JP2020190405A - Vacuum drying device and method for manufacturing solvent collecting member - Google Patents

Vacuum drying device and method for manufacturing solvent collecting member Download PDF

Info

Publication number
JP2020190405A
JP2020190405A JP2020037750A JP2020037750A JP2020190405A JP 2020190405 A JP2020190405 A JP 2020190405A JP 2020037750 A JP2020037750 A JP 2020037750A JP 2020037750 A JP2020037750 A JP 2020037750A JP 2020190405 A JP2020190405 A JP 2020190405A
Authority
JP
Japan
Prior art keywords
solvent
substrate
solvent collecting
vacuum drying
dividing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020037750A
Other languages
Japanese (ja)
Inventor
純史 及川
Junji Oikawa
純史 及川
林 輝幸
Teruyuki Hayashi
輝幸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to CN202010376827.8A priority Critical patent/CN111952483A/en
Priority to KR1020200054496A priority patent/KR20200132705A/en
Priority to TW109115804A priority patent/TW202101530A/en
Publication of JP2020190405A publication Critical patent/JP2020190405A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B7/00Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00
    • F26B7/005Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00 using admixture with sorbent materials and heat, e.g. generated by the mixture

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

To provide a vacuum drying device capable of making a drying state of a solvent uniform in a plane even for a large substrate.SOLUTION: A vacuum drying device for drying a solution on a substrate under reduced pressure, comprises a container accommodating the substrate, a placement table provided in the container for placement of the substrate thereon, and a solvent collecting member which is provided in the container so as to face the substrate placed on the placement table and temporarily collects the solvent in the solution vaporized from the substrate. The solvent collecting member has a plurality of solvent collecting division members which are formed in a flat plate shape having a plurality of openings, and the plurality of solvent collecting division members are joined to each other at respective side ends in a plan view.SELECTED DRAWING: Figure 3

Description

本開示は、減圧乾燥装置及び溶媒捕集部材の製造方法に関する。 The present disclosure relates to a method for manufacturing a vacuum drying device and a solvent collecting member.

特許文献1には、チャンバ内に収納された基板上の溶液を減圧状態で乾燥させる減圧乾燥装置が開示されている。この減圧乾燥装置には、溶媒捕集プレートが設けられている。溶媒捕集プレートは、網状板からなり、基板から気化した溶液中の溶媒を一時的に捕集するものであり、チャンバ内において基板に対向するように設けられている。特許文献1に開示の減圧乾燥装置では、この溶媒捕集プレートを設けることにより、乾燥時間が基板の面内で均一となるようにしている。なお、特許文献1に開示の減圧乾燥装置において、溶媒捕集プレートを構成する網状板は、鋼板を冷間切延することにより作製されるエキスパンドメタルから構成される。また、上記網状板は、一枚のエキスパンドメタルから構成され、または、複数枚のエキスパンドメタルを水平方向に並べて構成される。 Patent Document 1 discloses a vacuum drying device that dries a solution on a substrate housed in a chamber under reduced pressure. This vacuum drying device is provided with a solvent collecting plate. The solvent collection plate is made of a mesh plate and temporarily collects the solvent in the solution vaporized from the substrate, and is provided so as to face the substrate in the chamber. In the vacuum drying apparatus disclosed in Patent Document 1, the solvent collecting plate is provided so that the drying time becomes uniform in the plane of the substrate. In the vacuum drying apparatus disclosed in Patent Document 1, the net-like plate constituting the solvent collecting plate is composed of expanded metal produced by cold-cutting a steel plate. Further, the net-like plate is composed of one expanded metal, or is composed of a plurality of expanded metals arranged in a horizontal direction.

特開2018−59597号公報JP-A-2018-59597

本開示にかかる技術は、大型の基板であっても溶媒の乾燥状態を面内で均一にすることが可能な減圧乾燥装置を提供する。 The technique according to the present disclosure provides a vacuum drying apparatus capable of making the drying state of the solvent uniform in the plane even for a large substrate.

本開示の一態様は、基板上の溶液を減圧下で乾燥させる減圧乾燥装置であって、前記基板を収容する容器と、前記容器内に設けられ、前記基板が載置される載置台と、前記載置台に載置された前記基板と対向するように前記容器内に設けられ、当該基板から気化した前記溶液中の溶媒を一時的に捕集する溶媒捕集部材とを備え、前記溶媒捕集部材は、複数の開口を有する平板状に形成された、溶媒捕集分割部材を複数有し、前記複数の溶媒捕集分割部材それぞれの平面視における側端同士を接合させてなる。 One aspect of the present disclosure is a vacuum drying device that dries a solution on a substrate under reduced pressure, and comprises a container for accommodating the substrate, a mounting table provided in the container on which the substrate is placed, and the like. A solvent collecting member is provided in the container so as to face the substrate placed on the above-mentioned table and temporarily collects the solvent in the solution vaporized from the substrate, and the solvent is trapped. The collecting member has a plurality of solvent collecting and dividing members formed in a flat plate shape having a plurality of openings, and the side ends of the plurality of solvent collecting and dividing members are joined to each other in a plan view.

本発明によれば、大型の基板であっても溶媒の乾燥状態を面内で均一にすることが可能な減圧乾燥装置を提供する。 According to the present invention, there is provided a vacuum drying apparatus capable of making the drying state of a solvent uniform in the plane even for a large substrate.

従来技術の課題を説明するための図である。It is a figure for demonstrating the problem of the prior art. 本実施形態に係る減圧乾燥装置の概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the vacuum drying apparatus which concerns on this embodiment. 本実施形態に係る減圧乾燥装置の概略構成を示す上面図である。It is a top view which shows the schematic structure of the vacuum drying apparatus which concerns on this embodiment. 溶媒捕集部材の取り付け構造を説明するための図であり、減圧乾燥装置内の部分側面図である。It is a figure for demonstrating the attachment structure of the solvent collecting member, and is the partial side view in the vacuum drying apparatus. 溶媒捕集部材の取り付け構造を説明するための図であり、減圧乾燥装置における溶媒捕集部材とその周囲の下面図である。It is a figure for demonstrating the attachment structure of the solvent collecting member, and is the bottom view of the solvent collecting member and its surroundings in a vacuum drying apparatus. 分割部材の、平面視における側端部の拡大平面図である。It is an enlarged plan view of the side end portion in the plan view of the divided member. 分割部材の上記側端部の拡大断面図である。It is an enlarged sectional view of the side end portion of the divided member. 分割部材の接合方法の他の例を説明する図であり、分割部材の上記側端部の拡大断面図である。It is a figure explaining another example of the joining method of a split member, and is the enlarged sectional view of the side end portion of the split member. 分割部材の接合方法の他の例を説明する図であり、分割部材の上記側端部の拡大平面図である。It is a figure explaining another example of the joining method of a split member, and is the enlarged plan view of the side end portion of the split member. 分割部材の接合方法の別の例を説明する図であり、分割部材の上記側端部の拡大断面図である。It is a figure explaining another example of the joining method of a split member, and is the enlarged sectional view of the side end portion of the split member. 分割部材の接合方法の別の例を説明する図であり、分割部材の上記側端部の拡大平面図である。It is a figure explaining another example of the joining method of a split member, and is the enlarged plan view of the side end portion of the split member. 分割部材の接合方法のさらに別の例を説明する図であり、分割部材の上記側端部の拡大断面図である。It is a figure explaining still another example of the method of joining a split member, and is the enlarged sectional view of the side end portion of the split member. 分割部材の接合方法のさらに別の例を説明する図であり、分割部材の上記側端部の拡大平面図である。It is a figure explaining still another example of the method of joining a split member, and is the enlarged plan view of the side end portion of the split member. 溶媒捕集部材の他の例を示す平面図である。It is a top view which shows another example of a solvent collecting member.

従来、有機EL(Electroluminescence)の発光を利用した発光ダイオードである有機発光ダイオード(OLED:Organic Light Emitting Diode)が知られている。かかる有機発光ダイオードを用いた有機ELディスプレイは、薄型軽量かつ低消費電力であるうえ、応答速度や視野角、コントラスト比の面で優れているといった利点を有していることから、次世代のフラットパネルディスプレイ(FPD)として近年注目されている。 Conventionally, an organic light emitting diode (OLED: Organic Light Emitting Diode), which is a light emitting diode utilizing light emission of organic EL (Electroluminescence), is known. An organic EL display using such an organic light emitting diode has advantages such as thinness, light weight, low power consumption, and excellent response speed, viewing angle, and contrast ratio. Therefore, it is a next-generation flat. In recent years, it has been attracting attention as a panel display (FPD).

有機発光ダイオードは、基板上の陽極と陰極の間に有機EL層を挟んだ構造を有している。有機EL層は、例えば陽極側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層が積層されて形成される。これらの有機EL層の各層(特に正孔注入層、正孔輸送層及び発光層)を形成するにあたっては、例えばインクジェット方式で有機材料の液滴を基板上に離散的に配置された各色の画素に対応するバンクに吐出することにより、バンク内にその画素の有機材料の膜を塗布するといった方法が用いられる。 The organic light emitting diode has a structure in which an organic EL layer is sandwiched between an anode and a cathode on a substrate. The organic EL layer is formed by laminating, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in order from the anode side. In forming each layer of these organic EL layers (particularly the hole injection layer, the hole transport layer and the light emitting layer), pixels of each color in which droplets of an organic material are discretely arranged on a substrate by, for example, an inkjet method. A method is used in which a film of an organic material of the pixel is applied to the inside of the bank by discharging it into the bank corresponding to.

インクジェット方式で基板上に吐出された有機材料中には、多量の溶媒が含まれている。そのため、溶媒を除去することを目的として、基板上の溶液を減圧状態で乾燥する減圧乾燥処理が行われている。 A large amount of solvent is contained in the organic material discharged onto the substrate by the inkjet method. Therefore, for the purpose of removing the solvent, a vacuum drying treatment is performed in which the solution on the substrate is dried under reduced pressure.

減圧乾燥処理を行う減圧乾燥装置として、特許文献1には、気密に構成され排気装置により減圧されるチャンバと、チャンバ内において基板に対向するように設けられ基板上の有機材料膜から揮発する溶媒を一時的に捕集する溶媒捕集プレートとを備える装置が開示されている。特許文献1に開示の減圧乾燥装置では、上記溶媒捕集プレートを設けることにより、乾燥時間が基板の面内で均一となるようにしている。また、特許文献1に開示の減圧乾燥装置では、溶媒捕集プレートが網状板からなり、この網状板がエキスパンドメタルから構成される。また、特許文献1には、上記網状板が、一枚のエキスパンドメタルから構成され、または、複数枚のエキスパンドメタルを水平方向に並べて構成されることが開示されている。 As a vacuum drying device for performing a vacuum drying process, Patent Document 1 describes a chamber that is airtightly configured and decompressed by an exhaust device, and a solvent that is provided in the chamber so as to face the substrate and volatilizes from an organic material film on the substrate. A device including a solvent collection plate for temporarily collecting the material is disclosed. In the vacuum drying apparatus disclosed in Patent Document 1, the solvent collecting plate is provided so that the drying time becomes uniform in the plane of the substrate. Further, in the vacuum drying apparatus disclosed in Patent Document 1, the solvent collecting plate is made of a net-like plate, and this net-like plate is made of expanded metal. Further, Patent Document 1 discloses that the net-like plate is composed of one expanded metal or a plurality of expanded metals arranged in a horizontal direction.

ところで、近年、減圧乾燥処理の対象となる基板は大型化してきている。大型の基板上の溶媒を特許文献1のようにエキスパンドメタルを用いて乾燥させるには、図1に示すようにエキスパンドメタルMを複数枚水平方向に並べる必要がある。そして、各エキスパンドメタルMの周縁部には、通常、補強や形状維持等を目的としてフレームFが設けられている。したがって、エキスパンドメタルMを上述のように複数枚並べると、平面視においてフレームFと基板Wと重なる部分Pが存在する。当該部分Pでは、他の部分に比べ、基板W上の溶媒が揮発しにくい。そのため、溶媒の乾燥状態の面内分布において上記部分Pが他の部分と相違してしまうことがある。つまり、溶媒の乾燥状態の面内分布にフレームFが転写されてしまうことがある。 By the way, in recent years, the size of the substrate to be subjected to the vacuum drying treatment has been increasing. In order to dry the solvent on the large substrate using the expanded metal as in Patent Document 1, it is necessary to arrange a plurality of expanded metal Ms in the horizontal direction as shown in FIG. A frame F is usually provided on the peripheral edge of each expanded metal M for the purpose of reinforcement, shape maintenance, and the like. Therefore, when a plurality of expanded metal Ms are arranged as described above, there is a portion P that overlaps the frame F and the substrate W in a plan view. In the portion P, the solvent on the substrate W is less likely to volatilize than in the other portions. Therefore, the portion P may differ from other portions in the in-plane distribution of the solvent in a dry state. That is, the frame F may be transferred to the in-plane distribution of the solvent in a dry state.

そこで、本開示にかかる技術は、大型の基板であっても溶媒の乾燥状態を面内で均一にすることが可能な減圧乾燥装置、すなわち、大型の基板であってもフレームFの転写が生じない減圧乾燥装置を提供する。 Therefore, in the technique according to the present disclosure, a vacuum drying device capable of making the drying state of the solvent uniform in the plane even on a large substrate, that is, transfer of the frame F occurs even on a large substrate. No vacuum drying device is provided.

以下、本実施形態にかかる減圧乾燥装置及び溶媒捕集部材の製造方法を、図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, a method for manufacturing the vacuum drying apparatus and the solvent collecting member according to the present embodiment will be described with reference to the drawings. In the present specification and the drawings, elements having substantially the same functional configuration are designated by the same reference numerals to omit duplicate description.

図2及び図3は、本実施形態にかかる減圧乾燥装置の概略構成を示す図であり、図2は断面図、図3は上面図である。図2では後述の溶媒捕集部材を支持するための構造体の図示は省略され、図3では後述の天板等の図示は省略されている。図4及び図5は、溶媒捕集部材の取り付け構造を説明するための図であり、図4は減圧乾燥装置内の部分側面図、図5は減圧乾燥装置における溶媒捕集部材とその周囲の下面図である。 2 and 3 are views showing a schematic configuration of a vacuum drying apparatus according to the present embodiment, FIG. 2 is a cross-sectional view, and FIG. 3 is a top view. In FIG. 2, the illustration of the structure for supporting the solvent collecting member described later is omitted, and in FIG. 3, the illustration of the top plate and the like described later is omitted. 4 and 5 are views for explaining the mounting structure of the solvent collecting member, FIG. 4 is a partial side view of the inside of the vacuum drying device, and FIG. 5 is a view of the solvent collecting member in the vacuum drying device and its surroundings. It is a bottom view.

図2の減圧乾燥装置1は、基板W上に例えばインクジェット方式で塗布された溶液を、減圧状態で乾燥するものである。また、減圧乾燥装置1の処理対象の基板Wは例えば有機ELディスプレイ用のガラス基板である。さらに、処理対象の基板Wは、大型の基板であり、その平面サイズは、例えば2.2m×2.7mである。なお、本明細書において、「大型」とは、市場に通常流通している鋼板を冷間切延して作製されるエキスパンドメタルより平面サイズが大きいことを意味する。 The vacuum drying device 1 of FIG. 2 is for drying a solution applied on the substrate W by, for example, an inkjet method, in a reduced pressure state. Further, the substrate W to be processed by the vacuum drying apparatus 1 is, for example, a glass substrate for an organic EL display. Further, the substrate W to be processed is a large-sized substrate, and its plane size is, for example, 2.2 m × 2.7 m. In addition, in this specification, "large-sized" means that the plane size is larger than the expanded metal which is produced by cold-cutting a steel plate which is usually distributed in the market.

処理対象の基板Wに塗布されている溶液は、溶質と溶媒からなり、減圧乾燥処理の対象となる成分は主に溶媒である。溶媒に含まれる有機化合物としては、高沸点のものが多く、例えば、1,3−ジメチル−2−イミダゾリジノン(1,3-dimethyl-2-imidazolidinone、沸点220℃、融点8℃)、4−tert-ブチルアニソール(4-tert-Butylanisole、沸点222℃、融点18℃)、Trans−アネトール(Trans-Anethole、沸点235℃、融点20℃)、1,2−ジメトキシベンゼン(1,2-Dimethoxybenzene、沸点206.7℃、融点22.5℃)、2−メトキシビフェニル(2-Methoxybiphenyl、沸点274℃、融点28℃)、フェニルエーテル(Phenyl Ether、沸点258.3℃、融点28℃)、2−エトキシナフタレン(2-Ethoxynaphthalene、沸点282℃、融点35℃)、ベンジルフェニルエーテル(Benzyl Phenyl Ether、沸点288℃、融点39℃)、2,6−ジメトキシトルエン(2,6-Dimethoxytoluene、沸点222℃、融点39℃)、2−プロポキシナフタレン(2-Propoxynaphthalene、沸点305℃、融点40℃)、1,2,3−トリメトキシベンゼン(1,2,3-Trimethoxybenzene、沸点235℃、融点45℃)、シクロヘキシルベンゼン(cyclohexylbenzene、沸点237.5℃、融点5℃)、ドデシルベンゼン(dodecylbenzene、沸点288℃、融点-7℃)、1,2,3,4-テトラメチルベンゼン(1,2,3,4-tetramethylbenzene、沸点203℃、融点76℃)等を挙げることができる。これらの高沸点有機化合物は、2種以上が組み合わされて溶液中に配合されている場合もある。 The solution applied to the substrate W to be treated is composed of a solute and a solvent, and the component to be dried under reduced pressure is mainly a solvent. Many of the organic compounds contained in the solvent have a high boiling point, for example, 1,3-dimethyl-2-imidazolidinone (boiling point 220 ° C., boiling point 8 ° C.), 4 −tert-Butylanisole (4-tert-Butylanisole, boiling point 222 ° C, melting point 18 ° C), Trans-Anethole (boiling point 235 ° C, melting point 20 ° C), 1,2-dimethoxybenzene (1,2-Dimethoxybenzene) , Boiling point 206.7 ℃, boiling point 22.5 ℃), 2-Methoxybiphenyl (boiling point 274 ℃, boiling point 28 ℃), phenyl ether (boiling point 258.3 ℃, boiling point 28 ℃), 2-ethoxynaphthalene (2- Ethoxynaphthalene, boiling point 282 ° C, boiling point 35 ° C), Benzyl Phenyl Ether (boiling point 288 ° C, melting point 39 ° C), 2,6-Dimethoxytoluene (boiling point 222 ° C, melting point 39 ° C), 2-Propoxynaphthalene (boiling point 305 ° C, melting point 40 ° C), 1,2,3-Trimethoxybenzene (boiling point 235 ° C, melting point 45 ° C), cyclohexylbenzene, Boiling point 237.5 ° C, melting point 5 ° C), dodecylbenzene (boiling point 288 ° C, boiling point -7 ° C), 1,2,3,4-tetramethylbenzene (1,2,3,4-tetramethylbenzene, boiling point 203 ° C, Melting point 76 ° C) and the like. In some cases, these high boiling point organic compounds are blended in a solution in combination of two or more.

減圧乾燥装置1は、チャンバ10と、載置台20と、を備え、排気装置30に接続されている。 The vacuum drying device 1 includes a chamber 10 and a mounting table 20, and is connected to an exhaust device 30.

チャンバ10は、減圧可能に構成された容器であり、例えばステンレス等の金属材料から形成される。チャンバ10は、上下に開口を有する角筒状の本体部11と、本体部11の上側に取り付けられる天板12と、本体部11の下側に取り付けられる底板13と、を有する。 The chamber 10 is a container configured to be decompressible and is made of a metal material such as stainless steel. The chamber 10 has a square tubular main body 11 having openings at the top and bottom, a top plate 12 attached to the upper side of the main body 11, and a bottom plate 13 attached to the lower side of the main body 11.

本体部11は、その側面に、基板Wをチャンバ10内に搬入出するための搬入出口(図示せず)が設けられている。
天板12は、本体部11の上側の開口を塞ぐと共に、後述の溶媒捕集部材40を支持する。
The main body 11 is provided with an carry-in / out port (not shown) for carrying in / out the substrate W into the chamber 10 on the side surface thereof.
The top plate 12 closes the upper opening of the main body 11 and supports the solvent collecting member 40 described later.

底板13は、本体部11の下側の開口を塞ぐものである。底板13の上面中央には載置台20が配設されている。また、底板13には、載置台20の外周を囲うように排気口スリット13aが設けられ、排気口スリット13aには排気管31を介して排気装置30が接続されている。この排気口スリット13aを介して、減圧乾燥装置1のチャンバ10内を減圧することができる。 The bottom plate 13 closes the opening on the lower side of the main body 11. A mounting table 20 is arranged at the center of the upper surface of the bottom plate 13. Further, the bottom plate 13 is provided with an exhaust port slit 13a so as to surround the outer periphery of the mounting table 20, and the exhaust device 30 is connected to the exhaust port slit 13a via an exhaust pipe 31. The inside of the chamber 10 of the vacuum drying device 1 can be depressurized through the exhaust port slit 13a.

載置台20は、基板Wが載置されるものである。載置台20には、当該載置台20を貫通するように昇降ピン(図示せず)が設けられている。昇降ピンは、チャンバ10の外部から当該チャンバ10内に挿入される基板搬送装置(図示せず)との間で基板Wを受け渡すためのものである。この昇降ピンは昇降機構(図示せず)により自在に上下動可能に構成されている。 The mounting table 20 is for mounting the substrate W. The mounting table 20 is provided with an elevating pin (not shown) so as to penetrate the mounting table 20. The elevating pin is for passing the substrate W from the outside of the chamber 10 to the substrate transfer device (not shown) inserted into the chamber 10. This elevating pin is configured to be able to move up and down freely by an elevating mechanism (not shown).

排気装置30は、真空ポンプから構成され、具体的には、例えばターボ分子ポンプとドライポンプとが上流側からこの順に直列に接続されて構成される。
排気管31における排気口スリット13aと排気装置30との間の部分には自動圧力制御バルブ(APC(Adaptive Pressure Control)バルブ)32が設けられている。減圧乾燥装置1では、排気装置30の真空ポンプを作動させた状態で、APCバルブ32の開度を調節することにより、減圧排気の際のチャンバ10内の真空度を制御することができる。
なお、APCバルブ32による上記真空度の制御のため、チャンバ10内の圧力を測定する圧力計(図示せず)が減圧乾燥装置1に設けられている。上記圧力計での計測結果は電気信号としてAPCバルブ32に入力される。
The exhaust device 30 is composed of a vacuum pump, specifically, for example, a turbo molecular pump and a dry pump are connected in series in this order from the upstream side.
An automatic pressure control valve (APC (Adaptive Pressure Control) valve) 32 is provided in a portion of the exhaust pipe 31 between the exhaust port slit 13a and the exhaust device 30. In the vacuum drying device 1, the degree of vacuum in the chamber 10 at the time of vacuum exhaust can be controlled by adjusting the opening degree of the APC valve 32 while the vacuum pump of the exhaust device 30 is operated.
In order to control the degree of vacuum by the APC valve 32, a pressure gauge (not shown) for measuring the pressure in the chamber 10 is provided in the vacuum drying device 1. The measurement result of the pressure gauge is input to the APC valve 32 as an electric signal.

また、減圧乾燥装置1は、制御部(図示せず)を有する。この制御部は、例えばCPUやメモリ等を備えたコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、減圧乾燥装置1における減圧乾燥処理を制御するプログラムが格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から上記制御部にインストールされたものであってもよい。プログラムの一部または全ては専用ハードウェハ(回路基板)で実現してもよい。 Further, the vacuum drying device 1 has a control unit (not shown). This control unit is, for example, a computer equipped with a CPU, a memory, or the like, and has a program storage unit (not shown). The program storage unit stores a program that controls the vacuum drying process in the vacuum drying device 1. The program may be recorded on a storage medium readable by a computer, and may be installed on the control unit from the storage medium. Part or all of the program may be realized on a dedicated hard wafer (circuit board).

さらに、減圧乾燥装置1には、載置台20に載置された基板Wから気化した溶液中の溶媒を一時的に捕集する溶媒捕集部材40が、チャンバ10内において上記基板Wと対向するように配設されている。溶媒捕集部材40は、具体的には、基板W上にインクジェット方式により塗布された溶液から気化した溶媒を一時的に捕集する。溶媒捕集部材40をチャンバ10内に設けることにより、当該チャンバ10内の雰囲気中の溶媒濃度を調節することができる。 Further, in the vacuum drying device 1, a solvent collecting member 40 that temporarily collects the solvent in the solution vaporized from the substrate W placed on the mounting table 20 faces the substrate W in the chamber 10. It is arranged so as to. Specifically, the solvent collecting member 40 temporarily collects the solvent vaporized from the solution applied on the substrate W by the inkjet method. By providing the solvent collecting member 40 in the chamber 10, the solvent concentration in the atmosphere in the chamber 10 can be adjusted.

溶媒捕集部材40は、図3に示すように、複数の溶媒捕集分割部材(以下、「分割部材」と省略することがある。)41を有する。分割部材41は、開口を複数有する平板状の部材、すなわち、網状の部材である。上記開口は、例えば上下方向に貫通する貫通孔であり、平面視において格子状に複数形成されている。そして、溶媒捕集部材40は、複数の分割部材41それぞれの平面視における側端同士を接合させてなる。分割部材41の接合方法については後述する。
分割部材41はそれぞれ、ステンレスやアルミ、銅といった金属材料等の熱伝導性の良い材料から形成される。
As shown in FIG. 3, the solvent collecting member 40 has a plurality of solvent collecting and dividing members (hereinafter, may be abbreviated as “dividing member”) 41. The dividing member 41 is a flat plate-like member having a plurality of openings, that is, a net-like member. The openings are, for example, through holes penetrating in the vertical direction, and are formed in a grid pattern in a plan view. Then, the solvent collecting member 40 is formed by joining the side ends of each of the plurality of divided members 41 in a plan view. The method of joining the dividing member 41 will be described later.
Each of the dividing members 41 is formed of a material having good thermal conductivity, such as a metal material such as stainless steel, aluminum, or copper.

なお、分割部材41は薄く、その厚さは例えば0.05mm〜0.2mmである。また、複数の分割部材41を互いに接合してなる溶媒捕集部材40の水平方向の寸法は、基板Wの水平方向の寸法と略同一である。ただし、溶媒捕集部材40の水平方向の寸法は、気化した溶媒の吸着量を増やすために、基板Wの水平方向の寸法よりも大きくしてもよい。
さらに、分割部材41は、その開口率が60%〜90%と大きく、上述のように0.05〜0.2mmと薄いため、平面視における単位面積当たりの熱容量が小さい。なお、以下では、各分割部材41の上記単位面積当たりの熱容量は等しいものとする。
図の例では、分割部材41の枚数は3枚であるが、これに限られず、2枚以上であればよい。
The split member 41 is thin, and its thickness is, for example, 0.05 mm to 0.2 mm. Further, the horizontal dimension of the solvent collecting member 40 formed by joining the plurality of dividing members 41 to each other is substantially the same as the horizontal dimension of the substrate W. However, the horizontal dimension of the solvent collecting member 40 may be larger than the horizontal dimension of the substrate W in order to increase the adsorption amount of the vaporized solvent.
Further, since the divided member 41 has a large aperture ratio of 60% to 90% and is thin as 0.05 to 0.2 mm as described above, the heat capacity per unit area in a plan view is small. In the following, it is assumed that the heat capacities of the divided members 41 per unit area are the same.
In the example of the figure, the number of the dividing members 41 is 3, but the number is not limited to this, and may be 2 or more.

溶媒捕集部材40は、図2に示すように、当該溶媒捕集部材40の上部の構造物であって溶媒捕集部材40に最も近い構造物である天板12と載置台20上の基板Wとの間の位置に支持される。また、溶媒捕集部材40は、載置台20上の基板Wと正対するように、すなわち載置台20上の基板Wと略平行となるように、天板12に支持される。なお、溶媒捕集部材40は、天板12と載置台20上の基板Wとの間における中間の位置、具体的には、基板Wまでの距離が例えば75mmとなる位置に支持される。 As shown in FIG. 2, the solvent collecting member 40 is a structure above the solvent collecting member 40 and is the structure closest to the solvent collecting member 40. The top plate 12 and the substrate on the mounting table 20 It is supported in a position between W. Further, the solvent collecting member 40 is supported by the top plate 12 so as to face the substrate W on the mounting table 20, that is, substantially parallel to the substrate W on the mounting table 20. The solvent collecting member 40 is supported at an intermediate position between the top plate 12 and the substrate W on the mounting table 20, specifically, at a position where the distance to the substrate W is, for example, 75 mm.

天板12による溶媒捕集部材40の支持は、図4及び図5に示すように、枠体としてのフレーム50と脚部51を介して行われる。例えば、溶媒捕集部材40を角筒状のフレーム50に溶接等により固定し、フレーム50の外側に設けられた耳部50aを、天板12から下方向に延出する脚部51に、ネジ等を用いて固定することにより、溶媒捕集部材40が天板12に支持される。なお、溶媒捕集部材40は、フレーム50が基板Wと対向する領域に位置しないように、すなわち、平面視においてフレーム50と基板Wとが重なる部分がないように、支持される。 As shown in FIGS. 4 and 5, the solvent collecting member 40 is supported by the top plate 12 via the frame 50 as a frame and the legs 51. For example, the solvent collecting member 40 is fixed to the square tubular frame 50 by welding or the like, and the ear portion 50a provided on the outside of the frame 50 is screwed to the leg portion 51 extending downward from the top plate 12. The solvent collecting member 40 is supported by the top plate 12 by fixing with or the like. The solvent collecting member 40 is supported so that the frame 50 is not located in a region facing the substrate W, that is, there is no portion where the frame 50 and the substrate W overlap in a plan view.

フレーム50や脚部51は例えばステンレス等の金属材料から形成される。
また、フレーム50や脚部51は基板Wとは溶媒捕集部材40を間に挟んで反対側に位置している。したがって、基板W側から見て、溶媒捕集部材40がフレーム50や脚部51に覆われていないため、基板Wから溶媒捕集部材40の方向への気化した溶媒の流れはフレーム50や脚部51には阻害されない。
The frame 50 and the legs 51 are formed of a metal material such as stainless steel.
Further, the frame 50 and the legs 51 are located on the opposite side of the substrate W with the solvent collecting member 40 in between. Therefore, when viewed from the substrate W side, the solvent collecting member 40 is not covered by the frame 50 and the legs 51, so that the flow of the vaporized solvent from the substrate W toward the solvent collecting member 40 flows from the substrate W to the frame 50 and the legs. It is not inhibited by the part 51.

続いて、溶媒捕集部材40の製造方法の一例について、図6及び図7を用いて説明する。図6は、分割部材41の、平面視における側端部(以下、「側端部」と省略することがある。)の拡大平面図であり、図7は、分割部材41の側端部の拡大断面図である。なお、図6は、接合前の状態を示し、図7は接合後の状態を示している。 Subsequently, an example of a method for manufacturing the solvent collecting member 40 will be described with reference to FIGS. 6 and 7. FIG. 6 is an enlarged plan view of a side end portion of the dividing member 41 in a plan view (hereinafter, may be abbreviated as “side end portion”), and FIG. 7 is a side end portion of the dividing member 41. It is an enlarged sectional view. Note that FIG. 6 shows a state before joining, and FIG. 7 shows a state after joining.

溶媒捕集部材40の製造方法は、例えば、以下の分割部材作製工程及び接合工程を含む。 The method for producing the solvent collecting member 40 includes, for example, the following dividing member manufacturing step and joining step.

(分割部材作製工程)
この工程では、分割部材41を複数作製する。具体的には、この工程では、ステンレスやアルミ、銅といった金属材料等の熱伝導性の良い材料から成る板材に、例えばレーザ加工やプラズマエッチングにより孔あけ加工を施し、図6に示すように、開口として、平面視正方形の貫通孔41aを多数形成する。この処理を繰り返すことにより、すなわち、この処理を複数の板材それぞれについて行うことにより、複数の分割部材41が作製される。なお、上述の孔あけ加工は、上記板材の側端部に、貫通孔41aが設けられていない部分、すなわち、接合しろ41bが形成されるように行われる。接合しろ41bは、分割部材41同士の接合を容易にするために設けられている。
(Divided member manufacturing process)
In this step, a plurality of divided members 41 are produced. Specifically, in this step, a plate material made of a material having good thermal conductivity such as stainless steel, aluminum, and copper is drilled by, for example, laser processing or plasma etching, and as shown in FIG. A large number of square through holes 41a in a plan view are formed as openings. By repeating this process, that is, by performing this process for each of the plurality of plate materials, a plurality of divided members 41 are produced. The above-mentioned drilling process is performed so that a portion where the through hole 41a is not provided, that is, a joining margin 41b is formed at the side end portion of the plate material. The joining margin 41b is provided to facilitate joining of the dividing members 41 to each other.

(接合工程)
この工程では、複数の分割部材41それぞれの平面視における側端同士を接合させることで、上記複数の分割部材41を連結させる。これにより溶媒捕集部材40が製造される。
分割部材41の接合は、例えば、レーザ溶接により行われる。具体的には、図6に示すように分割部材41の側端部に設けられた接合しろ41bの側端面同士を突き合わせた状態でレーザ溶接することにより、分割部材41の接合は行われる。上記レーザ溶接により、図7に示すように、分割部材41間に溶接部Lが形成され、この溶接部Lによって、分割部材41同士は接合される。なお、レーザ溶接は、例えば、分割部材41の上下面の両方に対して行われる。
なお、平面視正方形の貫通孔41aの一辺の長さLが例えば1mm、平面視における貫通孔41a間の幅(以下、「線幅」ということがある。)W2が例えば1mmであるのに対し、接合しろ41bの幅W1は例えば0.15mm以上1mm以下である。したがって、接合しろ41bの幅W1は、従来のフレームFの下面のエキスパンドメタルMに覆われていない部分の幅W(図1参照)の約1/100〜1/50である。
(Joining process)
In this step, the plurality of divided members 41 are connected by joining the side ends of each of the plurality of divided members 41 in a plan view. As a result, the solvent collecting member 40 is manufactured.
The joining of the dividing members 41 is performed by, for example, laser welding. Specifically, as shown in FIG. 6, the dividing member 41 is joined by laser welding with the side end faces of the joining margin 41b provided on the side end portion of the dividing member 41 abutting each other. As shown in FIG. 7, a welded portion L is formed between the divided members 41 by the laser welding, and the divided members 41 are joined to each other by the welded portion L. Laser welding is performed on both the upper and lower surfaces of the dividing member 41, for example.
The length L of one side of the through hole 41a in the plan view square is, for example, 1 mm, and the width between the through holes 41a in the plan view (hereinafter, may be referred to as “line width”) W2 is, for example, 1 mm. The width W1 of the joining margin 41b is, for example, 0.15 mm or more and 1 mm or less. Therefore, the width W1 of the bonding margin 41b is approximately 1/100 to 1/50 of the width of the lower surface portion which is not covered with the expanded metal M of the conventional frame F W 0 (see FIG. 1).

続いて、減圧乾燥装置1を用いた減圧乾燥処理について説明する。
減圧乾燥装置1を用いた減圧乾燥処理では、まず、インクジェット方式で溶液が塗布された基板Wが載置台20に載置される。
次いで、排気装置30のドライポンプが作動されチャンバ10内が減圧排気される。ドライポンプによる減圧排気はチャンバ10内の圧力が例えば10Paとなるまで行われる。
この減圧排気の際、断熱膨張によりチャンバ10内の気体は冷却される。このようにチャンバ10内の気体が冷却されたとしても、基板Wの温度は、該基板Wの熱容量が大きいこと等から、室温の23℃からほとんど変化しない。しかし、熱容量の小さい溶媒捕集部材40の温度は低下する。
Subsequently, the vacuum drying process using the vacuum drying device 1 will be described.
In the vacuum drying process using the vacuum drying device 1, first, the substrate W to which the solution is applied by the inkjet method is placed on the mounting table 20.
Next, the dry pump of the exhaust device 30 is operated to exhaust the inside of the chamber 10 under reduced pressure. Decompression and exhaust by the dry pump is performed until the pressure in the chamber 10 becomes, for example, 10 Pa.
At the time of this decompression exhaust, the gas in the chamber 10 is cooled by the adiabatic expansion. Even if the gas in the chamber 10 is cooled in this way, the temperature of the substrate W hardly changes from the room temperature of 23 ° C. due to the large heat capacity of the substrate W and the like. However, the temperature of the solvent collecting member 40 having a small heat capacity decreases.

その後、排気装置30のターボ分子ポンプが作動され、さらに減圧排気される。この減圧排気に伴って、上述と同様に溶媒捕集部材40の温度は低下し、その時点でのチャンバ10内の圧力における露点以下(例えば8〜15℃)となる。
また、溶媒捕集部材40の温度は、基板W上の溶媒の蒸発が完了するまでの間、各時点でのチャンバ10内の圧力における溶媒の露点以下に維持される。
そのため、基板Wから気化した溶媒が、溶媒捕集部材40により高効率で捕集されるので、チャンバ10内の気体状の溶媒の濃度は低く維持される。したがって、基板W上の溶媒を速く除去することができる。
After that, the turbo molecular pump of the exhaust device 30 is operated, and the exhaust gas is further reduced in pressure. Along with this decompression exhaust, the temperature of the solvent collecting member 40 decreases as described above, and becomes below the dew point (for example, 8 to 15 ° C.) at the pressure in the chamber 10 at that time.
Further, the temperature of the solvent collecting member 40 is maintained below the dew point of the solvent at the pressure in the chamber 10 at each time point until the evaporation of the solvent on the substrate W is completed.
Therefore, the solvent vaporized from the substrate W is collected with high efficiency by the solvent collecting member 40, so that the concentration of the gaseous solvent in the chamber 10 is kept low. Therefore, the solvent on the substrate W can be quickly removed.

基板W上の溶媒の除去が完了した後も排気装置30のターボ分子ポンプでの排気は継続される。溶媒捕集部材40により捕集された溶媒を該溶媒捕集部材40から除去するためである。
例えばターボ分子ポンプが作動されてから所定時間が経過するまで、ターボ分子ポンプでの排気を継続することにより、溶媒捕集部材40から溶媒を除去する溶媒捕集部材40の乾燥工程が終了する。
Even after the removal of the solvent on the substrate W is completed, the exhaust by the turbo molecular pump of the exhaust device 30 is continued. This is to remove the solvent collected by the solvent collecting member 40 from the solvent collecting member 40.
For example, by continuing the exhaust with the turbo molecular pump until a predetermined time elapses after the turbo molecular pump is operated, the drying step of the solvent collecting member 40 for removing the solvent from the solvent collecting member 40 is completed.

溶媒捕集部材40の乾燥工程終了後、排気装置30が停止される。その後、チャンバ10内の圧力が大気圧まで戻された後、基板Wがチャンバ10から搬出される。これで、減圧乾燥装置1を用いた減圧乾燥処理が終了する。 After the drying step of the solvent collecting member 40 is completed, the exhaust device 30 is stopped. Then, after the pressure in the chamber 10 is returned to the atmospheric pressure, the substrate W is carried out from the chamber 10. This completes the vacuum drying process using the vacuum drying device 1.

以上のように、本実施形態では、載置台20上の基板Wと対向するようにチャンバ10内に、溶媒捕集部材40が設けられており、また、基板Wが大型であるため、溶媒捕集部材40が、開口を複数有する平板状に形成された分割部材41を複数有する。そして、溶媒捕集部材40が、複数の分割部材41それぞれの平面視における側端同士を接合させてなる。そのため、平面視において、フレーム50と基板Wとか重なる部分が存在しない。したがって、本実施形態によれば、基板Wが大型であっても、溶媒の乾燥状態を面内で均一にすることができる。
なお、平面視において、分割部材41の接合しろ41bが基板Wと重なるが、接合しろ41bの幅W1は、従来のフレームFの下面のエキスパンドメタルMに覆われていない部分の幅Wの約1/100〜1/50であり、狭い。したがって、接合しろ41bが溶媒の乾燥状態の面内分布に与える影響は少ない。
As described above, in the present embodiment, the solvent collecting member 40 is provided in the chamber 10 so as to face the substrate W on the mounting table 20, and since the substrate W is large, the solvent is trapped. The collecting member 40 has a plurality of divided members 41 formed in a flat plate shape having a plurality of openings. Then, the solvent collecting member 40 joins the side ends of each of the plurality of divided members 41 in a plan view. Therefore, in a plan view, there is no overlapping portion between the frame 50 and the substrate W. Therefore, according to the present embodiment, even if the substrate W is large, the dry state of the solvent can be made uniform in the plane.
Incidentally, in plan view, but the bonding margin 41b of the dividing member 41 is overlapped with the substrate W, the width W1 of the bonding margin 41b is approximately the width W 0 of the bottom surface portion that is not covered with the expanded metal M of the conventional frame F It is 1/100 to 1/50, which is narrow. Therefore, the bonding margin 41b has little effect on the in-plane distribution of the solvent in the dry state.

また、本実施形態では、分割部材41の側端面同士を突き合わせてこれら分割部材41を接合しているため、分割部材41から載置台20上の基板Wまでの距離が分割部材41間で等しくなる。そのため、溶媒の乾燥状態を面内でより均一にすることができる。 Further, in the present embodiment, since the side end faces of the split members 41 are butted against each other and the split members 41 are joined, the distance from the split member 41 to the substrate W on the mounting table 20 becomes equal between the split members 41. .. Therefore, the dry state of the solvent can be made more uniform in the plane.

本実施形態のように、分割部材41の側端面同士を突き合わせてこれら分割部材41をレーザ溶接により接合する場合、分割部材41の接合しろ41bの幅W1は0.15mm以上としてもよい。接合しろ41bの幅W1を0.15mm以上とすることで、分割部材41間に隙間を生じさせることなく、且つ、レーザ溶接中に分割部材41が破損することなく、分割部材41を溶接することができ、高い強度の溶媒捕集部材40を得ることができる。 When the side end faces of the split members 41 are butted against each other and the split members 41 are joined by laser welding as in the present embodiment, the width W1 of the joining margin 41b of the split members 41 may be 0.15 mm or more. By setting the width W1 of the joining margin 41b to 0.15 mm or more, the split member 41 can be welded without creating a gap between the split members 41 and without damaging the split member 41 during laser welding. It is possible to obtain a high-strength solvent collecting member 40.

また、本実施形態のように、分割部材41の側端面同士を突き合わせてこれら分割部材41をレーザ溶接により接合する場合、分割部材41の接合しろ41bの幅W1は1mm以下としてもよい。 Further, when the side end faces of the dividing members 41 are butted against each other and the divided members 41 are joined by laser welding as in the present embodiment, the width W1 of the joining margin 41b of the dividing members 41 may be 1 mm or less.

表1は、分割部材41の接合しろ41bの幅W1と、溶媒捕集部材40の面内における温度範囲(最大値と最小値との差)との関係を示すものである。表1は、具体的には、溶媒捕集部材40が最も冷えたときの上記関係を示している。表1において、「◎」は温度範囲が2℃未満であることを意味し、「○」は温度範囲が2℃以上3℃未満であることを意味し、「×」は3℃以上であることを意味する。また、表1の結果が得られたときの、溶接しろ40bの幅W1以外の各条件は以下の通りである。
測定範囲:接合しろ41bの短手方向(幅方向)に関し接合部分から±140mmの範囲
測定点数:12点
溶媒捕集部材40の平面サイズ:600mm×300mm
分割部材41の平面サイズ:300×300mm
分割部材41の厚さ:0.1mm
分割部材41の材料:ステンレス
分割部材41の貫通孔41aの一辺の長さL:1.3mm
分割部材41の線幅:0.1mm〜0.2mm
分割部材41の開口率:76%〜87%
溶媒捕集部材40から載置台20までの距離:70mm
載置台20から天板12までの距離:150mm
Table 1 shows the relationship between the width W1 of the joining margin 41b of the dividing member 41 and the in-plane temperature range (difference between the maximum value and the minimum value) of the solvent collecting member 40. Specifically, Table 1 shows the above relationship when the solvent collecting member 40 is the coldest. In Table 1, "◎" means that the temperature range is less than 2 ° C, "○" means that the temperature range is 2 ° C or more and less than 3 ° C, and "x" means 3 ° C or more. Means that. Further, each condition other than the width W1 of the welding margin 40b when the results in Table 1 are obtained is as follows.
Measurement range: Range of ± 140 mm from the joint in the lateral direction (width direction) of the joint margin 41b Number of measurement points: 12 points Plane size of solvent collecting member 40: 600 mm × 300 mm
Plane size of the dividing member 41: 300 x 300 mm
Thickness of dividing member 41: 0.1 mm
Material of the dividing member 41: Length of one side of the through hole 41a of the stainless dividing member 41 L: 1.3 mm
Line width of the dividing member 41: 0.1 mm to 0.2 mm
Aperture ratio of split member 41: 76% to 87%
Distance from solvent collecting member 40 to mounting table 20: 70 mm
Distance from mounting table 20 to top plate 12: 150 mm

Figure 2020190405
Figure 2020190405

表1に示すように、接合しろ41bの幅W1を1mm以下とすることで、溶媒捕集部材40の面内における温度範囲を3℃未満にすることができ、さらに、接合しろ41bの幅W1を0.2mm以下とすることで、溶媒捕集部材40の面内における温度範囲を2℃未満にすることができる。つまり、接合しろ41bの幅W1を1mm以下とすることで、溶媒捕集部材40を均一に冷却することができ、さらに、接合しろ41bの幅W1を0.2mm以下とすることで、溶媒捕集部材40をより均一に冷却することができる。 As shown in Table 1, by setting the width W1 of the bonding margin 41b to 1 mm or less, the in-plane temperature range of the solvent collecting member 40 can be set to less than 3 ° C., and further, the width W1 of the bonding margin 41b can be set to less than 3 ° C. By setting the temperature to 0.2 mm or less, the in-plane temperature range of the solvent collecting member 40 can be set to less than 2 ° C. That is, the solvent collecting member 40 can be uniformly cooled by setting the width W1 of the bonding margin 41b to 1 mm or less, and further, the solvent collecting member 40 can be uniformly cooled by setting the width W1 of the bonding margin 41b to 0.2 mm or less. The collecting member 40 can be cooled more uniformly.

なお、表1への記載は省略しているが、溶媒捕集部材40の面内平均温度は、溶接しろ41bの幅によって大きな変化はなく、分割部材41の開口率が同等であれば、溶媒捕集部材40の面内平均温度は略同じであった。 Although the description in Table 1 is omitted, the in-plane average temperature of the solvent collecting member 40 does not change significantly depending on the width of the welding margin 41b, and if the aperture ratio of the dividing member 41 is the same, the solvent is used. The in-plane average temperature of the collecting member 40 was substantially the same.

上述の例とは異なり、分割部材41の接合しろ41bの幅W1を1mmより大きくする場合、レーザ溶接後に、接合しろ41bに対し追加で加工を施し、貫通孔41aと同等の貫通孔を接合しろ41bに形成するようにしてもよい。接合しろ41bの貫通孔は、例えば、分割部材41において接合しろ41が形成されている領域とそれ以外の領域とで開口率が等しくなるように形成される。 Unlike the above example, when the width W1 of the joining margin 41b of the dividing member 41 is made larger than 1 mm, after laser welding, the joining margin 41b is additionally processed to join a through hole equivalent to the through hole 41a. It may be formed in 41b. The through hole of the joining margin 41b is formed, for example, so that the opening ratio is the same in the region where the joining margin 41 is formed in the dividing member 41 and the other region.

また、分割部材41の接合しろ41bの幅は、溶媒捕集部材40の面内で異なっていてもよい。例えば、基板Wから複数面のパネルを取る場合、分割部材41の接合しろ41bは、平面視において、載置台20上の基板W内の各パネルに重なる部分と重ならない部分とで、幅が異なるようにしてもよい。具体的には、接合しろ41bの幅W1を、平面視において、基板W内のパネル間の境界と重なる部分については大きくし、重ならない部分については小さくするようにしてもよい。より具体的には、接合しろ41bの幅W1を、平面視において、基板W内のパネルにおける溶液の塗布領域間の境界と重なる部分については大きくし、重ならない部分については小さくするようにしてもよい。これにより、溶媒捕集部材40の強度を保ちつつ、少なくとも溶媒捕集部材40における基板W内のパネルと対向する部分については均一に冷却することができる。 Further, the width of the joining margin 41b of the dividing member 41 may be different in the plane of the solvent collecting member 40. For example, when a panel having a plurality of surfaces is taken from the substrate W, the width of the joining margin 41b of the dividing member 41 differs between the portion overlapping and the portion not overlapping with each panel in the substrate W on the mounting table 20 in a plan view. You may do so. Specifically, the width W1 of the joining margin 41b may be increased in the portion overlapping the boundary between the panels in the substrate W and decreased in the portion not overlapping in the plan view. More specifically, the width W1 of the joining margin 41b may be increased in the portion overlapping the boundary between the coating regions of the solution in the panel in the substrate W and decreased in the portion not overlapping in the plan view. Good. As a result, at least the portion of the solvent collecting member 40 facing the panel in the substrate W can be uniformly cooled while maintaining the strength of the solvent collecting member 40.

図8及び図9は、分割部材41の接合方法の他の例を説明するための図である。
分割部材41の側端同士の接合は、以下のようにしてもよい。すなわち、図8に示すように、一方の分割部材41の側端に設けられた接合しろ41bの上面と、他方の分割部材41の側端に設けられた接合しろ41bの下面とを当接させた状態で、スポット溶接することにより、分割部材41の接合を行ってもよい。上記スポット溶接により、分割部材41間に溶接部Sが形成され、この溶接部Sによって、図9に示すように、分割部材41同士は接続される。
8 and 9 are views for explaining another example of the joining method of the dividing member 41.
The side ends of the dividing member 41 may be joined to each other as follows. That is, as shown in FIG. 8, the upper surface of the joining margin 41b provided at the side end of one dividing member 41 and the lower surface of the joining margin 41b provided at the side end of the other dividing member 41 are brought into contact with each other. The split member 41 may be joined by spot welding in this state. By the spot welding, a welded portion S is formed between the divided members 41, and the divided members 41 are connected to each other by the welded portion S as shown in FIG.

このような接合を行うと、平面視において、分割部材41の接合しろ41bと基板Wとが重なる部分の面積が小さくなるため、溶媒の乾燥状態を面内でより均一にすることができる。 When such joining is performed, the area of the portion where the joining margin 41b of the dividing member 41 and the substrate W overlap is reduced in a plan view, so that the dry state of the solvent can be made more uniform in the plane.

なお、本例においても、分割部材41の接合しろ41bの幅を、溶媒捕集部材40の面内で異ならせてもよい。 In this example as well, the width of the joining margin 41b of the dividing member 41 may be different in the plane of the solvent collecting member 40.

図10及び図11は、分割部材41の接合方法の別の例を説明するための図である。
分割部材41の側端同士の接合は、図10及び図11に示すように、接合部品J1を用いて行うようにしてもよい。具体的には、分割部材41の接合しろ41bに形成されたネジJ11の挿通孔41c同士が連通するように分割部材41の接合しろ41b同士を当接させ、連通した挿通孔41cに挿通したネジJ11と当該ネジJ11に螺合するナットJ12とで、分割部材41の接合を行ってもよい。
10 and 11 are diagrams for explaining another example of the method of joining the dividing member 41.
As shown in FIGS. 10 and 11, the side ends of the dividing member 41 may be joined to each other by using the joining component J1. Specifically, a screw formed in the joining margin 41b of the dividing member 41 so that the insertion holes 41c of the screw J11 communicate with each other so that the joining margins 41b of the dividing member 41 are brought into contact with each other and inserted into the communicating insertion hole 41c. The dividing member 41 may be joined by the J11 and the nut J12 screwed into the screw J11.

この接合方法でも、平面視において、分割部材41の接合しろ41bと基板Wとが重なる部分の面積が小さくなるため、溶媒の乾燥状態を面内でより均一にすることができる。 Even with this joining method, the area of the portion where the joining margin 41b of the dividing member 41 and the substrate W overlap is small in a plan view, so that the dry state of the solvent can be made more uniform in the plane.

なお、本例においても、分割部材41の接合しろ41bの幅を、溶媒捕集部材40の面内で異ならせてもよい。 In this example as well, the width of the joining margin 41b of the dividing member 41 may be different in the plane of the solvent collecting member 40.

図12及び図13は、分割部材41の接合方法のさらに別の例を説明するための図である。
分割部材41の側端同士の接合に用いる接合部品J2は、図12及び図13に示すようなものであってもよい。接合部品J2は、接合しろ41b(図6参照)を有していない分割部材41の側端面同士を突き合わせた状態で、2つの分割部材41を跨るように当該分割部材41の上面及び下面に配設される平板部材J21を有する。また、接合部品J2は、さらに、分割部材41の上面に配設された平板部材J21、一方の分割部材41の貫通孔41a及び分割部材41の下面に配設された平板部材J21を貫通するネジJ22と、ネジJ22に螺合するナットJ23とを有する。さらに、接合部品J2は、分割部材41の上面に配設された平板部材J21、他方の分割部材41の貫通孔41a及び分割部材41の下面に配設された平板部材J21を貫通するネジJ24と、ネジJ24に螺合するナットJ25とを有する。
分割部材41の側端面同士を突き合わせた状態で、2つの分割部材41を跨るように当該分割部材41の上下面に配設した平板部材J21を、ネジJ22及びナットJ23とネジJ24及びJ24とで挟み込むことにより、分割部材41は接合される。
12 and 13 are views for explaining still another example of the method of joining the dividing member 41.
The joining component J2 used for joining the side ends of the dividing member 41 may be as shown in FIGS. 12 and 13. The joining component J2 is arranged on the upper surface and the lower surface of the dividing member 41 so as to straddle the two dividing members 41 in a state where the side end faces of the dividing member 41 having no joining margin 41b (see FIG. 6) are butted against each other. It has a flat plate member J21 to be installed. Further, the joining component J2 is a screw that penetrates the flat plate member J21 arranged on the upper surface of the dividing member 41, the through hole 41a of one dividing member 41, and the flat plate member J21 arranged on the lower surface of the dividing member 41. It has a J22 and a nut J23 screwed into a screw J22. Further, the joining component J2 includes a flat plate member J21 arranged on the upper surface of the dividing member 41, a through hole 41a of the other dividing member 41, and a screw J24 penetrating the flat plate member J21 arranged on the lower surface of the dividing member 41. , With a nut J25 screwed into the screw J24.
With the side end faces of the dividing member 41 abutting against each other, the flat plate member J21 arranged on the upper and lower surfaces of the dividing member 41 so as to straddle the two dividing member 41 is formed by using screws J22 and nut J23 and screws J24 and J24. By sandwiching, the dividing member 41 is joined.

この接合方法では、分割部材41に接合しろ41が設けられていないため、溶媒の乾燥状態を面内でより均一にすることができる。さらに、分割部材41から載置台20上の基板Wまでの距離が分割部材41間で等しいため、溶媒の乾燥状態を面内でさらに均一にすることができる。
ただし、接合部品J2を用いる場合でも分割部材41に接合しろを設けてもよい。
In this joining method, since the dividing member 41 is not provided with the joining margin 41, the dry state of the solvent can be made more uniform in the plane. Further, since the distance from the dividing member 41 to the substrate W on the mounting table 20 is equal between the dividing members 41, the dry state of the solvent can be made more uniform in the plane.
However, even when the joining component J2 is used, a joining margin may be provided in the dividing member 41.

なお、以上の説明では、各分割部材41の、平面視における単位面積当たりの熱容量は等しいものとした。ただし、各分割部材41の上記熱容量は互いに異なっていてもよい。 In the above description, it is assumed that the heat capacities of the divided members 41 per unit area in the plan view are the same. However, the heat capacities of the divided members 41 may be different from each other.

例えば、各分割部材41の上記熱容量が、当該分割部材41と対向する基板Wの部分に応じて異なっていてもよい。具体的には、例えば、図14に示すように、基板中央部と対向する分割部材41と、基板角部と対向する分割部材41とで、上記熱容量を異ならせてもよい。より具体的には、基板中央部と対向する分割部材41の上記熱容量を、基板周縁部と対向する分割部材41の上記熱容量より小さくしてもよい。 For example, the heat capacity of each dividing member 41 may differ depending on the portion of the substrate W facing the dividing member 41. Specifically, for example, as shown in FIG. 14, a dividing member 41 1 facing the substrate central portion, with the dividing member 41 2 facing the substrate corners, it may have different the heat capacity. More specifically, the heat capacity of the dividing member 41 1 facing the substrate central portion may be smaller than the heat capacity of the dividing member 41 2 facing the substrate periphery.

上記熱容量が小さい方が冷却されやすく、溶媒の吸着能力が高いため、上述のように上記熱容量を異ならせた分割部材41を用いることで、基板角部よりも溶媒の乾燥時間が長くなる傾向にある基板中央部からの溶媒を高効率で捕集することができる。したがって、基板W上の溶液の乾燥が完了するタイミングを基板中央部と基板角部で等しくすることができるので、溶媒の乾燥状態を面内でさらに均一にすることができる。 The smaller the heat capacity, the easier it is to cool and the higher the adsorption capacity of the solvent. Therefore, by using the dividing members 41 having different heat capacities as described above, the drying time of the solvent tends to be longer than that at the corners of the substrate. The solvent from the center of a certain substrate can be collected with high efficiency. Therefore, since the timing at which the drying of the solution on the substrate W is completed can be made equal at the center portion of the substrate and the corner portion of the substrate, the drying state of the solvent can be further made uniform in the plane.

分割部材41の平面視における単位面積当たりの熱容量は、当該分割部材41の開口率や板厚を調整することで変更することができる。具体的には、例えば、開口率を大きくしたり薄くしたりすることで上記熱容量を小さくすることができる。 The heat capacity per unit area of the dividing member 41 in a plan view can be changed by adjusting the opening ratio and the plate thickness of the dividing member 41. Specifically, for example, the heat capacity can be reduced by increasing or decreasing the aperture ratio.

なお、分割部材41の線幅L2は、面内で一定とせず、フレーム50の溶接される部分についてのみ太くするようにしてもよい。具体的には、分割部材41においてフレーム50と溶接される部分の線幅は、0.2mmとし、それ以外の部分の線幅を0.1mmとするようにしてもよい。これにより、分割部材41とフレーム50との溶接の際に、分割部材41が破損するのを確実に防止することができる。このように線幅を分割部材41の面内で異ならせる場合、溶媒捕集部材40における、線幅が細く溶媒の吸着効果が高い領域が、載置台20における基板Wが搭載される領域よりも、大面積になるようにし、前者の領域で後者の領域全体を覆うようにするとよい。 The line width L2 of the dividing member 41 may not be constant in the plane, and may be thickened only at the welded portion of the frame 50. Specifically, the line width of the portion of the dividing member 41 to be welded to the frame 50 may be 0.2 mm, and the line width of the other portion may be 0.1 mm. As a result, it is possible to reliably prevent the split member 41 from being damaged during welding of the split member 41 and the frame 50. When the line widths are different in the plane of the dividing member 41 in this way, the area of the solvent collecting member 40 where the line width is narrow and the solvent adsorption effect is high is larger than the area where the substrate W is mounted on the mounting table 20. The area should be large, and the former area should cover the entire latter area.

今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The above-described embodiment may be omitted, replaced, or changed in various forms without departing from the scope of the appended claims and the gist thereof.

1 減圧乾燥装置
10 チャンバ
20 載置台
40 溶媒捕集部材
41 溶媒捕集分割部材
W 基板
1 Vacuum drying device 10 Chamber 20 Mounting table 40 Solvent collecting member 41 Solvent collecting and dividing member W Substrate

Claims (10)

基板上の溶液を減圧下で乾燥させる減圧乾燥装置であって、
前記基板を収容する容器と、
前記容器内に設けられ、前記基板が載置される載置台と、
前記載置台に載置された前記基板と対向するように前記容器内に設けられ、当該基板から気化した前記溶液中の溶媒を一時的に捕集する溶媒捕集部材とを備え、
前記溶媒捕集部材は、
複数の開口を有する平板状に形成された、溶媒捕集分割部材を複数有し、
前記複数の溶媒捕集分割部材それぞれの平面視における側端同士を接合させてなる、減圧乾燥装置。
A vacuum drying device that dries the solution on the substrate under reduced pressure.
A container for accommodating the substrate and
A mounting table provided in the container on which the substrate is mounted, and
A solvent collecting member provided in the container so as to face the substrate placed on the above-mentioned stand and temporarily collecting the solvent in the solution vaporized from the substrate is provided.
The solvent collecting member is
It has a plurality of solvent collecting and dividing members formed in a flat plate shape having a plurality of openings.
A vacuum drying device for joining the side ends of each of the plurality of solvent collecting and dividing members in a plan view.
前記複数の溶媒捕集分割部材それぞれの平面視における側端同士の接合は、レーザ溶接により行われる、請求項1に記載の減圧乾燥装置。 The vacuum drying apparatus according to claim 1, wherein the joining of the side ends of each of the plurality of solvent collecting and dividing members in a plan view is performed by laser welding. 前記溶媒捕集分割部材の前記側端の接合しろは、0.15mm以上1mm以下である、請求項2に記載の減圧乾燥装置。 The vacuum drying apparatus according to claim 2, wherein the bonding margin at the side end of the solvent collecting and dividing member is 0.15 mm or more and 1 mm or less. 前記複数の溶媒捕集分割部材それぞれの平面視における側端同士の接合は、スポット溶接により行われる、請求項1に記載の減圧乾燥装置。 The vacuum drying apparatus according to claim 1, wherein the side ends of each of the plurality of solvent collecting and dividing members are joined by spot welding in a plan view. 互いに隣接する前記溶媒捕集分割部材の一方の前記側端の上面と、他方の前記側端の下面とが溶接される、請求項4に記載の減圧乾燥装置。 The vacuum drying apparatus according to claim 4, wherein the upper surface of one of the side ends of the solvent collecting and dividing members adjacent to each other and the lower surface of the other side end are welded. 前記複数の溶媒捕集分割部材それぞれの平面視における側端同士の接合は、接合部品を用いて行われる、請求項1に記載の減圧乾燥装置。 The vacuum drying apparatus according to claim 1, wherein the side ends of each of the plurality of solvent collecting and dividing members are joined to each other in a plan view by using the joining parts. 前記溶媒捕集分割部材の前記側端の接合しろは、前記溶媒捕集部材の面内で異なっている、請求項1〜6のいずれか1項に記載の減圧乾燥装置。 The vacuum drying apparatus according to any one of claims 1 to 6, wherein the bonding margins at the side ends of the solvent collecting and dividing member are different in the plane of the solvent collecting member. 前記複数の溶媒捕集分割部材それぞれの単位面積当たりの熱容量が互いに異なる、請求項1〜7のいずれか1項に記載の減圧乾燥装置。 The vacuum drying apparatus according to any one of claims 1 to 7, wherein the heat capacities per unit area of each of the plurality of solvent collecting and dividing members are different from each other. 前記溶媒捕集部材が固定される枠体を備え、
前記溶媒捕集部材は、前記枠体が前記基板と対向する領域に位置しないように、支持される、請求項1〜8のいずれか1項に記載の減圧乾燥装置。
A frame body to which the solvent collecting member is fixed is provided.
The vacuum drying apparatus according to any one of claims 1 to 8, wherein the solvent collecting member is supported so that the frame body is not located in a region facing the substrate.
基板上の溶液から気化した当該溶液中の溶媒を一時的に捕集する溶媒捕集部材の製造方法であって、
複数の板材それぞれに複数の開口を形成し、複数の溶媒捕集分割材を形成する工程と、
前記複数の溶媒捕集分割部材それぞれの平面視における側端同士を接合させ、前記複数の溶媒捕集分割部材を連結させる工程を含む、溶媒捕集部材の製造方法。
A method for manufacturing a solvent collecting member that temporarily collects a solvent in a solution vaporized from a solution on a substrate.
A process of forming a plurality of openings in each of a plurality of plate materials to form a plurality of solvent collecting and dividing materials, and
A method for producing a solvent collecting member, which comprises a step of joining the side ends of each of the plurality of solvent collecting and dividing members in a plan view and connecting the plurality of solvent collecting and dividing members.
JP2020037750A 2019-05-17 2020-03-05 Vacuum drying device and method for manufacturing solvent collecting member Pending JP2020190405A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010376827.8A CN111952483A (en) 2019-05-17 2020-05-07 Decompression drying device and method for manufacturing solvent collection member
KR1020200054496A KR20200132705A (en) 2019-05-17 2020-05-07 Reduced-pressure drying apparatus and manufacturing method of collecting member
TW109115804A TW202101530A (en) 2019-05-17 2020-05-13 Reduced-pressure drying apparatus and method for manufacturing solvent collecting member comprising a solvent collecting member that includes a plurality of solvent collecting and dividing members that are formed in a plate shape having a plurality of openings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019093439 2019-05-17
JP2019093439 2019-05-17

Publications (1)

Publication Number Publication Date
JP2020190405A true JP2020190405A (en) 2020-11-26

Family

ID=73454459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020037750A Pending JP2020190405A (en) 2019-05-17 2020-03-05 Vacuum drying device and method for manufacturing solvent collecting member

Country Status (3)

Country Link
JP (1) JP2020190405A (en)
KR (1) KR20200132705A (en)
TW (1) TW202101530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113915971A (en) * 2021-12-09 2022-01-11 中国华能集团清洁能源技术研究院有限公司 Vacuum flash evaporation system and vacuum flash evaporation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059597A (en) 2016-10-07 2018-04-12 大日本印刷株式会社 Cold and heat insulation box

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113915971A (en) * 2021-12-09 2022-01-11 中国华能集团清洁能源技术研究院有限公司 Vacuum flash evaporation system and vacuum flash evaporation method

Also Published As

Publication number Publication date
KR20200132705A (en) 2020-11-25
TW202101530A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
JP6328434B2 (en) Drying apparatus and drying processing method
KR101994874B1 (en) Drying apparatus and drying method
TWI666418B (en) Decompression drying device
JP6114636B2 (en) Drying apparatus and drying processing method
KR20200134157A (en) Reduced pressure drying apparatus
JP6639175B2 (en) Drying apparatus and drying method
JP2020190405A (en) Vacuum drying device and method for manufacturing solvent collecting member
TWI766997B (en) Vacuum drying device and vacuum drying method
CN107878044B (en) Decompression drying device
JP7285125B2 (en) Vacuum dryer
KR20190017699A (en) Pressure reduction drying apparatus
JP2021167696A (en) Reduced pressure drying apparatus and reduced pressure drying method
TWI837341B (en) Reduced pressure drying device
CN111952483A (en) Decompression drying device and method for manufacturing solvent collection member
WO2022234716A1 (en) Depressurization drying device, depressurization drying method, and method for shortening time required for depressurization drying process
JP2022170308A (en) Vacuum drying device and vacuum drying treatment method
JP2022172691A (en) Vacuum dryer, vacuum drying method, and method for shortening the time for vacuum drying process
KR102206766B1 (en) Reduced-pressure drying apparatus
JP2022172679A (en) Vacuum dryer, vacuum drying method, and method for shortening the time for vacuum drying process
JP2022172684A (en) Vacuum dryer, vacuum drying method, and method for shortening the time for vacuum drying process
JP2020060367A (en) Drying device and drying treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240319