JP2020190132A - Building component including aluminum plate-like structure, repairing water discharge drain, and manufacturing method of the same - Google Patents

Building component including aluminum plate-like structure, repairing water discharge drain, and manufacturing method of the same Download PDF

Info

Publication number
JP2020190132A
JP2020190132A JP2019096270A JP2019096270A JP2020190132A JP 2020190132 A JP2020190132 A JP 2020190132A JP 2019096270 A JP2019096270 A JP 2019096270A JP 2019096270 A JP2019096270 A JP 2019096270A JP 2020190132 A JP2020190132 A JP 2020190132A
Authority
JP
Japan
Prior art keywords
aluminum plate
aluminum
building member
manufacturing
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019096270A
Other languages
Japanese (ja)
Other versions
JP7369544B2 (en
Inventor
章 永田
Akira Nagata
章 永田
星河 浩介
Kosuke Hoshikawa
浩介 星河
雄輝 久保
Yuki Kubo
雄輝 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2019096270A priority Critical patent/JP7369544B2/en
Publication of JP2020190132A publication Critical patent/JP2020190132A/en
Application granted granted Critical
Publication of JP7369544B2 publication Critical patent/JP7369544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

To provide a building component including an aluminum plate-like structure with less work hardening in a cut surface vicinity, a repairing water discharge drain and a manufacturing method of the same.SOLUTION: In a building material including an aluminum plate-like structure, the aluminum plate-like structure has purity of 99.99 wt% or more, and has a cut surface and a surface adjacent to the cut surface. As to at least a part of the cut surface, a work hardening rate of a cut surface vicinity expressed by the following formula (1) is 110% or less. "an average value of Vickers hardness of four points on the surface that are selected at random at points within 0.3 mm from a boundary between the surface and the cut surface"/"an average value of Vickers hardness of four points on the surface that are selected at random at points within 10.0 mm from the boundary"×100 (1).SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム板状構造体を含む建築部材及び改修排水ドレン並びにそれらの製造方法に関する。 The present invention relates to building members including aluminum plate-like structures, repair drainage drains, and methods for manufacturing them.

アルミニウムは、建築部材、例えば建築物を補修するための建築部材として広く用いられている。そのような建築部材として、例えば以下のような改修排水ドレンが挙げられる。 Aluminum is widely used as a building member, for example, a building member for repairing a building. Examples of such a building member include the following repair drainage drains.

屋上、陸屋根、廊下、バルコニー等(以下、「屋上等」と呼ぶことがある)の建物平坦部に降った雨水を集めて竪樋等に流すために、屋上等には通常、排水ドレンが設けられている。 A drainage drain is usually provided on the rooftop, etc. in order to collect rainwater that has fallen on the flat part of the building such as the rooftop, flat roof, corridor, balcony, etc. Has been done.

排水ドレンには、屋上等の下に設けられた竪樋等に雨水を流す縦引き排水用の排水ドレンと、屋上等の横に設けられた竪樋等に雨水を引込む横引き排水用の排水ドレンとがある。 The drainage drain includes a drainage drain for vertical drainage that allows rainwater to flow into a gutter or the like provided under the rooftop, and a drainage for horizontal drainage that draws rainwater into a gutter or the like provided next to the rooftop or the like. There is a drain.

排水ドレンは通常、鋳鉄、ステンレス又はアルミニウム等の材質でできており、焼き付け塗装等の塗装が施されているものもあり、屋上等に種々の方法で固定されている。 The drainage drain is usually made of a material such as cast iron, stainless steel, or aluminum, and some of them are painted by baking finish or the like, and are fixed to the rooftop or the like by various methods.

しかしながら、時間の経過とともに、排水ドレン自体が劣化したり、排水ドレンを屋上等に固定してある接触場所等が浸食を受けたりして、雨水が正常に竪桶等に流れなくなったり、排水ドレンの周辺が汚くなったり、また排水ドレンの腐食部等から漏水したりすることがある。 However, with the passage of time, the drainage drain itself deteriorates, the contact area where the drainage drain is fixed on the roof, etc. is eroded, and rainwater does not flow normally to the tub, etc., or the drainage drain The area around the drain may become dirty, or water may leak from the corroded part of the drainage drain.

このような劣化した排水ドレンや排水ドレン周辺を補修するために、例えば特許文献1に開示されているように、改修排水ドレンが広く用いられている。図2に、改修排水ドレンの一例を示す。図2に示すように、改修排水ドレン20は、板状構造体22の略中央部に穴が開けられており、その穴から板状構造体22の片面側に中空管24が伸びている。改修排水ドレン設置前の排水ドレン下地の概略断面図を図3に、改修排水ドレンを設置した排水ドレン下地の概略断面図を図4に示す。図3に示すように、改修排水ドレン設置前の排水ドレン下地32には、例えば平坦部34及び窪み部36があり、排水口30を備える既設ドレン管38が配置されている。図4に示すように、中空管24を、補修しようとする排水ドレンの既設ドレン管38に差し込み、板状構造体22をハンマー等で叩くことにより、板状構造体22を排水ドレン下地32の形状になじませ、密着させることで排水ドレンを補修できる。そのため、排水ドレン下地32の形状に合うように容易に変形し、且つ密着する(すなわち、下地追従性が高い)板状構造体22が必要である。 In order to repair such a deteriorated drainage drain and the vicinity of the drainage drain, for example, as disclosed in Patent Document 1, a repair drainage drain is widely used. FIG. 2 shows an example of the repair drainage drain. As shown in FIG. 2, the repair drainage drain 20 has a hole in the substantially central portion of the plate-shaped structure 22, and a hollow tube 24 extends from the hole to one side of the plate-shaped structure 22. .. FIG. 3 shows a schematic cross-sectional view of the drainage drain base before the repair drainage drain is installed, and FIG. 4 shows a schematic cross-sectional view of the drainage drain base on which the repair drainage drain is installed. As shown in FIG. 3, the drainage drain base 32 before the repair drainage drain is installed has, for example, a flat portion 34 and a recessed portion 36, and an existing drain pipe 38 having a drainage port 30 is arranged. As shown in FIG. 4, the hollow pipe 24 is inserted into the existing drain pipe 38 of the drainage drain to be repaired, and the plate-shaped structure 22 is hit with a hammer or the like to bring the plate-shaped structure 22 to the drainage drain base 32. The drainage drain can be repaired by adapting it to the shape of and making it adhere to it. Therefore, there is a need for a plate-like structure 22 that easily deforms and adheres to the shape of the drainage drain base 32 (that is, has high base followability).

このような板状構造体としてアルミニウムを用いた改修排水ドレンが用いられている。例えば特許文献2には、改修排水ドレンの板状構造体として、アルミニウム金属メッシュを含み、当該アルミニウム金属メッシュをゴムで被覆したものが開示されている。 A repair drainage drain using aluminum is used as such a plate-like structure. For example, Patent Document 2 discloses a plate-like structure of a repair drainage drain containing an aluminum metal mesh and the aluminum metal mesh coated with rubber.

特許文献3には、改修排水ドレンの板状構造体として工業用純アルミニウムを用いるものが開示されている。 Patent Document 3 discloses a structure using industrial pure aluminum as a plate-like structure of a repair drainage drain.

特開2014−101643号公報Japanese Unexamined Patent Publication No. 2014-101634 特開2012−202048号公報Japanese Unexamined Patent Publication No. 2012-202048 特開2015−59333号公報JP-A-2015-59333

改修排水ドレンのような建築部材に用いるアルミニウム板状構造体は、アルミニウム圧延板にシャー切断やプレス加工等の外周切断加工を施し、プレス加工等により開口部を形成して作製されるが、通常、シャー切断やプレス加工等のように機械的な力を用いる方法で形成した切断面は、その近傍が加工硬化しており、切断面近傍の柔軟性が低下している。そのため、アルミニウム板状構造体を用いた建築部材を建築物の改修等に用いる際、建築物の形状に合わせて建築部材を変形させようとすると、切断面近傍が硬く変形させることが難しいことがあり、あるいは切断面近傍が破損することがある。 An aluminum plate-like structure used for a building member such as a repair drainage drain is manufactured by subjecting an aluminum rolled plate to outer circumference cutting such as shear cutting or press working to form an opening by pressing or the like. , The cut surface formed by a method using mechanical force such as shear cutting or press working is work-hardened in the vicinity thereof, and the flexibility in the vicinity of the cut surface is reduced. Therefore, when a building member using an aluminum plate-like structure is used for repairing a building or the like, if the building member is to be deformed according to the shape of the building, it is difficult to deform the vicinity of the cut surface hard. Yes, or the vicinity of the cut surface may be damaged.

本発明は、このような状況を鑑みてなされたものであり、その目的は、切断面近傍の加工硬化が小さいアルミニウム板状構造体を含む建築部材及び改修排水ドレン並びにそれらの製造方法を提供することである。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a building member including an aluminum plate-like structure having a small work hardening near a cut surface, a repair drainage drain, and a method for manufacturing the same. That is.

本発明の態様1は、
アルミニウム板状構造体を含む建築部材であって、
前記アルミニウム板状構造体は、Fe、Si及びCuを含み、純度が99.99質量%以上であり、
前記アルミニウム板状構造体は、切断部と当該切断面に隣接する表面とを有し、
前記切断面の少なくとも一部について、下記(1)式で表わされる切断面近傍の加工硬化率が110%以下である、建築部材である。

(前記表面と前記切断面との境界から0.3mm以内の位置で無作為に選択した前記表面上の4箇所のビッカース硬度の平均値)÷(前記境界から10.0mmの位置で無作為に選択した前記表面上の4箇所のビッカース硬度の平均値)×100 (1)
Aspect 1 of the present invention is
A building member including an aluminum plate-like structure.
The aluminum plate-like structure contains Fe, Si and Cu, and has a purity of 99.99% by mass or more.
The aluminum plate-like structure has a cut portion and a surface adjacent to the cut surface.
A building member having a work hardening rate of 110% or less in the vicinity of the cut surface represented by the following equation (1) for at least a part of the cut surface.

(Mean value of four Vickers hardnesses randomly selected within 0.3 mm from the boundary between the surface and the cut surface) ÷ (Randomly selected at a position 10.0 mm from the boundary) Average value of Vickers hardness at 4 selected locations on the surface) × 100 (1)

本発明の態様2は、前記純度が99.997質量%以上である態様1に記載の建築部材である。 Aspect 2 of the present invention is the building member according to Aspect 1, wherein the purity is 99.997% by mass or more.

本発明の態様3は、前記アルミニウム板状構造体が調質処理材である態様1又は2に記載の建築部材である。 Aspect 3 of the present invention is the building member according to Aspect 1 or 2, wherein the aluminum plate-like structure is a tempering material.

本発明の態様4は、前記切断面の全てについて、前記加工硬化率が110%以下である態様1〜3のいずれかに記載の建築部材である。 Aspect 4 of the present invention is the building member according to any one of Aspects 1 to 3 in which the work hardening rate is 110% or less for all of the cut surfaces.

本発明の態様5は、前記切断面の前記少なくとも一部が開口部を規定する態様1〜4のいずれかに記載の建築部材である。 Aspect 5 of the present invention is the building member according to any one of aspects 1 to 4, wherein at least a part of the cut surface defines an opening.

本発明の態様6は、前記アルミニウム板状構造体が、一辺200mm以上600mm以下の略四角形又は直径200mm以上600mm以下の略円形であり、且つ前記開口部が直径30mm以上200mm以下の略円形である態様5に記載の建築部材である。 In aspect 6 of the present invention, the aluminum plate-like structure is a substantially quadrangular shape having a side of 200 mm or more and 600 mm or less or a substantially circular shape having a diameter of 200 mm or more and 600 mm or less, and the opening is a substantially circular shape having a diameter of 30 mm or more and 200 mm or less. The building member according to the fifth aspect.

本発明の態様7は、態様5又は6に記載の建築部材である改修排水ドレンであって、前記開口部と流体連通するように中空管の一方の端部が前記アルミニウム板状構造体に固着されている改修排水ドレンである。 Aspect 7 of the present invention is a repair drainage drain which is a building member according to aspect 5 or 6, and one end of a hollow pipe is formed into the aluminum plate-like structure so as to communicate fluid with the opening. It is a fixed repair drainage drain.

本発明の態様8は、前記中空管であるアルミニウム中空管の一方の端部が前記アルミニウム板状構造体に溶接されている態様7に記載の改修排水ドレンである。 Aspect 8 of the present invention is the repair drainage drain according to aspect 7, wherein one end of the aluminum hollow pipe, which is the hollow pipe, is welded to the aluminum plate-like structure.

本発明の態様9は、アルミニウム板状構造体を含む建築部材の製造方法であって、
純度が99.99質量%以上であるアルミニウム圧延板を準備する工程と、
レーザー切断により前記アルミニウム圧延板の少なくとも一部を切断して前記アルミニウム板状構造体を得る切断加工工程と
を含む、建築部材の製造方法である。
Aspect 9 of the present invention is a method for manufacturing a building member including an aluminum plate-like structure.
The process of preparing a rolled aluminum plate with a purity of 99.99% by mass or more, and
A method for manufacturing a building member, which includes a cutting process of cutting at least a part of the rolled aluminum plate by laser cutting to obtain the aluminum plate-like structure.

本発明の態様10は、前記純度が99.997質量%以上である態様9に記載の建築部材の製造方法である。 Aspect 10 of the present invention is the method for manufacturing a building member according to aspect 9, wherein the purity is 99.997% by mass or more.

本発明の態様11は、前記アルミニウム圧延板又は前記アルミニウム板状構造体を、300℃以上600℃以下の温度で、1時間以上24時間以下保持する焼鈍工程を含む態様9又は10に記載の建築部材の製造方法である。 Aspect 11 of the present invention is the construction according to aspect 9 or 10, which includes an annealing step of holding the rolled aluminum plate or the aluminum plate-like structure at a temperature of 300 ° C. or higher and 600 ° C. or lower for 1 hour or more and 24 hours or less. It is a method of manufacturing a member.

本発明の態様12は、前記切断加工工程において、前記アルミニウム圧延板の全ての切断をレーザー切断により行う態様9〜11のいずれかに記載の建築部材の製造方法である。 Aspect 12 of the present invention is the method for manufacturing a building member according to any one of aspects 9 to 11, wherein in the cutting process, all cutting of the rolled aluminum plate is performed by laser cutting.

本発明の態様13は、前記切断加工工程において、1つの前記アルミニウム圧延板から2つ以上の前記アルミニウム板状構造体を得る態様9〜12のいずれか1項に記載の建築部材の製造方法。 Aspect 13 of the present invention is the method for manufacturing a building member according to any one of aspects 9 to 12 for obtaining two or more of the aluminum plate-like structures from one of the rolled aluminum plates in the cutting process.

本発明の態様14は、前記切断加工工程において、レーザー切断により前記アルミニウム板状構造体に開口部を設ける態様9〜13のいずれかに記載の建築部材の製造方法である。 Aspect 14 of the present invention is the method for manufacturing a building member according to any one of aspects 9 to 13 in which an opening is provided in the aluminum plate-like structure by laser cutting in the cutting process.

本発明の態様15は、前記切断加工工程において、一辺200mm以上600mm以下の略四角形又は直径200mm以上600mm以下の略円形であり、且つ前記開口部が直径30mm以上200mm以下の略円形である前記アルミニウム板状構造体を得る態様14に記載の建築部材の製造方法である。 Aspect 15 of the present invention is the aluminum having a substantially quadrangular shape having a side of 200 mm or more and 600 mm or less or a substantially circular shape having a diameter of 200 mm or more and 600 mm or less and the opening having a diameter of 30 mm or more and 200 mm or less in the cutting process. The method for manufacturing a building member according to aspect 14, wherein a plate-shaped structure is obtained.

本発明の態様16は、態様9〜15のいずれかに記載の建築部材である改修排水ドレンの製造方法であって、前記アルミニウム板状構造体に、前記開口部と流体連通するように中空管の一方の端部を固着する中空管固着工程を含む、改修排水ドレンの製造方法である。 Aspect 16 of the present invention is a method for manufacturing a repair drainage drain, which is a building member according to any one of aspects 9 to 15, and is hollow so as to allow fluid communication with the opening in the aluminum plate-like structure. It is a method of manufacturing a repair drainage drain including a hollow pipe fixing step of fixing one end of a pipe.

本発明の態様17は、前記中空管固着工程において、前記中空管としてアルミニウム中空管を用い、前記アルミニウム板状構造体と前記アルミニウム中空管の一方の端部とを溶接することにより、前記アルミニウム板状構造体に前記アルミニウム中空管の一方の端部を固着する態様16に記載の改修排水ドレンの製造方法である。 In aspect 17 of the present invention, in the hollow pipe fixing step, an aluminum hollow pipe is used as the hollow pipe, and the aluminum plate-like structure and one end of the aluminum hollow pipe are welded to each other. The method for manufacturing a repair drainage drain according to the 16th aspect, wherein one end of the aluminum hollow pipe is fixed to the aluminum plate-like structure.

本発明の態様18は、前記溶接がレーザー溶接である態様17に記載の改修排水ドレンの製造方法である。 Aspect 18 of the present invention is the method for manufacturing a repair drainage drain according to aspect 17, wherein the welding is laser welding.

本発明により、切断面近傍の加工硬化が小さいアルミニウム板状構造体を含む建築部材及び改修排水ドレン並びにそれらの製造方法が提供される。 INDUSTRIAL APPLICABILITY The present invention provides a building member including an aluminum plate-like structure having a small work hardening in the vicinity of a cut surface, a repair drainage drain, and a method for manufacturing the same.

図1は、アルミニウム板状構造体の一例を示す概略的平面図である。FIG. 1 is a schematic plan view showing an example of an aluminum plate-like structure. 図2は、改修排水ドレンの一例を示す概略斜視図である。FIG. 2 is a schematic perspective view showing an example of the repair drainage drain. 図3は、排水ドレン下地の一例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a drainage drain base. 図4は、改修排水ドレンの中空管が、排水ドレン管の内部まで差し込まれた状態の一例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing an example of a state in which the hollow pipe of the repair drainage drain is inserted into the inside of the drainage drain pipe.

1.アルミニウム板状構造体を含む建築部材
本発明の実施形態に係る建築部材は、
アルミニウム板状構造体を含み、
純度が99.99質量%以上であり、
アルミニウム板状構造体は、切断部と当該切断面に隣接する表面とを有し、
切断面の少なくとも一部について、下記(1)式で表わされる切断面近傍の加工硬化率が110%以下である、建築部材である。

(上記表面と上記切断面との境界から0.3mm以内の位置で無作為に選択した上記表面上の4箇所のビッカース硬度の平均値)÷(当該境界から10.0mmの位置で無作為に選択した上記表面上の4箇所のビッカース硬度の平均値)×100 (1)
1. 1. Building members including an aluminum plate-like structure The building members according to the embodiment of the present invention are
Including aluminum plate-like structure,
The purity is 99.99% by mass or more,
The aluminum plate-like structure has a cut portion and a surface adjacent to the cut surface.
It is a building member having a work hardening rate of 110% or less in the vicinity of the cut surface represented by the following equation (1) for at least a part of the cut surface.

(Mean value of Vickers hardness at 4 locations on the surface randomly selected within 0.3 mm from the boundary between the surface and the cut surface) ÷ (Randomly selected at a position 10.0 mm from the boundary) Average value of Vickers hardness at 4 selected locations on the above surface) x 100 (1)

本発明の実施形態に係る建築部材は、柔軟性に優れた高純度アルミニウムを用いることに加えて、レーザー切断を施してアルミニウム圧延板の少なくとも一部を切断してアルミニウム板状構造体を作製することにより、レーザー切断により形成した切断面近傍の加工硬化が低減されている。そのため、本発明の実施形態に係る建築部材は、変形加工を加えた際、切断面近傍が変形し易く、破損しにくい。以下、本発明の実施形態に係る建築部材として、改修排水ドレンを例にして、本発明の実施形態に係る建築部材をより具体的に説明する。 As the building member according to the embodiment of the present invention, in addition to using high-purity aluminum having excellent flexibility, at least a part of the rolled aluminum plate is cut by laser cutting to produce an aluminum plate-like structure. As a result, work hardening in the vicinity of the cut surface formed by laser cutting is reduced. Therefore, when the building member according to the embodiment of the present invention is deformed, the vicinity of the cut surface is easily deformed and is not easily damaged. Hereinafter, the building member according to the embodiment of the present invention will be described more specifically by taking the repair drainage drain as an example as the building member according to the embodiment of the present invention.

従来、改修排水ドレンの板状構造体として工業用純アルミニウムを適用しているものが提案されている。しかし、このような工業用純アルミニウムは、ホール・エルー法等の電気分解法により製造されるため、通常は純度が99質量%程度であり、すなわち1質量%に近い不純物元素を含む。例えば、JIS規格の合金番号A1100の純度は99質量%程度、A1050の純度は99.5質量%程度である。
なお、純度を示す質量パーセント表記における先頭から連続する9の数の後にナインの頭文字であるNを付して、例えば純度99.99質量%を「4N」と記載し、「フォーナイン」と呼ぶことがある。純度4Nのアルミニウムを「4N−Al」と記載する場合がある。
Conventionally, it has been proposed that industrial pure aluminum is applied as a plate-like structure of a repair drainage drain. However, since such industrial pure aluminum is produced by an electrolysis method such as the Hall-Héroult method, the purity is usually about 99% by mass, that is, it contains an impurity element close to 1% by mass. For example, the purity of the JIS standard alloy number A1100 is about 99% by mass, and the purity of A1050 is about 99.5% by mass.
In addition, in the mass percent notation indicating purity, N, which is an acronym for nine, is added after the number of 9s consecutive from the beginning, for example, 99.99 mass% of purity is described as "4N", and is referred to as "four nines". I may call it. Aluminum with a purity of 4N may be described as "4N-Al".

99質量%程度の純度の純アルミニウムは、通常1質量%程度の不純物元素を含んでいる。 Pure aluminum having a purity of about 99% by mass usually contains about 1% by mass of impurity elements.

上述したように、劣化した排水ドレンを補修する際には、排水ドレン及びその周辺の形状に合わせて改修排水ドレンが隙間なく密接するように、改修排水ドレンを変形加工して使用する。99質量%程度の純度の工業用純アルミニウムは、不純物元素を多く含有するため強度が高く、ハンマー等での押叩きにて板材を下地に追従させることが困難である。さらに工業用純アルミニウムの中では強度が低い調質処理材を用いた場合でも、改修排水ドレンの材料として広く用いられている鉛と比較すると強度が高いために変形させにくく、また加工硬化により強度が上昇し易いため、十分に塑性変形させてドレン下地に追従させることが困難であった。そこで、低強度であり、塑性変形性が高く、且つ加工硬化しにくい素材が必要となることに着眼した。 As described above, when repairing the deteriorated drainage drain, the repaired drainage drain is deformed and used so that the repaired drainage drain is in close contact with each other according to the shape of the drainage drain and its surroundings. Pure industrial aluminum having a purity of about 99% by mass contains a large amount of impurity elements, so that it has high strength, and it is difficult for the plate material to follow the substrate by tapping with a hammer or the like. Furthermore, even when a tempering material with low strength among industrial pure aluminum is used, it is hard to deform due to its high strength compared to lead, which is widely used as a material for repair drainage drainage, and it is also strong due to work hardening. Is easy to rise, so it is difficult to sufficiently plastically deform it to follow the drain base. Therefore, we focused on the need for a material that has low strength, high plastic deformability, and is difficult to work harden.

本発明者らは、鋭意検討した結果、99.99質量%以上の純度(4N以上)の高純度のアルミニウム材をアルミニウム板状構造体の素材として用いることが上述の課題を解決するために重要であることを見出した。
すなわち、本発明の実施形態に係る建築部材において、アルミニウム板状構造体は、純度が99.99質量%以上である。これにより、アルミニウム板状構造体の強度を抑制し、塑性変形を容易にし、且つ加工硬化による強度上昇を小さくすることができる。
As a result of diligent studies, the present inventors have made it important to use a high-purity aluminum material having a purity of 99.99% by mass or more (4N or more) as a material for the aluminum plate-like structure in order to solve the above-mentioned problems. I found that.
That is, in the building member according to the embodiment of the present invention, the purity of the aluminum plate-like structure is 99.99% by mass or more. As a result, the strength of the aluminum plate-like structure can be suppressed, plastic deformation can be facilitated, and the increase in strength due to work hardening can be reduced.

なお、高純度アルミニウムの純度については、高純度に精製したアルミニウムを用いて、不純物の進入を抑制して溶解鋳造を行い、一旦高純度のアルミニウム鋳塊を得ると、その後に均質加熱処理、圧延、面削および切削等の加工、ならびに加工後の熱処理等の工程を経ても純度は実質的に変化しないことが広く知られている。このため、アルミニウム板状構造体を製造する際、いずれかの工程において測定したアルミニウムの純度を最終的に得られるアルミニウム板状構造体の純度として用いてよいことが広く知られている。また、予め組成が分かっている原料を用い、不純物の侵入を抑制して溶解鋳造を行った場合も当該原料の組成を最終的に得られるアルミニウム板状構造体の純度として用いてよいことが広く知られている。 Regarding the purity of high-purity aluminum, high-purity refined aluminum is used to suppress the ingress of impurities and melt casting is performed. Once a high-purity aluminum ingot is obtained, it is then subjected to homogeneous heat treatment and rolling. It is widely known that the purity does not substantially change even after undergoing processing such as surface milling and cutting, and heat treatment after processing. Therefore, it is widely known that when manufacturing an aluminum plate-shaped structure, the purity of aluminum measured in any of the steps may be used as the purity of the finally obtained aluminum plate-shaped structure. Further, even when a raw material whose composition is known in advance is used and the invasion of impurities is suppressed and melt casting is performed, the composition of the raw material may be widely used as the purity of the finally obtained aluminum plate-like structure. Are known.

また、高純度アルミニウムの不純物元素として、典型的な元素は、鉄(Fe)、ケイ素(Si)、銅(Cu)、マンガン(Mn)、マグネシウム(Mg)、チタン(Ti)、ホウ素(B)、クロム(Cr)、ガリウム(Ga)、ニッケル(Ni)、バナジウム(V)、亜鉛(Zn)及びジルコニウム(Zr)の13元素であることが知られている。これら13元素の中でも、特にFe、Cu及びSiの量が多いことが知られている。
そこで、Fe、Cu及びSiの合計の含有量を用いて、高純度アルミニウムの純度を求めてよい。すなわち、高純度アルミニウムの純度[質量%]を、(100−(Fe、Cu及びSiの合計の含有量[質量%])としてよい。例えば、Fe、Cu及びSiの合計の含有量が0.01質量%以下である場合の高純度アルミニウムの純度を、99.99%以上(4N以上)としてよい。
As an impurity element of high-purity aluminum, typical elements are iron (Fe), silicon (Si), copper (Cu), manganese (Mn), magnesium (Mg), titanium (Ti), and boron (B). , Chromium (Cr), gallium (Ga), nickel (Ni), vanadium (V), zinc (Zn) and zirconium (Zr) are known to be 13 elements. Among these 13 elements, it is known that the amounts of Fe, Cu and Si are particularly large.
Therefore, the purity of high-purity aluminum may be determined by using the total content of Fe, Cu, and Si. That is, the purity [mass%] of high-purity aluminum may be set to (100- (total content of Fe, Cu, and Si [mass%]). For example, the total content of Fe, Cu, and Si is 0. The purity of high-purity aluminum when it is 01% by mass or less may be 99.99% or more (4N or more).

上記13元素の含有量の測定には、測定精度を確保できる既知の分析方法を用いてよい。例えば、グロー放電質量分析(GD−MS)又は固体発光分光分析により求めてよい。 For the measurement of the content of the above 13 elements, a known analytical method capable of ensuring measurement accuracy may be used. For example, it may be determined by glow discharge mass spectrometry (GD-MS) or solid-state emission spectroscopic analysis.

本発明の実施形態に係る建築部材において、アルミニウム板状構造体は、純度が、好ましくは99.997質量%以上(4N7以上)、より好ましく99.999質量%以上(5N以上)、更に好ましくは99.9997質量%以上(5N7以上)、より更に好ましくは99.9999質量%以上(6N以上)である。不純物元素であるFe、Si及びCuの合計の含有量をより制限することにより、アルミニウム板状構造体の強度をより小さくし、塑性変形をより容易にし、加工硬化をより抑制することができる。そのため、例えば本発明に係る建築部材が改修排水ドレンである場合、その施工性をより向上することができる。 In the building member according to the embodiment of the present invention, the purity of the aluminum plate-like structure is preferably 99.997% by mass or more (4N7 or more), more preferably 99.999% by mass or more (5N or more), and further preferably. It is 99.9997% by mass or more (5N7 or more), more preferably 99.99999% by mass or more (6N or more). By further limiting the total content of the impurity elements Fe, Si and Cu, the strength of the aluminum plate-like structure can be made smaller, plastic deformation can be made easier, and work hardening can be further suppressed. Therefore, for example, when the building member according to the present invention is a repair drainage drain, its workability can be further improved.

アルミニウムの純度が高いほど、加工硬化による強度向上を抑制できるメカニズムは、明確ではないが、以下のように推測している。つまり、不純物濃度が高い一般的な金属の場合には、加工とともに転位と呼ばれる結晶欠陥が導入された際に、転位の移動が不純物元素で抑制されて(すなわち、ピン止めされて)蓄積し、転位が移動しにくくなる、つまり加工硬化していく。それに対し、アルミニウムの純度が99.99質量%以上になると、一般的な金属と比べて不純物元素が大幅に少ないため、転位の移動が不純物元素によって抑制される(ピン止めされる)効果が小さくなり、従って加工硬化が生じにくいと考えられる。 The mechanism by which the higher the purity of aluminum is, the more the strength improvement due to work hardening can be suppressed is not clear, but it is speculated as follows. That is, in the case of a general metal having a high impurity concentration, when crystal defects called dislocations are introduced during processing, the movement of dislocations is suppressed by the impurity element (that is, pinned) and accumulated. Dislocations become difficult to move, that is, work hardening occurs. On the other hand, when the purity of aluminum is 99.99% by mass or more, the amount of impurity elements is significantly smaller than that of general metals, so that the effect of suppressing (pinning) the movement of dislocations by the impurity elements is small. Therefore, it is considered that work hardening is unlikely to occur.

また、本発明の実施形態に係る建築部材において、アルミニウム板状構造体は、純度が99.99質量%以上であるため、加工硬化による柔軟性の低下を抑制できることに加えて、優れた耐食性を有することができる。そのため、例えば本発明の実施形態に係る建築部材が改修排水ドレンである場合、長時間雨水に曝されても劣化しにくくなる。このような耐食性向上の効果は、純度をより高めることによって、より顕著に発揮できる。従って、耐食性の効果を得る観点からも、純度は、好ましくは99.997質量%以上、より好ましく99.999質量%以上、更に好ましくは99.9997質量%以上、より更に好ましくは99.9999質量%以上である。 Further, in the building member according to the embodiment of the present invention, the aluminum plate-like structure has a purity of 99.99% by mass or more, so that in addition to being able to suppress a decrease in flexibility due to work hardening, it also has excellent corrosion resistance. Can have. Therefore, for example, when the building member according to the embodiment of the present invention is a repair drainage drain, it is less likely to deteriorate even when exposed to rainwater for a long time. Such an effect of improving corrosion resistance can be more prominently exhibited by further increasing the purity. Therefore, from the viewpoint of obtaining the effect of corrosion resistance, the purity is preferably 99.997% by mass or more, more preferably 99.999% by mass or more, still more preferably 99.9997% by mass or more, still more preferably 99.9999% by mass. % Or more.

本発明の実施形態に係る建築部材において、アルミニウム板状構造体は、調質処理材であってよい。調質処理材とすることにより、製造時の圧延工程で導入された加工歪が緩和され柔軟性が向上する。そのため、例えば本発明の実施形態に係る建築部材が改修排水ドレンである場合、アルミニウム板状構造体が排水ドレンの補修部位の形状に合わせてより密着しやすくなり、改修排水ドレンの施工性をより向上することができる。 In the building member according to the embodiment of the present invention, the aluminum plate-like structure may be a tempering material. By using the tempering material, the processing strain introduced in the rolling process at the time of manufacturing is alleviated and the flexibility is improved. Therefore, for example, when the building member according to the embodiment of the present invention is a repair drainage drain, the aluminum plate-like structure becomes easier to adhere to the shape of the repaired portion of the drainage drain, and the workability of the repair drainage drain is improved. Can be improved.

上述のように、高純度アルミニウム材を用いると、アルミニウム板状構造体の柔軟性を確保することができる。しかし、高純度アルミニウムは破断強度が小さく破損しやすいため、高純度アルミニウム材を用いるだけでは、切断加工による加工硬化のわずかな影響により、切断面近傍が硬く変形させることが難しいことがあり、切断面近傍が破損することがある。そこで、本発明者らは、鋭意検討した結果、上記のように加工硬化による強度上昇が小さい高純度アルミニウム材を用いることに加えて、レーザー切断を施してアルミニウム板の少なくとも一部を切断してアルミニウム板状構造体を作製することにより、レーザー切断により形成した切断面近傍の加工硬化を低減することが上述の課題を解決するために重要であることを見出した。
すなわち、本発明の実施形態に係る建築部材において、アルミニウム板状構造体は、切断面と切断面に隣接する表面とを有し、切断面の少なくとも一部について、下記(1)式で表わされる切断面近傍の加工硬化率が110%以下である。

(上記表面と上記切断面との境界から0.3mm以内の位置で無作為に選択した上記表面上の4箇所のビッカース硬度の平均値)÷(当該境界から10.0mmの位置で無作為に選択した上記表面上の4箇所のビッカース硬度の平均値)×100 (1)
As described above, when the high-purity aluminum material is used, the flexibility of the aluminum plate-like structure can be ensured. However, since high-purity aluminum has low breaking strength and is easily broken, it may be difficult to deform the vicinity of the cut surface hard due to the slight effect of work hardening due to the cutting process only by using high-purity aluminum material. The vicinity of the surface may be damaged. Therefore, as a result of diligent studies, the present inventors have conducted laser cutting to cut at least a part of the aluminum plate in addition to using a high-purity aluminum material having a small increase in strength due to work hardening as described above. It has been found that it is important to reduce work hardening in the vicinity of the cut surface formed by laser cutting by producing an aluminum plate-like structure in order to solve the above-mentioned problems.
That is, in the building member according to the embodiment of the present invention, the aluminum plate-like structure has a cut surface and a surface adjacent to the cut surface, and at least a part of the cut surface is represented by the following equation (1). The work hardening rate near the cut surface is 110% or less.

(Mean value of Vickers hardness at 4 locations on the surface randomly selected within 0.3 mm from the boundary between the surface and the cut surface) ÷ (Randomly selected at a position 10.0 mm from the boundary) Average value of Vickers hardness at 4 selected locations on the above surface) x 100 (1)

アルミニウム板状構造体の表面において、上記境界(以下、「切断加工端部」と呼ぶことがある)から0.3mm以内の位置(以下、「切断面近傍」と呼ぶことがある)は切断による加工硬化の影響を受け易いため、切断により加工硬化した部分の硬度を示す代表的な位置として選択している。一方、アルミニウム板状構造体の表面において、切断加工端部から10.0mmの位置は切断による加工硬化の影響を受けていないため、加工硬化していない部分の硬度を示す代表的な位置として選択している。すなわち、上記(1)式で示される切断面近傍の加工硬化率は、切断による加工硬化の程度を示しており、低い程切断による加工硬化が小さい。 On the surface of the aluminum plate-like structure, a position within 0.3 mm (hereinafter, sometimes referred to as "near the cut surface") from the boundary (hereinafter, may be referred to as "cut end") is due to cutting. Since it is easily affected by work hardening, it is selected as a typical position indicating the hardness of the work-hardened part by cutting. On the other hand, on the surface of the aluminum plate-like structure, the position 10.0 mm from the cut end is not affected by work hardening due to cutting, so it is selected as a representative position indicating the hardness of the part that has not been work hardened. doing. That is, the work hardening rate in the vicinity of the cut surface represented by the above equation (1) indicates the degree of work hardening by cutting, and the lower the work hardening rate by cutting, the smaller the work hardening by cutting.

本発明の実施形態に係る建築部材において、アルミニウム板状構造体の切断面は、アルミニウム板状構造体の表面方向の外周部の一部又は全部を規定してよく、またアルミニウム板状構造体の開口部を規定してよい。本発明の1つの実施形態において、アルミニウム板状構造体は、表面と、表面に隣接する切断面で規定される外周部及び開口部とを有する。 In the building member according to the embodiment of the present invention, the cut surface of the aluminum plate-shaped structure may define a part or all of the outer peripheral portion of the aluminum plate-shaped structure in the surface direction, and the cut surface of the aluminum plate-shaped structure may be defined. An opening may be defined. In one embodiment of the invention, the aluminum plate-like structure has a surface and an outer peripheral portion and an opening defined by a cut surface adjacent to the surface.

切断面近傍の加工硬化率は、好ましくは108%以下、より好ましくは105%以下である。切断面近傍の加工硬化率をより低減することにより、切断面近傍の強度をより小さくし、塑性変形をより容易にし、切断面近傍の破損を生じにくくすることができる。そのため、例えば本発明に係る建築部材が改修排水ドレンである場合、その施工性をより向上することができる。 The work hardening rate in the vicinity of the cut surface is preferably 108% or less, more preferably 105% or less. By further reducing the work hardening rate in the vicinity of the cut surface, the strength in the vicinity of the cut surface can be further reduced, plastic deformation can be facilitated, and damage in the vicinity of the cut surface can be less likely to occur. Therefore, for example, when the building member according to the present invention is a repair drainage drain, its workability can be further improved.

ビッカース硬度は、JIS Z 2244:2009に従って測定される値であり、正四角錐のダイヤモンド圧子をアルミニウム板状構造体の表面に押し込み、その試験力を解除した後、当該表面に残った窪みの対角線長さから算出する。
JIS Z 2244:2009では、試験力によって硬さ記号を変えることが定められている。本発明の実施形態において、ビッカース硬度として、例えば試験力が0.01kgf(=0.0981N)のときのビッカース硬度HV0.01を用いてよい。
また、試験力は、他の測定条件を考慮して適切に選択してよい。例えばJIS Z2244:2009に記載のように、試験片(すなわち、アルミニウム板状構造体)の厚みが圧痕の対角線の長さの1.5倍以上となるように、試験片の厚みと試験力を選択してよい。試験力の好適な例として、アルミニウム板状構造体の厚みが300μm以上の場合は0.001〜0.05kgf、アルミニウム板状構造体の厚みが300μm未満の場合は0.005〜0.01kgfが挙げられる。試験力及び試験片の硬度により、圧痕サイズを調整することができる。
The Vickers hardness is a value measured according to JIS Z 2244: 2009, and the diagonal length of the depression remaining on the surface after pushing the diamond indenter of a regular square pyramid into the surface of the aluminum plate-like structure and releasing the test force. Calculate from the above.
JIS Z 2244: 2009 stipulates that the hardness symbol is changed according to the test force. In the embodiment of the present invention, as the Vickers hardness, for example, the Vickers hardness HV0.01 when the test force is 0.01 kgf (= 0.0981N) may be used.
In addition, the test force may be appropriately selected in consideration of other measurement conditions. For example, as described in JIS Z2244: 2009, the thickness and test force of the test piece are adjusted so that the thickness of the test piece (that is, the aluminum plate-like structure) is 1.5 times or more the diagonal length of the indentation. You may choose. As a suitable example of the test force, 0.001 to 0.05 kgf is used when the thickness of the aluminum plate-like structure is 300 μm or more, and 0.005 to 0.01 kgf is used when the thickness of the aluminum plate-like structure is less than 300 μm. Can be mentioned. The indentation size can be adjusted by the test force and the hardness of the test piece.

本発明の実施形態に係る建築部材は、アルミニウム板状構造体の切断面の少なくとも一部について、すなわち、アルミニウム板状構造体の全ての切断面の一部について、切断面近傍の加工硬化率が110%以下であればよい。例えば切断面近傍の加工硬化率が110%以下である切断面は、アルミニウム板状構造体の外周部の一部又は全部を規定してよく、また開口部を規定してよい。開口部を規定する切断面近傍の加工硬化率が110%以下であると、例えば本発明の実施形態に係る建築部材が改修排水ドレンである場合、改修排水ドレンを施工する際に開口部近傍の塑性変形をし易くし、開口部近傍の破損を生じにくくすることができる。 The building member according to the embodiment of the present invention has a work hardening rate in the vicinity of the cut surface for at least a part of the cut surface of the aluminum plate-shaped structure, that is, for a part of all the cut surfaces of the aluminum plate-shaped structure. It may be 110% or less. For example, the cut surface in the vicinity of the cut surface having a work hardening rate of 110% or less may define a part or all of the outer peripheral portion of the aluminum plate-like structure, or may define an opening. When the work hardening rate near the cut surface that defines the opening is 110% or less, for example, when the building member according to the embodiment of the present invention is a repair drainage drain, when the repair drainage drain is constructed, the vicinity of the opening is constructed. It is possible to facilitate plastic deformation and prevent damage in the vicinity of the opening.

本発明の実施形態に係る建築部材において、切断面の全てについて、切断面近傍の加工硬化率が110%以下であることが好ましい。これにより、切断面近傍全てに亘って強度をより小さくし、塑性変形をより容易にし、切断面近傍の破損を生じにくくすることができる。 In the building member according to the embodiment of the present invention, it is preferable that the work hardening rate in the vicinity of the cut surface is 110% or less for all of the cut surfaces. As a result, the strength can be made smaller over the entire vicinity of the cut surface, plastic deformation can be made easier, and damage in the vicinity of the cut surface can be less likely to occur.

本発明の実施形態に係る建築部材において、アルミニウム板状構造体の形状は、板状である限り特に限定されず、またアルミニウム板状構造体が開口部を有する場合、開口部の形状は特に限定されない。例えば、アルミニウム板状構造体は、建築部材の用途及び設計等に応じて、一辺200mm以上600mm以下の略四角形又は直径200mm以上600mm以下の略円形であってよく、且つ開口部が直径30mm以上200mm以下の略円形であってよい。このようなアルミニウム板状構造体を含む建築部材は、改修排水ドレンとして好適である。 In the building member according to the embodiment of the present invention, the shape of the aluminum plate-shaped structure is not particularly limited as long as it is plate-shaped, and when the aluminum plate-shaped structure has an opening, the shape of the opening is particularly limited. Not done. For example, the aluminum plate-like structure may be a substantially quadrangular shape having a side of 200 mm or more and 600 mm or less or a substantially circular shape having a diameter of 200 mm or more and 600 mm or less, and an opening having a diameter of 30 mm or more and 200 mm, depending on the application and design of the building member. It may be the following substantially circular shape. Building members including such an aluminum plate-like structure are suitable as a repair drainage drain.

本発明の実施形態に係る建築部材において、アルミニウム板状構造体の板厚は、好ましくは0.3mm以上、より好ましくは0.5mm以上、更に好ましくは0.7mm以上である。これにより、例えば本発明の実施形態に係る建築部材が改修排水ドレンである場合、改修排水ドレンを施工する際、アルミニウム板状構造体がより破損しにくくなり、また雨水等による腐食による漏水がより生じにくくなる。
また、アルミニウム板状構造体の板厚は、好ましくは2.0mm以下、より好ましくは1.8mm以下、更に好ましくは1.5mm以下である。これにより、例えば本発明の実施形態に係る建築部材が改修排水ドレンである場合、アルミニウム板状構造体の柔軟性を確保することがより容易となり、改修排水ドレンの施工性を向上させることがより容易となる。
In the building member according to the embodiment of the present invention, the plate thickness of the aluminum plate-like structure is preferably 0.3 mm or more, more preferably 0.5 mm or more, still more preferably 0.7 mm or more. As a result, for example, when the building member according to the embodiment of the present invention is a repair drainage drain, the aluminum plate-like structure is less likely to be damaged when the repair drainage drain is constructed, and water leakage due to corrosion due to rainwater or the like is more likely to occur. It is less likely to occur.
The plate thickness of the aluminum plate-like structure is preferably 2.0 mm or less, more preferably 1.8 mm or less, and further preferably 1.5 mm or less. As a result, for example, when the building member according to the embodiment of the present invention is a repair drainage drain, it becomes easier to secure the flexibility of the aluminum plate-like structure, and the workability of the repair drainage drain can be improved. It will be easy.

2.改修排水ドレン
本発明の実施形態に係る改修排水ドレンは、本発明の実施形態に係る建築部材の一態様であり、アルミニウム板状構造体に設けられた開口部と流体連通するように中空管の一方の端部がアルミニウム板状構造体に固着されている。
2. 2. Repair drainage drain The repair drainage drain according to the embodiment of the present invention is one aspect of the building member according to the embodiment of the present invention, and is a hollow pipe so as to communicate fluidly with an opening provided in an aluminum plate-like structure. One end is fixed to the aluminum plate-like structure.

本発明の実施形態に係る改修排水ドレンは、アルミニウム板状構造体を補修部位の形状に合わせて変形加工した際、十分に塑性変形させ、補修部位の形状に合わせて容易に密着させることができ、且つ切断面近傍を塑性変形し易くし、切断面近傍の破損を生じにくくすることができる。 The repair drainage drain according to the embodiment of the present invention can be sufficiently plastically deformed when the aluminum plate-like structure is deformed to match the shape of the repaired portion, and can be easily brought into close contact with the shape of the repaired portion. In addition, the vicinity of the cut surface can be easily plastically deformed, and damage in the vicinity of the cut surface can be prevented from occurring.

中空管の材質は特に限定されず、中空管は、樹脂製であってよく、あるいは、螺旋状に巻かれた金属若しくは金属メッシュを樹脂で被覆してなるものであってよい。これらの中空管はフレキシブルであることが好ましく、その場合、例えば既設ドレン管が屈曲部を有していても、当該屈曲部の形状に合わせて中空管が容易に変形するため、中空管を既設ドレン管に挿入することがより容易となる。
中空管が樹脂製又は螺旋状に巻かれた金属若しくは金属メッシュを樹脂で被覆してなるものである場合、中空管の一方の端部は、例えば接着剤等によりアルミニウム板状構造体に固着されていてよい。
The material of the hollow tube is not particularly limited, and the hollow tube may be made of resin, or may be made of a spirally wound metal or a metal mesh coated with resin. These hollow pipes are preferably flexible, and in that case, for example, even if the existing drain pipe has a bent portion, the hollow pipe is easily deformed according to the shape of the bent portion, so that the hollow pipe is hollow. It becomes easier to insert the pipe into the existing drain pipe.
When the hollow tube is made of resin or a metal or metal mesh wound in a spiral shape is coated with resin, one end of the hollow tube is formed into an aluminum plate-like structure by, for example, an adhesive. It may be fixed.

また、中空管はアルミニウム中空管であってよい。アルミニウム中空管の化学成分組成はアルミニウム板状構造体と同一であってよく、あるいは異なってもよい。
い。中空管としてアルミニウム中空管を用いることにより、耐食性が向上し、長時間雨水に曝されても改修排水ドレンが劣化しにくくなる。
中空管がアルミニウム中空管である場合、アルミニウム中空管の一方の端部はアルミニウム板状構造体に溶接されていてよい。
Further, the hollow tube may be an aluminum hollow tube. The chemical composition of the aluminum hollow tube may be the same as or different from that of the aluminum plate-like structure.
I. By using an aluminum hollow pipe as the hollow pipe, corrosion resistance is improved, and the repair drainage drain is less likely to deteriorate even when exposed to rainwater for a long time.
When the hollow tube is an aluminum hollow tube, one end of the aluminum hollow tube may be welded to an aluminum plate-like structure.

3.アルミニウム板状構造体を含む建築部材の製造方法
本発明の実施形態に係るアルミニウム板状構造体を含む建築部材の製造方法は、
純度が99.99質量%以上であるアルミニウム圧延板を準備する工程と、
レーザー切断によりアルミニウム圧延板の少なくとも一部を切断してアルミニウム板状構造体を得る切断加工工程とを含む。
以下、各工程について説明する。
3. 3. Method for manufacturing building member including aluminum plate-shaped structure The method for manufacturing building member including aluminum plate-shaped structure according to the embodiment of the present invention is as follows.
The process of preparing an aluminum rolled plate having a purity of 99.99% by mass or more, and
It includes a cutting process of cutting at least a part of an aluminum rolled plate by laser cutting to obtain an aluminum plate-like structure.
Hereinafter, each step will be described.

(1)アルミニウム圧延板を準備する工程
純度が99.99質量%以上であるアルミニウム圧延板を準備する。
(1) Step of preparing a rolled aluminum plate A rolled aluminum plate having a purity of 99.99% by mass or more is prepared.

アルミニウム圧延板を準備する方法は特に限定されないが、例えば、
純度が99.99質量%以上であるアルミニウム材からなる圧延素材を作製する工程と、
圧延素材を圧延してアルミニウム圧延板を得る圧延工程と
を含む方法により、アルミニウム圧延板を準備してよい。
The method for preparing the rolled aluminum plate is not particularly limited, but for example,
A process for producing a rolled material made of an aluminum material having a purity of 99.99% by mass or more, and
An aluminum rolled plate may be prepared by a method including a rolling step of rolling a rolled material to obtain an aluminum rolled plate.

(1−1)圧延素材を作製する工程
上述した組成を有するアルミニウム材からなる圧延素材は、例えば以下のような方法で得ることができる。すなわち、後述する精製方法により得られる高純度アルミニウムに対して、不純物の侵入を抑制しつつ溶解した溶湯から所定形状の鋳塊を作製する。その後、鋳塊を所定形状に切削加工することで圧延素材を得ることができる。なお、圧延素材の作成方法は上述の方法に限定されるものではなく、従来公知の方法(例えばダイキャスティング、押出等)を用いてもよい。また、圧延素材に熱処理を施す工程(均質化熱処理工程)が含まれていてもよい。
(1-1) Step of Producing Rolled Material A rolled material made of an aluminum material having the above-mentioned composition can be obtained by, for example, the following method. That is, an ingot having a predetermined shape is produced from the molten metal dissolved in high-purity aluminum obtained by the purification method described later while suppressing the invasion of impurities. After that, a rolled material can be obtained by cutting the ingot into a predetermined shape. The method for producing the rolled material is not limited to the above-mentioned method, and conventionally known methods (for example, die casting, extrusion, etc.) may be used. Further, a step of heat-treating the rolled material (homogenization heat treatment step) may be included.

高純度アルミニウムの精製方法として、例えば偏析法、三層電解法が挙げられる。 Examples of the method for purifying high-purity aluminum include a segregation method and a three-layer electrolysis method.

偏析法は、アルミニウム溶湯の凝固の際の偏析現象を利用した純化法であり、複数の手法が実用化されている。偏析法の一つの形態としては、容器の中に溶湯アルミニウムを注ぎ、容器を回転させながら上部の溶融アルミニウムを加熱、撹拌しつつ底部より精製アルミニウムを凝固させる。偏析法により、純度99.99質量%以上の高純度アルミニウムを得ることができる。 The segregation method is a purification method that utilizes the segregation phenomenon during solidification of molten aluminum, and a plurality of methods have been put into practical use. One form of the segregation method is to pour molten aluminum into the container, heat the molten aluminum at the top while rotating the container, and solidify the purified aluminum from the bottom while stirring. By the segregation method, high-purity aluminum having a purity of 99.99% by mass or more can be obtained.

三層電解法は、Al−Cu合金層に比較的純度の低い純アルミニウム等(例えば純度99.9質量%のJIS−H2102の特1種程度のグレード)を投入し、溶融状態で陽極とし、その上に例えばフッ化アルミニウム及びフッ化バリウム等を含む電解浴を配置し、陰極に高純度のアルミニウムを析出させる方法である。
三層電解法では純度99.999質量%以上の高純度アルミニウムを得ることができる。またアルミニウム中のFeの濃度を比較的容易に10質量ppm(0.001質量%)以下に抑制することができる。
In the three-layer electrolysis method, pure aluminum having a relatively low purity (for example, a grade of JIS-H2102 having a purity of 99.9% by mass) is charged into the Al—Cu alloy layer to form an anode in a molten state. This is a method in which an electrolytic bath containing, for example, aluminum fluoride and barium fluoride is placed on it to deposit high-purity aluminum on the cathode.
By the three-layer electrolysis method, high-purity aluminum having a purity of 99.999% by mass or more can be obtained. Further, the concentration of Fe in aluminum can be relatively easily suppressed to 10 mass ppm (0.001 mass%) or less.

高純度アルミニウムの精製方法の例として、偏析法及び三層電解法を説明したが、高純度アルミニウムの精製方法はこれらに限定されず、帯溶融精製法、超高真空溶解精製法等、既知の他の方法及びこれらの組み合わせでもよい。 The segregation method and the three-layer electrolysis method have been described as examples of the purification method for high-purity aluminum, but the purification method for high-purity aluminum is not limited to these, and known methods such as band melt purification method and ultra-high vacuum dissolution purification method are available. Other methods and combinations thereof may be used.

アルミニウム圧延板は、純度が、好ましくは99.997質量%以上、より好ましく99.999質量%以上、更に好ましくは99.9997質量%以上、より更に好ましくは99.9999質量%以上である。 The purity of the rolled aluminum plate is preferably 99.997% by mass or more, more preferably 99.999% by mass or more, still more preferably 99.9997% by mass or more, and even more preferably 99.9999% by mass or more.

(1−2)アルミニウム圧延板を得る圧延工程
圧延工程は、得られた圧延素材を圧延する工程であり、例えば圧延加工率90%以上の圧延を施す工程である。ここでいう圧延加工率は、圧延素材の厚さ(つまり、圧延前の厚さ)から圧延により得られた最終板材の厚さを差し引いた値(つまり、圧延により減少した厚さ)を、圧延素材の厚さで除した値の百分率であって、次式:
圧延加工率(%)=[(圧延前の厚さ−圧延後の厚さ)÷圧延前の厚さ]×100
により算出される。例えば厚さ10mmの圧延素材を圧延して厚さ1mmの板材とすれば、圧延加工率は90%となる。
(1-2) Rolling Step for Obtaining Rolled Aluminum Plate The rolling step is a step of rolling the obtained rolled material, for example, a step of rolling with a rolling processing rate of 90% or more. The rolling processing ratio referred to here is the value obtained by subtracting the thickness of the final plate obtained by rolling from the thickness of the rolled material (that is, the thickness before rolling) (that is, the thickness reduced by rolling). Percentage of the value divided by the thickness of the material,
Rolling rate (%) = [(Thickness before rolling-Thickness after rolling) ÷ Thickness before rolling] x 100
Is calculated by. For example, if a rolled material having a thickness of 10 mm is rolled into a plate material having a thickness of 1 mm, the rolling processing rate is 90%.

圧延素材に圧延加工を複数回行って最終板厚とすることが好ましい。圧延加工率が大きいほど生産効率を高められる場合が多いため、圧延加工率は90%以上が望ましい。なお、圧延加工率は高い程好ましいため、上限は特に設けない。 It is preferable that the rolled material is rolled a plurality of times to obtain the final plate thickness. The higher the rolling process rate, the higher the production efficiency in many cases. Therefore, the rolling process rate is preferably 90% or more. Since the higher the rolling rate is, the more preferable it is, no upper limit is set.

圧延方法は、冷間圧延、熱間圧延のどちらでもよい。熱間圧延と冷間圧延を組み合わせることもでき、例えば複数回行われる圧延加工のうち、初期は熱間圧延とし、後半を冷間圧延とするような形態をとることもできる。 The rolling method may be either cold rolling or hot rolling. Hot rolling and cold rolling can be combined. For example, among the rolling processes performed a plurality of times, hot rolling may be performed at the initial stage and cold rolling may be performed at the latter half.

(2)切断加工工程
レーザー切断により、上述のようにして準備したアルミニウム圧延板の少なくとも一部を切断してアルミニウム板状構造体を得る。アルミニウム圧延板の少なくとも一部にレーザー切断を施してアルミニウム板状構造体を作製することにより、レーザー切断により形成した切断面近傍の加工硬化を低減することができる。すなわち、アルミニウム板状構造体は、レーザー切断により形成した切断面について、切断面近傍の加工硬化率が110%以下である。一方、シャー切断やプレス加工等のように機械的な力を用いる方法で形成した切断面は、その近傍が加工硬化しており、切断面近傍の加工硬化率が高い。
(2) Cutting Process By laser cutting, at least a part of the rolled aluminum plate prepared as described above is cut to obtain an aluminum plate-like structure. By laser cutting at least a part of the rolled aluminum plate to produce an aluminum plate-like structure, work hardening in the vicinity of the cut surface formed by laser cutting can be reduced. That is, the aluminum plate-like structure has a work hardening rate of 110% or less in the vicinity of the cut surface of the cut surface formed by laser cutting. On the other hand, the cut surface formed by a method using mechanical force such as shear cutting or press working has work hardening in the vicinity thereof, and the work hardening rate in the vicinity of the cut surface is high.

アルミニウム圧延板の少なくとも一部にレーザー切断を施してアルミニウム板状構造体を作製する態様として、アルミニウム板状構造体の表面方向の外周部の一部又は全部、アルミニウム板状構造体の開口部をレーザー切断により形成することが挙げられる。レーザー切断により形成されない残りの外周部及び/又は開口部は、例えばプレス加工により形成してよい。
より具体的には、例えば以下の態様[a]〜[f]が挙げられる。
[a]アルミニウム板状構造体の外周部の一部をレーザー切断により形成し、残りの外周部をプレス加工により形成する。
[b]アルミニウム板状構造体の外周部の一部をレーザー切断により形成し、残りの外周部及び開口部をプレス加工により形成する。
[c]アルミニウム板状構造体の外周部の一部及び開口部をレーザー切断により形成し、残りの外周部をプレス加工により形成する。
[d]アルミニウム板状構造体の外周部の全部をプレス加工により形成し、開口部をレーザー切断により形成する。
[e]アルミニウム板状構造体の外周部の全部をレーザー切断により形成し、開口部をプレス加工により形成する。
[f]アルミニウム板状構造体の外周部の全部及び開口部をレーザー切断により形成する、すなわち、アルミニウム圧延板の全ての切断をレーザー切断により行う。
As an embodiment in which at least a part of the rolled aluminum plate is laser-cut to produce an aluminum plate-like structure, a part or all of the outer peripheral portion of the aluminum plate-like structure in the surface direction is provided with an opening of the aluminum plate-like structure. It may be formed by laser cutting. The remaining outer circumference and / or opening that is not formed by laser cutting may be formed, for example, by press working.
More specifically, for example, the following aspects [a] to [f] can be mentioned.
[A] A part of the outer peripheral portion of the aluminum plate-shaped structure is formed by laser cutting, and the remaining outer peripheral portion is formed by press working.
[B] A part of the outer peripheral portion of the aluminum plate-shaped structure is formed by laser cutting, and the remaining outer peripheral portion and the opening are formed by press working.
[C] A part of the outer peripheral portion and the opening of the aluminum plate-shaped structure are formed by laser cutting, and the remaining outer peripheral portion is formed by press working.
[D] The entire outer peripheral portion of the aluminum plate-shaped structure is formed by press working, and the opening is formed by laser cutting.
[E] The entire outer peripheral portion of the aluminum plate-shaped structure is formed by laser cutting, and the opening is formed by press working.
[F] The entire outer peripheral portion and the opening of the aluminum plate-like structure are formed by laser cutting, that is, all the aluminum rolled plate is cut by laser cutting.

態様[f]は、切断面の全てについて、切断面近傍の加工硬化率が110%以下である建築部材を得ることができるため好ましい。更に、態様[f]は、工程短縮の観点から、レーザー切断によりアルミニウム板状構造体の外周及び開口部を一括して形成することができるため好ましい。 Aspect [f] is preferable because it is possible to obtain a building member having a work hardening rate in the vicinity of the cut surface of 110% or less for all of the cut surfaces. Further, the aspect [f] is preferable because the outer periphery and the opening of the aluminum plate-like structure can be collectively formed by laser cutting from the viewpoint of shortening the process.

切断加工工程において、一辺200mm以上600mm以下の略四角形又は直径200mm以上600mm以下の略円形であり、且つ開口部が直径30mm以上200mm以下の略円形であるアルミニウム板状構造体を得ることが好ましい。上記寸法の範囲内であれば、一般的なレーザー切断機での加工難度が低く、得られるアルミニウム板状構造体のハンドリング性も良好であるため好ましい。 In the cutting process, it is preferable to obtain an aluminum plate-like structure having a substantially quadrangular shape having a side of 200 mm or more and 600 mm or less or a substantially circular shape having a diameter of 200 mm or more and 600 mm or less and an opening having a diameter of 30 mm or more and 200 mm or less. If it is within the above dimensions, it is preferable because the processing difficulty with a general laser cutting machine is low and the handleability of the obtained aluminum plate-like structure is also good.

切断加工工程において、工程短縮の観点から、1つのアルミニウム圧延板から2つ以上のアルミニウム板状構造体を得ることが好ましい。 In the cutting process, it is preferable to obtain two or more aluminum plate-like structures from one aluminum rolled plate from the viewpoint of shortening the process.

また、レーザー切断は、プレス加工と比較して加工精度が高いため、寸法精度が高いアルミニウム板状構造体を得ることができる。 Further, since laser cutting has higher processing accuracy than press working, it is possible to obtain an aluminum plate-like structure having high dimensional accuracy.

(3)焼鈍工程
本発明の実施形態に係る建築部材の製造方法は、アルミニウム圧延板又はアルミニウム板状構造体を焼鈍する焼鈍工程を含んでよい。焼鈍工程は、切断工程前のアルミニウム圧延板に施してよく、あるいは、切断工程で未焼鈍のアルミニウム圧延板を切断して得られたアルミニウム板状構造体に施してもよい。焼鈍工程により、アルミニウム板状構造体を調質処理材とすることができる。
焼鈍温度を300℃以上とすることで、より優れた柔軟性を有するアルミニウム板状構造体を得ることができる。一方、その温度を600℃以下とすることで、焼鈍の際、アルミニウム圧延板同士又はアルミニウム板状構造体同士の貼り付きを抑制でき、外観品質の良好な建築部材が得られる。従って、焼鈍温度は、好ましくは300℃以上であり、好ましくは600℃以下である。
また、焼鈍時間を1時間以上とすることで、より柔軟性に優れた改修排水ドレン用板状構造体が得られる。焼鈍時間は長くしても特性上の問題は生じないが、コスト上の観点から24時間程度までで充分である。従って、焼鈍時間は、好ましくは1時間以上、より好ましくは3時間以上であり、好ましくは24時間以下、より好ましくは12時間以下である。
(3) Annealing Step The method for manufacturing a building member according to the embodiment of the present invention may include an annealing step of annealing an aluminum rolled plate or an aluminum plate-like structure. The annealing step may be applied to an aluminum rolled plate before the cutting step, or may be applied to an aluminum plate-like structure obtained by cutting an unannealed aluminum rolled plate in the cutting step. By the annealing step, the aluminum plate-like structure can be used as a tempering material.
By setting the annealing temperature to 300 ° C. or higher, an aluminum plate-like structure having more excellent flexibility can be obtained. On the other hand, by setting the temperature to 600 ° C. or lower, it is possible to suppress sticking between rolled aluminum plates or between aluminum plate-like structures during annealing, and a building member having good appearance quality can be obtained. Therefore, the annealing temperature is preferably 300 ° C. or higher, preferably 600 ° C. or lower.
Further, by setting the annealing time to 1 hour or more, a plate-like structure for repair drainage drain having more excellent flexibility can be obtained. Even if the annealing time is lengthened, there is no problem in characteristics, but from the viewpoint of cost, up to about 24 hours is sufficient. Therefore, the annealing time is preferably 1 hour or more, more preferably 3 hours or more, preferably 24 hours or less, and more preferably 12 hours or less.

4.改修排水ドレンの製造方法
本発明の実施形態に係る改修排水ドレンの製造方法は、本発明の実施形態に係る建築部材の製造方法の一態様であり、アルミニウム板状構造体に、開口部と流体連通するように中空管の一方の端部を固着する中空管固着工程を含む。
4. Method for Manufacturing Repaired Drainage Drain The method for manufacturing the repaired drainage drain according to the embodiment of the present invention is one aspect of the method for manufacturing a building member according to the embodiment of the present invention. A hollow tube fixing step of fixing one end of the hollow tube so as to communicate is included.

中空管が上述のような樹脂製又は螺旋状に巻かれた金属若しくは金属メッシュを樹脂で被覆してなるものである場合、例えば接着剤等を用いて、中空管の一方の端部をアルミニウム板状構造体に固着してよい。 When the hollow tube is made of resin or spirally wound metal or metal mesh as described above and coated with resin, for example, an adhesive or the like is used to cover one end of the hollow tube. It may be fixed to an aluminum plate-like structure.

また、中空管が上述のようなアルミニウム中空管である場合、アルミニウム中空管の一方の端部をアルミニウム板状構造体に接合(固着)する方法として、溶接、ろう付け等が挙げられる。溶接方法は特に限定されず、例えばTIG溶接、レーザー溶接、MIG溶接、アーク溶接等が挙げられる。溶接部の接合強度を高める観点からは、レーザー溶接が好ましい。また、溶接の際、必要に応じて、適切な組成を有する溶加材を用いてよい。 When the hollow pipe is an aluminum hollow pipe as described above, welding, brazing, etc. can be mentioned as a method of joining (fixing) one end of the aluminum hollow pipe to the aluminum plate-like structure. .. The welding method is not particularly limited, and examples thereof include TIG welding, laser welding, MIG welding, and arc welding. Laser welding is preferable from the viewpoint of increasing the joint strength of the welded portion. Further, at the time of welding, a filler material having an appropriate composition may be used, if necessary.

以下、実施例を用いて本発明をより詳細に説明するが、本発明は実施例により何ら制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the Examples.

偏析法により純度99.99質量%の高純度アルミニウム(4N−Al)を準備した。三層電解法により、純度99.999質量%以上の高純度アルミニウム(5N−Al、6N−Al)を準備した。固体発光分析法により測定した当該高純度アルミニウムのFe、Si及びCuの合計の含有量は、0.01質量%(4N−Al)、0.001質量%(5N−Al)、0.0001質量%(6N−Al)であり、その他の不純物元素(Ti、Mn、Mg、Ga、Ni、V、Zn、Cr、B、Zr)の合計の含有量は、0.006質量%(4N−Al)、0.0008質量%(5N−Al)、0.0003質量%(6N−Al)であった。
上記高純度アルミニウムからなる圧延素材を準備し、圧延素材を厚さ20mmから室温で圧延し、厚さ0.8mmのアルミニウム圧延板を得た。アルミニウム圧延板を430℃で6時間焼鈍し、次いで、レーザー切断により、中央部に直径10mmの略円形の開口部を有する、実施例1〜3のアルミニウム板状構造体A〜C(縦60mm×横60mm×板厚0.8mm)を得た。
また、上記と同様にして工業用純アルミニウム(純度99.5質量%)製のアルミニウム圧延板を得た。アルミニウム圧延板を430℃で6時間焼鈍し、次いで、レーザー切断により、中央部に直径10mmの略円形の開口部を有する、比較例1のアルミニウム板状構造体D(縦60mm×横60mm×板厚0.8mm)を得た。
また、上記と同様にして工業用純アルミニウム(純度99.5質量%)及び高純度アルミニウム(4N−Al、5N−Al、6N−Al)製のアルミニウム圧延板を得た。アルミニウム圧延板を430℃で6時間焼鈍し、次いで、シャー切断による外周加工及びプレス加工による開口部形成により、中央部に直径10mmの略円形の開口部を有する、比較例2〜5のアルミニウム板状構造体E〜H(縦60mm×横60mm×板厚0.8mm)を得た。
High-purity aluminum (4N-Al) having a purity of 99.99% by mass was prepared by the segregation method. High-purity aluminum (5N-Al, 6N-Al) having a purity of 99.999% by mass or more was prepared by a three-layer electrolysis method. The total content of Fe, Si and Cu of the high-purity aluminum measured by the solid-state luminescence analysis method is 0.01% by mass (4N-Al), 0.001% by mass (5N-Al), 0.0001% by mass. % (6N-Al), and the total content of other impurity elements (Ti, Mn, Mg, Ga, Ni, V, Zn, Cr, B, Zr) is 0.006% by mass (4N-Al). ), 0.0008 mass% (5N-Al), 0.0003 mass% (6N-Al).
A rolled material made of the above high-purity aluminum was prepared, and the rolled material was rolled from a thickness of 20 mm to room temperature to obtain an aluminum rolled plate having a thickness of 0.8 mm. The rolled aluminum plate is annealed at 430 ° C. for 6 hours, and then laser-cut to have a substantially circular opening with a diameter of 10 mm in the center of the aluminum plate-like structures A to C (length 60 mm ×) of Examples 1 to 3. Width 60 mm × plate thickness 0.8 mm) was obtained.
Further, in the same manner as described above, an aluminum rolled plate made of industrial pure aluminum (purity 99.5% by mass) was obtained. The rolled aluminum plate is annealed at 430 ° C. for 6 hours, and then laser-cut to have a substantially circular opening with a diameter of 10 mm in the center, and the aluminum plate-like structure D (length 60 mm × width 60 mm × plate) of Comparative Example 1 A thickness of 0.8 mm) was obtained.
Further, in the same manner as described above, rolled aluminum plates made of industrial pure aluminum (purity 99.5% by mass) and high-purity aluminum (4N-Al, 5N-Al, 6N-Al) were obtained. An aluminum plate of Comparative Examples 2 to 5 having a substantially circular opening with a diameter of 10 mm in the center by annealing the rolled aluminum plate at 430 ° C. for 6 hours, and then forming an opening by outer peripheral processing and press processing by shear cutting. Shaped structures E to H (length 60 mm × width 60 mm × plate thickness 0.8 mm) were obtained.

アルミニウム板状構造体A〜Hについて、JIS Z 2244:2009に従い、試験力を0.01kgf(=0.0981N)として、開口部の切断加工端部から0.1mmの位置で無作為に選択した表面上の4箇所のビッカース硬度HV0.01を測定し、4箇所のビッカース硬度HV0.01の平均値を求めた。ビッカース硬度HV0.01の測定では、正四角錐のダイヤモンド圧子をアルミニウム板状構造体の表面に押し込み、その試験力を解除した後、表面に残ったくぼみの対角線長さからビッカース硬度HV0.01を算出した。同様の測定を、切断加工端部から0.3mm、0.5mm、1.0mm、3.0mm、5.0mm及び10.0mmの各位置についても行い、各位置についてビッカース硬度HV0.01の平均値を求めた。各位置のビッカース硬度HV0.01の平均値を表1に示す。
0.1mm〜5.0mmの位置におけるビッカース硬度HV0.01の平均値を10.0mmの位置におけるビッカース硬度HV0.01の平均値でそれぞれ除することにより加工硬化率を求めた。加工硬化率を表2に示す。
Aluminum plate structures A to H were randomly selected at a position 0.1 mm from the cut end of the opening with a test force of 0.01 kgf (= 0.0981N) according to JIS Z 2244: 2009. The Vickers hardness HV0.01 at four locations on the surface was measured, and the average value of the Vickers hardness HV0.01 at four locations was determined. In the measurement of Vickers hardness HV0.01, the Vickers hardness HV0.01 is calculated from the diagonal length of the indentation remaining on the surface after pushing the diamond indenter of a regular square pyramid into the surface of the aluminum plate-like structure and releasing the test force. did. The same measurement was performed at each position of 0.3 mm, 0.5 mm, 1.0 mm, 3.0 mm, 5.0 mm and 10.0 mm from the cut end, and the average Vickers hardness HV 0.01 was performed at each position. The value was calculated. Table 1 shows the average value of the Vickers hardness HV 0.01 at each position.
The work hardening rate was determined by dividing the average value of the Vickers hardness HV 0.01 at the position of 0.1 mm to 5.0 mm by the average value of the Vickers hardness HV 0.01 at the position of 10.0 mm. Table 2 shows the work hardening rate.

Figure 2020190132
Figure 2020190132

Figure 2020190132
Figure 2020190132

表1から分かるように、実施例1〜3及び比較例3〜5の4N−Al〜6N−Alのアルミニウム板状構造体A〜C及びF〜Hは、切断加工端部からの距離が0.5mm以上の位置におけるビッカース硬度HV0.01の平均値が25.0未満であり、柔軟性が高かった。比較例1及び2の純度99.5質量%のアルミニウム板状構造体D及びEは、不純物元素の含有量が多いため強度が高く、切断加工端部からの距離が0.5mm以上の位置におけるビッカース硬度HV0.01の平均値が25.0以上であり、柔軟性が低かった。
表2から分かるように、レーザー切断により作製した実施例1〜3及び比較例1のアルミニウム板状構造体A〜Dは、開口部の切断加工端部から0.3mm以内の位置である切断部近傍の加工硬化率が110%以下と低かった。一方、プレス加工により作製した比較例2〜5のアルミニウム板状構造体E〜Hは、開口部の切断加工端部から0.3mm以内の位置である切断部近傍の加工硬化率が110%を超えて高かった。
As can be seen from Table 1, the aluminum plate-like structures A to C and F to H of 4N-Al to 6N-Al of Examples 1 to 3 and Comparative Examples 3 to 5 have a distance of 0 from the cut end. The average value of the Vickers hardness HV0.01 at a position of .5 mm or more was less than 25.0, and the flexibility was high. The aluminum plate-like structures D and E having a purity of 99.5% by mass in Comparative Examples 1 and 2 have high strength due to the high content of impurity elements, and are at a position where the distance from the cut end is 0.5 mm or more. The average value of the Vickers hardness HV 0.01 was 25.0 or more, and the flexibility was low.
As can be seen from Table 2, the aluminum plate-like structures A to D of Examples 1 to 3 and Comparative Example 1 produced by laser cutting are cut portions located within 0.3 mm from the cut end of the opening. The work hardening rate in the vicinity was as low as 110% or less. On the other hand, the aluminum plate-like structures E to H of Comparative Examples 2 to 5 produced by press working have a work hardening rate of 110% in the vicinity of the cut portion located within 0.3 mm from the cut end of the opening. It was overpriced.

切断加工端部近傍の破断強度を評価するために、JIS Z 2247:2006「エリクセン試験方法」に従い、エリクセン値を得た。エリクセン試験では、アルミニウム板状構造体の開口部の直径より大きな直径を有する球状冶具を、開口部の切断加工端部の全周に接触するように配置し、球状冶具を開口部に向かって押し当てていき、切断加工端部に亀裂が発生するまでに球状冶具が移動した距離(エリクセン値)を測定する。従って、エリクセン値が高いほど、破断強度が高い。エリクセン値を表3に示す。 In order to evaluate the breaking strength in the vicinity of the cut end, the Eriksen value was obtained according to JIS Z 2247: 2006 "Eriksen test method". In the Ericssen test, a spherical jig having a diameter larger than the diameter of the opening of the aluminum plate-like structure is placed so as to be in contact with the entire circumference of the cut end of the opening, and the spherical jig is pushed toward the opening. The distance (Ericsen value) that the spherical jig moved before the crack was generated at the end of the cutting process was measured. Therefore, the higher the Eriksen value, the higher the breaking strength. The Eriksen values are shown in Table 3.

Figure 2020190132
Figure 2020190132

表3から分かるように、レーザー切断により作製した実施例1〜3の高純度アルミニウム製アルミニウム板状構造体A〜Cは、プレス加工により作製した比較例3〜5の高純度アルミニウム製板状構造体F〜Hと比較して、エリクセン値が高く、破断強度に優れていた。なお、比較例1〜2の工業用純アルミニウム製アルミニウム板状構造体D〜Eは、不純物元素の含有量が多いため強度が高く、亀裂の発生は見られなかった。 As can be seen from Table 3, the high-purity aluminum plate-like structures A to C of Examples 1 to 3 produced by laser cutting are the high-purity aluminum plate-like structures of Comparative Examples 3 to 5 produced by press working. Compared with the bodies F to H, the Elixin value was high and the breaking strength was excellent. The industrial pure aluminum aluminum plate-like structures D to E of Comparative Examples 1 and 2 had high strength due to the high content of impurity elements, and no cracks were observed.

また、レーザー切断及びプレス加工により得られるアルミニウム板状構造体の寸法精度を以下のようにして評価した。 In addition, the dimensional accuracy of the aluminum plate-like structure obtained by laser cutting and press working was evaluated as follows.

レーザー切断及びプレス加工共に、開口部を中心に有する四角形のアルミニウム板状構造体を得るため、以下の4つの目標寸法を設定した。なお、「辺と開口部との最短の直線距離」は、アルミニウム板状構造体の中心に開口部がどの程度の精度で位置するかを示す指標である。
(目標寸法1)
外周部:一辺300.00mm
開口部:直径52.50mm
辺と開口部との最短の直線距離:123.75mm
(目標寸法2)
外周部:一辺400.00mm
開口部:直径52.50mm
辺と開口部との最短の直線距離:173.75mm
(目標寸法3)
外周部:一辺300.00mm
開口部:直径45.00mm
辺と開口部との最短の直線距離:127.50mm
(目標寸法4)
外周部:一辺400.00mm
開口部:直径45.00mm
辺と開口部との最短の直線距離:177.50mm
In both laser cutting and press working, the following four target dimensions were set in order to obtain a quadrangular aluminum plate-like structure centered on the opening. The "shortest straight line distance between the side and the opening" is an index indicating how accurately the opening is located at the center of the aluminum plate-like structure.
(Target dimension 1)
Outer circumference: 300.00 mm on a side
Opening: 52.50 mm in diameter
Shortest straight line distance between side and opening: 123.75mm
(Target size 2)
Outer circumference: 400.00 mm on a side
Opening: 52.50 mm in diameter
The shortest linear distance between the side and the opening: 173.75 mm
(Target size 3)
Outer circumference: 300.00 mm on a side
Opening: 45.00 mm in diameter
The shortest linear distance between the side and the opening: 127.50 mm
(Target dimension 4)
Outer circumference: 400.00 mm on a side
Opening: 45.00 mm in diameter
The shortest linear distance between the side and the opening: 177.50 mm

実施例2と同様にしてアルミニウム圧延板を得た後、レーザー切断により、目標寸法1で実施例4のアルミニウム板状構造体I、及び目標寸法2で実施例5のアルミニウム板状構造体Jを得た。
また、比較例4と同様にしてアルミニウム圧延板を得た後、シャー切断による外周加工及びプレス加工による開口部形成により、目標寸法3で比較例6のアルミニウム板状構造体K、及び目標寸法4で比較例7のアルミニウム板状構造体Lを得た。
After obtaining an aluminum rolled plate in the same manner as in Example 2, the aluminum plate-like structure I of Example 4 has a target size of 1 and the aluminum plate-like structure J of Example 5 has a target size of 2 by laser cutting. Obtained.
Further, after obtaining an aluminum rolled plate in the same manner as in Comparative Example 4, the aluminum plate-like structure K of Comparative Example 6 and the target size 4 have the target size 3 by forming an opening by shear cutting and pressing. The aluminum plate-like structure L of Comparative Example 7 was obtained.

図1はアルミニウム板状構造体10の概略的平面図である。
図1中、xは外周部12の辺の長さ、yは開口部14の直径、zは外周部12の辺から開口部14までの最短の直線線距離である。x、y及びzの実測の長さと目標寸法との差の絶対値(以下、「ズレ量」と呼ぶことがある)を比較することにより、アルミニウム板状構造体10の寸法精度を評価することができる。
FIG. 1 is a schematic plan view of the aluminum plate-like structure 10.
In FIG. 1, x is the length of the side of the outer peripheral portion 12, y is the diameter of the opening 14, and z is the shortest straight line distance from the side of the outer peripheral portion 12 to the opening 14. To evaluate the dimensional accuracy of the aluminum plate-like structure 10 by comparing the absolute value of the difference between the measured lengths of x, y and z and the target dimension (hereinafter, may be referred to as “deviation amount”). Can be done.

アルミニウム板状構造体I〜Lについて、4箇所のx及びz、並びに2箇所のyをそれぞれ測定して、x、y及びzの平均値をそれぞれ求めた。x、y及びzの平均値と目標寸法とのズレ量をそれぞれ求め、寸法精度を評価した。x、y及びzの平均値、並びにズレ量を表4に示す。 For the aluminum plate-shaped structures I to L, x and z at four points and y at two points were measured, respectively, and the average values of x, y and z were obtained. The amount of deviation between the average value of x, y and z and the target dimension was obtained and the dimensional accuracy was evaluated. Table 4 shows the average values of x, y and z, and the amount of deviation.

Figure 2020190132
Figure 2020190132

表4の結果から分かるように、レーザー切断により作製した実施例4及び5のアルミニウム板状構造体I及びJは、プレス加工により作製した比較例6及び7のアルミニウム板状構造体K及びLと比較してズレ量が小さく、寸法精度が高かった。 As can be seen from the results in Table 4, the aluminum plate-like structures I and J of Examples 4 and 5 produced by laser cutting are the same as the aluminum plate-like structures K and L of Comparative Examples 6 and 7 produced by press working. In comparison, the amount of deviation was small and the dimensional accuracy was high.

10:アルミニウム板状構造体
12:外周部
14:開口部
20:改修排水ドレン
22:板状構造体
24:中空管
30:排水口
32:排水ドレン下地
34:排水ドレン下地平坦部
36:排水ドレン下地窪み部
38:既設ドレン管
10: Aluminum plate-shaped structure 12: Outer circumference 14: Opening 20: Repair drainage drain 22: Plate-shaped structure 24: Hollow pipe 30: Drainage port 32: Drainage drain base 34: Drainage drain base Flat part 36: Drainage Drain base recess 38: Existing drain pipe

Claims (18)

アルミニウム板状構造体を含む建築部材であって、
前記アルミニウム板状構造体は、純度が99.99質量%以上であり、
前記アルミニウム板状構造体は、切断面と当該切断面に隣接する表面とを有し、
前記切断面の少なくとも一部について、下記(1)式で表わされる切断面近傍の加工硬化率が110%以下である、建築部材。

(前記表面と前記切断面との境界から0.3mm以内の位置で無作為に選択した前記表面上の4箇所のビッカース硬度の平均値)÷(前記境界から10.0mmの位置で無作為に選択した前記表面上の4箇所のビッカース硬度の平均値)×100 (1)
A building member including an aluminum plate-like structure.
The aluminum plate-like structure has a purity of 99.99% by mass or more and has a purity of 99.99% by mass or more.
The aluminum plate-like structure has a cut surface and a surface adjacent to the cut surface.
A building member having a work hardening rate of 110% or less in the vicinity of the cut surface represented by the following equation (1) for at least a part of the cut surface.

(Mean value of four Vickers hardnesses randomly selected within 0.3 mm from the boundary between the surface and the cut surface) ÷ (Randomly selected at a position 10.0 mm from the boundary) Average value of Vickers hardness at 4 selected locations on the surface) × 100 (1)
前記純度が99.997質量%以上である請求項1に記載の建築部材。 The building member according to claim 1, wherein the purity is 99.997% by mass or more. 前記アルミニウム板状構造体が調質処理材である請求項1又は2に記載の建築部材。 The building member according to claim 1 or 2, wherein the aluminum plate-like structure is a tempering material. 前記切断面の全てについて、前記加工硬化率が110%以下である請求項1〜3のいずれか1項に記載の建築部材。 The building member according to any one of claims 1 to 3, wherein the work hardening rate is 110% or less for all of the cut surfaces. 前記切断面の前記少なくとも一部が開口部を規定する請求項1〜4のいずれか1項に記載の建築部材。 The building member according to any one of claims 1 to 4, wherein at least a part of the cut surface defines an opening. 前記アルミニウム板状構造体が、一辺200mm以上600mm以下の略四角形又は直径200mm以上600mm以下の略円形であり、且つ前記開口部が直径30mm以上200mm以下の略円形である請求項5に記載の建築部材。 The building according to claim 5, wherein the aluminum plate-like structure is a substantially quadrangular shape having a side of 200 mm or more and 600 mm or less or a substantially circular shape having a diameter of 200 mm or more and 600 mm or less, and the opening is a substantially circular shape having a diameter of 30 mm or more and 200 mm or less. Element. 請求項5又は6に記載の建築部材である改修排水ドレンであって、前記開口部と流体連通するように中空管の一方の端部が前記アルミニウム板状構造体に固着されている改修排水ドレン。 The repair drainage drain, which is a building member according to claim 5 or 6, in which one end of a hollow pipe is fixed to the aluminum plate-like structure so as to communicate fluid with the opening. Drain. 前記中空管であるアルミニウム中空管の一方の端部が前記アルミニウム板状構造体に溶接されている請求項7に記載の改修排水ドレン。 The repair drainage drain according to claim 7, wherein one end of the aluminum hollow pipe, which is the hollow pipe, is welded to the aluminum plate-like structure. アルミニウム板状構造体を含む建築部材の製造方法であって、
純度が99.99質量%以上であるアルミニウム圧延板を準備する工程と、
レーザー切断により前記アルミニウム圧延板の少なくとも一部を切断して前記アルミニウム板状構造体を得る切断加工工程と
を含む、建築部材の製造方法。
A method for manufacturing building members including an aluminum plate-like structure.
The process of preparing an aluminum rolled plate having a purity of 99.99% by mass or more, and
A method for manufacturing a building member, which comprises a cutting process of cutting at least a part of the rolled aluminum plate by laser cutting to obtain the aluminum plate-like structure.
前記純度が99.997質量%以上である請求項9に記載の建築部材の製造方法。 The method for manufacturing a building member according to claim 9, wherein the purity is 99.997% by mass or more. 前記アルミニウム圧延板又は前記アルミニウム板状構造体を、300℃以上600℃以下の温度で、1時間以上24時間以下保持する焼鈍工程を含む請求項9又は10に記載の建築部材の製造方法。 The method for manufacturing a building member according to claim 9 or 10, further comprising an annealing step of holding the rolled aluminum plate or the aluminum plate-like structure at a temperature of 300 ° C. or higher and 600 ° C. or lower for 1 hour or more and 24 hours or less. 前記切断加工工程において、前記アルミニウム圧延板の全ての切断をレーザー切断により行う請求項9〜11のいずれか1項に記載の建築部材の製造方法。 The method for manufacturing a building member according to any one of claims 9 to 11, wherein in the cutting process, all cutting of the rolled aluminum plate is performed by laser cutting. 前記切断加工工程において、1つの前記アルミニウム圧延板から2つ以上の前記アルミニウム板状構造体を得る請求項9〜12のいずれか1項に記載の建築部材の製造方法。 The method for manufacturing a building member according to any one of claims 9 to 12, wherein in the cutting process, two or more aluminum plate-like structures are obtained from one rolled aluminum plate. 前記切断加工工程において、レーザー切断により前記アルミニウム板状構造体に開口部を設ける請求項9〜13のいずれか1項に記載の建築部材の製造方法。 The method for manufacturing a building member according to any one of claims 9 to 13, wherein an opening is provided in the aluminum plate-like structure by laser cutting in the cutting process. 前記切断加工工程において、一辺200mm以上600mm以下の略四角形又は直径200mm以上600mm以下の略円形であり、且つ前記開口部が直径30mm以上200mm以下の略円形である前記アルミニウム板状構造体を得る請求項14に記載の建築部材の製造方法。 A claim for obtaining the aluminum plate-like structure having a substantially quadrangular shape having a side of 200 mm or more and 600 mm or less or a substantially circular shape having a diameter of 200 mm or more and 600 mm or less and an opening having a diameter of 30 mm or more and 200 mm or less in the cutting process. Item 14. The method for manufacturing a building member according to Item 14. 請求項9〜15のいずれか1項に記載の建築部材である改修排水ドレンの製造方法であって、前記アルミニウム板状構造体に、前記開口部と流体連通するように中空管の一方の端部を固着する中空管固着工程を含む、改修排水ドレンの製造方法。 The method for manufacturing a repair drainage drain, which is a building member according to any one of claims 9 to 15, wherein one of the hollow pipes communicates fluidly with the opening in the aluminum plate-like structure. A method for manufacturing a repair drainage drain, which includes a hollow pipe fixing step for fixing the end portion. 前記中空管固着工程において、前記中空管としてアルミニウム中空管を用い、前記アルミニウム板状構造体と前記アルミニウム中空管の一方の端部とを溶接することにより、前記アルミニウム板状構造体に前記アルミニウム中空管の一方の端部を固着する請求項16に記載の改修排水ドレンの製造方法。 In the hollow tube fixing step, an aluminum hollow tube is used as the hollow tube, and the aluminum plate-like structure and one end of the aluminum hollow tube are welded to form the aluminum plate-like structure. The method for manufacturing a repair drainage drain according to claim 16, wherein one end of the aluminum hollow pipe is fixed to the aluminum hollow pipe. 前記溶接がレーザー溶接である請求項17に記載の改修排水ドレンの製造方法。 The method for manufacturing a repair drainage drain according to claim 17, wherein the welding is laser welding.
JP2019096270A 2019-05-22 2019-05-22 Architectural components and repaired drainage drains including aluminum plate-like structures, and methods of manufacturing them Active JP7369544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019096270A JP7369544B2 (en) 2019-05-22 2019-05-22 Architectural components and repaired drainage drains including aluminum plate-like structures, and methods of manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096270A JP7369544B2 (en) 2019-05-22 2019-05-22 Architectural components and repaired drainage drains including aluminum plate-like structures, and methods of manufacturing them

Publications (2)

Publication Number Publication Date
JP2020190132A true JP2020190132A (en) 2020-11-26
JP7369544B2 JP7369544B2 (en) 2023-10-26

Family

ID=73453458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096270A Active JP7369544B2 (en) 2019-05-22 2019-05-22 Architectural components and repaired drainage drains including aluminum plate-like structures, and methods of manufacturing them

Country Status (1)

Country Link
JP (1) JP7369544B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214898A (en) * 1990-09-14 1992-08-05 Nippon Light Metal Co Ltd Method for hanging up treating member in surface treatment and removal method thereof
JPH0535929U (en) * 1991-10-15 1993-05-18 西武機材株式会社 Drainer
JP2007247295A (en) * 2006-03-16 2007-09-27 Takeshi Oda Drain for repair, and method of manufacturing drain for repair
JP2015059333A (en) * 2013-09-18 2015-03-30 株式会社サンテック Drain hose and drain using the same
JP2017018980A (en) * 2015-07-10 2017-01-26 株式会社庄司合金鋳造所 Casting method, mold for use in the same, and repair drain
JP2017080806A (en) * 2015-10-28 2017-05-18 Jfeスチール株式会社 Steel strip notching method, cold rolling method, and manufacturing method of cold rolling steel strip
JP2018017073A (en) * 2016-07-29 2018-02-01 住友化学株式会社 Aluminum material for renovated wastewater drain, tabular structure for renovated wastewater drain, and method for producing the same
JP2018030141A (en) * 2016-08-23 2018-03-01 有限会社秋元鉛工所 Welding method of thin copper sheet, welding device of thin copper sheet, and manufacturing method of drain for waste water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214898A (en) * 1990-09-14 1992-08-05 Nippon Light Metal Co Ltd Method for hanging up treating member in surface treatment and removal method thereof
JPH0535929U (en) * 1991-10-15 1993-05-18 西武機材株式会社 Drainer
JP2007247295A (en) * 2006-03-16 2007-09-27 Takeshi Oda Drain for repair, and method of manufacturing drain for repair
JP2015059333A (en) * 2013-09-18 2015-03-30 株式会社サンテック Drain hose and drain using the same
JP2017018980A (en) * 2015-07-10 2017-01-26 株式会社庄司合金鋳造所 Casting method, mold for use in the same, and repair drain
JP2017080806A (en) * 2015-10-28 2017-05-18 Jfeスチール株式会社 Steel strip notching method, cold rolling method, and manufacturing method of cold rolling steel strip
JP2018017073A (en) * 2016-07-29 2018-02-01 住友化学株式会社 Aluminum material for renovated wastewater drain, tabular structure for renovated wastewater drain, and method for producing the same
JP2018030141A (en) * 2016-08-23 2018-03-01 有限会社秋元鉛工所 Welding method of thin copper sheet, welding device of thin copper sheet, and manufacturing method of drain for waste water

Also Published As

Publication number Publication date
JP7369544B2 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
TWI521091B (en) Hot-pressing method for hot-pressing plated steel sheet, plated steel sheet and automobile parts
JP6376140B2 (en) Automobile parts and method of manufacturing auto parts
CN113166908B (en) Aluminum-plated steel sheet, hot-stamped member, and method for manufacturing hot-stamped member
TWI555879B (en) Steel sheet for hot pressing, process for manufacturing the steel sheet and process for manufacturing hot-pressed member using the steel sheet
TWI467033B (en) Ferritic stainless steel foil
JP2017066508A (en) Galvanized steel sheet for hot press and method of producing hot press formed article
EP2270250B1 (en) Pipe provided with corrosion prevention layer on the outside surface and process for production of pipe
JP6328248B2 (en) Steel plate for hot press forming excellent in corrosion resistance and weldability, formed member, and method for producing the same
JP5838708B2 (en) Steel sheet with excellent surface properties and method for producing the same
JP2021508771A (en) Zinc alloy plated steel with excellent post-processing corrosion resistance and its manufacturing method
JP2004270029A (en) Galvanized steel sheet excellent in zinc volatility resistance
TWI573881B (en) Steel sheet for drawn-can and producing method thereof
KR20190039222A (en) Material for Metal Mask and Manufacturing Method Thereof
JP6406475B1 (en) Al-plated welded pipe for quenching, Al-plated hollow member and method for producing the same
WO2009078663A1 (en) Austenitic stainless steel for high vacuum and high purity gas tube application
JP6877104B2 (en) Repair drainage drain
JP2020190132A (en) Building component including aluminum plate-like structure, repairing water discharge drain, and manufacturing method of the same
JP5532086B2 (en) Hot-dip galvanized steel pipe
JP7013302B2 (en) Al-containing ferritic stainless steel and processed products with excellent secondary workability and high-temperature oxidation resistance
JP7332335B2 (en) Aluminum building components and refurbishment drains
JP7486010B2 (en) Steel Plate
SE448834B (en) PROCEDURE FOR THE PREPARATION OF A RADICULAR WITH RECTANGULATED RESPECTIVE SQUARE SECTION
JP2003027189A (en) Alloy having excellent corrosion resistance, member for semiconductor production system using the alloy and production method therefor
JP2011001611A (en) Steel sheet excellent in delayed fracture resistance, and method for producing the same
WO2023022222A1 (en) Steel material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7369544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150