JP2020189255A - Filter medium for salt damage countermeasure filter - Google Patents

Filter medium for salt damage countermeasure filter Download PDF

Info

Publication number
JP2020189255A
JP2020189255A JP2019094429A JP2019094429A JP2020189255A JP 2020189255 A JP2020189255 A JP 2020189255A JP 2019094429 A JP2019094429 A JP 2019094429A JP 2019094429 A JP2019094429 A JP 2019094429A JP 2020189255 A JP2020189255 A JP 2020189255A
Authority
JP
Japan
Prior art keywords
filter
filter medium
salt damage
melt
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019094429A
Other languages
Japanese (ja)
Inventor
井上 誠
Makoto Inoue
誠 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2019094429A priority Critical patent/JP2020189255A/en
Publication of JP2020189255A publication Critical patent/JP2020189255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)

Abstract

To provide a filter medium for a salt damage countermeasure filter which reduces salinity re-entrainment upon deliquescence while securing high dust removal efficiency and low ventilation resistance.SOLUTION: A filter medium for a salt damage countermeasure filter comprises a polyolefin-based melt-blown non-woven fabric disposed downstream of ventilation, and a support fiber layer disposed upstream. The support fiber layer has hygroscopicity and rigidity. The melt-blown non-woven fabric has electrification and liquid repellency.SELECTED DRAWING: Figure 1

Description

本発明は、エアフィルターユニット、主に空調やエアコンに使用されるフィルターユニットに用いられる濾材に関するものである。 The present invention relates to an air filter unit, and a filter medium mainly used for a filter unit used for air conditioning and air conditioning.

従来一般に工場、ビル等に外気を取り入れる場合、JIS B 9908:2011のうち形式2が適用されるやや微細な粉塵用フィルターユニットを用いる。こうしたフィルターユニットはガラス繊維よりなる濾材をジグザグ状に折り畳んで枠内に挿入した形状をしている。こうしたフィルターユニットは、外気が比較的乾燥した状態では外気中に含まれる塩分粒子は結晶状の固体粒子となっている為、通常外気中に含まれている粒子と同様に除去することが可能である。しかし、外気が高湿度である場合には、一旦濾材表面に捕集された塩分粒子が、潮解することにより濾材表面に膜状に広がり、圧力損失が急上昇すると共に、やがて濾材を通過して工場やビル内に侵入し塩害をもたらすという問題点がある。また、強風により界面よりの海水粒子の飛散が激しい場合にも液状の海水粒子が飛来する為に、同様の現象が生ずる。 Conventionally, when the outside air is generally taken into a factory, a building, etc., a slightly fine dust filter unit to which Type 2 of JIS B 9908: 2011 is applied is used. Such a filter unit has a shape in which a filter medium made of glass fiber is folded in a zigzag shape and inserted into a frame. In such a filter unit, when the outside air is relatively dry, the salt particles contained in the outside air are crystalline solid particles, so that they can be removed in the same manner as the particles normally contained in the outside air. is there. However, when the outside air is highly humid, the salt particles once collected on the surface of the filter medium spread like a film on the surface of the filter medium by deliquescent, the pressure loss rises sharply, and eventually the salt particles pass through the filter medium and pass through the factory. There is a problem that it invades the building and causes salt damage. Further, even when the seawater particles are severely scattered from the interface due to the strong wind, the liquid seawater particles fly in, so that the same phenomenon occurs.

こうした塩分捕集に伴う一時的な圧力損失や下流側への再飛散を低減した濾材が、各種考案されている。例えば、ある特定の繊維直径と充填率により塩分の潮解を起こさせないも濾材(特許文献1)、撥水性を有する2つの濾材層間に、吸脱湿機能を有する繊維を含んでなる中間濾材層を設け、中間層で塩分を含んだ水分を捕集する濾材(特許文献2)、イオン交換能を有する素材に塩分を含んだ粒子を吸着させて捕集する方法(特許文献3)が、存在する。 Various filter media have been devised to reduce the temporary pressure loss and re-scattering to the downstream side due to such salt collection. For example, a filter medium (Patent Document 1) that does not cause salt deliquescent due to a specific fiber diameter and filling rate, and an intermediate filter medium layer containing fibers having a moisture absorption / desorption function between two water-repellent filter media layers. There are a filter medium (Patent Document 2) for collecting salt-containing water in an intermediate layer, and a method (Patent Document 3) for adsorbing and collecting salt-containing particles on a material having an ion exchange ability. ..

特開平5−15716号公報Japanese Unexamined Patent Publication No. 5-15716 特開平7−148406号公報Japanese Unexamined Patent Publication No. 7-148406 特開平6−182127号公報Japanese Unexamined Patent Publication No. 6-182127

しかしながら、特許文献1ではある程度の粒子捕集効率を必要とするためには相応の繊維密度を必要とするため除塵効率を上げることが難しく、特許文献2においては潮解した塩分を中間層で捕集するもの、濾材の厚みが厚くなるため、ひだ折り後のフィルターにした状態での通気抵抗が相対的に高くなる。また、特許文献3ではイオン交換に用いる素材が粒状であるため反応に必要な幾何表面積が少なく、塩分の捕集量が思わしくないといった問題点がある。 However, in Patent Document 1, it is difficult to increase the dust removal efficiency because a corresponding fiber density is required in order to require a certain degree of particle collection efficiency, and in Patent Document 2, deliquescent salt is collected in the intermediate layer. Since the thickness of the filter medium is increased, the ventilation resistance of the filter after folds is relatively high. Further, in Patent Document 3, since the material used for ion exchange is granular, the geometric surface area required for the reaction is small, and there is a problem that the amount of salt collected is not good.

そこで、本発明は、上記課題に鑑みなされ、その目的は、工場、ビル等に外気を取り入れる空調用途としてのJIS B 9908:2011のうち形式2が適用されるやや微細な粉塵用フィルターユニットに使用されるプリーツ式の塩害対策濾材において、高い粉塵除去効率を確保しつつ塩分保持特性による潮解時の塩分再飛散を低減し、かつ濾材の厚みを抑制してひだ折後のフィルターとしての通気抵抗を低減できる塩害対策フィルター用の濾材を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object thereof is to be used for a slightly fine dust filter unit to which Type 2 of JIS B 9908: 2011 is applied as an air conditioning application for taking in outside air into factories, buildings, etc. In the pleated type salt damage countermeasure filter medium, while ensuring high dust removal efficiency, it reduces salt re-scattering during deliquescent due to salt retention characteristics, and suppresses the thickness of the filter medium to reduce ventilation resistance as a filter after folds. The purpose is to provide a filter medium for a salt damage countermeasure filter that can be reduced.

本発明者は鋭意検討した結果、以下の本発明を得た。
(1)通気の下流に配置されるポリオレフィン系のメルトブロー不織布と、上流に配置される支持繊維層とから成り、前記支持繊維層は吸湿性と剛性とを備え、前記メルトブロー不織布はエレクトレット化されており、かつ、撥液性を備えている、ことを特徴とする塩害対策フィルター用濾材。
(2)前記支持繊維層は、JIS L 1907:2004におけるパイレック法による吸水度が10mm以上であることを特徴とする(1)に記載の塩害対策フィルター用濾材。
(3)前記メルトブロー不織布は、表面張力が34mN/m以下であることを特徴とする(1)または(2)に記載の塩害対策フィルター用濾材。
(4)前記メルトブロー不織布は、表面にフッ素系化合物が付着していることを特徴とする(1)から(3)のいずれか1つに記載の塩害対策フィルター用濾材。
As a result of diligent studies, the present inventor has obtained the following invention.
(1) It is composed of a polyolefin-based melt-blow non-woven fabric arranged downstream of ventilation and a support fiber layer arranged upstream, the support fiber layer has hygroscopicity and rigidity, and the melt-blow non-woven fabric is electretized. A filter medium for salt damage countermeasure filters, which is characterized by having a woven fabric and liquid repellency.
(2) The filter medium for a salt damage countermeasure filter according to (1), wherein the support fiber layer has a water absorption rate of 10 mm or more according to the Pyrec method in JIS L 1907: 2004.
(3) The filter medium for a salt damage countermeasure filter according to (1) or (2), wherein the melt-blown nonwoven fabric has a surface tension of 34 mN / m or less.
(4) The filter medium for a salt damage countermeasure filter according to any one of (1) to (3), wherein the melt-blown nonwoven fabric has a fluorine-based compound adhered to its surface.

本発明により、フィルターユニットの粉塵捕集効率や粉塵供給量いった一般的なフィルター特性を維持しつつ、塩害対策フィルターとして潮解した塩分の下流側への再飛散が少なく、かつ通気抵抗を抑制することが可能な濾材を提供することが可能となった。 According to the present invention, while maintaining general filter characteristics such as dust collection efficiency and dust supply amount of the filter unit, there is little re-scattering of deliquescent salt to the downstream side as a salt damage countermeasure filter, and ventilation resistance is suppressed. It has become possible to provide a filter medium capable of this.

本発明の塩害対策フィルター用濾材の断面図を示す。A cross-sectional view of the filter medium for a salt damage countermeasure filter of the present invention is shown. 本発明に用いる粒子捕集効率評価設備の概略図を示す。The schematic diagram of the particle collection efficiency evaluation equipment used in this invention is shown. 本発明に用いる塩分再飛散率評価設備の概略図を示す。The schematic diagram of the salt re-scattering rate evaluation equipment used in this invention is shown.

以下、本発明を詳細に説明する。
図1に本発明における塩害対策フィルター用濾材の断面図を示す。本発明の濾材は、プリーツ型フィルターに用いられる塩害対策フィルターに適用され、該濾材は少なくとも下流に配置されるメルトブロー不織布2と上流に配置される支持繊維層1とから構成される。
Hereinafter, the present invention will be described in detail.
FIG. 1 shows a cross-sectional view of the filter medium for a salt damage countermeasure filter in the present invention. The filter medium of the present invention is applied to a salt damage countermeasure filter used for a pleated filter, and the filter medium is composed of at least a melt blown non-woven fabric 2 arranged downstream and a support fiber layer 1 arranged upstream.

支持繊維層1は本来の濾材としての形態保持を目的とした剛性と吸湿性と併せ持つ繊維層であり、適度な吸湿性が下流側に一時的に捕集されている塩分を含んだ水滴を積極的に吸収する。 The support fiber layer 1 is a fiber layer having both rigidity and hygroscopicity for the purpose of maintaining the shape as the original filter medium, and has moderate hygroscopicity and positively attracts water droplets containing salt temporarily collected on the downstream side. Absorb.

メルトブロー不織布2は、撥液性と帯電性とを有している。例えば、公知のメルトブロー不織布に撥水処理が施すことで、メルトブロー繊維2上での水滴の繊維状への広がりを抑制する。 The melt blow nonwoven fabric 2 has liquid repellency and chargeability. For example, by applying a water repellent treatment to a known melt blown non-woven fabric, the spread of water droplets on the melt blow fiber 2 in a fibrous form is suppressed.

本発明の濾材は、支持繊維層1とメルトブロー不織布2とを積層することによる相乗効果により、塩分を含んだ水粒子が撥水性を備えたメルトブロー不織布2に捕集されることによって繊維表面への潮解を抑制されるため広がらず、大きな液滴となって繊維表面上に存在し、吸水性を持つ上流側繊維層によって速やかに吸収される。こうした機構により捕集された塩分を含む水滴は下流側への再飛散が抑制される。 In the filter medium of the present invention, due to the synergistic effect of laminating the support fiber layer 1 and the melt blown non-woven fabric 2, water particles containing salt are collected on the water-repellent melt blown non-woven fabric 2 to the fiber surface. Since deliquescent is suppressed, it does not spread, becomes large droplets, exists on the fiber surface, and is rapidly absorbed by the water-absorbing upstream fiber layer. Water droplets containing salt collected by such a mechanism are suppressed from re-scattering to the downstream side.

続いて、本発明の濾材を得るための具体的な方法について説明する。支持繊維層1は支持体本来の形態維持と吸水性保持を両立する必要がある。もちろん濾材あるため支持体としての通気抵抗は低い方が好ましい。支持繊維層1の吸水性はJIS L 1907:2004におけるパイレック法による吸水度において10mm以上、好ましくは15mm以上の吸水度であることが望ましい。吸水度が10mm未満である場合、十分な吸水が期待できず捕集された液滴を保持することが出来ないため下流側への再飛散が発生し好ましくない。吸水性と本来の支持繊維層としての強度や通気抵抗といった機能を両立される方法としては、ポリエステル、ナイロン、レーヨン、綿といった親水性基を有した素材を単一、もしくは適宜混合してシート化し、親水性を発現するバインダーを公知の方法で添付することによって得られる。特に通気性やハンドリング、価格といった面でシートとしては不織布を使用することが好ましい。繊維は上述の素材の短繊維をweb化して公知の方法、たとえばニードルパンチや水流交絡によってシート化し、dip法やコーティング法によってアクリル系バインダーをシート中に含浸、乾燥させることによって得られる。使用される繊維の繊度は1.1〜5.5Tの繊維を用い、適度な強度を得るため10〜30重量%のバインダーを含み、目付30〜90g/m2、厚み0.3〜1.0mmの範囲で製造される。 Subsequently, a specific method for obtaining the filter medium of the present invention will be described. The support fiber layer 1 needs to maintain both the original shape of the support and the water absorption. Of course, since there is a filter medium, it is preferable that the ventilation resistance as a support is low. The water absorption of the support fiber layer 1 is preferably 10 mm or more, preferably 15 mm or more in terms of the water absorption by the Pyrec method in JIS L 1907: 2004. When the water absorption degree is less than 10 mm, sufficient water absorption cannot be expected and the collected droplets cannot be retained, so that re-scattering to the downstream side occurs, which is not preferable. As a method of achieving both water absorption and functions such as strength as the original support fiber layer and air permeability resistance, materials having hydrophilic groups such as polyester, nylon, rayon, and cotton are made into a single sheet or mixed appropriately. , Obtained by attaching a binder exhibiting hydrophilicity by a known method. In particular, it is preferable to use a non-woven fabric as the sheet in terms of breathability, handling, and price. The fibers are obtained by converting the short fibers of the above-mentioned material into a web, forming a sheet by a known method, for example, needle punching or water flow confounding, impregnating the sheet with an acrylic binder by a dip method or a coating method, and drying the sheet. The fibers used have a fineness of 1.1 to 5.5 T, contain 10 to 30% by weight of a binder in order to obtain appropriate strength, have a basis weight of 30 to 90 g / m 2 , and have a thickness of 0.3 to 1. Manufactured in the range of 0 mm.

下流に配置されるメルトブロー不織布2は、ポリオレフィン系、特にポリプロピレン系が好適に用いられる。また、規格に応じた通気抵抗と捕集効率を得るために適度な繊維径と目付のものが選定される。撥水性を得るために必要な撥水処理を施されている。例えば、メルトブロー不織布2の繊維表面にフッ素系化合物が付着していると、繊維表面にナノレベル微細な凹凸が形成され、表面張力を下げることによって撥水性を上げることが可能となる。フッ素系化合物の繊維表面の付着によって表面張力を34mN/m以下にすることで適度な撥水性が得られる。 As the melt blown nonwoven fabric 2 arranged downstream, a polyolefin-based fabric, particularly a polypropylene-based fabric, is preferably used. In addition, those with an appropriate fiber diameter and basis weight are selected in order to obtain ventilation resistance and collection efficiency according to the standard. It has been subjected to the water repellent treatment necessary to obtain water repellency. For example, when a fluorine-based compound is attached to the fiber surface of the melt blow nonwoven fabric 2, nano-level fine irregularities are formed on the fiber surface, and water repellency can be improved by lowering the surface tension. Appropriate water repellency can be obtained by reducing the surface tension to 34 mN / m or less by adhering the fiber surface of the fluorine-based compound.

フッ素系化合物をメルトブロー不織布2の繊維表面に付着させるには、フッ素系化合物を含有した薬液を水や有機溶剤中に分散させてdip法やスプレー法といった公知の方法を用いることができる。あるいは、再公表特許2016年088692号公法に記載された蒸着による方法も用いることができる。ただし、ここに記載方法には限定されない。また、除塵効率を向上させて通気抵抗を低減させるために、公知の方法にて荷電処理を施し、エレクトレット化する。 In order to attach the fluorine-based compound to the fiber surface of the melt-blown non-woven fabric 2, a known method such as a dip method or a spray method can be used by dispersing the chemical solution containing the fluorine-based compound in water or an organic solvent. Alternatively, the method by vapor deposition described in the republished patent 2016 08692 public law can also be used. However, the method described here is not limited. Further, in order to improve the dust removal efficiency and reduce the ventilation resistance, a charge treatment is performed by a known method to make an electret.

支持線維層1とメルトブロー不織布2との層間にバインダーを塗布して、積層して接着することで濾材が啓成される。積層及び接着方法は、例えば、接着剤となるパウダーをシート表面上に散布して加熱・圧縮する方法や、溶融した接着剤を細いノズルから噴き出してシー上に細かく散布して圧縮する方法(スプレー法)、接着性繊維のシートを層間に積層して加熱圧縮する方法などある。しかし、濾材としての形態を維持できるのであれば、方法や条件など特に限定はされない。 A filter medium is enlightened by applying a binder between the support fiber layer 1 and the melt-blown non-woven fabric 2 and laminating and adhering them. The laminating and bonding methods include, for example, a method of spraying powder as an adhesive on the surface of a sheet to heat and compress it, and a method of ejecting the molten adhesive from a thin nozzle and finely spraying it on a sea to compress it (spray). Method), there are methods such as laminating a sheet of adhesive fiber between layers and heating and compressing. However, the method and conditions are not particularly limited as long as the form as a filter medium can be maintained.

次に実施例、比較例を用いて本発明を具体的に説明するが、本発明は実施例のみに限定されるものではない。 Next, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples.

まず、実施例、比較例の濾材の物性の測定方法について説明する。 First, a method for measuring the physical properties of the filter media of Examples and Comparative Examples will be described.

1.目付(g/m2
200mm角の寸法で切り出し、秤量を寸法で除する。
1. 1. Metsuke (g / m 2 )
Cut out to a size of 200 mm square and divide by the size.

2.厚み(mm)
荷重0.7kPaの厚みを読み取る。
2. 2. Thickness (mm)
Read the thickness with a load of 0.7 kPa.

3.圧力損失・粒子捕集効率
図2に示すダクト4にサンプル12をセットし、線速10cm/秒に設定した空気を流して濾材の上下流における差圧を差圧計7で測定し、圧力損失とする。さらに上流側と下流側の空気をサンプリングし、パーティクルカウンター8を用い0.3〜0.5μmの粒径の粒子数をカウントする。粒子捕集効率(E)は以下の式(1)を用いて算出する。
粒子捕集効率 E(%)={1−(下流粒子数/上流粒子数)}×100 (1)
3. 3. Pressure loss / particle collection efficiency The sample 12 is set in the duct 4 shown in FIG. 2, air set at a linear velocity of 10 cm / sec is flowed, and the differential pressure upstream and downstream of the filter medium is measured with a differential pressure gauge 7, and the pressure loss is calculated. To do. Further, the air on the upstream side and the air on the downstream side are sampled, and the number of particles having a particle size of 0.3 to 0.5 μm is counted using the particle counter 8. The particle collection efficiency (E) is calculated using the following formula (1).
Particle collection efficiency E (%) = {1- (number of downstream particles / number of upstream particles)} x 100 (1)

4.吸水性
JIS L 1907:2004におけるパイレック法による吸水度で評価する。
4. Water absorption The water absorption by the Pyrec method in JIS L 1907: 2004 is evaluated.

5.撥水性
表面張力としてJIS K 6768で用いられる濡れ張力試験用混合液の液滴を滴下し、30秒間接触させて、液滴の浸透の有無を確認する。
5. Water repellency Droplets of the wet tension test mixture used in JIS K 6768 as the surface tension are dropped and contacted for 30 seconds to check for the presence or absence of penetration of the droplets.

6.NaCl潮解時の再飛散率
有効通風面積が82cm (10.2cmφ)になるようサンプルを切り抜いた後、乾燥重量を測定し、初期重量(W)とする。次に予め乾燥後粉砕し、400メッシュ(目の開き37μm)の篩いを通過させたNaCl粒子を約0.3g付着させた後、乾燥重量を測定し、NaCl付着後重量(W)とする。そして、WとWとの差をNaCl付着量(W)とする。
気温20℃、相対湿度90%に調節した実験室内に設置した図3に示す試験装置にNaClを付着させたサンプルをサンプルホルダー8に装着、風速が13cm/s(風量3.84m/hr)となるように流量計9で調節しながら送風機11により通風し、8時間放置する。なお、通風する空気はHEPAフィルター13で無塵空気とする。放置後、サンプルを試験装置より取り出し、乾燥後重量を測定し、NaCl再飛散後の重量(W)とする。NaClの再飛散量WはWとWとの差で表される。NaCl潮解時の再飛散率は、以下の式(2)で表される。
NaCl再飛散率=W/W ×100 (2)
6. Re-scattering rate at the time of NaCl deliquescent After cutting out the sample so that the effective ventilation area is 82 cm 2 (10.2 cmφ), the dry weight is measured and used as the initial weight (W 0 ). Next, after drying in advance and pulverizing, about 0.3 g of NaCl particles passed through a sieve of 400 mesh (opening 37 μm) are attached, and then the dry weight is measured and used as the weight after NaCl attachment (W 1 ). .. Then, the difference between W 1 and W 0 is defined as the amount of NaCl attached (W).
A sample with NaCl attached to the test device shown in FIG. 3 installed in a laboratory adjusted to an air temperature of 20 ° C. and a relative humidity of 90% was attached to the sample holder 8, and the wind speed was 13 cm / s (air volume 3.84 m 2 / hr). While adjusting with the flow meter 9, the air is ventilated by the blower 11 and left for 8 hours. The air to be ventilated is dust-free by the HEPA filter 13. After standing, the sample is taken out from the test apparatus, dried and weighed, and used as the weight after NaCl re-scattering (W 2 ). The amount of re-scattered NaCl W 3 is represented by the difference between W 1 and W 2 . The re-scattering rate at the time of NaCl deliquescent is expressed by the following equation (2).
NaCl re-scattering rate = W 3 / W x 100 (2)

次に、実施例、比較例の濾材を製造するにあたって用いた、メルトブロー不織布の荷電方法、支持繊維層とメルトブロー不織布との積層方法を説明する。
(積層方法)
支持繊維層上にスプレーのり77(スリーエム・ジャパン株式会社製)を適宜噴射して、その上にメルトブロー不織布を積層し、軽く手で押さえて接着させて接合させる。
(荷電方法)
以下の条件にてメルトブロー不織布に荷電を実施する。
アース側:アルミ板に厚さ2mmのシリコンシートを敷設
電極側:針間隔10mmの針電極
電極−アース間距離:針先端からシリコンシートまで10mm
印加電圧:20kV
荷電時間:30秒
Next, the charging method of the melt-blown nonwoven fabric and the laminating method of the supporting fiber layer and the melt-blown nonwoven fabric used in producing the filter media of Examples and Comparative Examples will be described.
(Laminating method)
Spray glue 77 (manufactured by 3M Japan Ltd.) is appropriately sprayed onto the support fiber layer, and a melt-blown non-woven fabric is laminated on the spray glue 77, which is lightly pressed by hand to bond them.
(Charging method)
The melt blown non-woven fabric is charged under the following conditions.
Ground side: A silicon sheet with a thickness of 2 mm is laid on an aluminum plate. Electrode side: Needle electrode with a needle spacing of 10 mm Electrode-ground distance: 10 mm from the needle tip to the silicon sheet.
Applied voltage: 20kV
Charge time: 30 seconds

次に、施例、比較例の濾材の製造方法について説明する。
<支持繊維層>
(シートA)
ポリエステル繊維2.2T×51mmをミニチュアカードにかけてweb化し、小型ニードルパンチ機で弱く繊維間を交絡させ、目付46g/m2の不織布を作成した。これをアクリル系バインダー「DICNAL E−8290N」(DIC株式会社製)を分散させた水溶液に含浸し、マングルで絞った後110℃で乾燥させ、繊維層を得た。乾燥後の目付57g/m2、厚み0.8mm、引張強度6kgf/5cm、吸水度35mmであった。これをシートAとする。
(シートB)
PP/PE心鞘繊維2.2T×51mmをミニチュアカードにかけてweb化し、小型ニードルパンチ機で弱く繊維間を交絡させ、目付60g/m2の不織布を作成した。これを厚み3mmのアルミニウム板に置き、厚み0.7mmのステンレスのスペーサーをシートの周囲に置いて上に同じく3mmのアルミ板を置いて挟み、上下から熱プレス機で150℃で2分加熱して繊維層を得た、目付60g/m2、厚み0.7mm、引張強度8kgf/5cm、吸水度はゼロであった。これをシートBとする。
Next, a method for producing the filter media of Examples and Comparative Examples will be described.
<Supporting fiber layer>
(Sheet A)
Polyester fiber 2.2T × 51mm was put on a miniature card to make a web, and the fibers were weakly entangled with a small needle punching machine to prepare a non-woven fabric having a basis weight of 46 g / m 2 . This was impregnated with an aqueous solution in which an acrylic binder "DCNAL E-8290N" (manufactured by DIC Corporation) was dispersed, squeezed with a mangle, and dried at 110 ° C. to obtain a fiber layer. After drying, the basis weight was 57 g / m 2 , the thickness was 0.8 mm, the tensile strength was 6 kgf / 5 cm, and the water absorption was 35 mm. This is referred to as sheet A.
(Sheet B)
A PP / PE core sheath fiber 2.2T × 51 mm was put on a miniature card to make a web, and the fibers were weakly entangled with a small needle punching machine to prepare a non-woven fabric having a basis weight of 60 g / m 2 . Place this on an aluminum plate with a thickness of 3 mm, place a stainless spacer with a thickness of 0.7 mm around the sheet, place the same 3 mm aluminum plate on top, sandwich it, and heat it from above and below with a heat press at 150 ° C for 2 minutes. The fiber layer was obtained with a basis weight of 60 g / m 2 , a thickness of 0.7 mm, a tensile strength of 8 kgf / 5 cm, and a water absorption of zero. This is referred to as sheet B.

<メルトブロー不織布>
(シートC)
市販品(MPEA04:目付20g/m2、厚み0.24mm、通気性58cc/cm2/sec、三井化学製)を用いた。サンプルをポリテトラフルオロエチレンのソルベントに含浸させ、取り出し後揮発分を蒸発させた。テトラフルオロエチレンの添加量は2g/m2で、表面張力は30mN/mであった。このサンプルを上述の方法で荷電し、エレクトレット不織布を得た。これをシートCとする。
(シートD)
市販品(MPEA04:目付20g/m2、厚み0.24mm、通気性58cc/cm2/sec、三井化学製)を用いた。サンプルを上述の方法で荷電し、エレクトレット不織布を得た。表面張力は36mN/mであった。これをシートDとする。
<Melt blow non-woven fabric>
(Sheet C)
A commercially available product (MPEA04: basis weight 20 g / m 2 , thickness 0.24 mm, air permeability 58 cc / cm 2 / sec, manufactured by Mitsui Chemicals) was used. The sample was impregnated with a polytetrafluoroethylene solvent, and after removal, the volatile matter was evaporated. The amount of tetrafluoroethylene added was 2 g / m 2 , and the surface tension was 30 mN / m. This sample was charged by the method described above to obtain an electret non-woven fabric. This is referred to as sheet C.
(Sheet D)
A commercially available product (MPEA04: basis weight 20 g / m 2 , thickness 0.24 mm, air permeability 58 cc / cm 2 / sec, manufactured by Mitsui Chemicals) was used. The sample was charged by the method described above to obtain an electret non-woven fabric. The surface tension was 36 mN / m. This is referred to as sheet D.

(実施例1)
シートA及びシートCを用い、上述の方法で接合し、実施例1の濾材を製造した。この濾材において、シートAを上流側、シートCを下流側として、各測定を行った。実施例1の濾材について、目付、厚み、通気抵抗、大気塵捕集効率、塩分再飛散比率を評価した結果を、表1に示す。
(Example 1)
Sheet A and Sheet C were joined by the above-mentioned method to produce the filter medium of Example 1. In this filter medium, each measurement was performed with the sheet A on the upstream side and the sheet C on the downstream side. Table 1 shows the results of evaluating the basis weight, thickness, ventilation resistance, air dust collection efficiency, and salt re-scattering ratio of the filter medium of Example 1.

(比較例1)
シートB及びシートCを用い、上述の方法で接合し、比較例1の濾材を製造した。この濾材において、シートBを上流側、シートCを下流側として、各測定を行った。比較例1の濾材について、目付、厚み、通気抵抗、大気塵捕集効率、塩分再飛散比率を評価した結果を、表1に示す。
(Comparative Example 1)
Sheet B and Sheet C were joined by the above-mentioned method to produce the filter medium of Comparative Example 1. In this filter medium, each measurement was performed with the sheet B on the upstream side and the sheet C on the downstream side. Table 1 shows the results of evaluating the basis weight, thickness, ventilation resistance, atmospheric dust collection efficiency, and salt re-scattering ratio of the filter medium of Comparative Example 1.

(比較例2)
シートA及びシートDを用い、上述の方法で接合し、比較例2の濾材を製造した。この濾材において、シートAを上流側、シートDを下流側として、各測定を行った。比較例2の濾材について、目付、厚み、通気抵抗、大気塵捕集効率、塩分再飛散比率を評価した。表1に示す。
(Comparative Example 2)
Sheet A and Sheet D were joined by the above-mentioned method to produce the filter medium of Comparative Example 2. In this filter medium, each measurement was performed with the sheet A on the upstream side and the sheet D on the downstream side. Regarding the filter medium of Comparative Example 2, the basis weight, thickness, ventilation resistance, atmospheric dust collection efficiency, and salt re-scattering ratio were evaluated. It is shown in Table 1.

(比較例3)
市販のエレクトレット塩害対策フィルター用濾材(EF−DS2−90、東洋紡製)を比較例3の濾材とし、この濾材について、目付、厚み、通気抵抗、大気塵捕集効率、塩分再飛散比率を評価した結果を、表1に示す。
(Comparative Example 3)
A commercially available filter medium for electret salt damage countermeasure filters (EF-DS2-90, manufactured by Toyobo) was used as the filter medium of Comparative Example 3, and the basis weight, thickness, ventilation resistance, atmospheric dust collection efficiency, and salt re-scattering ratio were evaluated for this filter medium. The results are shown in Table 1.

表1から分かるように、実施例の濾材は、比較例1〜3に対して、高い粉塵除去効率及び低い通気抵抗を確保しつつ、潮解時の塩分再飛散を低減できる。 As can be seen from Table 1, the filter media of Examples can reduce salt re-scattering during deliquescent while ensuring high dust removal efficiency and low ventilation resistance as compared with Comparative Examples 1 to 3.

本発明の塩害対策フィルター用濾材は、従来のように塩分捕集を目的とする特別な層を設ける必要がなく、一般空調用フィルター用濾材の厚みと同等でこれまでの効率や通気抵抗を有する濾材が得られる。下流側への塩分の再飛散が殆ど起こらないので通常の空調設備フィルターの置き換えして提案できるため、新たに塩害対策フィルター向けに設備を手直しすることなく使用できる。これ空調用途におけるプリーツタイプの塩害対策フィルターの分野では非常に有効である。 The filter medium for a salt damage countermeasure filter of the present invention does not need to be provided with a special layer for the purpose of collecting salt as in the conventional case, and has the same thickness as the filter medium for a general air conditioning filter and has the efficiency and ventilation resistance so far. A filter medium is obtained. Since salt re-scattering to the downstream side hardly occurs, it can be proposed as a replacement for a normal air-conditioning equipment filter, so it can be used without remodeling the equipment for a new salt damage countermeasure filter. This is very effective in the field of pleated type salt damage countermeasure filters for air conditioning applications.

1 : 支持繊維層(上流層)
2 : メルトブロー不織布(下流層)
4 : ダクト
5 : 上流側サンプリング管
6 : 下流側サンプリング管
7 : 差圧計
8 : パーティクルカウンター
9 : 流量計
10: バルブ
11: ブロアー
12: 評価サンプル
13: HEPAフィルター
1: Support fiber layer (upstream layer)
2: Melt blow non-woven fabric (downstream layer)
4: Duct 5: Upstream sampling tube 6: Downstream sampling tube 7: Differential pressure gauge 8: Particle counter 9: Flow meter 10: Valve 11: Blower 12: Evaluation sample 13: HEPA filter

Claims (4)

通気の下流に配置されるポリオレフィン系のメルトブロー不織布と、上流に配置される支持繊維層とから成り、
前記支持繊維層は吸湿性と剛性とを備え、
前記メルトブロー不織布はエレクトレット化されており、かつ、撥液性を備えている、ことを特徴とする塩害対策フィルター用濾材。
It consists of a polyolefin-based melt-blown non-woven fabric arranged downstream of ventilation and a supporting fiber layer arranged upstream.
The supporting fiber layer has hygroscopicity and rigidity, and has
A filter medium for a salt damage countermeasure filter, characterized in that the melt blown non-woven fabric is electretized and has liquid repellency.
前記支持繊維層は、JIS L 1907:2004におけるパイレック法による吸水度が10mm以上であることを特徴とする請求項1に記載の塩害対策フィルター用濾材。 The filter medium for a salt damage countermeasure filter according to claim 1, wherein the support fiber layer has a water absorption rate of 10 mm or more according to the Pyrec method in JIS L 1907: 2004. 前記メルトブロー不織布は、表面張力が34mN/m以下であることを特徴とする請求項1または2に記載の塩害対策フィルター用濾材。 The filter medium for a salt damage countermeasure filter according to claim 1 or 2, wherein the melt blow nonwoven fabric has a surface tension of 34 mN / m or less. 前記メルトブロー不織布は、表面にフッ素系化合物が付着していることを特徴とする請求項1から3のいずれか1項に記載の塩害対策フィルター用濾材。 The filter medium for a salt damage countermeasure filter according to any one of claims 1 to 3, wherein the melt-blown nonwoven fabric has a fluorine-based compound adhered to its surface.
JP2019094429A 2019-05-20 2019-05-20 Filter medium for salt damage countermeasure filter Pending JP2020189255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019094429A JP2020189255A (en) 2019-05-20 2019-05-20 Filter medium for salt damage countermeasure filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019094429A JP2020189255A (en) 2019-05-20 2019-05-20 Filter medium for salt damage countermeasure filter

Publications (1)

Publication Number Publication Date
JP2020189255A true JP2020189255A (en) 2020-11-26

Family

ID=73454257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019094429A Pending JP2020189255A (en) 2019-05-20 2019-05-20 Filter medium for salt damage countermeasure filter

Country Status (1)

Country Link
JP (1) JP2020189255A (en)

Similar Documents

Publication Publication Date Title
US9539532B2 (en) Air filter with sorbent particles
US9656196B2 (en) Filter material for air filter, method for manufacturing same, and air filter provided with same
WO2015125942A1 (en) Air-filtering filter medium and air filter unit
JP5346301B2 (en) Wave filter material and filter element
US20050132886A1 (en) Air filter for removing particulate matter and volatile organic compounds
JP3259782B2 (en) Filter media for air purification
TW201737990A (en) Air filters comprising polymeric sorbents for aldehydes
JP6109334B2 (en) Non-woven electret fiber web and method for producing the same
CN116832529A (en) Filter media including a wave filter layer
CN111971105A (en) Wet-type nonwoven fabric for filter, filter medium for filter, and filter
JP7242807B2 (en) Air filter media and air filters
JP2012125714A (en) Filter material for air filter and air filter
JP2014151299A (en) Filter material for filter and air filter
CN109648958B (en) Composite non-woven fabric and preparation method and application thereof
JP2013104421A (en) Intake filter unit for gas turbine
JP2014121693A (en) Air filter
JP2020189255A (en) Filter medium for salt damage countermeasure filter
JP2002292227A (en) Filter unit
JPH1190133A (en) Air cleaning filter
JP7424298B2 (en) Filter media and filters
US20200324235A1 (en) Filter medium with non-woven as single-layer fiber composite and method for producing such a filter medium
JP3114079B2 (en) Filter material made of non-woven fabric for removing salt and air filter using the same
JP2021194631A (en) Salt damage countermeasure filter medium and pleat type filter
JP2023137062A (en) Filter medium for measure against salt damage, and pleat type filter
JP2013111572A (en) Filter medium for gas removal