JP2020188963A - 心電波形推定装置 - Google Patents

心電波形推定装置 Download PDF

Info

Publication number
JP2020188963A
JP2020188963A JP2019096173A JP2019096173A JP2020188963A JP 2020188963 A JP2020188963 A JP 2020188963A JP 2019096173 A JP2019096173 A JP 2019096173A JP 2019096173 A JP2019096173 A JP 2019096173A JP 2020188963 A JP2020188963 A JP 2020188963A
Authority
JP
Japan
Prior art keywords
electrocardiographic waveform
pulse wave
subject
electrocardiographic
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019096173A
Other languages
English (en)
Inventor
茂樹 清水
Shigeki Shimizu
茂樹 清水
晃太 穴井
Kota Anai
晃太 穴井
山田 直人
Naoto Yamada
直人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Technical Development Corp
Original Assignee
Toyota Technical Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Technical Development Corp filed Critical Toyota Technical Development Corp
Priority to JP2019096173A priority Critical patent/JP2020188963A/ja
Publication of JP2020188963A publication Critical patent/JP2020188963A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】運動、運転等の活動状態の心電位の計測に際し、取得が容易な脈波に基づいて当該脈波から再現性良く心電波形を推定することができる心電波形推定装置を提供する。【解決手段】心電波形推定装置は、生体の心電位の心電波形と、心電波形と同期する生体の脈波とを取得して、心電波形と脈波の相互間の相関性を機械学習して相関情報を演算する相関学習部110と、被験者の生体に装着する装着部を介して被験者の生体の被験者脈波を取得する脈波取得部120と、被験者脈波を蓄積する蓄積部130と、蓄積部に蓄積された被験者脈波に相関情報を組み合わせて被験者脈波に対応した被験者推定心電波形を推定して生成する推定生成部140とを備える。【選択図】図3

Description

本発明は心電波形推定装置に関し、特に被験者の脈波に基づいて心電波形を推定する装置に関する。
従来、人体の心電位を取得するためには、医療機関等で使用される大がかりな心電計測器と心電記録装置が必要であった。また、当該機器の使用では安静状態とする必要がある。その後、次第に運動、運転等の活動状態の心電位の計測の要望が高まってきた。この要望を踏まえ、脈波検出手段と脳波検出手段を備え、検出した脳波からいったん周期を特定し、検出した周期と脈波情報とから心電位を推定するシステムが提案されている(特許文献1参照)。
特許文献1のシステムであっても脈波検出と脳波検出のそれぞれの機器が必要であり、依然として携帯性は十分ではなかった。また、一般に脈波検出器は運動等の体の動きに伴うノイズが混ざりやすく、正確な波動の取得は難しい。それゆえ、携帯可能であり、かつ運動、運転中に使用でき、正確な心電位を推定する機器は存在しなかった。
また、生体信号の時系列データに関しノイズ区間を検出し、ノイズのない区間のデータをノイズ区間に挿入する装置(特許文献2参照)、波形データから直行変換または直行逆変換を加えることによりノイズを除去する装置(特許文献3参照)等が提案されている。また、脈波のR−R間隔実測データに基づき心電図のR−R間隔を推定する装置(特許文献4参照)等が提案されている。
特許文献2、3等の場合、波形の推定は容易ではなく必ずしも満足できる心電波形をえることができない。また、特許文献4等の場合、ノイズのない心電波形を推定することは困難であった。現状、脈波から心電波形を推定できるのは、波形のR−R(ピーク間)の時間のみである。
特開平10−262941号公報 特開2015−80624号公報 特開2016−174871号公報 特開平8−229013号公報
本発明は上述の点に鑑みなされたものであり、運動、運転等の活動状態の心電位の計測に際し、取得が容易な脈波に基づいて当該脈波から再現性良く心電波形を推定することができる心電波形推定装置を提供する。
すなわち、第1の態様の心電波形推定装置は、生体の心電位の心電波形と、心電波形と同期する生体の脈波とを取得して、心電波形と脈波の相互間の相関性を機械学習して相関情報を演算する相関学習部と、被験者の生体に装着する装着部を介して被験者の生体の被験者脈波を取得する脈波取得部と、被験者脈波を蓄積する蓄積部と、蓄積部に蓄積された被験者脈波に相関情報を組み合わせて被験者脈波に対応した被験者推定心電波形を推定して生成する推定生成部とを備えたことを特徴とする。
第2の態様の心電波形推定装置では、装着部が被験者の耳朶に装着されることを特徴とする。
第3の態様の心電波形推定装置では、相関学習部において、心電波形と、心電波形と同期する脈波の対が複数存在して、機械学習により相関情報が演算されることを特徴とする。
第4の態様の心電波形推定装置では、相関学習部における機械学習が一次元畳み込みを用いていることを特徴とする。
第5の態様の心電波形推定装置では、被験者推定心電波形を送信する送信部が備えられることを特徴とする。
第6の態様の心電波形推定装置では、心電波形推定装置がスタンドアロン機器であることを特徴とする。
本発明の心電波形推定装置によると、生体の心電位の心電波形と、心電波形と同期する生体の脈波とを取得して、心電波形と脈波の相互間の相関性を機械学習して相関情報を演算する相関学習部と、被験者の生体に装着する装着部を介して被験者の生体の被験者脈波を取得する脈波取得部と、被験者脈波を蓄積する蓄積部と、蓄積部に蓄積された被験者脈波に相関情報を組み合わせて被験者脈波に対応した被験者推定心電波形を推定して生成する推定生成部とを備えたため、運動、運転等の活動状態の心電位の計測に際し、取得が容易な脈波に基づいて当該脈波から再現性良く心電波形を推定することができる。
実施形態の心電波形推定装置を示す概要図である。 心電波形推定装置の内部構成を示すブロック図である。 心電波形推定装置の機能構成を示すブロック図である。 心電波形推定装置の処理構成を示すブロック図である。 波形を示す第1グラフである。 波形を示す第2グラフである。 心電波形推定装置の処理を示すフローチャートである。 相関学習ステップの処理を示すフローチャートである。
図1の概要図に示すように、実施形態の心電波形推定装置1は被験者Hの生体に装着される。心電波形推定装置1の被験者Hにおける装着部2は、図示とおり耳朶E(みみたぶ)に装着される。装着部2のセンサ受光部(図示せず)は、被験者の生体の耳朶Eに接触する(対向する)ように装着される。装着部2の装着箇所は耳朶の他に、手首、足首、頸部、額(こめかみ)等の脈動の検知の容易な部位が装着部2の装着場所として選択される。そこで、被験者Hの生体における脈波(被験者脈波)が装着部2を介して取得される。図示の心電波形推定装置1はスタンドアロン機器の例となる。そして、心電波形推定装置1は被験者脈波に基づいて推定し生成した被験者推定心電波形を表示制御部3に対して出力する。表示制御部3は、公知のパーソナルコンピュータ、スマートフォン、タブレット端末等である。図示では、表示制御部3には公知のディスプレイ4が接続され、同ディスプレイ4に被験者推定心電波形等が表示される。図示の構成は一例である。
心電波形は、心臓の拍動時の各心房及び各心室の筋肉の動きに応じて生じる筋電位の変化(一般に、心電波形はP波、Q波、R波、S波、T波と称される波形の組み合わせからなり、各波の間隔が規定されている。)に基づく(図示省略)。心臓の拍動により血液が心臓から全身に供給される際、心臓の拍動に基づく血流量の変化が脈波の中に残ることが知られている。そこで、実施形態の心電波形推定装置1は、生体の末梢部において検出される脈波から再現性よく心電波形を推定(復元)する装置である。特に、運動、運転等の活動状態の心電波形が推定であっても取得可能となるため、生体が受けている緊張(ストレス)状態、健康状態がより正確に把握可能となる。
図2は心電波形推定装置1の主要な内部構成を示すブロック図である。装着部2には、被験者Hの耳朶E内の血管を流通する血流量を測定するための透過型または反射型の赤外線センサ等が備えられる。血流量の上下変動が脈波として装着部2により検知される。そこで、被験者Hの脈動の変化が脈波(被験者脈波)として捕捉される。また、装着部2の装着箇所が耳朶以外の手首、足首、頸部、額(こめかみ)等の脈動の検知の容易な部位の場合、これらの箇所に装着され、例えば、圧電センサ等により脈動は電気信号として検知される。心電波形推定装置1には、マイクロコンピュータ10、アナログマルチプレクサ15、アナログ/デジタル変換器16、無線送信器17等が備えられる。そして、マイクロコンピュータ10にイン/アウトバッファ14、CPU11、RAM12、ROM13等が実装される。
装着部2から取得した信号はアナログマルチプレクサ15、アナログ/デジタル変換器16を経由してマイクロコンピュータ10のイン/アウトバッファ14に入り、CPU61等の各所に送られる。装着部2からの信号、波形は取得され、無線送信器17より、外部の表示制御部3に信号送信される。信号の周波数帯等は適宜である。実施形態は、無線LANに対応した2.4GHz帯を使用する。むろん、図示の形態は一例であるため、他の構成とすることも可能である。
図3は機能構成を示すブロック図であり、マイクロコンピュータ10のCPU11の各機能部を示す。ブロック図のとおり、相関学習部110、脈波取得部120、蓄積部130、推定生成部140、送信部150等を備える。マイクロコンピュータ10の動作、実行は、ソフトウェア的に、メインメモリにロードされた心電波形推定装置1の心電波形推定プログラム等により実現される。
心電波形推定装置1のマイクロコンピュータ10(CPU11)における個々の機能部について、図4の処理構成を示すブロック図と併せて順に説明する。
相関学習部110は、事前に生体の心電位の心電波形を取得するとともに、同心電波形と同期する生体の脈波を取得している。ここから当該心電波形と脈波の間に成立する相互間の相関性を機械学習することにより、当該心電波形と脈波との間に成立する最適な相関情報を演算する。
事前に取得する生体の心電波形は、被験者H自身であっても他人であっても良い。ただし、当該心電波形と同期した脈波も同時に取得されている必要がある。心電波形と同期した脈波は対の関係を成し、いわゆる機械学習における教師データとなる。従って、心電波形と脈波の相関性の検証のため、心電波形と同期した脈波の検体数は多い(複数存在すること)ほど望ましい。例えば、被験者の年齢、性別等が多岐にわたる中において、個々の集団毎に区分されて機械学習のためのデータが構成される。
心電波形の取得に際しては、従前の医療機関等で使用される心電計測器及び心電記録装置による計測としても、または電極を備えた着衣を着用する簡易的な測定としても良い。脈波の取得は、被験者Hの生体である耳朶Eに装着する装着部2を介して耳朶等からの取得することができる(図1参照)。
心電波形と脈波との相互間の相関性は、機械学習により最適な相関性が求められる。具体的には、機械学習は一次元畳み込み法を用いる。一次元畳み込みの手法は、時系列のデータの処理に効率的な方法であり、既知の時系列の変動から次の時系列の変動を予測することに好適である。心電波形は時系列による筋電位の変化の波形である。そして、当該心電波形に起因する脈波も既知の時系列の変動から次の時系列の変動を予測することができる。この結果、脈波が既知であれば、心電波形と脈波との間に見いだされる相関情報を利用して脈波から心電波形を推定することも可能となる。
脈波取得部120は、被験者Hの生体である耳朶Eに装着する装着部2を介して被験者Hの生体の被験者脈波を取得する。被験者脈波の取得は図1及び図2にて詳述のとおり、当該実施形態では装着部2において検知した脈波の信号はアナログマルチプレクサ15とアナログ/デジタル変換器16を経由して時系列のデジタル信号に変換され、被験者脈波は時系列のデータとして取得される。
蓄積部130は、取得された被験者脈波を蓄積する。蓄積に際しては、RAM12等の適宜の記憶部、またはSSD等の不揮発性の記憶媒体(図示せず)が用いられる。
推定生成部140は、蓄積部120に蓄積された被験者脈波に相関情報を組み合わせて被験者脈波に対応した被験者推定心電波形を推定して生成する。相関学習部130では心電波形と脈波との相関性から相関情報が生成される。相関情報はある種の汎用的な情報、関数等に相当する。そこで、実際に取得された被験者Hの被験者脈波に、相関情報が組み合わせられて、当該被験者脈波に対応した被験者推定心電波形が推定されて生成される。
ここまでの過程は、図4のブロック図としてまとめられる。被験者Hより被験者脈波は耳朶等の被験者Hの末梢部位から取得される。また、予め取得された心電波形と脈波との間の相関性のデータが機械学習により学習モデルとして蓄積されている。そこで、被験者Hの被験者脈波に学習モデルから導き出された相関情報が組み合わせられる。最終的に、信号変換において被験者Hの被験者脈波から被験者推定心電波形が推定される。
図1等の実施形態の心電波形推定装置1はスタンドアロン機器の例である。ここで、機械学習による学習モデル生成、推定等の演算量を多く必要とする箇所については、別途の通信回線を通じた外部のサーバ等を活用した心電波形推定システムとして構成することもできる。この場合、学習モデル生成において、データの随時更新等が迅速化し学習モデルの精度向上が速まる。
図5のグラフは心電波形、脈波、及び心電波形(推定)の関係を示す。また、図6のグ脈波と心電波形(推定)の関係を拡大して示す。なお、両グラフとも、脈波の周期の時間軸は心電波形と同期させるため、脈波は所定量ずらして表示している。心電波形と当該心電波形と対応する脈波を基本のデータとして、これらから相関情報が生成される。そして、脈波が取得されると、当該脈波に相関情報が組み合わせられて「推定の心電波形」が生成される。
図6は取得した脈波と、これより推定した推定の心電波形である。脈波に含まれる微細なノイズ波形の成分が解消され、さらに、脈波の周期から脈波の元となる心電波形が推定されてグラフ化されている。前述の図5からも把握されるように、脈波から推定される心電波形(推定)の波形は、実測の心電波形と極めて近似する。このように、時系列の情報(脈波)から目的の情報(推定の心電波形)を生成する場合に、機械学習を通じた演算は非常に有効である。
機械学習に際し、心電波形及び脈波の波形は異なる単位により分割される。そして、心電波形の分割された単位、及び脈波の分割されたそれぞれの単位において抽出された特徴量が抽出される。また、波形の分割に際し、脈波は2周期以上の長さで分割され、かつ脈波の分割の単位は1波形未満の長さである。この結果、波形のスペクトルに合致した特徴が抽出され、波形の推定精度が向上する。
送信部150は、被験者推定心電波形を送信する。送信部150では、推定生成部140において生成された被験者推定心電波形を心電波形推定装置1の外部に送信するための信号等を生成する処理が実行される。具体的には、無線送信器17(図2参照)による送信のための必要なデータ調整が行われる。
これより、図7のフローチャートを用い、実施形態の心電波形推定装置の心電波形推定方法及び心電波形推定プログラムをともに説明する。心電波形推定方法は、心電波形推定装置の心電波形推定プログラムに基づいて、心電波形推定装置1のマイクロコンピュータ10のCPU11(コンピュータ)により実行される。心電波形推定プログラムは、図2のCPU11(コンピュータ)に対して、相関学習機能、脈波取得機能、蓄積機能、推定生成機能、送信機能を実行させる(図3参照)。これらの各機能は図示の順に実行される。各機能は前述の心電波形推定装置1の説明と重複するため、詳細は省略する。
図7のフローチャートは実施形態の心電波形推定装置の心電波形推定方法の流れであり、相関学習ステップ(S110)、脈波取得ステップ(S120)、蓄積ステップ(S130)、推定生成ステップ(S140)、送信ステップ(S150)の各種ステップを備える。その他、実施形態の心電波形推定方法は、演算結果の記憶、その呼び出し、その他の演算、入力、出力、記憶等の各種の図示しない適宜必要なステップも備える。
相関学習機能は、生体の心電位の心電波形と、心電波形と同期する生体の脈波とを取得して、心電波形と脈波の相互間の相関性を機械学習して相関情報を演算する(S110;相関学習ステップ)。相関学習機能は相関学習部110により実行される。
相関学習ステップ(S110)は、主に図8のフローチャートとして示される。具体的には、心電波形が取得される(S111;心電波形取得ステップ)。当該心電波形と対となる脈波も取得される(S112;脈波取得ステップ)。取得された心電波形と脈波から機械学習が行われる(S113;機械学習ステップ)。そして、機械学習を通じて心電波形と脈波の間に成立する相関情報が演算される(S114;相関情報演算ステップ)。
脈波取得機能は、被験者Hの生体に装着する装着部2を介して被験者Hの生体の被験者脈波を取得する(S120;脈波取得ステップ)。脈波取得機能は図2及び図3のCPU101(コンピュータ)の脈波取得部120により実行される。以下同様である。
蓄積機能は、被験者脈波を蓄積する(S130;蓄積ステップ)。蓄積機能は蓄積部130により実行される。
推定生成機能は、蓄積機能において蓄積された被験者脈波に相関情報を組み合わせて被験者脈波に対応した被験者推定心電波形を推定して生成する(S140;推定生成ステップ)。推定生成機能は推定生成部140により実行される。
送信機能は、被験者推定心電波形を送信する(S170;送信ステップ)。送信機能は送信部150により実行される。
心電波形推定装置の心電波形推定プログラムは、例えば、ActionScript、JavaScript(登録商標)、Python、Rubyなどのスクリプト言語、C言語、C++、C#、Objective-C、Swift、Java(登録商標)などのコンパイラ言語などを用いて実装できる。
本発明の心電波形推定装置は、被験者の生体の被験者脈波を取得し、当該被験者脈波から被験者推定心電波形を推定して生成することができる。特に、機械学習を取り入れていることにより推定の精度が向上し、被験者本人の心電波形の正確な推定が容易となった。このことから、運転等の活動状態の心電波形の推定に大きく貢献する。
1 心電波形推定装置
2 装着部
3 表示制御部
4 ディスプレイ
10 マイクロコンピュータ
11 CPU
12 RAM
13 ROM
14 イン/アウトバッファ
17 無線送信器
110 相関学習部
120 脈波取得部
130 蓄積部
140 推定生成部
150 送信部
E 耳朶
H 被験者

Claims (6)

  1. 生体の心電位の心電波形と、前記心電波形と同期する前記生体の脈波とを取得して、前記心電波形と前記脈波の相互間の相関性を機械学習して相関情報を演算する相関学習部と、
    被験者の生体に装着する装着部を介して前記被験者の生体の被験者脈波を取得する脈波取得部と、
    前記被験者脈波を蓄積する蓄積部と、
    前記蓄積部に蓄積された前記被験者脈波に前記相関情報を組み合わせて前記被験者脈波に対応した被験者推定心電波形を推定して生成する推定生成部と、を備えた
    ことを特徴とする心電波形推定装置。
  2. 前記装着部が前記被験者の耳朶に装着される請求項1に記載の心電波形推定装置。
  3. 前記相関学習部において、前記心電波形と、前記心電波形と同期する前記脈波の対が複数存在して、機械学習により前記相関情報が演算される請求項1または2に記載の心電波形推定装置。
  4. 前記相関学習部における機械学習が一次元畳み込みを用いている請求項1ないし3のいずれか1項に記載の心電波形推定装置。
  5. 前記被験者推定心電波形を送信する送信部が備えられる請求項1ないし4のいずれか1項に記載の心電波形推定装置。
  6. 前記心電波形推定装置がスタンドアロン機器である請求項1ないし5のいずれか1項に記載の心電波形推定装置。
JP2019096173A 2019-05-22 2019-05-22 心電波形推定装置 Pending JP2020188963A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019096173A JP2020188963A (ja) 2019-05-22 2019-05-22 心電波形推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096173A JP2020188963A (ja) 2019-05-22 2019-05-22 心電波形推定装置

Publications (1)

Publication Number Publication Date
JP2020188963A true JP2020188963A (ja) 2020-11-26

Family

ID=73453087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096173A Pending JP2020188963A (ja) 2019-05-22 2019-05-22 心電波形推定装置

Country Status (1)

Country Link
JP (1) JP2020188963A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121893B1 (ja) * 2021-02-16 2022-08-19 ヘルスセンシング株式会社 信号処理装置、信号処理システムおよび信号処理プログラム
WO2022176221A1 (ja) * 2021-02-16 2022-08-25 ヘルスセンシング株式会社 信号処理装置、信号処理システムおよび信号処理プログラム
CN117598710A (zh) * 2024-01-23 2024-02-27 富纳德科技(北京)有限公司 一种远程心电信号监测方法与系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121893B1 (ja) * 2021-02-16 2022-08-19 ヘルスセンシング株式会社 信号処理装置、信号処理システムおよび信号処理プログラム
WO2022176221A1 (ja) * 2021-02-16 2022-08-25 ヘルスセンシング株式会社 信号処理装置、信号処理システムおよび信号処理プログラム
JP2022169643A (ja) * 2021-02-16 2022-11-09 ヘルスセンシング株式会社 信号処理装置、信号処理システムおよび信号処理プログラム
JP7302928B2 (ja) 2021-02-16 2023-07-04 ヘルスセンシング株式会社 信号処理装置、信号処理システムおよび信号処理プログラム
US11730397B2 (en) 2021-02-16 2023-08-22 Health Sensing Co., Ltd. Signal processing apparatus, signal processing system, and signal processing program
EP4176801A4 (en) * 2021-02-16 2023-11-01 Health Sensing Co., Ltd. SIGNAL PROCESSING APPARATUS, SIGNAL PROCESSING SYSTEM AND SIGNAL PROCESSING PROGRAM
CN117598710A (zh) * 2024-01-23 2024-02-27 富纳德科技(北京)有限公司 一种远程心电信号监测方法与系统
CN117598710B (zh) * 2024-01-23 2024-05-14 富纳德科技(北京)有限公司 一种远程心电信号监测方法与系统

Similar Documents

Publication Publication Date Title
JP4476181B2 (ja) 人間のリラクセーションレベルを監視する方法及び使用者操作性の心拍数監視装置
US20150282768A1 (en) Physiological signal determination of bioimpedance signals
EP3474287A1 (en) Apparatus and method for correcting error of bio-information sensor, and apparatus and method for estimating bio-information
KR20190050725A (ko) 모바일 단말을 이용한 맥파 신호 및 스트레스 측정 방법 및 장치
US20150216475A1 (en) Determining physiological state(s) of an organism based on data sensed with sensors in motion
EP3096686B1 (en) Heart monitoring device
EP2730216B1 (en) Biosignal transmitter, biosignal receiver, and biosignal transmitting method
US20060195020A1 (en) Methods, systems, and apparatus for measuring a pulse rate
US20140288447A1 (en) Ear-related devices implementing sensors to acquire physiological characteristics
US20160242672A1 (en) Vital signal measuring apparatus and method for estimating contact condition
US20140128753A1 (en) Piezoelectric heart rate sensing for wearable devices or mobile devices
JP2020188963A (ja) 心電波形推定装置
US20140128754A1 (en) Multimodal physiological sensing for wearable devices or mobile devices
US10765374B2 (en) Methods and apparatus for adaptable presentation of sensor data
CN108309353A (zh) 用于在心回波描记术中进行相位确定的心率辅助
US12097049B2 (en) Methods, apparatus and systems for adaptable presentation of sensor data
Lagido et al. Using the smartphone camera to monitor heart rate and rhythm in heart failure patients
CN112272534B (zh) 用于估计血压替代物趋势的方法和装置
CN115251866A (zh) 一种采用毫米波雷达的连续血压检测方法、检测系统及可穿戴装置
JP2772413B2 (ja) 相関調査システム
CN114652288A (zh) 一种非袖带式动态血压测量系统
US20200029836A1 (en) System and Method for Detecting Viral Physiological Parameters of a Subject
KR20220039076A (ko) 검진 신뢰성이 향상된 스마트 진단 장치
CN105326482B (zh) 记录生理信号的方法和装置
JP7562677B2 (ja) 生体検出装置、生体検出方法、及び、プログラム