JP2020188686A - Production method of new yeast mash - Google Patents

Production method of new yeast mash Download PDF

Info

Publication number
JP2020188686A
JP2020188686A JP2019094162A JP2019094162A JP2020188686A JP 2020188686 A JP2020188686 A JP 2020188686A JP 2019094162 A JP2019094162 A JP 2019094162A JP 2019094162 A JP2019094162 A JP 2019094162A JP 2020188686 A JP2020188686 A JP 2020188686A
Authority
JP
Japan
Prior art keywords
yeast
sake
temperature
lactic acid
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019094162A
Other languages
Japanese (ja)
Other versions
JP6894105B2 (en
Inventor
齊藤 修
Osamu Saito
修 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Seishu Coltd
Original Assignee
Akita Seishu Coltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Seishu Coltd filed Critical Akita Seishu Coltd
Priority to JP2019094162A priority Critical patent/JP6894105B2/en
Publication of JP2020188686A publication Critical patent/JP2020188686A/en
Application granted granted Critical
Publication of JP6894105B2 publication Critical patent/JP6894105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Alcoholic Beverages (AREA)

Abstract

To provide a production method of yeast mash, for proliferating sake yeast while suppressing the proliferation and activity of various germs by using none of lactic acid bacterium, and externally added lactic acid.SOLUTION: A saccharified liquid production method for production of yeast mash includes: mixing cooled steamed rice, rice malt, and water followed by decreasing an article temperature to 5°C or less, or further cooling steamed rice and bringing an article temperature to 5°C or less at the time of mixing; and keeping an article temperature at 5°C or less from eight hours after local warming to next local warming, until subsequent addition of sake yeast while progressing a saccharification reaction with rice malt by locally warming a plurality of times for a fixed time. It is possible to suppress the proliferation and activity of various germs by producing the saccharified liquid by progressing a saccharification reaction while keeping a low temperature, and to proliferate sake yeast before proliferation of various germs by quickly raising a temperature after the addition of sake yeast. With this, excellent yeast mash can be produced by using none of lactic acid bacterium and externally added lactic acid.SELECTED DRAWING: Figure 1

Description

本発明は、日本酒の酒造りに重要な、酒母の製造方法に関する。さらに詳しくは、乳酸菌と外から加える乳酸のいずれも使用しない酒母の製造方法に関する。 The present invention relates to a method for producing a sake mother, which is important for sake brewing. More specifically, the present invention relates to a method for producing a liquor mother that does not use either lactic acid bacteria or externally added lactic acid.

日本酒は、米麹で米のデンプンを糖化させ、これを酵母でアルコール発酵させ、こしたものである。実際に酒蔵で行われる酒造りで、この酵母として用いられるのが酒母である。酒母は、清酒酵母を培養して増やしたもので、優れた酒母であるためには、目的とする優良酵母が多数培養され、雑菌である野生酵母やバクテリアがいないことが必要である。 Sake is made by saccharifying rice starch with rice jiuqu, alcoholic fermentation with yeast, and straining. Sake mother is used as this yeast in sake brewing actually performed in sake breweries. Sake mothers are grown by culturing sake yeast, and in order to be an excellent liquor mother, it is necessary that a large number of excellent yeasts of interest are cultivated and that there are no wild yeasts or bacteria that are germs.

酒母の造り方には、大きく分けて2つの方法がある。1つは昔からの「生もと」の流れをくむ生もと系酒母造りの方法、もう1つは明治時代に考案された、「生もと」を合理化した、速醸系酒母造りの方法である。 There are two main ways to make sake mothers. One is a method of making raw liquor mothers that follows the traditional flow of "raw brewing", and the other is a method of brewing fast brewing liquor mothers that streamlines "raw yuan", which was devised in the Meiji era. The method.

生もと系酒母造りでは、米麹で米のデンプンを糖化する際に、乳酸菌も増殖させて乳酸菌が生産する乳酸によって酸度を上げ、酸度高くし雑菌が増殖しにくい状態にする。そして、できた糖化液に清酒酵母を添加し、加温をして、清酒酵母を増殖させる。生もと系酒母造りでは、乳酸菌は自然に増殖することとなっているが、近年のクリーンな環境下にある酒蔵では、乳酸菌が自然に増殖せず、乳酸菌添加が必要となる場合があり、これは生もと系酒母造りの定義に反するとして問題となっていた。さらに、生もと系酒母造りでは有用乳酸菌を増殖させる際に、好ましくない種類の乳酸菌やその他の雑菌も増殖する恐れがあり、これら雑菌から日本酒にとって好ましくない成分が生じるともいわれている。
速醸系酒母造りは、糖化する前に、乳酸菌の力を借りず、外から直接乳酸を加えて酸度を高くし雑菌が増殖しにくい状態にして、そこへ清酒酵母を添加する。そして、加温することで糖化を進めるとともに、酵母の増殖も進める。速醸系酒母造りでは、醸造用乳酸を添加することは認められているが、オーガニック志向が高まりつつある現代において、人工的な成分を外から加えることにマイナスのイメージがあった。
In raw liquor brewing, when saccharifying rice starch in rice jiuqu, lactic acid bacteria are also grown and the acidity is increased by the lactic acid produced by the lactic acid bacteria, increasing the acidity and making it difficult for germs to grow. Then, sake yeast is added to the resulting saccharified solution and heated to grow the sake yeast. Lactic acid bacteria are supposed to grow naturally in raw sake mother brewing, but in recent years, in sake breweries in a clean environment, lactic acid bacteria do not grow naturally and it may be necessary to add lactic acid bacteria. This was a problem because it violated the definition of lactic acid brewing. Furthermore, when lactic acid bacteria that are useful in raw sake brewing are grown, there is a risk that unfavorable types of lactic acid bacteria and other miscellaneous bacteria may also grow, and it is said that these miscellaneous bacteria produce unfavorable components for sake.
In fast-brewing sake mother brewing, before saccharification, lactic acid is added directly from the outside to increase the acidity and make it difficult for germs to grow, and sake yeast is added to it without the help of lactic acid bacteria. Then, by heating, saccharification is promoted and yeast growth is also promoted. Although it is permitted to add lactic acid for brewing in fast-brewing sake mother brewing, there was a negative image of adding artificial ingredients from the outside in the present age when the organic orientation is increasing.

日本酒の酒母造りに関する各種資料。特に生もと系酒母造りと速醸系酒母造りに関するもの。Various materials related to sake mother brewing. In particular, it is related to raw brewing and quick brewing.

本発明の目的は、乳酸菌と外から加える乳酸のいずれも使用しないで、雑菌の増殖と活動を抑制しながら清酒酵母を増殖させる、酒母の製造方法を提供することである。 An object of the present invention is to provide a method for producing a sake mother, which grows sake yeast while suppressing the growth and activity of various bacteria without using either lactic acid bacteria or lactic acid added from the outside.

本発明者は、上記目的を達成するために、種々検討の結果、低温を維持しながら糖化反応を進めて糖化液を製造し、続いて清酒酵母添加後、速やかに昇温して酵母を増殖させるという、乳酸菌と外から加える乳酸のどちらも使用する必要のない酒母の製造方法を見出し、本発明に到達した。すなわち本発明は以下のとおりである。 In order to achieve the above object, as a result of various studies, the present inventor proceeds with a saccharification reaction while maintaining a low temperature to produce a saccharified solution, and subsequently, after adding sake yeast, the temperature is rapidly raised to proliferate the yeast. We have found a method for producing liquor mother that does not require the use of either lactic acid bacteria or lactic acid added from the outside, and arrived at the present invention. That is, the present invention is as follows.

1.乳酸が実質的に存在しない条件下で、酵母添加前の糖化反応を進める、酒母製造のための糖化液製造方法。
2.冷却した蒸米、米麹、及び水を混合後、品温を5℃以下まで低下させ、又は蒸米をより冷却して混合時点で品温を5℃以下として、その後、複数回、一定時間局所的に加温して米麹による糖化反応を進めつつも、局所加温後8時間から次回局所加温までの品温が、後の清酒酵母添加時まで5℃以下を保つ、酒母製造のための糖化液製造方法。
3.局所的な加温温度が80〜98℃である、前記2の酒母製造のための糖化液製造方法。
4.前記1〜3のいずれか1の方法で糖化液を製造し、5℃以下の該糖化液へ清酒酵母を含む溶液と糖化液の間に界面を形成させるように清酒酵母を添加し、添加後は、昇温開始から2〜6日で目的温度の前後1℃の幅を持つ目的温度帯に達し、かつ、目的温度が15〜25℃の間である、酒母の製造方法。
5.清酒酵母を糖化液により増殖させる方法で、清酒酵母を含む溶液と糖化液の間に界面が形成されるよう清酒酵母を糖化液に添加し、この界面より上の上澄み部分で、清酒酵母の増殖を進行させる清酒酵母の増殖方法。
6.清酒酵母添加直前の酒母製造用糖化液で、酸度が1以下である酒母製造用糖化液。
7.清酒酵母添加直前の酒母製造用糖化液で、乳酸を実質的に含まない酒母製造用糖化液。
1. 1. A method for producing a saccharified solution for producing a liquor mother, which promotes a saccharification reaction before adding yeast under conditions in which lactic acid is substantially absent.
2. 2. After mixing the cooled steamed rice, rice jiuqu, and water, the product temperature is lowered to 5 ° C or less, or the steamed rice is further cooled to bring the product temperature to 5 ° C or less at the time of mixing, and then multiple times, locally for a certain period of time. For the production of sake mothers, the product temperature from 8 hours after local heating to the next local heating remains 5 ° C or less until the subsequent addition of sake yeast, while advancing the saccharification reaction with rice jiuqu. Method for producing saccharified liquid.
3. 3. The method for producing a saccharified solution for producing a liquor mother according to the above 2, wherein the local heating temperature is 80 to 98 ° C.
4. A saccharified solution is produced by the method of any one of 1 to 3 above, and sake yeast is added to the saccharified solution at 5 ° C. or lower so as to form an interface between the solution containing sake yeast and the saccharified solution, and after the addition. Is a method for producing sake mother, wherein the target temperature zone having a range of 1 ° C. before and after the target temperature is reached within 2 to 6 days from the start of temperature rise, and the target temperature is between 15 and 25 ° C.
5. In a method of growing sake yeast with a saccharified solution, sake yeast is added to the saccharified solution so that an interface is formed between the solution containing sake yeast and the saccharified solution, and the sake yeast is grown in the supernatant portion above this interface. A method of growing sake yeast.
6. A saccharified solution for producing sake mothers immediately before the addition of sake yeast, which has an acidity of 1 or less.
7. A saccharified solution for producing sake mothers immediately before the addition of sake yeast, which is a saccharified solution for producing sake mothers that does not substantially contain lactic acid.

本発明によれば、乳酸菌と外から加える乳酸のいずれも使用しないで、目的とする優良な清酒酵母が多数培養され、雑菌である野生酵母やバクテリアがいない優れた酒母を製造することができる。また、従来の生もと系酒母造りと比べて、乳酸菌を増殖させないことで、好ましくない種類の乳酸菌や、その他の雑菌が併せて増殖し活動するのが抑えられ、日本酒にとって風味を低下させるような好ましくない成分が生じるのを抑制することができる。
付け加えると、微生物学が西洋からもたらされた明治時代から現在まで、酒母製造では、乳酸菌と外から加える乳酸のいずれか又は両方を使用して、雑菌の増殖を抑え、優良な清酒酵母を増殖させることが常識とされている(参考文献:例えば、黒須猛行,「酵母(1)」,醸協,1998,l93巻,5号、334頁左下から4、3行目、灘の酒用語集「酒母・もと」の頁(http://www.nada-ken.com/main/jp/index_shi/220.html))。つまり、乳酸菌と外から加える乳酸のいずれも使用しない酒母製造方法を見出したことは画期的なことといえる。
そもそも、クリーンな環境が整いつつある最近の酒蔵において、蔵付酵母や乳酸菌をはじめとする種々の微生物が混入しにくくなっている。本発明の発明者は、このクリーンな環境を生かして、温度管理により糖化液の品温を低温で維持しながら糖化を進め、微生物の活動増殖を抑えながら優良酵母を増殖させることができれば、乳酸菌と外から加える乳酸のいずれも使用しない、雑菌の増殖と活動を抑えた酒母製造方法を実現できるのではないかと考え研究を開始した。この考え方自体、伝統的な手法にこだわりがちな日本酒製造の世界において、実に画期的なことといえる。
According to the present invention, a large number of excellent sake yeasts of interest can be cultivated without using either lactic acid bacteria or lactic acid added from the outside, and an excellent liquor mother free of wild yeasts and bacteria which are various germs can be produced. In addition, compared to the conventional raw sake mother brewing, by not growing lactic acid bacteria, it is possible to suppress the growth and activity of unfavorable types of lactic acid bacteria and other miscellaneous bacteria, which reduces the flavor of sake. It is possible to suppress the generation of unfavorable components.
In addition, from the Meiji era when microbiology came from the West to the present, sake mother production uses lactic acid bacteria and / or externally added lactic acid to suppress the growth of germs and grow good sake yeast. It is common knowledge to let them (Reference: Takeyuki Kurosu, "Yeast (1)", Jyokyo, 1998, l93, No. 5, 334, 4th and 3rd lines from the lower left, Nada's sake glossary. The page of "Sake Mother / Moto" (http://www.nada-ken.com/main/jp/index_shi/220.html). In other words, it can be said that it is epoch-making to find a method for producing sake mothers that does not use either lactic acid bacteria or lactic acid added from the outside.
In the first place, in recent sake breweries where a clean environment is being prepared, various microorganisms such as brewed yeast and lactic acid bacteria are less likely to be mixed. The inventor of the present invention can utilize this clean environment to promote saccharification while maintaining the product temperature of the saccharified solution at a low temperature by controlling the temperature, and if it is possible to grow excellent yeast while suppressing the active growth of microorganisms, lactic acid bacteria. I started my research thinking that it might be possible to realize a method for producing sake mothers that suppresses the growth and activity of germs without using any of the lactic acid added from the outside. This idea itself can be said to be truly epoch-making in the world of sake production, which tends to stick to traditional methods.

長期低温糖化酒母を製造した際の温度変化の様子を示した。The state of the temperature change when the long-term low-temperature saccharified liquor mother was produced was shown. 長期低温糖化酒母を製造する際のバクテリア数と酵母数の推移を示した。The changes in the number of bacteria and the number of yeasts in the production of long-term low-temperature saccharified liquor mothers are shown. 生もと系の山廃造りにより酒母を製造した際の温度変化の様子を示した。The state of the temperature change when the sake mother was manufactured by the mountain abandoned brewing of the raw system was shown. 糖化反応の途中から昇温して、生もと造りの酒母を製造した際の温度変化の様子を示した。The temperature was raised from the middle of the saccharification reaction, and the state of the temperature change when the raw sake mother was produced was shown. 糖化反応の途中から昇温して、生もと造りの酒母を製造した際のバクテリア数と酵母数の推移を示した。The temperature was raised from the middle of the saccharification reaction, and the changes in the number of bacteria and the number of yeasts when the raw sake mother was produced were shown. 蒸米をすりつぶして用いる長期低温糖化酒母を製造した際の温度変化の様子を示した。The state of the temperature change when the long-term low-temperature saccharified liquor mother used by grinding steamed rice was produced was shown. 蒸米をすりつぶして用いる長期低温糖化酒母を製造した際のバクテリア数と酵母数の推移を示した。The changes in the number of bacteria and the number of yeasts when producing a long-term low-temperature saccharified liquor mother used by grinding steamed rice are shown. 短期低温糖化酒母を製造した際の温度変化の様子を示した。The state of the temperature change when the short-term low-temperature saccharified liquor mother was produced was shown. 短期低温糖化酒母を製造する際のバクテリア数と酵母数の推移を示した。The changes in the number of bacteria and the number of yeasts in the production of short-term low-temperature saccharified liquor mothers are shown. インキュベーターの中に瓶を置いて酵母を増殖させている様子を写真で示した。A photograph showing how yeast is growing by placing a bottle in an incubator.

以下に本発明の酒母の製造方法について説明する。製造方法の基礎となるのは生もと、山廃に代表される生もと系酒母造りで、それと異なる部分を中心に述べる。 The method for producing the sake mother of the present invention will be described below. The basis of the manufacturing method is the brewing of raw liquor mothers represented by mountain abandonment, and the parts that are different from that are mainly described.

酒母の製造は、大まかにいえば、米麹で蒸米を糖化し、この糖化液で酵母を増殖させるのであるが、本発明の酵母添加前の糖化液の製造は実質的に乳酸が存在しない条件下で行われる。実質的に乳酸が存在しないとは、糖化液中に雑菌の増殖抑制に効くほどの乳酸は含まれないことを意味し、野生酵母やバクテリアなどの雑菌由来の少量の乳酸は存在しても構わない。さらに別の言い方をすれば、乳酸菌を増殖させそこから生産される乳酸、外から加える乳酸、例えば醸造用乳酸、のどちらも存在しない条件下で糖化液製造を行うことを意味する。
また糖化反応は酵母添加前の糖化反応である。酵母添加後も麹の酵素を失活させるわけではないので、糖化は進むが、酵母添加後は酵母由来の乳酸が生産されるので、乳酸濃度は上昇することが予想される。
Roughly speaking, in the production of liquor mother, steamed rice is saccharified with rice jiuqu and yeast is grown in this saccharified solution. It is done below. The fact that lactic acid is substantially absent means that the saccharified solution does not contain enough lactic acid to suppress the growth of various bacteria, and a small amount of lactic acid derived from various bacteria such as wild yeast and bacteria may be present. Absent. In other words, it means that the saccharified solution is produced under the condition that neither lactic acid produced by growing lactic acid bacteria nor lactic acid added from the outside, for example, lactic acid for brewing, is present.
The saccharification reaction is a saccharification reaction before the addition of yeast. Since the enzyme of Jiuqu is not inactivated even after the addition of yeast, saccharification proceeds, but after the addition of yeast, lactic acid derived from yeast is produced, so the lactic acid concentration is expected to increase.

酒母の製造について詳しく説明する。
まずは、原料の、蒸米、米麹、水を準備する。蒸米はそのままだと熱いので冷却するが、冷却後の蒸米は、0〜17℃であればより好ましく、11〜16℃であればさらに好ましく、5〜10℃であれば特に好ましい。
The production of liquor mother will be described in detail.
First, prepare the raw materials, steamed rice, rice jiuqu, and water. The steamed rice is cooled as it is because it is hot as it is, but the steamed rice after cooling is more preferably 0 to 17 ° C., further preferably 11 to 16 ° C., and particularly preferably 5 to 10 ° C.

次に、蒸米、米麹、水を混合する。混合は、あらかじめ、麹と水を混ぜ、麹の酵素を水に溶出させて水麹としてから、蒸米を加えてもよい。 Next, steamed rice, rice jiuqu, and water are mixed. For mixing, steamed rice may be added after mixing the jiuqu and water in advance and eluting the enzyme of the jiuqu into water to make the jiuqu.

混合後、速やかに、品温を5℃以下まで低下させるか、蒸米をより低い温度まであらかじめ冷却して、混合時点で品温5℃以下とする。品温を低下させる場合は、より好ましくは3〜18時間、さらに好ましくは3〜12時間で、品温5℃以下の目的とする温度に低下させる。低下後の温度、又は混合時点で5℃以下の場合はその時の温度は、より好ましくは0〜5℃、さらに好ましくは1〜4℃、特に好ましくは2〜3℃である。混合すると蒸米は水分を吸収して膨らむが、これをゆっくりと攪拌するのがより好ましい。攪拌することにより、糖化促進だけでなく、品温を低下させることができ、温度の均一化も図ることができる。一般的に行われている生もと系酒母造りでは6〜7℃に温度を低下させるので、本発明は生もと系酒母造りより低い温度とすることに特徴がある。
品温が目標値となった後は、加温しない期間(打瀬)を設けるのがより好ましい。その期間はより好ましくは0.5日〜3日、さらに好ましくは1〜2日である。打瀬期間中は、表面の乾燥を防ぐため1日に1回程度攪拌してもよい。この打瀬の期間に硝酸還元菌が増殖して水中の硝酸塩から亜硝酸を生成し、これが雑菌の増殖を抑制する1つとして働くと考えられている。生もと系酒母造りでは、6〜7℃になった後、その温度で2〜3日置いて打瀬とするので、生もと系酒母造りのときより、打瀬の温度も低い。
Immediately after mixing, the product temperature is lowered to 5 ° C. or lower, or the steamed rice is pre-cooled to a lower temperature to bring the product temperature to 5 ° C. or lower at the time of mixing. When lowering the product temperature, it is more preferably 3 to 18 hours, more preferably 3 to 12 hours, and the product temperature is lowered to the target temperature of 5 ° C. or lower. The temperature after the decrease, or when it is 5 ° C. or lower at the time of mixing, the temperature at that time is more preferably 0 to 5 ° C., further preferably 1 to 4 ° C., and particularly preferably 2 to 3 ° C. When mixed, the steamed rice absorbs moisture and swells, but it is more preferable to stir this slowly. By stirring, not only saccharification can be promoted, but also the product temperature can be lowered, and the temperature can be made uniform. Since the temperature is lowered to 6 to 7 ° C. in the generally practiced raw liquor brewing, the present invention is characterized in that the temperature is lower than that of the raw liquor brewing.
After the product temperature reaches the target value, it is more preferable to provide a non-heating period (Utase). The period is more preferably 0.5 days to 3 days, still more preferably 1 to 2 days. During the Utase period, stirring may be performed about once a day to prevent the surface from drying out. It is believed that nitrate-reducing bacteria proliferate during this Utase period to produce nitrite from nitrates in water, which acts as one of the suppressors of the growth of germs. In raw liquor brewing, after the temperature reaches 6 to 7 ° C, it is left at that temperature for 2 to 3 days to make Utase, so the temperature of Utase is lower than in raw liquor brewing.

次に、一定時間局所的に加温することで米麹による糖化反応を進める。局所加温後は速やかに5℃以下にする。5℃以下にしてから、次回局所加温までの品温を5℃以下に維持する。そして再び局所加温する。これを後の酵母添加時まで複数回繰り返す。すなわち、局所加温後一時的に品温が5℃を超える可能性もあるが、原則として後の酵母添加時まで品温5℃以下を維持する。
一定時間の局所加温は、局所1カ所あたり0.5〜6分間加温するのがより好ましく、1〜4分間加温するのがさらに好ましく、1〜2分間加温するのが特に好ましい。加温する局所の数は、28〜40Lに1カ所がより好ましく、200Lタンクの場合、5〜7カ所程度であればより好ましい。局所の加温温度(以下、局所加温温度)は、80℃〜98℃がより好ましく、90〜95℃がさらに好ましい。局所周囲の温度が、麹酵素が糖化反応を進めるのに適した温度の50〜60℃になるようにする。
局所加温後は速やかに品温を5℃以下にするが、具体的には、局所加温後8時間以内に5℃以下とするのがより好ましく、5時間以内がさらに好ましく、3時間以内が特に好ましい。ただし、局所加温からの経過時間が短いと、局所加温による温度差が解消していない可能性があるので、複数個所での温度測定から推定される温度差解消後の品温か、あるいは攪拌して温度差を解消させた後の品温が5℃以下とする。品温の低下やその維持は、温度調整のできる部屋に置くなどして、タンク周囲の温度を目的温度かそれより低い温度にすることで、行う。
局所加温の頻度は1〜2日に1回がより好ましい。5℃以下にしてから次回局所加温までの品温は5℃以下を維持する。つまり、「局所加温⇒5℃以下にする⇒5℃以下維持⇒局所加温」を繰り返す。局所加温後一時的に品温が5℃を超える可能性もあるが、原則として後の酵母添加時まで品温5℃以下を維持する。
原則5℃以下は、後の工程である清酒酵母添加時まで維持するが、清酒酵母はグルコース濃度が20g/100mL以上、より好ましくは25g/100mL以上になってから添加するので、糖度がそれ以上になるまでは、原則5℃以下を維持することとなる。グルコース濃度は、グルコオキシダーゼを用いたバイオセンサを利用し、生じた電流を測定してグルコース濃度に換算するGluco Jr.(株式会社バイオット社製)で測定した値である。
例えば、暖気(だき)樽という湯の入った樽を投入することで局所加温する場合、局所加温温度である暖気樽表面の温度、すなわち暖気肌を、80℃〜98℃とするのがより好ましく、90〜95℃とするとさらに好ましい。このとき暖気樽に入れる湯の温度は、80〜100℃の間となり、暖気樽周囲の温度は、麹酵素が糖化反応を進めるのに適した温度の50〜60℃になる。局所1カ所あたりの暖気樽投入時間は1〜2分、200Lタンクのときは、5〜7カ所に投入して複数カ所の投入時間合計で10〜15分間であればより好ましい。タンク周囲の温度は3℃以下として、局所加温後、品温が5℃になってから次の局所加温までの品温は5℃以下を保つ。つまり、局所加温後一時的に5℃を超える可能性もあるが、清酒酵母添加時まで原則5℃以下を保つようにする。
5℃以下では、低温性の乳酸菌であってもほとんど増殖も活動もできないので、本発明の製造方法では、後の酵母添加時に乳酸菌はほぼ存在しないこととなる。さらに、他の雑菌の増殖や活動も抑えることができる
加えて暖気肌は80〜98℃と高温で、周囲の温度も50〜60℃と比較的高温になるので、局所とその周辺で殺菌効果が生じる。通常の生もと造りの場合、暖気肌60〜70℃程度、加温(暖気樽)周囲の温度も40℃程度なので、本発明の方法は、局所をより高い温度として殺菌効果を高くすることも特徴のひとつである。つまり、低温に維持することで乳酸菌の増殖及び雑菌の増殖・活動を共に抑え、局所加温中の局所では高温で雑菌を殺菌する仕組みになっている。
Next, the saccharification reaction by rice jiuqu is promoted by locally heating for a certain period of time. Immediately reduce the temperature to 5 ° C or lower after local heating. After the temperature is lowered to 5 ° C or lower, the product temperature is maintained at 5 ° C or lower until the next local heating. Then, it is locally heated again. This is repeated a plurality of times until the subsequent yeast addition. That is, the product temperature may temporarily exceed 5 ° C. after local heating, but in principle, the product temperature is maintained at 5 ° C. or lower until the subsequent yeast addition.
The local heating for a certain period of time is more preferably 0.5 to 6 minutes per local location, further preferably 1 to 4 minutes, and particularly preferably 1 to 2 minutes. The number of local parts to be heated is more preferably 1 in 28 to 40 L, and more preferably about 5 to 7 in the case of a 200 L tank. The local heating temperature (hereinafter, local heating temperature) is more preferably 80 ° C. to 98 ° C., further preferably 90 to 95 ° C. The local ambient temperature is set to 50-60 ° C., which is a temperature suitable for the aspergillus enzyme to proceed with the saccharification reaction.
After the local heating, the product temperature is immediately lowered to 5 ° C. or lower. Specifically, it is more preferably 5 ° C. or lower within 8 hours after the local heating, further preferably within 5 hours, and within 3 hours. Is particularly preferable. However, if the elapsed time from local heating is short, the temperature difference due to local heating may not be eliminated, so the product temperature after the temperature difference is eliminated or agitation estimated from temperature measurements at multiple locations. After eliminating the temperature difference, the product temperature is set to 5 ° C. or less. The temperature of the product is lowered and maintained by setting the temperature around the tank to the target temperature or lower by placing it in a room where the temperature can be adjusted.
The frequency of local heating is more preferably once every 1 to 2 days. The product temperature from 5 ° C or lower to the next local heating shall be maintained at 5 ° C or lower. That is, "local heating ⇒ keep 5 ° C or less ⇒ maintain 5 ° C or less ⇒ local heating" is repeated. The product temperature may temporarily exceed 5 ° C after local heating, but as a general rule, the product temperature should be maintained at 5 ° C or lower until the subsequent yeast addition.
In principle, the temperature of 5 ° C. or lower is maintained until the addition of sake yeast, which is a later step, but since sake yeast is added after the glucose concentration reaches 20 g / 100 mL or more, more preferably 25 g / 100 mL or more, the sugar content is higher than that. In principle, the temperature will be maintained at 5 ° C or lower until the temperature reaches. The glucose concentration is a value measured by Gluco Jr. (manufactured by Biot Co., Ltd.), which measures the generated current using a biosensor using glucooxidase and converts it into a glucose concentration.
For example, when locally heating a barrel containing hot water called a warm air barrel, the temperature of the surface of the warm air barrel, which is the local heating temperature, that is, the warm skin is set to 80 ° C to 98 ° C. More preferably, 90 to 95 ° C. is even more preferable. At this time, the temperature of the hot water put in the warm air barrel is between 80 and 100 ° C., and the temperature around the warm air barrel is 50 to 60 ° C., which is a temperature suitable for the koji enzyme to proceed with the saccharification reaction. It is more preferable that the warm-up barrel charging time per local location is 1 to 2 minutes, and in the case of a 200L tank, the charging time is 10 to 15 minutes in total at 5 to 7 locations. The temperature around the tank is set to 3 ° C. or lower, and the product temperature is maintained at 5 ° C. or lower after the product temperature reaches 5 ° C. until the next local heating. In other words, although there is a possibility that the temperature will temporarily exceed 5 ° C after local heating, in principle, the temperature should be kept below 5 ° C until the addition of sake yeast.
At 5 ° C. or lower, even low-temperature lactic acid bacteria can hardly grow or act. Therefore, in the production method of the present invention, lactic acid bacteria are almost absent when yeast is added later. Furthermore, the growth and activity of other germs can be suppressed. In addition, warm skin has a high temperature of 80 to 98 ° C, and the ambient temperature is relatively high, 50 to 60 ° C, so that it has a bactericidal effect locally and around it. Occurs. In the case of normal raw skin, warm skin is about 60 to 70 ° C, and the temperature around the warm (warm barrel) is also about 40 ° C. Therefore, the method of the present invention is to increase the bactericidal effect by setting the local temperature to a higher temperature. Is also one of the features. That is, by maintaining the temperature at a low temperature, both the growth of lactic acid bacteria and the growth / activity of various germs are suppressed, and the germs are sterilized at a high temperature locally during local heating.

ここで、打瀬の後から酵母添加まで品温5℃以下を保つのは、通常は12〜15日程度であるが、より短期間で酒母を製造したいときは、それより短くとも例えば1〜3日程度でも可能で、この場合、糖化反応を早く進めるべく、力価の高い麹即ち、α−アミラーゼ活性が500U/g乾燥麹 以上、かつ、グルコアミラーゼ活性が250U/g乾燥麹 以上の麹を使用するのがより好ましい。蒸米はより柔らかくするのが好ましく、即ち蒸米吸水率は米の生産年度や生産歩合により異なるが40%〜45%が好ましい。蒸米吸水率(%)=((蒸米重量−白米重量)/白米重量)×100と計算する。
さらに、短期間で酒母を製造する場合は、後述するように、亜硝酸や糖の生成が不十分で、雑菌の増殖抑制が不十分になる可能性があるので、雑菌による酒母汚染を抑制するために、一般生菌数10CFU/g以下の麹を使用するのが好ましい。
Here, it is usually about 12 to 15 days to keep the product temperature below 5 ° C. from after Utase to the addition of yeast, but if you want to produce sake mother in a shorter period of time, for example 1-3 In this case, in order to accelerate the saccharification reaction, high-potency Jiuqu, that is, Jiuqu with α-amylase activity of 500 U / g or more and glucoamylase activity of 250 U / g or more, is used. It is more preferable to use. The steamed rice is preferably softer, that is, the water absorption rate of the steamed rice varies depending on the rice production year and the production rate, but is preferably 40% to 45%. The water absorption rate of steamed rice (%) = ((weight of steamed rice-weight of white rice) / weight of white rice) x 100.
Furthermore, when liquor is produced in a short period of time, as will be described later, the production of nitrite and sugar is insufficient, and the suppression of the growth of various germs may be insufficient. for, it is preferable to use viable microorganisms number 10 3 CFU / g or less of koji.

清酒酵母添加直前の糖化液は酸度1以下であるが、0.5以下であればより好ましく、0.2以下であれば特に好ましい。酸度が低いほど、雑菌の増殖と活動を抑えていることになる。酸度は、国税庁所定分析法に準じた酸度滴定法により測定する。通常の生もと系酒母造りでは、乳酸菌が生産する乳酸を主とする酸により、雑菌の増殖を抑制するので、清酒酵母添加直前の酸度が1以下ということはありえない。
また、このときの糖化液は実質的には乳酸を含まないが、これは、雑菌の増殖抑制に効くほどの乳酸を含まないことを意味し、野生酵母やバクテリアなどの雑菌由来の少量の乳酸は存在しても構わない。
The saccharified solution immediately before the addition of sake yeast has an acidity of 1 or less, more preferably 0.5 or less, and particularly preferably 0.2 or less. The lower the acidity, the more the growth and activity of germs are suppressed. The acidity is measured by the acidity titration method according to the analysis method prescribed by the National Tax Agency. In normal raw sake mother brewing, the acidity produced by lactic acid bacteria, which is mainly lactic acid, suppresses the growth of various bacteria, so the acidity immediately before the addition of sake yeast cannot be 1 or less.
In addition, the saccharified solution at this time does not substantially contain lactic acid, which means that it does not contain enough lactic acid to be effective in suppressing the growth of various bacteria, and a small amount of lactic acid derived from various bacteria such as wild yeast and bacteria. May exist.

生もと系酒母造りでは、6〜7℃で2〜3日置いたあと、1日1℃ずつ程度、20℃くらいまで、温度を上げる。少しずつ温度を上げることで、乳酸菌を増殖させて、バクテリアや野生酵母などの雑菌の増殖を抑え、清酒酵母の増殖に適した環境を作るといわれている。
本発明は、清酒酵母添加前の糖化の工程では品温を徐々にあげることはせず、原則5℃以下を保つことに特徴があり、5℃以下では、乳酸菌はほとんど増殖することはできないので、乳酸菌を増殖させることが必要な伝統的な生もとの製造方法からすると異例の製造方法といえる。さらに、乳酸菌を増殖させないので、その分、糖の消費が少なく、清酒酵母の栄養となる糖濃度が高い糖化液を製造できる。糖濃度がより高いことで、濃糖圧迫をより効かせることもできる。なお、糖の消費はボーメ度が低下することで測定できる。
In raw liquor brewing, the temperature is raised to about 20 ° C by about 1 ° C per day after leaving it at 6 to 7 ° C for 2 to 3 days. It is said that by raising the temperature little by little, lactic acid bacteria are grown, the growth of various bacteria such as bacteria and wild yeast is suppressed, and an environment suitable for the growth of sake yeast is created.
The present invention is characterized in that the product temperature is not gradually raised in the saccharification process before the addition of sake yeast and is kept at 5 ° C or lower in principle, and lactic acid bacteria can hardly grow at 5 ° C or lower. , It can be said that it is an unusual production method from the traditional production method of raw material that requires the growth of lactic acid bacteria. Furthermore, since lactic acid bacteria are not grown, sugar consumption is reduced by that amount, and a saccharified solution having a high sugar concentration that is a nutrient for sake yeast can be produced. The higher the sugar concentration, the more effective the concentrated sugar compression can be. The sugar consumption can be measured by reducing the Baume scale.

生もと系酒母造りにおいては、低温、硝酸還元菌がつくる亜硝酸、乳酸菌が生産する乳酸、濃糖がバランスよく遷移し、雑菌の増殖を防いで清酒酵母の増殖に適した環境をつくると考えられている。本発明は、乳酸菌には頼らず、生もと系酒母以下の低温、亜硝酸、濃糖、をバランスよく利用して、雑菌の増殖を防いで、清酒酵母の増殖に適した環境を作っていると考えられる。 In raw liquor brewing, low temperature, nitrite produced by nitrate-reducing bacteria, lactic acid produced by lactic acid bacteria, and concentrated sugar transition in a well-balanced manner to prevent the growth of germs and create an environment suitable for the growth of sake yeast. It is considered. The present invention does not rely on lactic acid bacteria, but uses low temperature, nitrite, and concentrated sugar below the raw liquor mother in a well-balanced manner to prevent the growth of germs and create an environment suitable for the growth of sake yeast. It is thought that there is.

次に、清酒酵母を糖化液に添加する。清酒酵母は日本酒醸造に用いられる酵母であり、代表的な清酒酵母に各種きょうかい酵母がある。本発明では、酵母増殖中に濃糖圧迫により雑菌の増殖を抑制できるように、糖度が上昇してから清酒酵母を添加するが、糖度が高いと、雑菌だけでなく、清酒酵母自体の増殖も進みにくくなる。そこで、酵母溶液と糖化液の間に界面ができるように酵母溶液を添加し、より好ましくはさらに水を加える。そして、この界面より上の上澄みで酵母を増殖させる。加える水は、例えば酵母の入っていた容器を共洗いした水を使う。上澄みには、糖化液から糖が浸透してくるものの、依然糖濃度は低いので、濃糖圧迫が生じない。さらに、通常、酒母造りでは、亜硝酸反応消失後に清酒酵母を添加するが、本発明では乳酸を使用しないこともあり、亜硝酸反応が完全には消失しないが、本発明では、亜硝酸反応が消失する前に清酒酵母を添加してもよい。これも上澄みで酵母を増殖させるため、亜硝酸の影響を受けにくくなるからである。
このようにして、上澄みで酵母を増殖させることで、糖化液中の雑菌に濃糖圧迫をかけつつ、酵母には濃糖圧迫や亜硝酸による影響が及ばないようにして、清酒酵母の増殖を進める。界面は、酵母溶液を糖化液に添加し、攪拌しなければ自然形成されるが、静かにそっと添加するのがより好ましい。
その後、清酒酵母増殖がある程度進めば攪拌してもよく、例えば清酒酵母添加2〜3日後に攪拌してもよい。
Next, sake yeast is added to the saccharified solution. Sake yeast is a yeast used for sake brewing, and typical sake yeasts include various types of yeast. In the present invention, sake yeast is added after the sugar content has increased so that the growth of various germs can be suppressed by compression of concentrated sugar during yeast growth. However, when the sugar content is high, not only the germs but also the sake yeast itself grows. It becomes difficult to proceed. Therefore, the yeast solution is added so that an interface is formed between the yeast solution and the saccharified solution, and more preferably water is further added. Then, yeast is grown in the supernatant above this interface. As the water to be added, for example, water obtained by co-washing the container containing yeast is used. Although sugar permeates into the supernatant from the saccharified solution, the sugar concentration is still low, so that concentrated sugar compression does not occur. Furthermore, in sake mother brewing, sake yeast is usually added after the nitrite reaction disappears, but in the present invention, lactic acid may not be used and the nitrite reaction does not completely disappear, but in the present invention, the nitrite reaction occurs. Sake yeast may be added before it disappears. This is also because yeast grows in the supernatant, making it less susceptible to nitrite.
By growing the yeast in the supernatant in this way, the yeast is not affected by the concentrated sugar compression or nitrite while applying concentrated sugar compression to the germs in the saccharified solution, so that the sake yeast can be grown. Proceed. The interface is naturally formed without adding the yeast solution to the saccharified solution and stirring, but it is more preferable to add it gently and gently.
After that, if the sake yeast growth progresses to some extent, it may be stirred, for example, it may be stirred 2-3 days after the addition of sake yeast.

酵母添加後は、速やかに昇温して酵母を増殖させる。本発明では、5℃以下に保っていた糖化液を、2〜6日、より好ましくは2.5〜4.5日かけて、目的温度の前後1℃の幅を持つ目的の温度帯まで昇温する。目的の温度は、酵母の増殖に適した温度とし、酵母や酒蔵の環境によっても異なるが、15℃〜25℃の間の温度である。昇温開始から、目的の温度帯に達するまでの、平均昇温速度は、2℃/day〜12.5℃/day程度である。
昇温は、例えば目的の温度にされた空間に、酵母を添加した糖化液の入った容器を置いて、行う。こうすれば、製造スケールにもよるが、36〜108時間程度で、目的温度帯に達する。空間に直接接する上澄みから先に温まり酵母の増殖が進むという点でもより好ましい。酵母添加後しばらくは攪拌しないので、温度に多少のむらは生じるが、温度は表面でなく、中心付近を測定した値とする。
5℃以下の温度から、目的の温度帯まで、速やかに昇温することにより、有用でない乳酸菌など雑菌が増殖する前に、添加した清酒酵母を増殖させていると考えられる。
なお、日本酒の製造は並行複発酵なので、酵母を添加しても糖化発酵は続き、すなわち糖化液の製造工程と清酒酵母の増殖工程が時間軸でみると、重なる部分がある。
After the yeast is added, the temperature is raised rapidly to grow the yeast. In the present invention, the saccharified solution kept at 5 ° C. or lower is raised to a target temperature range having a range of 1 ° C. before and after the target temperature over 2 to 6 days, more preferably 2.5 to 4.5 days. Warm up. The target temperature is a temperature suitable for yeast growth, and is a temperature between 15 ° C. and 25 ° C., although it varies depending on the yeast and brewery environment. The average rate of temperature rise from the start of temperature rise to reaching the target temperature range is about 2 ° C./day to 12.5 ° C./day.
The temperature rise is performed, for example, by placing a container containing a saccharified solution containing yeast in a space set to a target temperature. In this way, the target temperature range is reached in about 36 to 108 hours, depending on the production scale. It is also more preferable in that the supernatant that comes into direct contact with the space is warmed first and the yeast grows. Since the mixture is not stirred for a while after the yeast is added, the temperature may be slightly uneven, but the temperature is measured not on the surface but near the center.
It is considered that the added sake yeast is grown before various germs such as unuseful lactic acid bacteria grow by rapidly raising the temperature from a temperature of 5 ° C. or lower to a target temperature range.
Since the production of sake is parallel double fermentation, the saccharification fermentation continues even if yeast is added, that is, the production process of the saccharified liquid and the growth process of sake yeast overlap with each other on the time axis.

目的の温度帯に達したら、0.5〜4日程度、より好ましくは2〜3日程度、そのままの温度を維持して酵母を増殖させ、それから品温を低下させる。酵母の特性により異なるが、ボーメ度が12以下、アルコール度が5以上になるので、品温を低下させ(冷却)、10℃以下の低温で寝かせる(枯らし)。この冷却、枯らしは生もと系酒母造り又は速醸系酒母造りと同様である。 When the target temperature range is reached, the yeast is grown at the same temperature for about 0.5 to 4 days, more preferably about 2 to 3 days, and then the product temperature is lowered. Although it depends on the characteristics of yeast, the Baume degree is 12 or less and the alcohol content is 5 or more, so the product temperature is lowered (cooling) and the product is left to rest at a low temperature of 10 ° C or less (withering). This cooling and withering are the same as those for raw brewing and quick brewing.

こうして製造された酒母には、乳酸菌から生じた乳酸はほとんど含まれず、外から加えられた乳酸は含まない。 The liquor mother produced in this way contains almost no lactic acid produced by lactic acid bacteria and does not contain lactic acid added from the outside.

以下に、本発明を実施例で説明する。なお、本発明の酒母製造方法に含まれるものとして、大きく分けて、低温時間が長期間のもの(以下、長期低温糖化酒母の製造方法)と、短期間のもの(以下、短期低温糖化酒母の製造方法)、があるが、ぞれぞれ、以下で示す。 Hereinafter, the present invention will be described with reference to Examples. The method for producing a liquor mother of the present invention is broadly divided into those having a long low temperature time (hereinafter, a method for producing a long-term low temperature saccharified liquor mother) and those having a short temperature (hereinafter, short-term low temperature saccharified liquor mother). Manufacturing method), but each is shown below.

実施例1
<長期低温糖化酒母>
Example 1
<Long-term low-temperature saccharified liquor mother>

<実験例1 長期低温糖化酒母の製造>
米麹30kgと水95Lを混ぜ1〜2時間置いて、麹の酵素を水に溶出させ水麹を作った。次に冷却した蒸米60kgをこの水麹に入れた。このとき仕込温度は15.4℃だった。(図1参照、以下実験例1で同じ)。仕込んだ日をday1とした。仕込み後は、水麹と蒸米をよく混ぜた。数時間後に蒸米は水分を吸収して、膨れ上がった。膨れ上がってから、蒸米がつぶれないようにゆっくりと櫂をいれ、荒櫂を行った。荒櫂により、麹酵素を蒸米全体にいきわたらせて糖化を促進するだけでなく、品温を低下させ、かつ、温度を均一にした。これらの入ったタンクを室温2.0〜2.5℃に設定した部屋に移し、day1午後から、品温を低下させ、day2午前までに3.2℃にした。
その後1日1回櫂を入れ表面の乾燥を防ぎつつ3℃前後を維持し、day4午前から局所的な加温をした。局所的な加温は暖気樽を入れる(以下、暖気入れ)ことで行った。暖気樽には100℃の湯を入れた。暖気入れは、1つのタンクに暖気樽1本を使用した。暖気樽をタンクに入れ、1カ所で1〜2分経過したら、タンク内の次の場所へ暖気樽を移動させ、タンク内の計5〜7カ所で暖気を入れた。暖気樽はトータルすると10〜15分間タンク内に存在した。暖気樽投入後、表面の暖気肌は90℃、樽の極近辺は70℃、樽周囲の温度は50〜60℃となった。暖気入れ終了後5〜8時間後に品温を測定したところ5℃以下の値であった。
day4午前に最初の暖気入れをしてから、day5、day7、day9と、day5以降は2日ごとに暖気入れを行って糖化を進めた。day15に最後の暖気を入れ、day18に酵母を添加した。この間、混合後の温度低下から酵母添加まで、暖気入れから一定時間経過後から次回暖気入れの間の品温を、5℃以下に維持した。
清酒酵母はきょうかい酵母901号酵母を使用し、酵母の添加は、液体培養酵母(2.0〜3.0×10cells/mL、以下液体培養酵母中の酵母数同じ)500mLを2本、計1L添加して行った。液体培養酵母の添加は、酵母と糖化液の間に界面が形成されるようにそっと行った。さらに、液体培養酵母の入っていた容器を共洗いしてその水を添加した。添加後は、上澄み液が糖化液の表面を覆っていた。
酵母添加後、20℃に設定した酒母室に移動し、全体的に加温しながら、day18からday21の4日間で3℃から19.6℃まで昇温した。清酒酵母も順調に増えてきたのでday20に、容器内を攪拌した。
day21からは品温を20℃前後で維持し、day24からは冷却を開始した。その後、枯らしの工程を経て、day31に酒母が完成した。
バクテリア数と酵母数をday1、18、21、31でカウントし、酒母1mLあたりのそれぞれの数の推移を調べた(図2)。その結果、バクテリアは増殖せず、添加後、酵母も勢いよく増加しており、優良酵母が多数培養され、雑菌のいない優れた酒母を製造できたことがわかった。
<Experimental example 1 Production of long-term low-temperature saccharified liquor mother>
30 kg of rice jiuqu and 95 L of water were mixed and left for 1 to 2 hours to elute the enzyme of the jiuqu into water to make water jiuqu. Next, 60 kg of cooled steamed rice was put into this water jiuqu. At this time, the charging temperature was 15.4 ° C. (See FIG. 1, the same applies to Experimental Example 1 below). The day of preparation was set to day1. After the preparation, the water jiuqu and steamed rice were mixed well. After a few hours, the steamed rice absorbed water and swelled. After swelling, I slowly put a paddle so that the steamed rice would not be crushed, and performed a rough paddle. In addition to promoting saccharification by spreading the koji enzyme throughout the steamed rice, the rough paddle lowered the product temperature and made the temperature uniform. The tank containing these was moved to a room set to a room temperature of 2.0 to 2.5 ° C., and the product temperature was lowered from the afternoon of day 1 to 3.2 ° C. by the morning of day 2.
After that, a paddle was put in once a day to prevent the surface from drying, and the temperature was maintained at around 3 ° C., and local heating was performed from the morning of day4. Local heating was performed by putting a warm air barrel (hereinafter referred to as warm air). The warm air barrel was filled with hot water at 100 ° C. For warming up, one warming barrel was used for one tank. The warm air barrels were placed in the tank, and after 1 to 2 minutes had passed in one place, the warm air barrels were moved to the next place in the tank, and warm air was put in a total of 5 to 7 places in the tank. The warm barrels remained in the tank for a total of 10 to 15 minutes. After putting in the warm barrel, the warm skin on the surface was 90 ° C, the temperature in the immediate vicinity of the barrel was 70 ° C, and the temperature around the barrel was 50 to 60 ° C. When the product temperature was measured 5 to 8 hours after the completion of warming up, it was a value of 5 ° C. or less.
After the first warming in the morning of day4, warming was performed every two days for day5, day7, day9, and after day5 to proceed with saccharification. The last warm air was added to day15 and yeast was added to day18. During this period, the product temperature was maintained at 5 ° C. or lower during the period from the temperature drop after mixing to the addition of yeast, the elapse of a certain period of time from the warming, and the next warming.
Sake yeast uses the association yeast 901 No. yeast, addition of yeast, two liquid culture yeast 500mL (2.0~3.0 × 10 8 cells / mL, yeast same number of following liquid culture in yeast) , A total of 1 L was added. The liquid-cultured yeast was added gently so that an interface was formed between the yeast and the saccharified solution. Further, the container containing the liquid-cultured yeast was co-washed and the water was added. After the addition, the supernatant liquid covered the surface of the saccharified liquid.
After the addition of yeast, the mixture was moved to a liquor chamber set at 20 ° C., and the temperature was raised from 3 ° C. to 19.6 ° C. in 4 days from day 18 to day 21 while warming the whole. Since the amount of sake yeast increased steadily, the inside of the container was stirred on day 20.
The product temperature was maintained at around 20 ° C. from day 21, and cooling was started from day 24. After that, through the process of withering, the sake mother was completed on day31.
The number of bacteria and the number of yeasts were counted by days 1, 18, 21, and 31, and the transition of each number per 1 mL of liquor mother was examined (Fig. 2). As a result, it was found that the bacteria did not grow, the yeast increased vigorously after the addition, and a large number of excellent yeasts were cultivated, and an excellent liquor mother without various germs could be produced.

<比較実験例1 生もと系の山廃造りによる酒母の製造>
温度変化の様子を比べるために、生もと系の山廃造りで酒母を製造したときの温度変化の様子を示した(図3)。蒸米60kg、米麹30kg、及び水95Lのスケールで酒母を製造した。day6から徐々に温度を上げ、十分に酸度が上がったday22で酵母を添加した。この図から、生もと系酒母造りと比較して、本願発明の酒母製造方法は、低温で糖化反応を進めていること、酵母添加後、速やかに昇温させていることがわかる。
<Comparative Experiment Example 1 Manufacture of sake mother by abandoned mountain brewing
In order to compare the state of the temperature change, the state of the temperature change when the sake mother was manufactured from the mountain abandoned brewing of the raw system was shown (Fig. 3). A sake mother was produced on a scale of 60 kg of steamed rice, 30 kg of rice jiuqu, and 95 L of water. The temperature was gradually increased from day6, and yeast was added on day22 when the acidity was sufficiently increased. From this figure, it can be seen that the saccharification reaction of the present invention is carried out at a low temperature and the temperature is raised promptly after the addition of yeast, as compared with the brewing of raw liquor.

実施例2 Example 2

<比較実験例2 糖化反応の途中から昇温した生もと系酒母の製造>
蒸米40kg、米麹20kg、水63Lを準備し、酒母の製造をday10まで実験例1と同様に行った。ただし、仕込み後、蒸米をすりつぶすように櫂を入れた。
day10に、1/3量を分取して実験例2のサンプルとし、残りの2/3量を徐々に昇温して比較実験例2を進めた。打瀬後のday4から徐々に昇温すると、雑菌数が多くなることが予想され、実際の酒造りに影響する可能性があるので、糖化の途中から昇温することとした。温度変化の様子を図4で示した。
バクテリア数と酵母数をday10、18、23、25、32でカウントし、酒母1mLあたりのそれぞれの数の推移を調べた(図5)。
<Comparative Experiment Example 2 Production of raw liquor mother whose temperature has been raised from the middle of the saccharification reaction>
40 kg of steamed rice, 20 kg of rice jiuqu, and 63 L of water were prepared, and the liquor mother was produced up to day 10 in the same manner as in Experimental Example 1. However, after the preparation, a paddle was added to grind the steamed rice.
A 1/3 amount was separated into a sample of Experimental Example 2 on day 10, and the remaining 2/3 amount was gradually heated to advance Comparative Experimental Example 2. If the temperature is gradually increased from day 4 after Utase, it is expected that the number of germs will increase, which may affect the actual sake brewing. Therefore, the temperature was decided to increase from the middle of saccharification. The state of the temperature change is shown in FIG.
The number of bacteria and the number of yeasts were counted by days 10, 18, 23, 25, and 32, and the transition of each number per 1 mL of liquor mother was examined (Fig. 5).

<実験例2 蒸米をすりつぶして用いる長期低温糖化酒母の製造>
比較実験例2のサンプルの一部を使用して、day10以降も、実験例1に準じて酒母の製造を行った。
比較実験例2のday10で1/3量を分取して、実験例2のサンプルとし、実験例1に準じて酒母の製造を続けた。このときの温度変化の様子を図6で示した。
バクテリア数と酵母数をday10、18、23、25、32でカウントし、酒母1mLあたりのそれぞれの数の推移を調べた(図7)。
実験例2と比較実験例2の結果から、実験例2は、比較実験例2のようにバクテリアが一旦増殖してしまうこともなく、酵母の数もday23で8×10となり比較実験例2の7.1×10より多いので酵母が勢いよく増加していることがみてとれ、優良酵母が多数培養され、雑菌のいない優れた酒母を製造できたことがわかった。
<Experimental Example 2 Production of long-term low-temperature saccharified liquor mother used by grinding steamed rice>
Using a part of the sample of Comparative Experimental Example 2, the liquor mother was produced according to Experimental Example 1 after day 10.
One-third of the amount was separated by day 10 of Comparative Experimental Example 2 to prepare a sample of Experimental Example 2, and the production of liquor mother was continued according to Experimental Example 1. The state of the temperature change at this time is shown in FIG.
The number of bacteria and the number of yeasts were counted by days 10, 18, 23, 25, and 32, and the transition of each number per 1 mL of liquor mother was examined (Fig. 7).
From the results of Comparative Example 2 and Experimental Example 2, Experimental Example 2, Comparative experimental example without the bacteria would once grown as 2, the number of yeast in day23 8 × 10 7 next Comparative Example 2 because of 7.1 × greater than 10 7 it is could see that the yeast is increasing vigorously, good yeast are many cultures, it was found that was able to produce within excellent shubo of bacteria.

実施例3
<実験例3 短期低温糖化酒母の製造>
Example 3
<Experimental example 3 Production of short-term low-temperature saccharified liquor mother>

蒸米30kg、米麹15kg、及び水50Lを準備した。麹は、α−アミラーゼ活性500U/g乾燥麹以上、グルコアミラーゼ活性250U/g乾燥麹以上、一般生菌数10CFU/g以下のものを使用した。なお、活性測定には「キッコーマン酵素活性測定キット」を用いた。蒸米は蒸米吸水率40〜45%のものを用いた。蒸米吸水率(%)=((蒸米重量−白米重量)/白米重量)×100と計算する。温度変化の様子を図8に示した。仕込み後、速やかに品温を低下させた。この際、蒸米がつぶれないように櫂を入れた。day3、day4に暖気を入れ、day5に19℃の酒母室に移動し、酵母を添加した。清酒酵母はきょうかい酵母1801号を使用した。day8には目的温度帯に到達し、day10から冷却を行い、枯らしを経て、day16に酒母が完成した。
バクテリア数と酵母数をday1、5、9、14でカウントし、酒母1mLあたりのそれぞれの数の推移を調べた(図9)。その結果、バクテリアは増殖せず、添加後、酵母も勢いよく増加しており、優良酵母が多数培養され、雑菌のいない優れた酒母を製造できたことがわかった。
30 kg of steamed rice, 15 kg of rice jiuqu, and 50 L of water were prepared. Koji, alpha-amylase activity 500 U / g dry koji above, glucoamylase activity 250 U / g dry koji above, were used following viable microorganisms number 10 3 CFU / g. The "Kikkoman enzyme activity measurement kit" was used for the activity measurement. The steamed rice used had a water absorption rate of 40 to 45%. The water absorption rate of steamed rice (%) = ((weight of steamed rice-weight of white rice) / weight of white rice) x 100. The state of the temperature change is shown in FIG. After the preparation, the product temperature was lowered immediately. At this time, a paddle was added so that the steamed rice would not be crushed. Warm air was added to day3 and day4, and the mixture was moved to a liquor chamber at 19 ° C. on day5, and yeast was added. As the sake yeast, Kyokai yeast No. 1801 was used. The target temperature zone was reached on day 8, cooling was performed from day 10, and the liquor mother was completed on day 16.
The number of bacteria and the number of yeasts were counted by days 1, 5, 9 and 14, and the transition of each number per 1 mL of liquor mother was examined (Fig. 9). As a result, it was found that the bacteria did not grow, the yeast increased vigorously after the addition, and a large number of excellent yeasts were cultivated, and an excellent liquor mother without various germs could be produced.

実施例4
<小スケールによる酵母添加方法の検討>
実験例2で製造した糖濃度の高い糖化液を使用して、酵母の添加方法と酵母増殖速度の関係について検討した。
まず、糖化液2Lを入れた4L梅酒用瓶を4本準備した。糖化液の性状を表1に示した。次に4本それぞれに、液体培養酵母5.5mLを添加し、さらに、酵母溶液の入っていた容器を共洗いした水2.7mLを加えた。酵母はきょうかい酵母の901号酵母を使用した。酵母溶液は、界面を形成するように添加し(A−1、A−2)、あるいは添加後攪拌した(B−1、B−2)。
Example 4
<Examination of yeast addition method on a small scale>
Using the saccharified solution having a high sugar concentration produced in Experimental Example 2, the relationship between the yeast addition method and the yeast growth rate was examined.
First, four 4L plum wine bottles containing 2L of the saccharified solution were prepared. The properties of the saccharified solution are shown in Table 1. Next, 5.5 mL of liquid-cultured yeast was added to each of the four bottles, and 2.7 mL of water obtained by co-washing the container containing the yeast solution was added. As the yeast, yeast No. 901 of Kyokai yeast was used. The yeast solution was added so as to form an interface (A-1, A-2), or was added and then stirred (B-1, B-2).

4本の瓶を18℃に設定したインキュベーターにいれた。インキュベーターは2段に分かれているものを使用したが、A−1、B−1は上段、A−2とB−2は下段に配した(図10)。そして、インキュベーターにいれてから48時間後に4本すべての瓶の中身を攪拌し、さらに24時間、インキュベーター中に置いた。目的温度帯には約6時間で達した。
24時間経過後、瓶を取り出し、3℃の酒母室へ移動し、酒母1mL中の酵母数をカウントし、その結果を表2で示した。インキュベーターの上段と下段で昇温速度に差があったと思われるので、同じ段のA−1とB−1、A−2とB−2を比較すると、A−1はB−1の1.5倍、A−2はB−2の1.8倍となり、界面を形成させるよう添加したものは、仕込み直後に攪拌したものより、勢いよく酵母が増殖することが分かった。
The four bottles were placed in an incubator set at 18 ° C. The incubator used was divided into two stages, but A-1 and B-1 were arranged in the upper stage, and A-2 and B-2 were arranged in the lower stage (Fig. 10). Then, 48 hours after being placed in the incubator, the contents of all four bottles were stirred and placed in the incubator for another 24 hours. The target temperature range was reached in about 6 hours.
After 24 hours, the bottle was taken out, moved to a liquor chamber at 3 ° C., the number of yeasts in 1 mL of liquor was counted, and the results are shown in Table 2. It seems that there was a difference in the heating rate between the upper and lower stages of the incubator, so when comparing A-1 and B-1 and A-2 and B-2 in the same stage, A-1 is 1. It was found that the yeast proliferated 5 times and A-2 was 1.8 times that of B-2, and the yeast added so as to form an interface grew more vigorously than the one stirred immediately after the preparation.

本発明の酒母製造方法で酒母を製造することにより、乳酸菌と乳酸のいずれも使用しないで、優良な酵母が多数培養され、雑菌の混入も少ない、優れた酒母を製造することができる。この酒母を使うことで、雑味等を抑えた味の良い日本酒を製造することができるので、日本酒業界にとって有用である。 By producing a liquor mother by the method for producing a liquor mother of the present invention, it is possible to produce an excellent liquor mother in which a large number of excellent yeasts are cultivated without using either lactic acid bacteria or lactic acid and the contamination with various germs is small. By using this sake mother, it is possible to produce good-tasting sake with less miscellaneous taste, which is useful for the sake industry.

Claims (7)

乳酸が実質的に存在しない条件下で、酵母添加前の糖化反応を進める、酒母製造のための糖化液製造方法。 A method for producing a saccharified solution for producing a liquor mother, which promotes a saccharification reaction before adding yeast under conditions in which lactic acid is substantially absent. 冷却した蒸米、米麹、及び水を混合後、品温を5℃以下まで低下させ、又は蒸米をより冷却して混合時点で品温を5℃以下として、その後、複数回、一定時間局所的に加温して米麹による糖化反応を進めつつも、局所加温後8時間から次回局所加温までの品温が、後の清酒酵母添加時まで5℃以下を保つ、酒母製造のための糖化液製造方法。 After mixing the cooled steamed rice, rice jiuqu, and water, the product temperature is lowered to 5 ° C or less, or the steamed rice is further cooled to bring the product temperature to 5 ° C or less at the time of mixing, and then multiple times, locally for a certain period of time. For the production of sake mothers, the product temperature from 8 hours after local heating to the next local heating remains 5 ° C or less until the subsequent addition of sake yeast, while advancing the saccharification reaction with rice jiuqu. Method for producing saccharified liquid. 局所的な加温温度が80〜98℃である、請求項2の酒母製造のための糖化液製造方法。 The method for producing a saccharified solution for producing a liquor mother according to claim 2, wherein the local heating temperature is 80 to 98 ° C. 請求項1〜3のいずれか1の方法で糖化液を製造し、5℃以下の該糖化液へ清酒酵母を含む溶液と糖化液の間に界面を形成させるように清酒酵母を添加し、添加後は、昇温開始から2〜6日で目的温度の前後1℃の幅を持つ目的温度帯に達し、かつ、目的温度が15〜25℃の間である、酒母の製造方法。 A saccharified solution is produced by the method of any one of claims 1 to 3, and sake yeast is added to the saccharified solution at 5 ° C. or lower so as to form an interface between the solution containing sake yeast and the saccharified solution. After that, a method for producing sake mother, in which the target temperature zone having a range of 1 ° C. before and after the target temperature is reached within 2 to 6 days from the start of temperature rise, and the target temperature is between 15 and 25 ° C. 清酒酵母を糖化液により増殖させる方法で、清酒酵母を含む溶液と糖化液の間に界面が形成されるよう清酒酵母を糖化液に添加し、この界面より上の上澄み部分で、清酒酵母の増殖を進行させる清酒酵母の増殖方法。 In a method of growing sake yeast with a saccharified solution, sake yeast is added to the saccharified solution so that an interface is formed between the solution containing sake yeast and the saccharified solution, and the sake yeast is grown in the supernatant portion above this interface. A method of growing sake yeast. 清酒酵母添加直前の酒母製造用糖化液で、酸度が1以下である酒母製造用糖化液。 A saccharified solution for producing sake mothers immediately before the addition of sake yeast, which has an acidity of 1 or less. 清酒酵母添加直前の酒母製造用糖化液で、乳酸を実質的に含まない酒母製造用糖化液。
A saccharified solution for producing sake mothers immediately before the addition of sake yeast, which is a saccharified solution for producing sake mothers that does not substantially contain lactic acid.
JP2019094162A 2019-05-18 2019-05-18 New liquor mother manufacturing method Active JP6894105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019094162A JP6894105B2 (en) 2019-05-18 2019-05-18 New liquor mother manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019094162A JP6894105B2 (en) 2019-05-18 2019-05-18 New liquor mother manufacturing method

Publications (2)

Publication Number Publication Date
JP2020188686A true JP2020188686A (en) 2020-11-26
JP6894105B2 JP6894105B2 (en) 2021-06-23

Family

ID=73452966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019094162A Active JP6894105B2 (en) 2019-05-18 2019-05-18 New liquor mother manufacturing method

Country Status (1)

Country Link
JP (1) JP6894105B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994900A (en) * 1973-01-29 1974-09-09
JPH10304864A (en) * 1997-05-07 1998-11-17 Hisashi Tsujimura Preparation of liquor and liquor produced thereby
JPH11169168A (en) * 1997-08-22 1999-06-29 Sankyo Co Ltd Production of refined rice wine using yeast separated from sea water
JP2005224176A (en) * 2004-02-13 2005-08-25 Kameda Shuzo Kk Method for producing wine-fashioned japanese sake with rice as main material
JP2013198407A (en) * 2012-03-23 2013-10-03 Saga Prefecture Method for breeding high-temperature-resistant ethanol-productive yeast, and method for producing fermented unrefined sake using the same
JP2019176799A (en) * 2018-03-30 2019-10-17 株式会社 林本店 Process for producing yeast mash by parallel raising of lactic acid bacterium and yeast bacterium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994900A (en) * 1973-01-29 1974-09-09
JPH10304864A (en) * 1997-05-07 1998-11-17 Hisashi Tsujimura Preparation of liquor and liquor produced thereby
JPH11169168A (en) * 1997-08-22 1999-06-29 Sankyo Co Ltd Production of refined rice wine using yeast separated from sea water
JP2005224176A (en) * 2004-02-13 2005-08-25 Kameda Shuzo Kk Method for producing wine-fashioned japanese sake with rice as main material
JP2013198407A (en) * 2012-03-23 2013-10-03 Saga Prefecture Method for breeding high-temperature-resistant ethanol-productive yeast, and method for producing fermented unrefined sake using the same
JP2019176799A (en) * 2018-03-30 2019-10-17 株式会社 林本店 Process for producing yeast mash by parallel raising of lactic acid bacterium and yeast bacterium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
日本醸造協会雑誌, 1939年, vol. 34巻7号, JPN6021018952, pages 668 - 671, ISSN: 0004509828 *
豊田敦至 等: "乳酸無添加速醸酒母への種麹「長野白麹ミックス」の活用", 長野県工技センター研報, vol. 13, JPN6020023714, 2018, pages 1 - 6, ISSN: 0004432075 *
醸協, 1975年, vol. 第70巻, 第6号, JPN6021018953, pages 381 - 386, ISSN: 0004509829 *

Also Published As

Publication number Publication date
JP6894105B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
CN103865747B (en) Production method of monascus vinegar rich in lovastatin
CN107488602B (en) Abnormal Wickerhamia yeast GJYD15 and application thereof in preparation of low-temperature Daqu
CN109554265B (en) Sweet fermented-rice low-alcohol beverage and preparation method thereof
CN109486645B (en) Method for brewing and blending fragrant mature vinegar by applying immobilized targeted multi-microbe strain
CN103305448A (en) Mixed culture bacterial solution for quickly aging new pit of strong aromatic Chinese spirits and maintenance method
JP2021036849A (en) Production method of japanese sake using brown rice as raw material
CN104293590A (en) Production process of polished round-grained rice red wine fermented in great tank
CN114106975A (en) Method for brewing vinegar by using horizontal roller solid-state fermentation tank in fed-batch mode
CN101285026A (en) Brewing process of cornel wine
JP6894105B2 (en) New liquor mother manufacturing method
CN102559431A (en) Method for producing edible wine by saccharification and fermentation of waxy wheat
CN101307278B (en) Production process of draft rice wine
CN107164136B (en) Fermentation method of low-volatile acid wine
CN105695231A (en) Production method for improving quality and yield of Xiaoqu liquor
CN104694329A (en) Manufacturing technology of japonica rice wine
CN104818186B (en) Barley wine distiller&#39;s yeast production technology
CN110317706A (en) Reduce the brewage process precipitated in finished product vinegar
CN110628550A (en) Rice wine bran koji and preparation method thereof
JPH09121834A (en) Production of refined rice wine
CN114933946B (en) Preparation process of waxy sorghum yeast and method for preparing mature vinegar by using waxy sorghum yeast
JP2019176799A (en) Process for producing yeast mash by parallel raising of lactic acid bacterium and yeast bacterium
CN116987567A (en) A process for preparing distilled liquor from birch juice and radix Acanthopanacis Senticosi
CN111171992A (en) Wine brewing method by tile jar fermentation
KR101813114B1 (en) Concentrated Stater Manufacturing Method and Korean Alcoholic Preparing Method Using Concentrated Stater
JP2007125034A (en) Method for producing malt alcoholic liquor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210301

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210507

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210526

R150 Certificate of patent or registration of utility model

Ref document number: 6894105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150