子からの発熱が大きくても封止部が熱変形するのを抑制できる。そのため、例えば、電子素子として発光素子を用いた場合、光の配向が変化することがなく、長期に亘って同等の光を取り出すことができる。特に溶融封止を行う場合、熱流動性の良好なフッ素樹脂、例えば、結晶性樹脂、とりわけTHV樹脂を使用することがあり、こうしたフッ素樹脂で封止すると、封止後の耐熱変形性が不十分な場合がある。従って、溶融封止を行う場合、又は熱流動性の良好なフッ素樹脂を用いる場合には、放射線照射をして封止後の耐熱変形性を高めることが特に有効になる。
(5) Irradiation After sealing with the fluororesin as described above, the fluororesin is irradiated with radiation. By irradiating the fluororesin with radiation, the surface of the fluororesin (the surface of the sealing portion) can be cured, and even if the heat generated from the electronic element is large, the sealing portion can be suppressed from being thermally deformed. Therefore, for example, when a light emitting element is used as the electronic element, the orientation of the light does not change, and the same light can be extracted for a long period of time. In particular, when performing melt sealing, a fluororesin having good thermal fluidity, for example, a crystalline resin, particularly THV resin, may be used, and when sealed with such a fluororesin, the heat-resistant deformability after sealing is poor. It may be enough. Therefore, when performing melt sealing or when a fluororesin having good thermal fluidity is used, it is particularly effective to irradiate with radiation to enhance the heat-resistant deformability after sealing.

放射線としては、紫外線、X線、γ線、電子線、イオンビームなどが挙げられ、電子線が好ましい。電子線は硬化深さの制御に優れており、封止部全体の特性に悪影響を与えることなく、耐熱変形性を高めることが容易になる。 Examples of the radiation include ultraviolet rays, X-rays, γ-rays, electron beams, ion beams and the like, and electron beams are preferable. The electron beam is excellent in controlling the curing depth, and it becomes easy to enhance the heat-resistant deformability without adversely affecting the characteristics of the entire sealing portion.

電子線照射における加速電圧は、例えば、50kV以上、好ましくは70kV以上、より好ましくは120kV以上である。加速電圧を大きくするほど、硬化深さを大きくできる。また加速電圧は、例えば、1000kV以下、好ましくは500kV以下、より好ましくは300kV以下である。過剰な加速電圧を防止することで、フッ素樹脂の分解を防止できる。 The accelerating voltage in electron beam irradiation is, for example, 50 kV or more, preferably 70 kV or more, and more preferably 120 kV or more. The larger the accelerating voltage, the larger the curing depth. The accelerating voltage is, for example, 1000 kV or less, preferably 500 kV or less, and more preferably 300 kV or less. By preventing an excessive accelerating voltage, decomposition of the fluororesin can be prevented.

電子線の照射エネルギーによる吸収線量は、例えば、20kGy以上、好ましくは30kGy以上、より好ましくは40kGy以上である。特に加速電圧が120kV未満のとき、吸収線量を40kGy以上とし、加速電圧が120kV以上のとき、吸収線量を20kGy以上とすることが好ましい。吸収線量を大きくすることで硬化硬さを高めることができる。また吸収線量は、例えば、300kGy以下、好ましくは200kGy以下、より好ましくは150kGy以下である。 The absorbed dose due to the irradiation energy of the electron beam is, for example, 20 kGy or more, preferably 30 kGy or more, and more preferably 40 kGy or more. In particular, when the accelerating voltage is less than 120 kV, the absorbed dose is preferably 40 kGy or more, and when the accelerating voltage is 120 kV or more, the absorbed dose is preferably 20 kGy or more. Hardness can be increased by increasing the absorbed dose. The absorbed dose is, for example, 300 kGy or less, preferably 200 kGy or less, and more preferably 150 kGy or less.

電子線の加速電圧(kV)と電子線の照射エネルギーによる吸収線量(kGy)とを掛けた合わせた値(積)は、例えば、1000以上、好ましくは3000以上、より好ましくは4000以上である。前記積を大きくするほど、硬化深さ及び硬化硬さの少なくとも一方、好ましくはその両方を良好にできる。また前記積は、例えば、100000以下、好ましくは40000以下、より好ましくは30000以下である。積を小さくすることで、フッ素樹脂の分解を防ぎ、耐熱変形性を高めることができる。 The product of the product of the electron beam accelerating voltage (kV) and the absorbed dose (kGy) due to the electron beam irradiation energy is, for example, 1000 or more, preferably 3000 or more, and more preferably 4000 or more. The larger the product, the better the curing depth and the curing hardness, preferably both. The product is, for example, 100,000 or less, preferably 40,000 or less, and more preferably 30,000 or less. By reducing the product, decomposition of the fluororesin can be prevented and heat-resistant deformability can be improved.

電子線を照射する場合、フッ素樹脂による封止部を適当な温度に加熱又は冷却してもよい。封止部の温度をコントロールすることで、封止部の表面硬化を適切に制御できる。封止部の温度は、例えば、0℃以上約100℃以下、好ましくは10℃以上約80以下、より好ましくは20℃以上約60℃以下である。 When irradiating an electron beam, the fluororesin-sealed portion may be heated or cooled to an appropriate temperature. By controlling the temperature of the sealing portion, the surface hardening of the sealing portion can be appropriately controlled. The temperature of the sealing portion is, for example, 0 ° C. or higher and about 100 ° C. or lower, preferably 10 ° C. or higher and about 80 ° C. or lower, and more preferably 20 ° C. or higher and about 60 ° C. or lower.

本発明の電子部品は、フッ素樹脂が放射線照射により硬化されているため、封止部の耐熱変形性が良好である。そのため、電子部品に以下の耐熱試験を行った際に、フッ素樹脂の平均変形率Vを小さくできる。平均変形率Vが小さい電子部品、特に発光電子部品を用いると、光の配向変化を防止でき、長期に亘って同等の光を取り出すことができる。平均変形率Vは、例えば、1.30未満、好ましくは1.20未満、より好ましくは1.15未満、よりさらに好ましくは1.10未満である。 In the electronic component of the present invention, since the fluororesin is cured by irradiation, the heat-resistant deformability of the sealed portion is good. Therefore, when the following heat resistance test is performed on the electronic component, the average deformation rate V of the fluororesin can be reduced. By using an electronic component having a small average deformation rate V, particularly a light emitting electronic component, it is possible to prevent a change in the orientation of light and to extract equivalent light over a long period of time. The average deformation rate V is, for example, less than 1.30, preferably less than 1.20, more preferably less than 1.15, and even more preferably less than 1.10.

耐熱試験は、配線基材と、該配線基材に封止部として充填されたフッ素樹脂とを有する電子部品を、充填されたフッ素樹脂と空気との界面が下になる状態で、温度150℃で60時間保持する方法により行うことができる。 In the heat resistance test, an electronic component having a wiring base material and a fluororesin filled in the wiring base material as a sealing portion is subjected to a temperature of 150 ° C. with the interface between the filled fluororesin and air facing down. It can be carried out by a method of holding for 60 hours.

平均変形率Vは、電子部品に上記耐熱試験を行い、下記式(1)によって算出される。式中、RSは、封止部の単位正面投影面積あたりの配線基材から突出したフッ素樹脂の側面投影面積を規格化面積としたとき、耐熱試験前(単に保持前とも言う)の当該規格化面積に対する耐熱試験後(単に保持後とも言う)の当該規格化面積の比を表す。また、Rdは、封止部の単位正面投影面積あたりの配線基材から突出したフッ素樹脂の高さを規格化高さとしたとき、保持前の当該規格化高さに対する保持後の当該規格化高さの比を表す。保持前後において、フッ素樹脂の高さとは、配線基材から突出したフッ素樹脂における配線基材の表面からの最大高さである。電子部品の電子素子実装面又は電子素子実装予定面(p電極用配線形成面、n電極用配線形成面など)を電子部品の正面といい、該電子素子実装面又は電子素子実装予定面と直交する面を側面という。
平均変形率V=(RS×Rd1/2 (1)
The average deformation rate V is calculated by the following formula (1) by performing the above heat resistance test on an electronic component. In the formula, RS is the standard before the heat resistance test (also simply called before holding) when the side projected area of the fluororesin protruding from the wiring base material per unit front projected area of the sealing portion is used as the normalized area. It represents the ratio of the normalized area to the normalized area after the heat resistance test (also simply after holding). For R d , when the height of the fluororesin protruding from the wiring base material per unit front projection area of the sealing portion is taken as the normalized height, the normalized height after holding is compared with the normalized height before holding. Represents the height ratio. Before and after holding, the height of the fluororesin is the maximum height of the fluororesin protruding from the wiring base material from the surface of the wiring base material. The electronic element mounting surface or the electronic element mounting planned surface (p-electrode wiring forming surface, n-electrode wiring forming surface, etc.) of the electronic component is referred to as the front surface of the electronic component, and is orthogonal to the electronic element mounting surface or the electronic element mounting planned surface. The surface to be used is called the side surface.
Average deformation rate V = ( RS × R d ) 1/2 (1)

平均変形率Vは、配線基材、電子素子及び電子素子を封止するフッ素樹脂を有する電子部品に耐熱試験を行い算出してもよいし、評価モデルに耐熱試験を行い算出してもよい。評価モデルとしては、配線基材及び該配線基材に充填されたフッ素樹脂を有する電子部品を用いることができる。以下に、評価モデルを用いて平均変形率Vを算出する方法を記載するが、電子部品を用いる場合も評価モデルを用いる場合と同様にして平均変形率Vを算出することができる。 The average deformation rate V may be calculated by performing a heat resistance test on a wiring base material, an electronic element, and an electronic component having a fluororesin that seals the electronic element, or by performing a heat resistance test on an evaluation model. As the evaluation model, a wiring base material and an electronic component having a fluororesin filled in the wiring base material can be used. The method of calculating the average deformation rate V using the evaluation model will be described below, but the average deformation rate V can be calculated in the same manner as when the evaluation model is used when using electronic components.

評価モデル及びこれを用いた耐熱試験について、図7〜図9を参照して説明する。図7(a)は、評価モデルに使用される一例の配線基材21の正面図であり、図7(b)は前記配線基材21の側面図である。この配線基材21は、基材の内側に凹部21bを有しており、凹部21bの内側の底面(基材の表面)にp電極用配線23とn電極用配線24が形成されている。凹部21bは、内径ID、外径OD、及び凹部21bの側面に相当する側部22を有する。後述の実施例では、内径IDが2.00mmで、外径ODが3.04mmである凹部を有し、配線基材の高さhが0.80mmである配線基材を使用している。なお、図7で図示した側部22は、凹部21bの開口面に対して斜行する側面(いわゆる斜面)になっているが、評価モデルに使用する配線基材の凹部は、図2の配線基材4の凹部21cの様に、凹部開口面に対して直交する側面(いわゆる壁面)22cを有していてもよい。また、側部22は、配線基材の一部であってもよいし、配線基材の凹部に配置された部材であってもよい。配線基材21がLED用配線基材の場合は、側部22をリフレクターということもある。 The evaluation model and the heat resistance test using the evaluation model will be described with reference to FIGS. 7 to 9. FIG. 7A is a front view of an example wiring base material 21 used in the evaluation model, and FIG. 7B is a side view of the wiring base material 21. The wiring base material 21 has a recess 21b inside the base material, and a p-electrode wiring 23 and an n-electrode wiring 24 are formed on the inner bottom surface (the surface of the base material) of the recess 21b. The recess 21b has an inner diameter ID, an outer diameter OD, and a side portion 22 corresponding to the side surface of the recess 21b. In the examples described later, a wiring base material having a recess having an inner diameter ID of 2.00 mm and an outer diameter OD of 3.04 mm and a height h of the wiring base material of 0.80 mm is used. The side portion 22 shown in FIG. 7 has a side surface (so-called slope) oblique to the opening surface of the recess 21b, but the recess of the wiring base material used in the evaluation model is the wiring of FIG. Like the recess 21c of the base material 4, it may have a side surface (so-called wall surface) 22c orthogonal to the recess opening surface. Further, the side portion 22 may be a part of the wiring base material or may be a member arranged in the recess of the wiring base material. When the wiring base material 21 is a wiring base material for LEDs, the side portion 22 may be referred to as a reflector.

図8(a)は、図7(a)の配線基材21の前記凹部21b内をフッ素樹脂26で充填した評価モデル25の正面図である。フッ素樹脂の充填は、フッ素樹脂が前記凹部21bの外枠(側部22の外枠とも言う)から配線基材21上にはみ出ないように行われることが好ましい。なお、式(1)中のRS及びRdは、耐熱試験前は、配線基材21の上面(側部22の外枠がある基材の表面で、図7の21aで示した面。正面に相当する)からみたフッ素樹脂で覆われている部分の投影面積S2bを用いて算出される。フッ素樹脂が側部22の外枠から配線基材21上にはみ出ないように充填される場合、評価モデルは通常図8(a)のような形状になるため、当該投影面積S2bは側部22の外枠で囲まれた面積(図8(a)で射線で示した部分の面積S2b)となる。 FIG. 8A is a front view of the evaluation model 25 in which the recess 21b of the wiring base material 21 of FIG. 7A is filled with the fluororesin 26. It is preferable that the fluororesin is filled so that the fluororesin does not protrude from the outer frame of the recess 21b (also referred to as the outer frame of the side portion 22) onto the wiring base material 21. Before the heat resistance test, RS and R d in the formula (1) are the upper surface of the wiring base material 21 (the surface of the base material having the outer frame of the side portion 22, and the surface shown by 21a in FIG. 7). It is calculated using the projected area S 2b of the part covered with the fluororesin as seen from (corresponding to the front surface). When the fluororesin is filled so as not to protrude from the outer frame of the side portion 22 onto the wiring base material 21, the evaluation model usually has the shape shown in FIG. 8A, so that the projected area S 2b is the side portion. It is the area surrounded by the outer frame of 22 (the area S 2b of the portion shown by the line of sight in FIG. 8A).

上記耐熱試験は、図8(b)の評価モデル25の側面図に示すように、評価モデル25におけるフッ素樹脂と空気との界面が下になる状態(すなわち評価モデル25の正面を下に向けた状態)で評価モデルを保持し、行われる。図9(a)は、評価モデル25に耐熱試験をした後の正面図であり、図9(b)は側面図であり、図示される様に、耐熱試験によりフッ素樹脂が変形している。式(1)中のRS及びRdは、耐熱試験後は、配線基材21の上面(側部22の外枠がある基材の表面で、図7の21aで示した面。正面に相当する)からみたフッ素樹脂で覆われている部分の投影面積S2aを用いて算出される。 In the heat resistance test, as shown in the side view of the evaluation model 25 in FIG. 8B, the interface between the fluororesin and the air in the evaluation model 25 is downward (that is, the front surface of the evaluation model 25 is directed downward). The evaluation model is held in the state) and performed. FIG. 9A is a front view of the evaluation model 25 after the heat resistance test, and FIG. 9B is a side view. As shown in the figure, the fluororesin is deformed by the heat resistance test. After the heat resistance test, RS and R d in the formula (1) are the upper surface of the wiring base material 21 (the surface of the base material having the outer frame of the side portion 22 and the surface shown by 21a in FIG. 7). It is calculated using the projected area S 2a of the portion covered with the fluororesin as seen from (corresponding).

平均変形率Vは、耐熱試験前後における、配線基材から突出したフッ素樹脂の側面投影面積(図8(b)の射線部Sb、図9(b)の射線部Sa)を、上記式(1)の様に、正面図でフッ素樹脂が覆う投影面積S2a、S2bで規格化した値を用いて算出される。なお前記投影面積S2a、S2b、Sa、Sbは、より具体的には、耐熱試験前後における評価モデルの正面図及び側面図を電子化したデータを使って市販の画像解析ソフトを用いて決定したり、前記正面図及び側面図を印刷した紙を使って対象部分の質量を測定することで決定したりすることができる。ここで、電子データ化したり印刷したりする正面図及び側面図には、例えば光学顕微鏡などを用いて撮影した顕微鏡像などが挙げられ、正面図には配線基材の上面21aに正対する方向から撮影した図が使用でき、側面図には前記上面21aを真横から撮影した図(上面21aに対して平行な方向から撮影した図)が使用でき、該側面図は配線基材の側面を複数の方向から撮影したものを全て用いてもよいが(この場合は、計算結果を平均する)、代表値として必要な精度を保てる場合には、配線基材を一つの方向から撮影したものであってもよい。 The average deformation rate V is before and after the heat resistance test, (ray unit S b in FIG. 8 (b), FIG. 9 (b ray portion S a of)) side projected area of the fluorine resin that protrudes from the wiring substrate of the above formula As shown in (1), it is calculated using the values standardized by the projected areas S 2a and S 2b covered by the fluororesin in the front view. For the projected areas S 2a , S 2b , S a , and S b , more specifically, commercially available image analysis software is used using the digitized front and side views of the evaluation model before and after the heat resistance test. It can be determined by measuring the mass of the target portion using a paper on which the front view and the side view are printed. Here, the front view and the side view to be converted into electronic data or printed include, for example, a microscope image taken by using an optical microscope or the like, and the front view shows the direction facing the upper surface 21a of the wiring base material. The photographed view can be used, and the side view can be a view of the upper surface 21a taken from the side (a view taken from a direction parallel to the upper surface 21a), and the side view shows a plurality of side surfaces of the wiring substrate. All the images taken from the direction may be used (in this case, the calculation results are averaged), but if the required accuracy can be maintained as a representative value, the wiring substrate is taken from one direction. May be good.

一方、上面21aに正対する方向から正面図に該当する顕微鏡像を撮影する場合、配線基材から突出したフッ素樹脂の空気との界面を上に向け、これを真上から撮影する。以下、評価モデルを側面から撮影した顕微鏡像を側面顕微鏡像と、評価モデルを正面から撮影した顕微鏡像を正面顕微鏡像とそれぞれ言うことがある。 On the other hand, when a microscope image corresponding to the front view is taken from the direction facing the upper surface 21a, the interface of the fluororesin protruding from the wiring base material with air is directed upward, and this is taken from directly above. Hereinafter, a microscope image obtained by photographing the evaluation model from the side may be referred to as a side microscope image, and a microscope image obtained by photographing the evaluation model from the front may be referred to as a front microscope image.

耐熱試験前後の評価モデルの側面顕微鏡像と評価モデルの上面顕微鏡像を用いる場合、式(1)中のRS及びRdは、下記式により算出される。
平均変形率V=(RS×Rd1/2 (1)
S=Sna/Snb
Sna=Sa/S2a
Snb=Sb/S2b
d=dna/dnb
dna=da/S2a
dnb=db/S2b
When the side microscope image of the evaluation model and the top microscope image of the evaluation model before and after the heat resistance test are used, RS and R d in the formula (1) are calculated by the following formulas.
Average deformation rate V = ( RS × R d ) 1/2 (1)
RS = Sn a / Sn b
Sn a = S a / S 2a
Sn b = S b / S 2b
R d = dn a / dn b
dn a = d a / S 2a
dn b = d b / S 2b

上記式において、Saは、耐熱試験後(保持後)の評価モデルの側面顕微鏡像における配線基材から突出した部分のフッ素樹脂の面積を表す。Sbは、耐熱試験前(保持前)の評価モデルの側面顕微鏡像における配線基材から突出した部分のフッ素樹脂の面積を表す。S2aは、耐熱試験後(保持後)の評価モデルの正面顕微鏡像の配線基材の正面において、フッ素樹脂が覆う部分の面積を表す。S2bは、耐熱試験前(保持前)の評価モデルの正面顕微鏡像の配線基材の正面において、フッ素樹脂が覆う面積を表す。Snaは、S2aに対するSaの比であり、保持後の封止部の単位正面面積あたりの配線基材から突出したフッ素樹脂の側面面積(保持後の規格化面積)を表す。Snbは、S2bに対するSbの比であり、保持前の封止部の単位正面面積あたりの配線基材から突出したフッ素樹脂の側面面積(保持前の規格化面積)を表す。 In the above formula, S a represents the area of the fluorine resin of the protruding portion from the wiring substrate in the side surface micrograph of evaluation model after the heat resistance test (after retention). S b represents the area of the fluororesin in the portion protruding from the wiring substrate in the side microscope image of the evaluation model before the heat resistance test (before holding). S 2a represents the area of the portion covered with the fluororesin in front of the wiring base material of the front microscope image of the evaluation model after the heat resistance test (after holding). S 2b represents the area covered by the fluororesin in front of the wiring base material in the front microscope image of the evaluation model before the heat resistance test (before holding). Sn a is the ratio of S a to S 2 a , and represents the side surface area (normalized area after holding) of the fluororesin protruding from the wiring base material per unit front area of the sealing portion after holding. Sn b is the ratio of S b for S 2b, represents a side area of the fluorine resin that protrudes from the wiring substrate per unit frontal area of the sealing portion of the front holding (normalized area before holding).

また、上記式において、daは、耐熱試験後(保持後)の評価モデルの側面顕微鏡像における配線基材から突出した部分のフッ素樹脂の高さを表す。dbは、耐熱試験前(保持前)の評価モデルの側面顕微鏡像における配線基材から突出した部分のフッ素樹脂の高さを表す。dnaは、S2aに対するdaの比であり、保持後の封止部の単位面積あたりの配線基材から突出したフッ素樹脂の高さ(保持後の規格化高さ)を表す。dnbは、S2bに対するdbの比であり、保持前の封止部の単位面積あたりの配線基材から突出したフッ素樹脂の高さ(保持前の規格化高さ)を表す。 In the above formula, d a represents the height of the fluororesin portion projecting from the wiring substrate in the side surface micrograph of evaluation model after the heat resistance test (after retention). d b represents the height of the fluororesin portion projecting from the wiring substrate in the side surface micrograph of evaluation models before the heat resistance test (before hold). dn a is the ratio of d a to S 2 a , and represents the height of the fluororesin protruding from the wiring base material per unit area of the sealed portion after holding (normalized height after holding). dn b is the ratio of d b for S 2b, represents the height of the fluororesin projecting from the wiring substrate per unit area of the sealing portion of the front holding (normalized height of the pre-held).

(6)集光レンズ
本発明の電子部品は、図4、図5、図6の様に集光レンズを有していてもよく、集光レンズを有する場合、図5、図6に示すように集光レンズ部品7a、7bを取り付けてもよい。集光レンズ部品7a、7bは、例えば、シリカガラス、ホウケイ酸ガラス等で構成されている。
(6) Condensing Lens The electronic component of the present invention may have a condensing lens as shown in FIGS. 4, 5 and 6, and when it has a condensing lens, it is as shown in FIGS. 5 and 6. Condensing lens components 7a and 7b may be attached to the. The condenser lens components 7a and 7b are made of, for example, silica glass, borosilicate glass, or the like.

(7)電子部品
本発明の電子部品としては、発光素子を備えた電子部品が好ましく、紫外線発光素子を備えた電子部品がより好ましい。紫外線発光素子を備えた電子部品は、例えば、分析機器、光触媒装置、光治療装置、紙幣鑑定装置、空気/水殺菌浄化装置、UV樹脂硬化装置などに利用できる。
(7) Electronic Components As the electronic components of the present invention, electronic components provided with a light emitting element are preferable, and electronic components provided with an ultraviolet light emitting element are more preferable. The electronic component provided with the ultraviolet light emitting element can be used, for example, in an analyzer, a photocatalyst device, a phototherapy device, a bill appraisal device, an air / water sterilization purification device, a UV resin curing device, and the like.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前後の記述の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples as well as the present invention, and appropriate modifications are made to the extent that it can be adapted to the purpose of the preceding and following descriptions. Of course, it is possible to carry out, and all of them are included in the technical scope of the present invention.

(1)フッ素樹脂組成
なお、以下の実施例では、テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体(THV)を用いた。THVにおけるテトラフルオロエチレン由来の構成単位T、ヘキサフルオロプロピレン由来の構成単位H、及びフッ化ビニリデン由来の構成単位V、それぞれのモル比を以下のNMR測定によって求めた。
測定装置:JEOL ECZ−400
試料:約60mg/0.8ml ACT−d6
IS:4−クロロベンゾドリフルオリド 0.01mL
測定モード:1H、19
緩和時間:1H 30秒、19F 20秒
構成単位Hのユニット数:19F−NMRにおけるCF3の積分比を3で除して算出(CF3積分比/3)
構成単位Vのユニット数:1H−NMRにおけるCH2の積分比を2で除して算出(CH2積分比/2)
構成単位Tのユニット数:19F−NMRにおけるCF2の合計積分比より、構成単位H由来のCF2と構成単位V由来のCF2を差し引いたものを4で除して算出(CF2合計積分比−構成単位Vのユニット数×2−構成単位Hのユニット数×2)/4
実施例で使用したフッ素樹脂(商品名:ダイニオンTHV221AZ;3M社製)は、構成単位Tのモル比が0.35、構成単位Hのモル比が0.11、構成単位Vのモル比が0.54であった。
(1) Fluororesin Composition In the following examples, a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer (THV) was used. The molar ratios of the tetrafluoroethylene-derived structural unit T, the hexafluoropropylene-derived structural unit H, and the vinylidene fluoride-derived structural unit V in THV were determined by the following NMR measurements.
Measuring device: JEOL ECZ-400
Sample: Approximately 60 mg / 0.8 ml ACT-d6
IS: 4-Chlorobenzodrifluoride 0.01 mL
Measurement mode: 1 H, 19 F
Relaxation time: 1 H 30 seconds, 19 F 20 seconds Number of units of constituent unit H: 19 Calculated by dividing the integration ratio of CF 3 in F-NMR by 3 (CF 3 integration ratio / 3)
Number of units of structural unit V: 1 Calculated by dividing the integration ratio of CH 2 in 1 H-NMR by 2 (CH 2 integration ratio / 2)
The number of units of the structural units T: 19 than the total area ratio of CF 2 in the F-NMR, total calculated (CF 2 by dividing the minus the CF 2 constituent units derived from V and CF 2 derived constituent unit H at 4 Integration ratio-Number of units of structural unit V x 2-Number of units of structural unit H x 2) / 4
The fluororesin used in the examples (trade name: Dynion THV221AZ; manufactured by 3M) has a molar ratio of the constituent unit T of 0.35, a molar ratio of the constituent unit H of 0.11, and a molar ratio of the constituent unit V of 0. It was .54.

実施例1
フッ素樹脂(商品名「THV221AZ」)3.5gを直径48mmのPFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)製シャーレに入れ、温度200℃で3時間加熱することによりフッ素樹脂シートを作製し、カッターナイフで大きさ3.0×3.0mmの四角形のシートを切り出した。
Example 1
Fluororesin sheet is prepared by putting 3.5 g of fluororesin (trade name "THV221AZ") into a PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer) chalet with a diameter of 48 mm and heating at a temperature of 200 ° C. for 3 hours. Then, a square sheet having a size of 3.0 × 3.0 mm was cut out with a utility knife.

LED用パッケージ(KD−LA9R48、京セラ社製)の上に前記シートを設置し、温度200℃で3時間加熱することによってフッ素樹脂を溶融し、パッケージ内をフッ素樹脂で充填(封止)することで電子部品(評価モデル)を得た。なおLED用パッケージ(KD−LA9R48、京セラ社製)の形状は図7及び図8に示した通りであり、封止後の形状は、概略、図9に示した通りである。 The sheet is placed on an LED package (KD-LA9R48, manufactured by Kyocera Corporation), and the fluororesin is melted by heating at a temperature of 200 ° C. for 3 hours, and the inside of the package is filled (sealed) with the fluororesin. Obtained an electronic component (evaluation model). The shape of the LED package (KD-LA9R48, manufactured by Kyocera Corporation) is as shown in FIGS. 7 and 8, and the shape after sealing is roughly as shown in FIG.

上記で得られた評価モデルを、電子線装置(CB250/30/20mA、岩崎電気社製)の装置を用い、上記で得られた評価モデルを搬送速度10m/minで供給し、フッ素樹脂部分(封止部分)に電子線を照射した。電子線の加速電圧は100〜250kVの中で設定し、吸収線量は25〜100kGyの中で設定した。
電子線でフッ素樹脂を硬化させた評価モデルの封止フッ素樹脂面を下側にして、温度150℃で60時間保持する耐熱試験を行い、平均変形率Vを調べた。平均変形率Vは、評価モデルの正面図及び側面図を紙面に印刷し、その質量から対象部分の面積を算出することにより求めた。平均変形率Vに基づき、下記基準に従って耐熱変形性を評価した。結果を表1に示す。平均変形率Vが1.30未満であると、耐熱変形性が良好であると言える。
A:平均変形率Vが1.10未満である。
B:平均変形率Vが1.10以上、1.15未満である。
C:平均変形率Vが1.15以上、1.30未満である。
D:平均変形率Vが1.30以上である。
The evaluation model obtained above was supplied with an electron beam device (CB250 / 30/20 mA, manufactured by Iwasaki Electric Co., Ltd.), and the evaluation model obtained above was supplied at a transport speed of 10 m / min. The sealed part) was irradiated with an electron beam. The electron beam accelerating voltage was set in the range of 100 to 250 kV, and the absorbed dose was set in the range of 25 to 100 kGy.
The heat resistance test of holding the fluororesin at a temperature of 150 ° C. for 60 hours was performed with the sealed fluororesin side of the evaluation model in which the fluororesin was cured with an electron beam facing down, and the average deformation rate V was examined. The average deformation rate V was obtained by printing the front view and the side view of the evaluation model on a paper surface and calculating the area of the target portion from the mass. Based on the average deformation rate V, the heat-resistant deformability was evaluated according to the following criteria. The results are shown in Table 1. When the average deformation rate V is less than 1.30, it can be said that the heat-resistant deformation property is good.
A: The average deformation rate V is less than 1.10.
B: The average deformation rate V is 1.10 or more and less than 1.15.
C: The average deformation rate V is 1.15 or more and less than 1.30.
D: The average deformation rate V is 1.30 or more.

Figure 2020191440
Figure 2020191440

本発明は電子素子を備えた電子部品の製造に利用でき、好ましくは発光素子、より好ましくは紫外線発光素子を備えた電子部品に利用できる。 The present invention can be used for manufacturing an electronic component provided with an electronic element, preferably for a light emitting element, and more preferably for an electronic component provided with an ultraviolet light emitting element.

1a、1b、1c、1d、25 電子部品
2 電子素子(紫外線発光素子)
3a、3b 封止部
4 配線基材
5 金属製のバンプ
6 紫外線発光素子実装配線基材
7a、7b 集光レンズ部品
10 p電極
11 n電極
12 p層
13 活性層
14 n層
15 素子基板
21 配線基材
21a 配線基材の正面(上面)
21b、21c 配線基材の凹部
22、22c 配線基材における凹部の側部
23 p電極用配線
24 n電極用配線
25 評価モデル
26 フッ素樹脂
h 配線基材の高さ
a、Sb 配線基材から突出したフッ素樹脂の側面投影面積
2a、S2b 配線基材の正面からみたフッ素樹脂で覆われている部分の投影面積
a、db 配線基材から突出した部分のフッ素樹脂の高さ
1a, 1b, 1c, 1d, 25 Electronic components 2 Electronic elements (ultraviolet light emitting elements)
3a, 3b Sealing part 4 Wiring base material 5 Metal bump 6 Ultraviolet light emitting element mounting Wiring base material 7a, 7b Condensing lens component 10 p electrode 11 n electrode 12 p layer 13 Active layer 14 n layer 15 Element substrate 21 Wiring Base material 21a Front surface (upper surface) of wiring base material
21b, 21c Recesses in the wiring base material 22, 22c Side parts of the recesses in the wiring base material 23 p Wiring for electrodes 24 n Wiring for electrodes 25 Evaluation model 26 Fluororesin h Height of wiring base material S a , S b Wiring base material side projected area of the protruded fluororesin from S 2a, the height of the S 2b projected area d a front viewed from portion covered with a fluorine resin of the wiring substrate, portions of the fluororesin protruding from d b wiring substrate

電子線を照射する場合、フッ素樹脂による封止部を適当な温度に加熱又は冷却してもよい。封止部の温度をコントロールすることで、封止部の表面硬化を適切に制御できる。封止部の温度は、例えば、0℃以上約100℃以下、好ましくは10℃以上約80以下、より好ましくは20℃以上約60℃以下である。 When irradiating an electron beam, the fluororesin-sealed portion may be heated or cooled to an appropriate temperature. By controlling the temperature of the sealing portion, the surface hardening of the sealing portion can be appropriately controlled. The temperature of the sealing portion is, for example, 0 ° C. or higher and about 100 ° C. or lower, preferably 10 ° C. or higher and about 80 ° C. or lower, and more preferably 20 ° C. or higher and about 60 ° C. or lower.

Claims (7)

配線基材に取り付けられた電子素子をフッ素樹脂で覆う工程と、
電子素子を覆った前記フッ素樹脂に放射線を照射する工程とを有する電子部品の製造方法。
The process of covering the electronic element attached to the wiring substrate with fluororesin,
A method for manufacturing an electronic component, which comprises a step of irradiating the fluororesin covering the electronic element with radiation.
前記フッ素樹脂が、テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体である請求項1に記載の製造方法。 The production method according to claim 1, wherein the fluororesin is a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer. 前記放射線が電子線である請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the radiation is an electron beam. 前記電子線の加速電圧が50kV以上である請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the accelerating voltage of the electron beam is 50 kV or more. 前記電子線の照射エネルギーが吸収線量で20kGy以上である請求項3又は4に記載の製造方法。 The production method according to claim 3 or 4, wherein the irradiation energy of the electron beam is 20 kGy or more in absorbed dose. 配線基材と、該配線基材に封止部として充填されたフッ素樹脂とを有する電子部品であり、
前記電子部品を、充填されたフッ素樹脂と空気との界面が下になる状態で、温度150℃で60時間保持した時、下記式(1)で算出される平均変形率Vが1.30未満である電子部品。
平均変形率V=(RS×Rd1/2 (1)
(式中、RSは、封止部の単位正面投影面積あたりの配線基材から突出したフッ素樹脂の側面投影面積を規格化面積としたとき、保持前の当該規格化面積に対する保持後の当該規格化面積の比を表し、Rdは、封止部の単位正面投影面積あたりの配線基材から突出したフッ素樹脂の高さを規格化高さとしたとき保持前の当該規格化高さに対する保持後の当該規格化高さの比を表す。電子部品の電子素子実装面又は電子素子実装予定面を電子部品の正面といい、該電子素子実装面又は電子素子実装予定面と直交する面を側面という。)
It is an electronic component having a wiring base material and a fluororesin filled in the wiring base material as a sealing portion.
When the electronic component is held at a temperature of 150 ° C. for 60 hours with the interface between the filled fluororesin and air facing down, the average deformation rate V calculated by the following formula (1) is less than 1.30. Electronic components that are.
Average deformation rate V = ( RS × R d ) 1/2 (1)
(In the formula, RS is the standardized area of the fluororesin protruding from the wiring base material per unit frontal projected area of the sealing portion, and the RS is the said after holding with respect to the standardized area before holding. Represents the ratio of standardized area, and R d is the retention with respect to the standardized height before holding when the height of the fluororesin protruding from the wiring base material per unit front projected area of the sealing portion is defined as the normalized height. It represents the later ratio of the standardized height. The electronic element mounting surface or the electronic element mounting planned surface of the electronic component is referred to as the front surface of the electronic component, and the surface orthogonal to the electronic element mounting surface or the electronic element mounting planned surface is the side surface. )
前記フッ素樹脂が、テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体である請求項6に記載の電子部品。 The electronic component according to claim 6, wherein the fluororesin is a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer.
JP2019230735A 2019-05-16 2019-12-20 Electronic components and their manufacturing methods Active JP6998362B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080035263.XA CN113853690A (en) 2019-05-16 2020-05-08 Electronic component and method for manufacturing the same
KR1020217040898A KR20220009993A (en) 2019-05-16 2020-05-08 Electronic components and their manufacturing method
PCT/JP2020/018654 WO2020230715A1 (en) 2019-05-16 2020-05-08 Electronic component and method for manufacturing same
TW109115496A TW202043389A (en) 2019-05-16 2020-05-11 Electronic component and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019092839 2019-05-16
JP2019092839 2019-05-16

Publications (2)

Publication Number Publication Date
JP2020191440A true JP2020191440A (en) 2020-11-26
JP6998362B2 JP6998362B2 (en) 2022-01-18

Family

ID=73453934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019230735A Active JP6998362B2 (en) 2019-05-16 2019-12-20 Electronic components and their manufacturing methods

Country Status (2)

Country Link
JP (1) JP6998362B2 (en)
TW (1) TW202043389A (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219781A (en) * 1982-06-15 1983-12-21 Showa Denko Kk Sealing method for light emitting diode element
JPH0845972A (en) * 1994-05-24 1996-02-16 Sharp Corp Production of semiconductor device
JP2000164900A (en) * 1998-11-25 2000-06-16 Fuji Electric Co Ltd Solar battery module, manufacture and manufacturing device thereof
JP2000228411A (en) * 1999-02-04 2000-08-15 Showa Highpolymer Co Ltd Manufacture of semiconductor device
JP2001102639A (en) * 1999-09-30 2001-04-13 Sumitomo 3M Ltd Light-emitting diode and laser diode device sealed with fluoropolymer
JP2004088004A (en) * 2002-08-29 2004-03-18 Okaya Electric Ind Co Ltd Light emitting diode
JP2009051876A (en) * 2007-08-23 2009-03-12 Three M Innovative Properties Co Coating composition, and article using it
JP2010037475A (en) * 2008-08-07 2010-02-18 Sumitomo Electric Fine Polymer Inc Transparent resin molded product and optical lens
JP2010084150A (en) * 2002-08-13 2010-04-15 Daikin Ind Ltd Optical material comprising photocurable fluorine-containing polymer, and photocurable fluorine-containing resin composition
JP2011195709A (en) * 2010-03-19 2011-10-06 Sumitomo Electric Ind Ltd White resin molded product and led reflector
JP2012214754A (en) * 2011-03-30 2012-11-08 Daikin Industries Ltd Fluorine-containing resin composition for optical element sealing, and cured product
JP2013087162A (en) * 2011-10-14 2013-05-13 Daikin Industries Ltd Fluorine-containing polymer, curable resin composition, and cured product
WO2013114981A1 (en) * 2012-01-30 2013-08-08 旭硝子株式会社 Optical member, method for producing same, and article provided with optical member
JP2016046491A (en) * 2014-08-26 2016-04-04 信越化学工業株式会社 Sealing method of optical semiconductor device and optical semiconductor device manufactured by sealing method
US20180057714A1 (en) * 2016-08-31 2018-03-01 Benq Materials Corporation Silicone Resin Film, Curable Silicone Resin Composition, Optical Semiconductor Device, and Packaging Method for Optical Semiconductor Device
WO2019043840A1 (en) * 2017-08-30 2019-03-07 創光科学株式会社 Light emitting device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219781A (en) * 1982-06-15 1983-12-21 Showa Denko Kk Sealing method for light emitting diode element
JPH0845972A (en) * 1994-05-24 1996-02-16 Sharp Corp Production of semiconductor device
JP2000164900A (en) * 1998-11-25 2000-06-16 Fuji Electric Co Ltd Solar battery module, manufacture and manufacturing device thereof
JP2000228411A (en) * 1999-02-04 2000-08-15 Showa Highpolymer Co Ltd Manufacture of semiconductor device
JP2001102639A (en) * 1999-09-30 2001-04-13 Sumitomo 3M Ltd Light-emitting diode and laser diode device sealed with fluoropolymer
JP2010084150A (en) * 2002-08-13 2010-04-15 Daikin Ind Ltd Optical material comprising photocurable fluorine-containing polymer, and photocurable fluorine-containing resin composition
JP2004088004A (en) * 2002-08-29 2004-03-18 Okaya Electric Ind Co Ltd Light emitting diode
JP2009051876A (en) * 2007-08-23 2009-03-12 Three M Innovative Properties Co Coating composition, and article using it
JP2010037475A (en) * 2008-08-07 2010-02-18 Sumitomo Electric Fine Polymer Inc Transparent resin molded product and optical lens
JP2011195709A (en) * 2010-03-19 2011-10-06 Sumitomo Electric Ind Ltd White resin molded product and led reflector
JP2012214754A (en) * 2011-03-30 2012-11-08 Daikin Industries Ltd Fluorine-containing resin composition for optical element sealing, and cured product
JP2013087162A (en) * 2011-10-14 2013-05-13 Daikin Industries Ltd Fluorine-containing polymer, curable resin composition, and cured product
WO2013114981A1 (en) * 2012-01-30 2013-08-08 旭硝子株式会社 Optical member, method for producing same, and article provided with optical member
JP2016046491A (en) * 2014-08-26 2016-04-04 信越化学工業株式会社 Sealing method of optical semiconductor device and optical semiconductor device manufactured by sealing method
US20180057714A1 (en) * 2016-08-31 2018-03-01 Benq Materials Corporation Silicone Resin Film, Curable Silicone Resin Composition, Optical Semiconductor Device, and Packaging Method for Optical Semiconductor Device
WO2019043840A1 (en) * 2017-08-30 2019-03-07 創光科学株式会社 Light emitting device

Also Published As

Publication number Publication date
JP6998362B2 (en) 2022-01-18
TW202043389A (en) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2020230715A1 (en) Electronic component and method for manufacturing same
US9972758B2 (en) Ultraviolet light emitting device
CN101079464A (en) Ultraviolet ray emitting element package
CN110915006A (en) Ultraviolet light source packaging element
WO2020230716A1 (en) Electronic component production method and electronic component
JP6998362B2 (en) Electronic components and their manufacturing methods
JP6968893B2 (en) Light emitting device
TW202043362A (en) Resin composition and ultraviolet light-emitting device
JP6899412B2 (en) LED device manufacturing method
JP6830168B1 (en) Manufacturing method of electronic parts
JP6856787B1 (en) Manufacturing method of electronic parts
JP6870128B1 (en) Fluororesin encapsulant and its manufacturing method
JP6816317B1 (en) Fluororesin sheet and its manufacturing method
CN111316454B (en) Ultraviolet light emitting device, method for manufacturing ultraviolet light emitting device, and method for manufacturing ultraviolet light emitting module
WO2021200279A1 (en) Fluororesin sheet and method for producing same
JP2021163876A (en) Electronic device
JP2021161271A (en) Fluororesin sheet and electronic apparatus
JP2021161270A (en) Resin molding, ultraviolet light-emitting device, and method for manufacturing resin molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191220

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 6998362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150