JP2013198407A - Method for breeding high-temperature-resistant ethanol-productive yeast, and method for producing fermented unrefined sake using the same - Google Patents

Method for breeding high-temperature-resistant ethanol-productive yeast, and method for producing fermented unrefined sake using the same Download PDF

Info

Publication number
JP2013198407A
JP2013198407A JP2012066963A JP2012066963A JP2013198407A JP 2013198407 A JP2013198407 A JP 2013198407A JP 2012066963 A JP2012066963 A JP 2012066963A JP 2012066963 A JP2012066963 A JP 2012066963A JP 2013198407 A JP2013198407 A JP 2013198407A
Authority
JP
Japan
Prior art keywords
ethanol
culture
temperature
fermentation
yeast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012066963A
Other languages
Japanese (ja)
Inventor
Yoshihisa Eguchi
良寿 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Prefecture
Original Assignee
Saga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Prefecture filed Critical Saga Prefecture
Priority to JP2012066963A priority Critical patent/JP2013198407A/en
Publication of JP2013198407A publication Critical patent/JP2013198407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Alcoholic Beverages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-temperature-resistant yeast strain capable of efficiently producing ethanol by fermentation even under temperature conditions at 35°C or higher, preferably at 38-40°C, to provide a method for breeding the same, and to provide a method for producing an ethanol-containing unrefined sake fermented product using such a strain.SOLUTION: The high-temperature-resistant variant yeast strain is produced by the following steps: a step (a) of conducting a fed-batch cultivation at 25°C or higher cultivation temperature of ethanol-fermentative yeast belonging to genus Saccharomyces to effect ethanol fermentation to produce fermented unrefined sake with ethanol concentration of 15% or higher; a step (b) of cultivating the yeast cell survived in the step (a) at 37°C or higher in an agar medium containing ≥10% ethanol and selecting the grown colony as a candidate strain; and a step (c) of cultivating the candidate strain selected in the step (b) in a liquid medium at 38-42°C followed by making a secondary selection based on the quantity of carbon dioxide production.

Description

本発明は、酵母細胞に高温耐性を付与して高温条件下においてもエタノール生産が可能な突然変異株の育種方法及びこれを用いたエタノールを含有する発酵もろみの製造方法等に関する。   The present invention relates to a method for breeding a mutant strain that imparts high-temperature tolerance to yeast cells and is capable of producing ethanol even under high-temperature conditions, a method for producing fermentation mash containing ethanol using the same, and the like.

酒類製造やバイオエタノール製造をはじめエタノール製造に酵母は広く利用されており、これらにおいては様々な条件下でエタノール生産性を高めることが重要となっている。酒類製造分野の清酒醸造では近年の地球温暖化の影響を受け原料米の高温障害による原料利用率の低下や、冬期においても温暖なことから醪の冷却による製造コストの上昇が問題となっており、また、比較的高温で発酵させる焼酎醸造においてはエタノール収得量の向上のための対策が望まれている。また、バイオエタノール製造分野においては発酵温度を高くすることで、原料利用率の向上及び糖化液の冷却・もろみの発酵熱除去のための冷却コストの削減が望まれている。そのため、より高温条件下で発酵力の強いエタノール生産酵母が望まれている。   Yeast is widely used for ethanol production including alcohol production and bioethanol production. In these, it is important to increase ethanol productivity under various conditions. Sake brewing in the liquor manufacturing field has been affected by a decline in raw material utilization due to high temperature failure of raw rice due to the impact of global warming in recent years and an increase in production costs due to cooling of strawberries because it is warm even in winter. In addition, in shochu brewing that is fermented at a relatively high temperature, measures for improving the ethanol yield are desired. Further, in the bioethanol production field, it is desired to increase the fermentation temperature to improve the raw material utilization rate and to reduce the cooling cost for cooling the saccharified liquid and removing the fermentation heat of the mash. Therefore, an ethanol-producing yeast having a strong fermenting ability under higher temperature conditions is desired.

高温耐性を有する酵母の取得方法は自然界からの発酵能と高温耐性を有する酵母の選抜・単離や変異処理や遺伝子組み換え技術による高温耐性酵母への改良によって行われており、このようにして取得された酵母を用いたエタノールの製造方法などが開示されている。例えば、フェルラ酸脱炭酸能を有し、優れたクエン酸耐性を有すると共に、同クエン酸濃度の高い環境下における高温(40℃)での増殖能が高い、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)に属する新規醸造用酵母を用いた焼酎および泡盛の製造法(特許文献1)や、セルロース分解酵素の少なくとも2種を発現する形質転換クルイベロマイセス属酵母をバイオマスと混合し、培養することにより高温でセルロースからエタノールを生産する方法(特許文献2)や、エタノール発酵性ホモタリズム酵母から得た耐熱性および耐酸性を備えたエタノール発酵性ヘテロタリズム酵母(特許文献3)や、スクリーニング工程を経て選抜された、35℃以上という高温条件下でも効率よくエタノール発酵生産が可能なザイモモナス・モビリスの野外分離株を用いたエタノール生産方法(特許文献4)や、37℃以上の温度条件下、好ましくは40−49℃以上の温度条件下でも効率よくエタノール発酵生産が可能なクルイベロマイセス属酵母を用いたエタノール生産方法(特許文献5)が知られている。しかしながら、これらの発明は高温耐性のみに注目し、エタノール生産性が高くないものも多く、高温耐性と高エタノール発酵能を合わせ有する酵母の効率的な取得方法を提供するものではなかった。そのため、エタノール発酵生産技術分野において適用可能な高温耐性と発酵能を同時に有する酵母の効率的な育種技術及び、育種された酵母によるエタノール発酵生産技術の開発が望まれていた。   The method for obtaining yeast with high temperature tolerance is performed by selecting and isolating yeast with fermentability and high temperature tolerance from nature, and improving to high temperature resistant yeast by mutation treatment and gene recombination technology. A method for producing ethanol using the prepared yeast is disclosed. For example, it belongs to Saccharomyces cerevisiae, which has ferulic acid decarboxylation ability, excellent citric acid resistance, and high growth ability at high temperature (40 ° C) in an environment with the same citric acid concentration. A method for producing shochu and awamori using a new brewing yeast (Patent Document 1) and a yeast of the genus Kluyveromyces that express at least two types of cellulolytic enzymes are mixed with biomass and cultured at high temperature. Selected from a method of producing ethanol from cellulose (Patent Document 2), an ethanol-fermenting heterothalism yeast (Patent Document 3) having heat resistance and acid resistance obtained from ethanol-fermenting homothalism yeast, and a screening step. Zyomomonas mobilis that can efficiently produce ethanol under high temperature conditions of 35 ℃ or higher Ethanol production method using a field isolate of S. cerevisiae and Kluyveromyces which can efficiently produce ethanol under temperature conditions of 37 ° C or higher, preferably 40-49 ° C or higher An ethanol production method using a genus yeast (Patent Document 5) is known. However, these inventions pay attention only to high-temperature resistance, and many ethanol productivity is not high, and they did not provide an efficient method for obtaining yeast having both high-temperature resistance and high ethanol fermentation ability. Therefore, development of the efficient breeding technique of the yeast which has high temperature tolerance and fermentability which can be applied in the field of ethanol fermentation production technology and the ethanol fermentation production technique using the bred yeast has been desired.

特開2006−67812公報JP 2006-67812 A 特開2011−160727公報JP 2011-160727 A 特開2009−171912公報JP 2009-171912 A 特開2009−60836公報JP 2009-60836 A 再表2008/062558公報Table 2008/062558

酵母はバイオエタノール製造をはじめ、酒類製造等で広く利用されており、目的により変異処理を施され様々な形質をもつ変異株が取得されている。バイオエタノール製造では原料の液化・糖化を高温(60℃以上)で行われており、その後エタノール発酵性の微生物によりエタノールを含有する発酵もろみを製造し、これを蒸留して純粋なエタノールが生産されている。そのため、各工程でのエネルギー削減を目的として、高温(40℃程度)でもエタノール発酵可能な発酵微生物の探索や改良が行われている。また、清酒醸造では醪後期に酵母の死滅を防止して、酒質の低下を抑える目的でエタノール耐性に優れた酵母菌株の育種がなされてきた。さらに、焼酎醸造では発酵温度が比較的高い(25〜32℃程度)ことから、エタノール収率を向上させる目的で高温耐性酵母の取得が試みられてきた。   Yeast is widely used in bioethanol production, alcoholic beverage production, etc., and mutants having various traits have been obtained depending on the purpose. In bioethanol production, raw materials are liquefied and saccharified at a high temperature (over 60 ° C), and then fermented mash containing ethanol is produced by ethanol-fermenting microorganisms, which are distilled to produce pure ethanol. ing. Therefore, for the purpose of reducing energy in each process, search and improvement of fermented microorganisms capable of ethanol fermentation even at high temperatures (about 40 ° C.) have been performed. In sake brewing, yeast strains with excellent ethanol resistance have been bred for the purpose of preventing the death of yeast in the late stage and suppressing the deterioration of the quality of sake. Furthermore, since shochu brewing has a relatively high fermentation temperature (about 25 to 32 ° C.), attempts have been made to acquire high-temperature resistant yeast for the purpose of improving ethanol yield.

また、サッカロミセス属酵母は従来からエタノールの発酵生産に利用されており、その改良も従来からなされている。バイオエタノール製造分野における近年の改良技術では遺伝子工学的手法を用いて、糖化同時発酵を酵母菌株のみで行えるようにするものや、サッカロミセス属酵母が資化できない糖を資化できるよう改良されている。しかしながら、このような改良を行ってもサッカロミセス属酵母が効率的にエタノール発酵できる温度領域は30℃付近であり、この温度領域では糖化反応が十分でない場合が多い。また、この温度領域でのエタノールの発酵生産では発酵槽を適温に保つために、発酵熱を除去する冷却設備を必要とする場合が多い。   In addition, Saccharomyces yeasts have been conventionally used for ethanol fermentation production, and improvements have also been made. Recent improved technologies in the field of bioethanol production have been improved using genetic engineering techniques to enable simultaneous saccharification and fermentation using only yeast strains and to assimilate sugars that cannot be assimilated by Saccharomyces yeasts. . However, even if such improvements are made, the temperature range in which Saccharomyces yeast can efficiently undergo ethanol fermentation is around 30 ° C., and the saccharification reaction is often insufficient in this temperature range. In addition, in the fermentation production of ethanol in this temperature range, in order to keep the fermenter at an appropriate temperature, a cooling facility for removing fermentation heat is often required.

本発明の課題は、35℃以上の温度条件下、好ましくは38℃〜40℃の温度条件下でも効率よくエタノールの発酵生産が可能な高温耐性酵母菌株やその育種方法、及びかかる高温耐性酵母菌株を用いたエタノールを含有するもろみ発酵物の製造方法を提供することにある。   An object of the present invention is to provide a high temperature resistant yeast strain capable of efficiently producing ethanol under a temperature condition of 35 ° C. or higher, preferably 38 ° C. to 40 ° C., a breeding method thereof, and such a high temperature resistant yeast strain. An object of the present invention is to provide a method for producing a fermented mash containing ethanol.

これまでのエタノール耐性を有する酵母菌株の取得方法は、親株となる酵母菌株を液体培地で25〜30℃で48時間程度振盪培養し、得られた酵母菌体に変異処理を施すか、又はそのまま用いて、エタノールの添加された寒天培地に塗布し、生育してきたコロニーから選抜する方法や、親株となる酵母菌株を液体培地で25〜30℃で48時間程度振盪培養し、得られた酵母菌体を高濃度(20%程度)のエタノール処理液に浸し、1ヶ月程度4℃に静置し、生き残った菌体をエタノール耐性酵母として得る方法が行われていた。これらの方法においては、処理される酵母菌体は単発酵しかしていないため、エタノール濃度はせいぜい10%程度しか生産した経験がない菌体であるため、エタノール耐性はあっても、15%を超える濃度のエタノール生産性については並行複発酵を利用した小仕込み試験で確認するしかなかった。また、小仕込み試験では発酵温度を極端に高く設定できないため、高温条件下でのエタノール生産性の検討は非常に難しかった。   The conventional method for obtaining a yeast strain having ethanol resistance is that the parent yeast strain is shake-cultured in a liquid medium at 25-30 ° C. for about 48 hours, and the obtained yeast cells are subjected to a mutation treatment or as it is. The yeast strain obtained by applying to an agar medium supplemented with ethanol and selecting from the grown colonies, or by culturing the parent yeast strain in a liquid medium at 25-30 ° C. for about 48 hours with shaking. A method has been used in which the body is immersed in a high-concentration (about 20%) ethanol treatment solution and allowed to stand at 4 ° C. for about one month to obtain surviving cells as ethanol-resistant yeast. In these methods, since the yeast cells to be treated are only subjected to simple fermentation, the ethanol concentration is a cell that has produced no more than about 10%, so that even though it has ethanol tolerance, it exceeds 15%. Concentration ethanol productivity could only be confirmed by a small preparation test using parallel double fermentation. In addition, since the fermentation temperature cannot be set extremely high in the small preparation test, it was very difficult to study ethanol productivity under high temperature conditions.

また、自然界より高温耐性菌株をスクリーニングして分離する方法は、多くの属、種の微生物を検討し、有効な菌株についてはその属、種を明確にする必要があり、非常に煩雑である上に、エタノールを効率的に生産する方法についても検討する必要があり、有用なエタノール生産性微生物を得るには時間がかかるという問題があった。   In addition, the method of screening and isolating high-temperature resistant strains from the natural world requires examination of microorganisms of many genera and species, and for effective strains, it is necessary to clarify the genera and species, which is very complicated. In addition, it is necessary to study a method for efficiently producing ethanol, and it takes time to obtain useful ethanol-producing microorganisms.

他方、本発明者らは、高濃度エタノール製造技術の開発を目的として流加培養システムを構築し、かかる流加培養システムを応用して高濃度(18%以上)エタノールを短期間(4日以内)に製造できる技術開発を行ってきた(平成19年度 佐賀県工業技術センター 研究報告書「 エタノールの高濃度連続生産システムの開発に関する研究」参照)。しかし、さらに高濃度のエタノールを効率よく製造するためには発酵に使用する酵母に高温耐性を付与することが有効であるとの仮説を立ててみた。また、開発した流加培養システムは様々な条件でエタノール発酵できることから、本システムを用いることで効率よく高温耐性酵母を育種できると考えられた。そこで、清酒酵母(協会901号)を親株として変異処理を行い、この処理した菌体を流加培養システム用いて30℃でエタノール発酵を行わせた。得られた発酵もろみ中に生き残った菌体を15%のエタノールを含む寒天培地上に塗布し、38、39、40、42℃で培養して生育してきたコロニーを高温耐性株として取得した。取得した高温耐性株を、流加培養システムを用いて30℃で発酵試験を行ったところ、親株よりも死滅開始するエタノール濃度及び到達エタノール濃度が向上していることが確認された。また、39℃でも同様の実験を行い、約12%の高濃度のエタノールを含有する発酵もろみを得ることができた。さらに、酵母菌株の高温耐性を強化する前培養条件(酒母の製造条件)についても検討し、特定の前培養条件で得られた酒母を用いると、40℃の発酵温度でも10.7%のエタノールを製造可能なことから、優れたエタノール生産性と高温耐性を同時に有することがわかった。本発明は以上の知見に基づき完成するに到ったものである。   On the other hand, the present inventors constructed a fed-batch culture system for the purpose of developing a technology for producing high-concentration ethanol, and applied this fed-batch culture system to produce high-concentration (18% or more) ethanol in a short period (within 4 days). (See “Study on Development of High Concentration Continuous Production System for Ethanol” in 2007 Saga Industrial Technology Center Research Report). However, we hypothesized that it is effective to impart high-temperature tolerance to the yeast used for fermentation in order to efficiently produce higher concentrations of ethanol. In addition, the developed fed-batch culture system can be ethanol-fermented under various conditions, so it was considered that high-temperature resistant yeast can be efficiently bred using this system. Therefore, sake yeast (Association No. 901) was subjected to mutation treatment as a parent strain, and the treated cells were subjected to ethanol fermentation at 30 ° C. using a fed-batch culture system. The microbial cells that survived in the fermented mash were spread on an agar medium containing 15% ethanol, and colonies grown by culturing at 38, 39, 40, and 42 ° C. were obtained as high-temperature resistant strains. When the obtained high-temperature-resistant strain was subjected to a fermentation test at 30 ° C. using a fed-batch culture system, it was confirmed that the ethanol concentration at which mortality starts and the ultimate ethanol concentration were improved as compared with the parent strain. The same experiment was conducted at 39 ° C., and fermentation mash containing about 12% high concentration of ethanol could be obtained. Furthermore, the pre-culture conditions for enhancing the high-temperature resistance of yeast strains (sake mother's production conditions) were also examined, and when using a liquor obtained under specific pre-culture conditions, 10.7% ethanol even at a fermentation temperature of 40 ° C. From the fact that it can be produced, it has been found that it has excellent ethanol productivity and high temperature resistance at the same time. The present invention has been completed based on the above findings.

このように本発明では、流加培養システムを用いることでエタノール濃度が17%以上になるまで発酵させて(ほぼ100%死滅する条件)生き残った酵母菌体に高温処理しており、処理された酵母菌体は高濃度エタノールを生産した経験を持つため、比較的容易に高温耐性となった変異株の取得ができる。また、流加培養システムは自由に発酵温度を設定できることから、高温条件下でのエタノール生産性の検討が容易にできる。   As described above, in the present invention, the yeast cells that have been fermented to an ethanol concentration of 17% or more by using a fed-batch culture system (conditions for almost 100% killing) are subjected to high-temperature treatment and processed. Since yeast cells have experience in producing high-concentration ethanol, it is relatively easy to obtain mutant strains that have become resistant to high temperatures. In addition, since the fed-batch culture system can freely set the fermentation temperature, it is possible to easily study ethanol productivity under high temperature conditions.

すなわち本発明は、[1](a)サッカロマイセス属(Saccharomyces)に属するエタノール発酵酵母を、25℃以上の培養温度で流加培養することにより、エタノール発酵させてエタノール濃度15%以上の発酵もろみを製造する工程;(b)工程(a)で生残した酵母菌体を10%以上のエタノールを含む寒天培地で37℃以上で培養し、生育したコロニーを候補菌株として選抜する工程;の工程(a)及び(b)を順次備えたことを特徴とする高温耐性変異酵母株の作製方法や、[2]工程(b)に続いて、(c)工程(b)で選抜した候補菌株を液体培地中38〜42℃で培養し、炭酸ガス発生量の多寡を基準として二次選抜する工程;の工程(c)をさらに備えたことを特徴とする前記[1]記載の高温耐性変異酵母株の作製方法や、[3]工程(a)におけるエタノール発酵として、30℃以上の培養温度で流加培養することを特徴とする前記[1]又は[2]記載の高温耐性変異酵母株の作製方法や、[4]工程(a)において、17%以上の発酵もろみを製造することを特徴とする前記[1]〜[3]のいずれか記載の高温耐性変異酵母株の作製方法や、[5]工程(b)において、寒天培地で39〜42℃で培養することを特徴とする前記[1]〜[4]のいずれか記載の高温耐性変異酵母株の作製方法に関する。   That is, the present invention provides [1] (a) ethanol-fermenting yeast belonging to the genus Saccharomyces by fed-batch culture at a culture temperature of 25 ° C. or higher, thereby fermenting ethanol to a fermented mash having an ethanol concentration of 15% or higher. (B) a step of culturing the yeast cells surviving in step (a) on an agar medium containing 10% or more of ethanol at 37 ° C. or higher and selecting the grown colonies as candidate strains; A method for preparing a high-temperature-resistant mutant yeast strain characterized by sequentially comprising a) and (b), and the candidate strain selected in (c) step (b) following step [b] A high-temperature-resistant mutant yeast strain according to [1], further comprising a step (c) of culturing in a medium at 38 to 42 ° C. and secondarily selecting based on a large amount of carbon dioxide generation. The production method of [ [3] The method for producing a high-temperature resistant mutant yeast strain according to [1] or [2], wherein the fed-batch culture is performed at a culture temperature of 30 ° C. or higher as ethanol fermentation in the step (a), [4] In the step (a), a fermentation mash of 17% or more is produced, and the method for producing a high-temperature resistant mutant yeast strain according to any one of the above [1] to [3], or [5] step (b) The method for producing a high-temperature tolerant mutant yeast strain according to any one of [1] to [4], wherein the culture is performed at 39 to 42 ° C. in an agar medium.

さらに本発明は、[6]前記[1]〜[5]のいずれか記載の作製方法により得られる高温耐性変異酵母株や、[7]高温耐性変異酵母株であるサッカロマイセス・セレビシエ(Saccharomyces cerevisiae)H2023−4(NITE AP−1261)や、[8]前記[6]又は[7]記載の高温耐性変異酵母株を用いて流加培養によりエタノール発酵を行うことを特徴とするもろみ発酵物の製造方法や、[9]38℃〜40℃の温度条件下でエタノール発酵を行うことを特徴とする前記[8]記載のもろみ発酵物の製造方法や、[10]15〜25℃で対数増殖期前期〜対数増殖期中期まで静置培養し、その後28〜32℃で対数増殖期後期〜定常期初期まで振盪培養した培養物を、前培養物として用いることを特徴とする前記[8]又は[9]記載のもろみ発酵物の製造方法や、[11]20〜30℃で対数増殖期後期〜定常期初期まで振盪培養し、その後0〜10℃で3〜60日静置した培養物を、前培養物として用いることを特徴とする前記[8]又は[9]記載のもろみ発酵物の製造方法に関する。   Furthermore, the present invention provides [6] a high-temperature resistant mutant yeast strain obtained by the production method according to any one of [1] to [5], and [7] a Saccharomyces cerevisiae which is a high-temperature resistant mutant yeast strain. H2023-4 (NITE AP-1261) or [8] Manufacture of moromi fermented product characterized by performing ethanol fermentation by fed-batch culture using the high-temperature resistant mutant yeast strain described in [6] or [7] above [9] A method for producing a moromi fermented product according to [8] above, wherein ethanol fermentation is performed under a temperature condition of 38 ° C. to 40 ° C., and [10] a logarithmic growth phase at 15 to 25 ° C. [8] or [8], wherein a culture which is statically cultured from the first phase to the middle of the logarithmic growth phase and then shake-cultured at 28 to 32 ° C. from the late logarithmic phase to the early stationary phase is used as the preculture. 9] The method for producing the moromi fermented product described above, or [11] a culture cultured at 20-30 ° C. from the late logarithmic growth phase to the early stationary phase and then allowed to stand at 0-10 ° C. for 3-60 days The present invention relates to a method for producing a moromi fermented product according to [8] or [9], which is used as a product.

本発明は、エタノール生産性に優れ、同時に高温耐性を有する酵母菌株の取得方法及び取得した高温耐性酵母、並びに該耐性酵母を用いたエタノールの製造方法に関するもので、本発明の高温耐性酵母を使用することで、30℃で84時間の培養で18.8%、39℃で47時間の培養で12.0%、40℃で45時間の培養で10.7%の各エタノール濃度の発酵もろみを製造することができる。また、特定の条件で前培養して酵母の耐性を強化することで、より高い濃度のエタノールを含有する発酵もろみを得ることができる。このように、本発明の高温耐性酵母は、38℃から40℃といった高温条件下でも効率よくエタノールの発酵生産が可能であり、酒類製造分野では発酵温度を高く設定して原料利用率を向上させたり、醪の冷却に要するコストを低減できると期待され、また、バイオエタノール製造のようなエタノール発酵生産分野では、発酵熱を除去するための装置が小型化又は不要となるため、発酵生産設備の簡素化等が可能となり、設備コストの低減やエタノールの発酵生産の効率化を図ることができる。   The present invention relates to a method for obtaining a yeast strain that is excellent in ethanol productivity and at the same time has a high temperature resistance, and to the obtained high temperature resistant yeast, and a method for producing ethanol using the resistant yeast, and uses the high temperature resistant yeast of the present invention. As a result, the fermentation mash of each ethanol concentration of 18.8% in culture at 30 ° C for 84 hours, 12.0% in culture at 39 ° C for 47 hours, and 10.7% in culture at 40 ° C for 45 hours is obtained. Can be manufactured. Moreover, fermentation mash containing a higher concentration of ethanol can be obtained by pre-culturing under specific conditions to enhance the tolerance of yeast. As described above, the high-temperature resistant yeast of the present invention can efficiently produce ethanol under high temperature conditions such as 38 ° C. to 40 ° C. In the field of liquor production, the fermentation temperature is set high to improve the raw material utilization rate. In addition, in the field of ethanol fermentation production such as bioethanol production, the equipment for removing fermentation heat is downsized or unnecessary, so that the production capacity of fermentation production equipment is expected to be reduced. Simplification and the like are possible, and the equipment cost can be reduced and the efficiency of ethanol fermentation production can be improved.

流加培養システムの概略図である。It is the schematic of a fed-batch culture system. 親株(協会901号)及び本発明の高温耐性酵母(H2023−4株)による発酵経過(30℃)を示す図である。It is a figure which shows the fermentation course (30 degreeC) by the parent strain (association 901) and the high temperature tolerance yeast (H2023-4 strain) of this invention. 本発明の高温耐性酵母(H2023−4株)による発酵経過(39℃)を示す図である。It is a figure which shows the fermentation progress (39 degreeC) by the high temperature tolerance yeast (H2023-4 strain) of this invention. 本発明の高温耐性酵母(H2023−4株)を用いた前培養条件の違いによる発酵経過(40℃)を示す図である。It is a figure which shows the fermentation progress (40 degreeC) by the difference in the preculture conditions using the high temperature tolerance yeast (H2023-4 strain) of this invention. 親株(協会901号)を用いた前培養条件の違いによる発酵経過(40℃)を示す図である。It is a figure which shows the fermentation progress (40 degreeC) by the difference in the preculture conditions using a parent strain (association 901). 30℃で24時間振盪培養した酒母を用いた、本発明の高温耐性酵母(H2023−4株)による発酵経過(40℃)を示す図である。It is a figure which shows the fermentation progress (40 degreeC) by the high temperature tolerance yeast (H2023-4 strain | stump | stock) of this invention using the liquor culture | cultivated by shaking at 30 degreeC for 24 hours. 15℃で60時間静置培養し、その後30℃で12時間振盪培養し耐性強化した酒母を用いた、本発明の高温耐性酵母(H2023−4株)による発酵経過(40℃)を示す図である。It is a figure which shows the fermentation process (40 degreeC) by the high temperature tolerance yeast (H2023-4 strain | stump | stock) of this invention using the liquor which carried out stationary culture at 15 degreeC for 60 hours, and was shake-cultured at 30 degreeC for 12 hours, and strengthened tolerance after that. is there.

本発明の高温耐性変異酵母株の作製方法としては、サッカロマイセス属(Saccharomyces)に属するエタノール発酵酵母を、25℃以上の培養温度で流加培養することにより、エタノール発酵させてエタノール濃度15%以上の発酵もろみを製造する工程(a)と、工程(a)で生残した酵母菌体を10%以上のエタノールを含む寒天培地で37℃以上で培養し、生育したコロニーを候補菌株として選抜する工程(b)とを順次備えた方法であれば特に制限されず、また、本発明の高温耐性変異酵母株としては、上記本発明の高温耐性変異酵母株の作製方法によって得られる高温耐性変異酵母株であれば特に制限されないが、具体的に、高温耐性変異酵母株H2023−4(受領番号:NITE AP−1261、受領機関:独立行政法人製品評価技術基盤機構 特許微生物寄託センター、受領日:平成24年2月27日)を挙げることができる。さらに、本発明のもろみ発酵物の製造方法としては、上記本発明の高温耐性変異酵母株を用いて流加培養によりエタノール発酵を行う方法であれば特に制限されず、上記エタノール発酵酵母としては、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)を例示することができ、特に清酒醸造に用いられる清酒酵母や焼酎醸造に用いられる焼酎酵母を好適に例示することができ、これら酵母はあらかじめ変異処理が施された変異株であってもよい。   As a method for producing the high-temperature-resistant mutant yeast strain of the present invention, ethanol fermentation yeast belonging to the genus Saccharomyces is fed-batch cultured at a culture temperature of 25 ° C. or higher, and ethanol-fermented to give an ethanol concentration of 15% or higher. The step (a) for producing fermentation moromi and the step of culturing the yeast cells surviving in the step (a) at 37 ° C. or higher in an agar medium containing 10% or more of ethanol, and selecting the grown colonies as candidate strains (B) is not particularly limited as long as it is a method sequentially comprising, and the high-temperature resistant mutant yeast strain of the present invention is a high-temperature resistant mutant yeast strain obtained by the above-described method for producing a high-temperature resistant mutant yeast strain of the present invention. If it is, it will not be restrict | limited in particular, Specifically, high temperature tolerance mutant yeast strain H2023-4 (reception number: NITE AP-1261, receiving organization: independent administrative agency product evaluation) Surgery NITE Patent Microorganisms Depositary Center, receipt date: February 2012 27, 2007) can be mentioned. Furthermore, the method for producing the moromi fermented product of the present invention is not particularly limited as long as it is a method of performing ethanol fermentation by fed-batch culture using the high-temperature resistant mutant yeast strain of the present invention. Saccharomyces cerevisiae can be exemplified, and in particular, sake yeast used for sake brewing and shochu yeast used for shochu brewing can be preferably exemplified, and these yeasts have been subjected to mutation treatment in advance. It may be a stock.

本発明の高温耐性変異酵母株の作製方法における工程(a)は、高温耐性を付与したサッカロマイセス属に属するエタノール発酵酵母菌株(親株)に変異処理(化学的,物理的処理)を施し、又は、そのまま使用して、25℃以上、好ましくは30℃から32℃の培養温度で流加培養することにより、エタノール発酵させてエタノール濃度15%以上、好ましくは17%から18%の発酵もろみを製造する工程(この工程で増殖した大部分の酵母は死滅する)であり、また工程(b)は、工程(a)で生残した酵母菌体、例えば得られた発酵もろみを静置して酵母菌体を沈降させ、デカントにより酵母菌体を約20倍に濃縮し、この濃縮菌体の0.1mLを10%以上のエタノールを含む寒天培地で37℃以上、好ましくは39℃から42℃で培養し、生育したコロニーを候補菌株として選抜する工程であるが、さらに、工程(b)で選抜した候補菌株を液体培地中38〜42℃で培養し、炭酸ガス発生量の多寡を基準として二次選抜する工程(c)を備えることが好ましい。   The step (a) in the method for producing a high-temperature resistant mutant yeast strain of the present invention is performed by subjecting an ethanol-fermenting yeast strain (parent strain) belonging to the genus Saccharomyces to which high-temperature resistance has been imparted (chemical, physical treatment), or Used as it is and fed-batch culture at a culture temperature of 25 ° C. or higher, preferably 30 ° C. to 32 ° C., to produce a fermented mash having an ethanol concentration of 15% or higher, preferably 17% to 18%. This is a process (most of the yeast grown in this process is killed), and the process (b) is the yeast that survived in the process (a), for example, the fermented moromi obtained, The body is sedimented, and the yeast cells are concentrated about 20 times by decantation, and 0.1 mL of the concentrated cells is 37 ° C. or higher, preferably 39 ° C. to 42 ° C. in an agar medium containing 10% or more of ethanol. In this step, the colonies grown and grown are selected as candidate strains. Further, the candidate strains selected in step (b) are cultured in a liquid medium at 38 to 42 ° C. It is preferable to include a step (c) for subsequent selection.

発酵もろみの製造やもろみ発酵物における流加培養は、エタノール発酵酵母が資化及び発酵し得る糖類又は該糖類の含有物を原料として、エタノール発酵酵母に発酵阻害を与えない糖濃度に調整した開始培養液と、該開始培養液の糖濃度より高い糖濃度の流加糖液とを調製し、開始培養液にエタノール発酵酵母を接種してエタノール発酵を行わせ、発酵液の糖濃度を直接的又は間接的にモニターしながら流加糖液を発酵液に添加して、発酵液の糖濃度を制御しながらエタノール発酵を継続し、エタノール発酵全期間の30〜80%の時間内に流加糖液の添加を終了することにより行われる。   Manufacture of fermented moromi and fed-batch culture in fermented moromi started with saccharides that can be assimilated and fermented by ethanol-fermenting yeast, or containing saccharides as raw materials, and adjusted to a sugar concentration that does not inhibit fermentation of ethanol-fermenting yeast A culture solution and a fed sugar solution having a sugar concentration higher than the sugar concentration of the starting culture solution are prepared, ethanol fermentation is performed by inoculating the starting culture solution with ethanol fermentation yeast, and the sugar concentration of the fermentation solution is directly or Add the fed sugar solution to the fermentation solution while monitoring indirectly, continue the ethanol fermentation while controlling the sugar concentration of the fermentation solution, and add the fed sugar solution within 30-80% of the total ethanol fermentation period It is done by ending.

また、エタノール発酵に用いられる糖原料としては、エタノール発酵酵母が資化及び発酵し得る糖類や該糖類の含有物であれば特に制限されず、具体的にはグルコース、フラクトース、マルトース、スクロース、キシロース、ガラクトース、セロビオース又はでんぷん糖化液、糖蜜、サトウキビ又は砂糖ダイコンのしぼり汁などが挙げられ、特にグルコースや糖蜜を好適に例示することができ、これらは2種以上併用することができる。また、発酵培地には、通常のエタノール発酵に添加される窒素源等の各種栄養源を適宜添加することもできる。培地の通気攪拌条件としては、呼吸よりもエタノール発酵が進行する通気量、たとえば0.02〜0.1vvmの通気を行う微酸素条件が好ましく、攪拌速度は高濃度糖の流加培地が速やかに拡散し、なおかつ酵母菌体にダメージを与えない速度、たとえば150〜500rpmが好ましい。   The sugar raw material used for ethanol fermentation is not particularly limited as long as it is a saccharide that can be assimilated and fermented by ethanol-fermenting yeast or a substance containing the saccharide. Specifically, glucose, fructose, maltose, sucrose, xylose , Galactose, cellobiose or starch saccharified solution, molasses, sugar cane, sugar beet juice, etc., particularly glucose and molasses can be preferably exemplified, and two or more of these can be used in combination. Moreover, various nutrient sources, such as a nitrogen source added to normal ethanol fermentation, can be appropriately added to the fermentation medium. The aeration and stirring conditions of the medium are preferably a slight oxygen condition in which ethanol fermentation proceeds more than respiration, for example, 0.02 to 0.1 vvm, and the stirring speed is high in a high-concentration sugar fed-batch medium. A speed that diffuses and does not damage the yeast cells, for example, 150 to 500 rpm is preferable.

これらの糖原料を用いて開始培養液を調製するには、酵母菌株により異なるが、発酵阻害を与えない糖濃度とすることが重要であり、具体的に糖濃度を、50〜300g/L、好ましくは、100〜250g/L、より好ましくは120〜220g/L、さらに好ましくは、150〜200g/Lに調製する。   In order to prepare a starting culture solution using these sugar raw materials, it is important that the sugar concentration does not inhibit fermentation, although it varies depending on the yeast strain. Specifically, the sugar concentration is 50 to 300 g / L, Preferably, it is adjusted to 100 to 250 g / L, more preferably 120 to 220 g / L, and still more preferably 150 to 200 g / L.

開始培養液に流加する糖液は、目標とするエタノール濃度を達成できる糖濃度と流加液量が必要であり、糖濃度は開始培養液の糖濃度より高い糖濃度に調製しておく必要がある。具体的に糖濃度を、300〜800g/L、好ましくは400〜700g/L、より好ましくは400〜600g/Lに調製することができる。一方、流加液量については、流加培地の液量が多すぎるとより希釈されるため発酵期間が長くなり、少なすぎると流加培地の濃度が上がりすぎて、拡散が悪くなることから、開始培養液量の0.2〜1.2倍、好ましくは0.4〜0.9倍、より好ましくは0.5〜0.7倍がよく、開始培養液の糖濃度と液量から流加する糖液の糖濃度と液量を決定する必要がある。このときの平均糖濃度は300〜320g/Lになるようにする必要があり、例えば、開始培養液として200g/Lの糖液1Lの時、流加する糖濃度500g/Lである場合の糖液は、530〜660mL程度となる。   The sugar solution fed to the starting culture solution must have a sugar concentration and a fed-batch amount that can achieve the target ethanol concentration, and the sugar concentration must be adjusted to a sugar concentration higher than the sugar concentration of the starting culture solution. There is. Specifically, the sugar concentration can be adjusted to 300 to 800 g / L, preferably 400 to 700 g / L, more preferably 400 to 600 g / L. On the other hand, about the amount of the fed-batch liquid, if the amount of the fed-batch medium is too large, the fermentation period becomes longer because it is diluted, and if the amount is too small, the concentration of the fed-batch medium increases too much and the diffusion becomes worse. 0.2 to 1.2 times, preferably 0.4 to 0.9 times, more preferably 0.5 to 0.7 times the amount of the starting culture solution, and flow from the sugar concentration and the amount of the starting culture solution. It is necessary to determine the sugar concentration and amount of the sugar solution to be added. At this time, the average sugar concentration needs to be 300 to 320 g / L. For example, when the starting culture solution is 1 L of 200 g / L sugar solution, the sugar concentration when fed sugar concentration is 500 g / L. The liquid is about 530 to 660 mL.

エタノール発酵全期間の30〜80%の時間内、好ましくは35〜70%の時間内、より好ましくは40〜60%の時間内に流加糖液の添加を終了すると、高濃度エタノールを製造することができる。そして、流加糖液の添加の終了時をエタノール発酵全期間の30%より少なくすると高糖圧迫により酵母菌体が発酵阻害を受けるために、エタノール発酵が十分行われず、高濃度エタノールを得ることができず、また、エタノール発酵全期間の70%を越えるまで続けると、エタノール発酵速度が低下しているところで流加培地が供給されることになり、生成エタノールが流加培地によって希釈されることでエタノール濃度が下がり、所定の高濃度エタノールを得るために長期間を要することになる。したがって、エタノール発酵全期間の80%までが流加糖液の添加終了時間の上限である。   Producing high-concentration ethanol when the addition of the fed sugar solution is completed within 30 to 80% of the total period of ethanol fermentation, preferably within 35 to 70%, and more preferably within 40 to 60% Can do. If the addition of the fed sugar solution is less than 30% of the total period of ethanol fermentation, the yeast cells are inhibited from fermentation by high sugar pressure, so that ethanol fermentation is not sufficiently performed and high concentration ethanol can be obtained. In addition, if the ethanol fermentation rate is reduced to 70% of the total period of ethanol fermentation, the fed-batch medium is supplied when the ethanol fermentation rate is reduced, and the produced ethanol is diluted by the fed-batch medium. The ethanol concentration is lowered, and it takes a long time to obtain a predetermined high concentration ethanol. Therefore, up to 80% of the total period of ethanol fermentation is the upper limit of the addition end time of the fed sugar solution.

発酵液の糖濃度をモニターする方法としては、直接的又は間接的な方法により行ってよく、直接的に行うにはバイオセンサーを用いる方法等があり、また、間接的に行う方法には、発酵液の糖濃度を屈折式ブリックス(Brix)計をはじめとする屈折率計や、振動式密度計、粘度計を用いる方法を採用することができる。これらの機器は発酵期間中継続して糖濃度をモニターできるようフローセル方式もしくは発酵槽内に直接設置する方式を採用することができる。また、糖液を流加して糖濃度を一定に保つための制御方式はオン/オフ制御、PID制御、PI制御などさまざまな制御方式を用いることができる。本発明においては、発酵液の糖濃度を屈折式ブリックス(Brix)計を用いることが簡便に制御しうる点で好ましい。屈折式ブリックス計は、予め濃度のわかっているショ糖液で目盛りをつけたもので、ブリックス(Brix)値とは、水溶液中に含まれる可溶性固形分のパーセント濃度を示したものである。可溶性固形分とは糖を始めとして、塩類、タンパク質、酸など水に溶ける物質すべてであり、測定値はそれらの合算値となる。したがって、この屈折式ブリックス(Brix)計を用いる方法は、エタノール発酵開始時はグルコース濃度と一致するが、エタノール発酵が進行しエタノール濃度が上昇するにつれてグルコース濃度よりも高い値として検出されるものの、使用・保守が簡便なことから有利に用いることができる。   As a method for monitoring the sugar concentration of the fermentation broth, a direct or indirect method may be used, and a direct method may include a method using a biosensor, and an indirect method includes fermentation. For the sugar concentration of the liquid, a method using a refractometer such as a refractive Brix meter, a vibrating densimeter, or a viscometer can be employed. These devices can adopt a flow cell system or a system installed directly in the fermenter so that the sugar concentration can be continuously monitored during the fermentation period. Various control methods such as on / off control, PID control, and PI control can be used as a control method for keeping the sugar concentration constant by feeding the sugar solution. In the present invention, it is preferable to use a refractive Brix meter to easily control the sugar concentration of the fermentation broth. The refraction type Brix meter is calibrated with a sucrose solution whose concentration is known in advance, and the Brix value indicates the percent concentration of soluble solids contained in the aqueous solution. Soluble solids are all substances that are soluble in water, such as sugar, salts, proteins, acids, etc., and the measured value is the sum of those values. Therefore, the method using this refractive Brix meter is consistent with the glucose concentration at the start of ethanol fermentation, but is detected as a value higher than the glucose concentration as the ethanol fermentation proceeds and the ethanol concentration rises. It can be advantageously used because it is easy to use and maintain.

本発明のもろみ発酵物の製造方法により製造された高濃度エタノールは、エタノール飲料として、蒸留処理を経て、車のガソリンに代わる代替エネルギー或いは石油化学原料等の工業用エタノールとして利用され得る。   The high-concentration ethanol produced by the method for producing a moromi fermented product according to the present invention can be used as an ethanol beverage, through distillation treatment, as an alternative energy to replace car gasoline or as industrial ethanol such as petrochemical raw materials.

流加培養に用いられる流加培養システムとしては、発酵槽、流加糖液貯留槽、発酵槽内の発酵液に通気する通気手段、発酵槽内の発酵液を攪拌する攪拌手段、発酵槽内の発酵液の糖濃度を直接的又は間接的にモニターする検知手段、検知手段からの信号に基づいて流加糖液貯留槽から流加糖液を発酵槽に流加させる制御手段を備えた装置であれば特に制限されず、例えば、図1に示す装置を具体的に挙げることができ、図1において、1は流加糖液貯留槽、2は流量計、3は発酵槽、4はリレーユニット、5はフローセルタイプの屈折式糖度計、6は制御用コンピュータ、7と8は送液ポンプ、9はエアポンプ、10は発酵槽内の撹拌手段を表す。   As a fed-batch culture system used for fed-batch culture, a fermenter, a fed-batch sugar solution storage tank, an aeration unit that ventilates the fermented liquid in the fermenter, an agitation unit that stirs the fermented liquid in the fermenter, If it is a device equipped with a control means for feeding the fed sugar solution from the fed sugar solution storage tank to the fermentation tank based on a signal from the sensing means for directly or indirectly monitoring the sugar concentration of the fermentation liquid, a signal from the sensing means For example, the apparatus shown in FIG. 1 can be specifically mentioned. In FIG. 1, 1 is a fed sugar solution storage tank, 2 is a flow meter, 3 is a fermenter, 4 is a relay unit, 5 is A flow cell type refractometer, 6 is a control computer, 7 and 8 are liquid feeding pumps, 9 is an air pump, and 10 is a stirring means in the fermenter.

発酵槽3は、エアポンプ9により流量計2で測定された所定量の酸素を流入する通気手段と、発酵液を撹拌するための撹拌手段10と、フローセルタイプの屈折式糖度計5のフローセルに発酵液が流入、流出して糖度を検知するための検知手段、及び流加糖液貯留槽より高濃度の糖液を発酵槽に流加するため流加手段を備えており、いずれもポンプを介して高濃度糖液や検知手段に用いる糖液の流出入を行っている。発酵槽に通気される酸素量は、酵母の種類、酵母の状態、培地の種類、発酵温度等により異なるが微酸素状態となるような量である。撹拌は、撹拌翼を有する撹拌棒を駆動装置により回転させるが、酸素量と同様に酵母の種類及び酵母の状態、流加糖液の糖濃度(粘度)等により異なるが、通常250rpm前後が好ましい。   The fermenter 3 is fermented to a flow unit of a flow means of a refraction type saccharimeter 5 of a flow cell type, an aeration means for inflowing a predetermined amount of oxygen measured by an air pump 9 with a flow meter 2, an agitation means 10 for agitating the fermentation liquid It is equipped with a detecting means for detecting the sugar content by inflow and outflow of liquid, and a feeding means for feeding a sugar solution having a higher concentration than the fed sugar solution storage tank to the fermentation tank, both via a pump The high-concentration sugar solution and the sugar solution used for detection means are flowed in and out. The amount of oxygen aerated in the fermenter is such an amount that it is in a slightly oxygen state although it varies depending on the type of yeast, the state of the yeast, the type of medium, the fermentation temperature, and the like. Stirring is carried out by rotating a stirrer having a stirring blade by a drive device, but it varies depending on the type of yeast, the state of the yeast, the sugar concentration (viscosity) of the fed sugar solution, etc., as well as the amount of oxygen, but usually around 250 rpm is preferred.

先ず、発酵槽3に所定濃度の発酵性糖液(開始培養液)を仕込み、更に酵母を仕込んだ後に温度を所定温度に保ちつつ撹拌手段10により穏やかに撹拌しつつ発酵を開始させる。発酵期間全般にわたりフローセルタイプの屈折式糖度計5により測定された糖濃度を所定の糖濃度になるようにモニターしながら制御用コンピュータ6により、リレーユニット4を動作させ送液ポンプ8の電源をON、OFFさせることにより、開始培養液の糖濃度より高い高濃度糖液が収容された流加糖液貯留槽1よりポンプ8を介して糖液が適宜流加される。例えば、フローセルタイプの屈折式糖度計5においては、経時的に所定の間隔で測定するが、例えば10秒間隔、さらには、これより短いとより正確に測定できる。このように常に正確な糖濃度を測定し、その測定値に基づいて所望の糖液の流加、糖濃度の維持、或いは糖液の流加を終了することができる。所定の時間発酵後、高濃度糖液の流加を終了させて、その後も発酵を続け、エタノールの生成具合をみて発酵を終了させる。   First, a fermentable sugar solution (starting culture solution) having a predetermined concentration is charged into the fermenter 3, and after further yeast is charged, fermentation is started while gently stirring with the stirring means 10 while maintaining the temperature at a predetermined temperature. The relay unit 4 is operated by the control computer 6 while the sugar concentration measured by the flow cell type refractometer 5 is monitored over the entire fermentation period, and the power supply of the liquid feed pump 8 is turned on. By turning OFF, the sugar solution is appropriately fed through the pump 8 from the fed sugar solution storage tank 1 in which a high concentration sugar solution higher than the sugar concentration of the starting culture solution is accommodated. For example, in the flow cell type refractometer 5, the measurement is performed at a predetermined interval with time, but the measurement can be performed more accurately when the interval is, for example, 10 seconds or even shorter. Thus, it is possible to always measure an accurate sugar concentration, and based on the measured value, it is possible to finish feeding a desired sugar solution, maintaining the sugar concentration, or feeding the sugar solution. After the fermentation for a predetermined time, the feeding of the high-concentration sugar solution is terminated, and the fermentation is continued thereafter, and the fermentation is terminated by checking the production of ethanol.

本発明のもろみ発酵物の製造方法は、本発明の高温耐性変異酵母株を用いて流加培養によりエタノール発酵を行う方法であり、培養温度は特に限定されないが、30℃以上、好ましくは35℃以上、特に38℃〜40℃の温度条件下で流加培養によりエタノール発酵を行うことが好ましい。また、流加培養には、前培養条件による耐性強化処理を施した酒母(前培養物)を用いることが好ましい。かかる酒母の製造においては、培養温度を15〜25℃として対数増殖期中期、好ましくは対数増殖期前期まで培養して、その後に30℃として6〜12時間で定常期初期、好ましくは対数増殖期後期まで培養するか、あるいは、培養温度を20〜30℃として定常期初期、好ましくは対数増殖期後期まで培養した後に0〜10℃、好ましくは0〜6℃の低温で3〜60日、好ましくは5〜30日処理することにより、酵母の耐性を強化することができる。このようにして得られる前培養物を、本発明の高温耐性変異酵母株の作製方法の工程(a)のエタノール発酵に供することもできる。かかる耐性強化により、高温発酵時におけるエタノール生産性が向上し、高温耐性及びエタノール耐性を強化することができる。   The method for producing a moromi fermented product of the present invention is a method of performing ethanol fermentation by fed-batch culture using the high-temperature-resistant mutant yeast strain of the present invention, and the culture temperature is not particularly limited, but is 30 ° C or higher, preferably 35 ° C. As described above, it is particularly preferable to perform ethanol fermentation by fed-batch culture under a temperature condition of 38 ° C to 40 ° C. For fed-batch culture, it is preferable to use a liquor mother (preculture) that has been subjected to a resistance enhancement treatment under preculture conditions. In the production of such a liquor, the culture temperature is set at 15 to 25 ° C., the medium is cultured until the middle of the logarithmic growth phase, preferably the first phase of the logarithmic growth phase, and then at 30 ° C. for 6 to 12 hours in the early stationary phase, preferably the logarithmic growth phase. Culturing until late, or after culturing until 20-30 ° C. at the initial stationary phase, preferably late in the logarithmic growth phase, preferably at 0-10 ° C., preferably 0-6 ° C. for 3-60 days, preferably Can enhance the tolerance of yeast by treating for 5 to 30 days. The preculture obtained in this manner can also be subjected to ethanol fermentation in step (a) of the method for producing a high-temperature resistant mutant yeast strain of the present invention. Such enhanced resistance improves ethanol productivity during high-temperature fermentation, and can enhance high-temperature resistance and ethanol resistance.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。なお、以下の実施例において、ブリックスの測定には、フローセルタイプに改良した屈折式ブリックス計(アタゴ社製、RX−5000)を使用し、エタノール濃度の測定には、ガスクロマトグラフ(島津製作所製、GC9A、FID検出器)を用い、全量注入法による絶対検量線法で求め、菌体密度は、培養液の1mLをあらかじめ重量を測定したマイクロテストチューブに採取して、15000rpm、3分間の遠心分離を行いその上澄みを除去後、その湿重量を測定して先の空重量を差し引くことで求めた。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations. In the following examples, a Brix meter modified to a flow cell type (Atago Co., RX-5000) was used for measuring Brix, and a gas chromatograph (manufactured by Shimadzu Corporation) was used for measuring the ethanol concentration. Using GC9A, FID detector), the absolute density curve method by the total volume injection method was used, and the bacterial cell density was collected in a micro test tube in which 1 mL of the culture solution was previously weighed, and centrifuged at 15000 rpm for 3 minutes. After removing the supernatant, the wet weight was measured, and the previous empty weight was subtracted.

[酵母高温耐性変異株の取得]
清酒酵母である協会901号酵母をスラントから1白金耳取り、グルコース濃度を15%に変更したMY15培地(酵母エキス0.3%、麦芽エキス0.3%、ペプトン0.5%、グルコース15%)7.5mLに接種して30℃で18時間から36時間振盪培養し、その培養液を7.5mLの新しいMY15培地3本にそれぞれ0.1mLずつ接種し、28℃で18時間振盪培養した。この培養液3本を900mLの2MY15培地(酵母エキス0.6%、麦芽エキス0.6%、ペプトン1.0%、グルコース15%)に添加し、流加培養システムを用いて培養温度を28.5℃として発酵させた。培養開始後Brixが1.0低下した段階から1/2MY55培地(酵母エキス0.15%、麦芽エキス0.15%、ペプトン0.25%、グルコース55%)600mLをBrix値を一定に保ちながら流加して、培地のBrix値が低下しなくなるまで発酵を続けた。発酵終了後、発酵もろみのエタノール濃度を測定してエタノール濃度が17%以上(17.8%)に達していることを確認し、製造した発酵もろみを別の容器に移して4℃で1週間以上静置して浮遊している菌体を沈降させた。菌体が沈降した後、デカントにより上清部分を別の容器に移して菌体懸濁液の濃縮を行った。濃縮した菌体懸濁液0.1mLを10%のエタノールを含むMYプレート(酵母エキス0.3%、麦芽エキス0.3%、ペプトン0.5%、グルコース1.0%、寒天2.0%)に塗布し、39℃、40℃、42℃で培養して生育してきたコロニーを高温耐性変異株の候補菌株として取得した。得られた候補菌株を7.5mLの2MY20培地(酵母エキス0.6%、麦芽エキス0.6%、ペプトン1.0%、グルコース20%)に接種して38℃、39℃、40℃、41℃、42℃における炭酸ガス発生量を測定し、最も高い温度で、炭酸ガス発生量の多い菌株を高温耐性変異株(H2023−4株)として取得した。
[Acquisition of yeast high temperature resistant mutants]
Association 901 yeast which is sake yeast is slurried 1 platinum from slant, glucose concentration is changed to 15% MY15 medium (yeast extract 0.3%, malt extract 0.3%, peptone 0.5%, glucose 15% ) Inoculate 7.5 mL, shake culture at 30 ° C. for 18 to 36 hours, inoculate 0.1 mL each of 3 7.5 mL of new MY15 medium, and culture at 28 ° C. for 18 hours with shaking . Three of these cultures are added to 900 mL of 2MY15 medium (0.6% yeast extract, 0.6% malt extract, 1.0% peptone, 15% glucose), and the culture temperature is 28 using a fed-batch culture system. Fermented at 5 ° C. From the stage when Brix decreased by 1.0 after the start of culture, 600 mL of 1 / 2MY55 medium (yeast extract 0.15%, malt extract 0.15%, peptone 0.25%, glucose 55%) was kept at a constant Brix value. Fermentation was continued until the Brix value of the medium did not decrease. After completion of fermentation, the ethanol concentration of the fermentation mash is measured to confirm that the ethanol concentration has reached 17% or more (17.8%), and the produced fermentation mash is transferred to another container at 4 ° C for 1 week. The floating cells were allowed to settle and settle. After the bacterial cells settled, the supernatant was transferred to another container by decantation, and the bacterial cell suspension was concentrated. MY plate containing 10% ethanol (0.1% concentrated cell suspension, yeast extract 0.3%, malt extract 0.3%, peptone 0.5%, glucose 1.0%, agar 2.0) %) And cultured at 39 ° C., 40 ° C., and 42 ° C. to grow colonies, which were obtained as candidate strains for high-temperature resistant mutants. The obtained candidate strain was inoculated into 7.5 mL of 2MY20 medium (0.6% yeast extract, 0.6% malt extract, 1.0% peptone, 20% glucose) at 38 ° C, 39 ° C, 40 ° C, The amount of carbon dioxide generation at 41 ° C. and 42 ° C. was measured, and a strain having a large amount of carbon dioxide generation at the highest temperature was obtained as a high-temperature resistant mutant (H2023-4 strain).

[30℃における発酵]
H2023−4株をスラントより1白金耳取り、これを10mLのMY20培地(酵母エキス0.3%、麦芽エキス0.3%、ペプトン0.5%、グルコース20%)に接種し、25℃で約60時間振盪培養を行った。さらに、10mLの2MY20培地3本にそれぞれこの培養液0.1mLを接種して30℃で12時間振盪培養を行い、2MY15培地900mLに添加し、流加培養システムを用いて培養温度を30℃として発酵させた。培養開始後Brixが1.0低下した段階から1/2MY55培地600mLをBrix値を一定に保ちながら流加して、培地のBrix値が低下しなくなるまで発酵を続けた。その結果を図2に示す。
[Fermentation at 30 ° C]
Take H2023-4 strain from slant with 1 platinum ear and inoculate it into 10 mL of MY20 medium (0.3% yeast extract, 0.3% malt extract, 0.5% peptone, 20% glucose) at 25 ° C. The shaking culture was performed for about 60 hours. In addition, 0.1 mL of this culture solution was inoculated on 3 10 mL of 2MY20 medium, shaken at 30 ° C. for 12 hours, added to 900 mL of 2MY15 medium, and the culture temperature was adjusted to 30 ° C. using a fed-batch culture system. Fermented. From the stage when the Brix decreased by 1.0 after the start of the culture, 600 mL of 1 / 2MY55 medium was fed while maintaining the Brix value constant, and the fermentation was continued until the Brix value of the medium did not decrease. The result is shown in FIG.

図2に示すように、H2023−4株を使用すると84時間で約19%のエタノールを含有する発酵もろみの製造が可能なことがわかる。また、親株ではエタノール濃度が約16%に達すると菌体密度の低下が始まっているのに対し、H2023−4株では約18%までは菌体密度の低下はほとんどなく、H2023−4株の高温耐性が向上していることがわかる。   As shown in FIG. 2, it can be seen that the fermentation mash containing about 19% ethanol can be produced in 84 hours when the H2023-4 strain is used. In addition, when the ethanol concentration reaches about 16% in the parent strain, the cell density begins to decrease, whereas in the H2023-4 strain, there is almost no decrease in cell density up to about 18%. It can be seen that the high temperature resistance is improved.

[39℃における発酵]
上記実施例2と同様の方法でH2023−4株の39℃におけるエタノール生産性を確認した。開始培地は30℃の場合と同様に900mLの2MY15培地を用い、流加培地として150mLの1/2MY50培地(酵母エキス0.15%、麦芽エキス0.15%、ペプトン0.25%、グルコース50%)を用いた。その結果を図3に示す。
[Fermentation at 39 ° C]
Ethanol productivity at 39 ° C. of strain H2023-4 was confirmed by the same method as in Example 2. As in the case of 30 ° C., 900 mL of 2MY15 medium was used as the starting medium, and 150 mL of 1 / 2MY50 medium (yeast extract 0.15%, malt extract 0.15%, peptone 0.25%, glucose 50 %) Was used. The result is shown in FIG.

図3に示すように、39℃といった高温環境下でも47時間でエタノール濃度12%の発酵もろみの製造が可能であった。   As shown in FIG. 3, it was possible to produce a fermented mash with an ethanol concentration of 12% in 47 hours even in a high temperature environment such as 39 ° C.

[前培養条件の影響(高温耐性変異株)]
高温環境化での発酵試験を行っていると時としてエタノール生産性が低下する場合があった。その原因を考察すると前培養条件が影響していると考えられた。そこで、高温耐性H2023−4株を用いて、2MY20培地における前培養条件について検討した。前培養として、(1)30℃で72時間静置培養したもの、(2)30℃で60時間静置培養した培養液0.1mLを7.5mLに接種し、30℃で12時間振盪培養したもの、(3)30℃で60時間静置培養後、4℃で12時間静置したもの、(4)30℃で24時間振盪培養、4℃で72時間静置した培養液0.1mLを7.5mLに接種し、30℃で12時間振盪培養したもの、(5)30℃で24時間振盪培養後、4℃で72時間静置したもの、(6)30℃で14時間振盪培養後、4℃で82時間静置した培養液0.1mLを7.5mLに接種し、30℃で12時間振盪培養したもの、(7)30℃で14時間振盪培養後、4℃で82時間静置したもの、(8)15℃で96時間静置培養した培養液0.1mLを7.5mLに接種し、30℃で12時間振盪培養したもの、(9)15℃で60時間静置培養後、30℃で12時間振盪培養したもの、(10)15℃で108時間静置培養したもの、(11)15℃で60時間静置培養後、30℃で12時間振盪培養し、その後4℃で45日間静置したもの、(12)15℃で60時間静置培養後、30℃で12時間振盪培養し、その後4℃で45日間静置した培養液0.1mLを7.5mLに接種し、30℃で12時間振盪培養したもの、のそれぞれの培養液0.1mLを2MY20培地に接種して、40℃における炭酸ガス発生量を経時的に測定した。その結果を図4に示す。
[Influence of pre-culture conditions (high temperature resistant mutant)]
When the fermentation test was performed in a high-temperature environment, ethanol productivity sometimes decreased. Considering the cause, it was considered that preculture conditions had an effect. Therefore, pre-culture conditions in 2MY20 medium were examined using the high-temperature resistant H2023-4 strain. As pre-culture, (1) static culture at 30 ° C. for 72 hours, (2) 0.1 mL of culture solution static culture at 30 ° C. for 60 hours, inoculated into 7.5 mL, and shaking culture at 30 ° C. for 12 hours (3) a stationary culture at 30 ° C. for 60 hours, and then a static culture at 4 ° C. for 12 hours, (4) a shaking culture at 30 ° C. for 24 hours, and a culture solution that is allowed to stand at 4 ° C. for 72 hours, 0.1 mL 7.5 mL, inoculated with shaking at 30 ° C. for 12 hours, (5) incubated with shaking at 30 ° C. for 24 hours, and then allowed to stand at 4 ° C. for 72 hours, (6) shaking cultured at 30 ° C. for 14 hours Then, 7.5 mL of 0.1 mL of the culture solution that was allowed to stand at 4 ° C. for 82 hours was inoculated and shake-cultured at 30 ° C. for 12 hours. (7) After shaking culture at 30 ° C. for 14 hours, 82 hours at 4 ° C. (8) 0.1 mL of the culture solution that was allowed to stand for 96 hours at 15 ° C in contact with 7.5 mL And (9) a stationary culture at 15 ° C. for 60 hours, followed by a shaking culture at 30 ° C. for 12 hours, (10) a stationary culture at 15 ° C. for 108 hours, 11) A static culture at 15 ° C. for 60 hours, followed by a shaking culture at 30 ° C. for 12 hours, and then a static culture at 4 ° C. for 45 days. (12) A static culture at 15 ° C. for 60 hours and then 12 hours at 30 ° C. After shaking culture and then inoculating 7.5 mL of 0.1 mL of the culture that was allowed to stand at 4 ° C. for 45 days and then incubating for 12 hours at 30 ° C. The amount of carbon dioxide generated at 40 ° C. was measured over time. The result is shown in FIG.

図4に示したように、前培養条件を変えることで炭酸ガス発生量(エタノール生産性)が変化することがわかる。そのため、高温条件下で効率よくエタノールの発酵生産を行うためには上記(5)、(7)、(9)の前培養条件に準ずる耐性強化処理が必要となる。   As shown in FIG. 4, it can be seen that the amount of carbon dioxide gas generated (ethanol productivity) changes by changing the pre-culture conditions. Therefore, in order to efficiently produce ethanol by fermentation under high temperature conditions, a resistance enhancement process according to the pre-culture conditions (5), (7) and (9) is required.

[前培養条件の影響(親株)]
実施例4の効果が耐性株にのみ特徴的な現象かを確認するため、親株の協会901号酵母についても確認した。前培養条件等は実施例4の(9)に準じて行った。その結果を図5に示す。
[Influence of pre-culture conditions (parent strain)]
In order to confirm whether the effect of Example 4 is a phenomenon characteristic only to resistant strains, the parent strain association 901 yeast was also confirmed. The preculture conditions and the like were the same as in Example 4 (9). The result is shown in FIG.

図5に示したように、親株でも同様の効果があることがわかった。しかも、耐性変異株に比較し、その効果はさらに高いものであった。したがって、前培養条件による耐性強化処理はより耐性の弱い株に対して効果的であるといえる。   As shown in FIG. 5, it was found that the parent strain has the same effect. Moreover, the effect was higher than that of the resistant mutant. Therefore, it can be said that the resistance-enhancement treatment under pre-culture conditions is effective for a less resistant strain.

[耐性強化処理の効果確認(対照)]
耐性強化処理の効果を確認するために、流加培養システムを用いた発酵試験を行った。試験の条件は発酵温度を40℃に変更する以外は実施例3に準じて行った。まず対照として、前培養条件を30℃で24時間の一定温度とした。すなわち、高温耐性H2023−4株を用い、2MY20培地において30℃で24時間振盪培養した培養液30mLを開始培地である900mLの2MY15培地に添加し、流加培地として150mLの1/2MY50培地を用いた。その結果を図6に示す。
[Confirmation of effect of resistance enhancement treatment (control)]
In order to confirm the effect of the resistance enhancement treatment, a fermentation test using a fed-batch culture system was performed. The test conditions were the same as in Example 3 except that the fermentation temperature was changed to 40 ° C. First, as a control, preculture conditions were set to a constant temperature of 30 ° C. for 24 hours. That is, using a high temperature resistant strain H2023-4, 30 mL of a culture solution obtained by shaking culture in 2MY20 medium at 30 ° C. for 24 hours was added to 900 mL of 2MY15 medium as a starting medium, and 150 mL of 1 / 2MY50 medium was used as a fed-batch medium. It was. The result is shown in FIG.

この前培養条件では菌体密度があまり上昇ぜず、高温により菌体がダメージを受けていると考えられた。そのため、48時間経過後も発酵もろみのエタノール濃度は約9%と低いものであった。   Under these pre-culture conditions, the cell density did not increase so much, and it was considered that the cells were damaged by the high temperature. Therefore, even after 48 hours, the ethanol concentration of the fermentation mash was as low as about 9%.

[耐性強化処理の効果確認]
次に、前培養条件を実施例4の(9)に準じて調製した培養液を用いて実施例6と同じ条件で発酵試験を行った。すなわち、高温耐性H2023−4株を用い、2MY20培地において15℃で60時間静置培養し、その後30℃で12時間振盪培養した培養液30mLを開始培地である900mLの2MY15培地に添加し、流加培地として150mLの1/2MY50培地を用いた。その結果を図7に示す。
[Confirmation of resistance enhancement treatment effect]
Next, a fermentation test was performed under the same conditions as in Example 6 using a culture solution prepared according to pre-cultivation conditions according to (9) of Example 4. That is, using a high-temperature resistant strain H2023-4, 30 mL of a culture solution that was statically cultured at 15 ° C. for 60 hours in 2MY20 medium and then shake-cultured at 30 ° C. for 12 hours was added to 900 mL of 2MY15 medium as a starting medium. 150 mL of 1 / 2MY50 medium was used as the supplement medium. The result is shown in FIG.

実施例6と異なり、菌体密度は上昇し、菌体へのダメージが少ないことがわかった。そのため、45時間で10%を超えるエタノール濃度の発酵もろみを得ることができた。   Unlike Example 6, the cell density increased and it was found that there was little damage to the cells. Therefore, fermentation mash with an ethanol concentration exceeding 10% was obtained in 45 hours.

1 流加糖液貯留槽
2 流量計
3 発酵槽
4 リレーユニット
5 フローセルタイプの屈折式糖度計
6 制御用コンピュータ
7 送液ポンプ
8 送液ポンプ
9 エアポンプ
10 撹拌手段
DESCRIPTION OF SYMBOLS 1 Feeding sugar liquid storage tank 2 Flowmeter 3 Fermenter 4 Relay unit 5 Flow cell type refractive sugar meter 6 Control computer 7 Liquid feeding pump 8 Liquid feeding pump 9 Air pump 10 Stirring means

Claims (11)

以下の工程(a)及び(b)を順次備えたことを特徴とする高温耐性変異酵母株の作製方法。
(a)サッカロマイセス属(Saccharomyces)に属するエタノール発酵酵母を、25℃以上の培養温度で流加培養することにより、エタノール発酵させてエタノール濃度15%以上の発酵もろみを製造する工程;
(b)工程(a)で生残した酵母菌体を10%以上のエタノールを含む寒天培地で37℃以上で培養し、生育したコロニーを候補菌株として選抜する工程;
A method for producing a high-temperature resistant mutant yeast strain comprising the following steps (a) and (b) in sequence.
(A) a step of subjecting an ethanol-fermenting yeast belonging to the genus Saccharomyces to fed-batch culture at a culture temperature of 25 ° C. or higher to produce ethanol fermented moromi having an ethanol concentration of 15% or higher;
(B) a step of culturing the yeast cells surviving in step (a) on an agar medium containing 10% or more of ethanol at 37 ° C. or higher and selecting the grown colonies as candidate strains;
工程(b)に続いて、以下の工程(c)をさらに備えたことを特徴とする請求項1記載の高温耐性変異酵母株の作製方法。
(c)工程(b)で選抜した候補菌株を液体培地中38〜42℃で培養し、炭酸ガス発生量の多寡を基準として二次選抜する工程;
The method for producing a high-temperature resistant mutant yeast strain according to claim 1, further comprising the following step (c) following step (b).
(C) a step of culturing the candidate strain selected in the step (b) at 38 to 42 ° C. in a liquid medium and performing a secondary selection based on the amount of carbon dioxide generation;
工程(a)におけるエタノール発酵として、30℃以上の培養温度で流加培養することを特徴とする請求項1又は2記載の高温耐性変異酵母株の作製方法。   The method for producing a high-temperature tolerant mutant yeast strain according to claim 1 or 2, wherein fed-batch culture is performed at a culture temperature of 30 ° C or higher as ethanol fermentation in the step (a). 工程(a)において、17%以上の発酵もろみを製造することを特徴とする請求項1〜3のいずれか記載の高温耐性変異酵母株の作製方法。   The method for producing a high-temperature resistant mutant yeast strain according to any one of claims 1 to 3, wherein in the step (a), 17% or more of the fermented mash is produced. 工程(b)において、寒天培地で39〜42℃で培養することを特徴とする請求項1〜4のいずれか記載の高温耐性変異酵母株の作製方法。   The method for producing a high-temperature resistant mutant yeast strain according to any one of claims 1 to 4, wherein in the step (b), the culture is performed at 39 to 42 ° C on an agar medium. 請求項1〜5のいずれか記載の作製方法により得られる高温耐性変異酵母株。   A high-temperature resistant mutant yeast strain obtained by the production method according to claim 1. 高温耐性変異酵母株であるサッカロマイセス・セレビシエ(Saccharomyces cerevisiae)H2023−4(NITE AP−1261)。   Saccharomyces cerevisiae H2023-4 (NITE AP-1261), a high-temperature resistant mutant yeast strain. 請求項6又は7記載の高温耐性変異酵母株を用いて流加培養によりエタノール発酵を行うことを特徴とするもろみ発酵物の製造方法。   A method for producing a moromi fermented product, wherein ethanol fermentation is performed by fed-batch culture using the high-temperature resistant mutant yeast strain according to claim 6 or 7. 38〜40℃の温度条件下でエタノール発酵を行うことを特徴とする請求項8記載のもろみ発酵物の製造方法。   The method for producing a moromi fermented product according to claim 8, wherein ethanol fermentation is performed under a temperature condition of 38 to 40 ° C. 15〜25℃で対数増殖期前期〜対数増殖期中期まで静置培養し、その後28〜32℃で対数増殖期後期〜定常期初期まで振盪培養した培養物を、前培養物として用いることを特徴とする請求項8又は9記載のもろみ発酵物の製造方法。   It is characterized by using as a pre-culture a culture which is statically cultured at 15 to 25 ° C. from the early log growth phase to the middle log growth phase and then shaken at 28 to 32 ° C. from the late log growth phase to the early stationary phase. A method for producing a moromi fermented product according to claim 8 or 9. 20〜30℃で対数増殖期後期〜定常期初期まで振盪培養し、その後0〜10℃で3〜60日静置した培養物を、前培養物として用いることを特徴とする請求項8又は9記載のもろみ発酵物の製造方法。   10. A culture obtained by shaking culture at 20-30 ° C. from the late logarithmic growth phase to the early stationary phase and then standing at 0-10 ° C. for 3-60 days is used as a preculture. The manufacturing method of the moromi fermented product of description.
JP2012066963A 2012-03-23 2012-03-23 Method for breeding high-temperature-resistant ethanol-productive yeast, and method for producing fermented unrefined sake using the same Pending JP2013198407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012066963A JP2013198407A (en) 2012-03-23 2012-03-23 Method for breeding high-temperature-resistant ethanol-productive yeast, and method for producing fermented unrefined sake using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012066963A JP2013198407A (en) 2012-03-23 2012-03-23 Method for breeding high-temperature-resistant ethanol-productive yeast, and method for producing fermented unrefined sake using the same

Publications (1)

Publication Number Publication Date
JP2013198407A true JP2013198407A (en) 2013-10-03

Family

ID=49519157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012066963A Pending JP2013198407A (en) 2012-03-23 2012-03-23 Method for breeding high-temperature-resistant ethanol-productive yeast, and method for producing fermented unrefined sake using the same

Country Status (1)

Country Link
JP (1) JP2013198407A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482068B1 (en) 2013-10-16 2015-01-13 재단법인 발효미생물산업진흥원 Method for producing low-salt soy sauce using yeast strains from traditionally fermented soybean products
JP2017012157A (en) * 2015-04-17 2017-01-19 リン, ジージューJhy−Jhu LIN High temperature-resistant probiotics for preparing food product and livestock feed
JP2020188686A (en) * 2019-05-18 2020-11-26 刈穂酒造株式会社 Production method of new yeast mash
CN115948263A (en) * 2022-12-13 2023-04-11 大连理工大学 High-temperature high-sugar high-permeability tolerant yeast, breeding method thereof and high-concentration ethanol fermentation application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482068B1 (en) 2013-10-16 2015-01-13 재단법인 발효미생물산업진흥원 Method for producing low-salt soy sauce using yeast strains from traditionally fermented soybean products
JP2017012157A (en) * 2015-04-17 2017-01-19 リン, ジージューJhy−Jhu LIN High temperature-resistant probiotics for preparing food product and livestock feed
JP2020188686A (en) * 2019-05-18 2020-11-26 刈穂酒造株式会社 Production method of new yeast mash
CN115948263A (en) * 2022-12-13 2023-04-11 大连理工大学 High-temperature high-sugar high-permeability tolerant yeast, breeding method thereof and high-concentration ethanol fermentation application

Similar Documents

Publication Publication Date Title
CN104371937B (en) One plant can be with the saccharomyces cerevisiae of many carbon source common fermentations and its application
CN109401989A (en) A kind of acclimation method of an industrial strain of S.cerevisiae
Flores et al. Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production
CN107012103B (en) Low-yield fusel oil yeast and application thereof in mechanical production of Xiaoqu raw wine
EP2640837B1 (en) New saccharomyces cerevisiae strains
JPS5857154B2 (en) Method for producing ethanol by fermentation
Harta et al. Effect of various carbohydrate substrates on the production of kefir grains for use as a novel baking starter
KR101950042B1 (en) Fermentation process involving adjusting specific co-uptake
CN1940050A (en) Self-controlled fermenting cellar unit for spirit solid fermentation and spirit fermentation
JP5176022B2 (en) Method for producing high-concentration alcohol
Bajpai et al. Ethanol inhibition kinetics of Kluyveromyces marxianus grown on Jerusalem artichoke juice
JP2013198407A (en) Method for breeding high-temperature-resistant ethanol-productive yeast, and method for producing fermented unrefined sake using the same
CN105368730B (en) The Wine brewing yeast strain and construction method of one plant of Rapid Fermentation xylose producing and ethanol
TWI540208B (en) Seed media for the cultivation of yeast cells and uses of the same
CN109735464A (en) One plant of Pasteur's acetobacter for converting acetic acid for ethyl alcohol and its application in fruit vinegar brewing
CN102171351A (en) Increased ethanol production in recombinant bacteria
CN102159701A (en) Improved strains of zymomonas mobilis for fermentation of biomass
CN104046542B (en) The method of edible ethanol is produced with inferior red date thick mash thermophilic fermentation
JP5051727B2 (en) Heat-resistant ethanol-producing yeast and ethanol production method using the same
Yuvraj et al. Chemical composition of sweet sorghum juice and its comparative potential of different fermentation processes for enhanced ethanol production
Putra et al. A green process for simultaneous production of fructose and ethanol via selective fermentation
Ciani et al. Influence of temperature and oxygen concentration on the fermentation behaviour of Candida stellata in mixed fermentation with Saccharomyces cerevisiae
JP5249106B2 (en) Method for continuous fermentation production of ethanol
CN108841736A (en) It is a kind of with the ethyl alcohol thick mash fermentation superior strain of multiple tolerance and its application
CN113502234A (en) Saccharomyces cerevisiae Y12 and application thereof in brewing of pure wheat whisky wine base