JP2020188269A - Imaging element, laminated imaging element, solid-state imaging device, and driving method of solid-state imaging device - Google Patents

Imaging element, laminated imaging element, solid-state imaging device, and driving method of solid-state imaging device Download PDF

Info

Publication number
JP2020188269A
JP2020188269A JP2020121264A JP2020121264A JP2020188269A JP 2020188269 A JP2020188269 A JP 2020188269A JP 2020121264 A JP2020121264 A JP 2020121264A JP 2020121264 A JP2020121264 A JP 2020121264A JP 2020188269 A JP2020188269 A JP 2020188269A
Authority
JP
Japan
Prior art keywords
electrode
photoelectric conversion
potential
charge storage
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020121264A
Other languages
Japanese (ja)
Other versions
JP6992851B2 (en
Inventor
秀晃 富樫
Hideaki Togashi
秀晃 富樫
史彦 古閑
Fumihiko Koga
史彦 古閑
山口 哲司
Tetsuji Yamaguchi
哲司 山口
晋太郎 平田
Shintaro Hirata
晋太郎 平田
泰一郎 渡部
Yasuichiro Watabe
泰一郎 渡部
良洋 安藤
Yoshihiro Ando
良洋 安藤
豊隆 片岡
Toyotaka Kataoka
豊隆 片岡
聡志 慶野
Satoshi Keino
聡志 慶野
有希央 兼田
Yukio Kaneda
有希央 兼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JP2020188269A publication Critical patent/JP2020188269A/en
Priority to JP2021198113A priority Critical patent/JP7347487B2/en
Application granted granted Critical
Publication of JP6992851B2 publication Critical patent/JP6992851B2/en
Priority to JP2023135339A priority patent/JP2023157977A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • H01L27/14647Multicolour imagers having a stacked pixel-element structure, e.g. npn, npnpn or MQW elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

To provide an imaging element, for suppressing deterioration of image quality, in which a photoelectric conversion unit is disposed on or above a semiconductor substrate, a laminated imaging element, a solid-state imaging device, and a driving method of the solid-state imaging device.SOLUTION: The imaging element includes a photoelectric conversion unit in which a first electrode 11, a photoelectric conversion layer and a second electrode 16 are laminated. The photoelectric conversion unit further includes a charge storage electrode 12, provided apart from the first electrode 11 to face the photoelectric conversion layer via an insulating layer 82. The photoelectric conversion layer has a laminated layer structure of a lower semiconductor layer 15A and an upper photoelectric conversion layer 15B from the first electrode side.SELECTED DRAWING: Figure 46

Description

本開示は、撮像素子、積層型撮像素子及び固体撮像装置、並びに、固体撮像装置の駆動方法に関する。 The present disclosure relates to an image pickup device, a stacked image pickup device, a solid-state image pickup device, and a method for driving the solid-state image pickup device.

光電変換層に有機半導体材料を用いる撮像素子は、特定の色(波長帯)を光電変換することが可能である。そして、このような特徴を有するが故に、固体撮像装置における撮像素子として用いる場合、オンチップ・カラーフィルタ(OCCF)と撮像素子との組合せから副画素が成り、副画素が2次元配列されている、従来の固体撮像装置では不可能な、副画素を積層した構造(積層型撮像素子)を得ることが可能である(例えば、特開2011−138927参照)。また、デモザイク処理を必要としないことから、偽色が発生しないといった利点がある。尚、以下の説明において、半導体基板の上あるいは上方に設けられた光電変換部を備えた撮像素子を、便宜上、『第1タイプの撮像素子』と呼び、第1タイプの撮像素子を構成する光電変換部を、便宜上、『第1タイプの光電変換部』と呼び、半導体基板内に設けられた撮像素子を、便宜上、『第2タイプの撮像素子』と呼び、第2タイプの撮像素子を構成する光電変換部を、便宜上、『第2タイプの光電変換部』と呼ぶ場合がある。 An image sensor that uses an organic semiconductor material for the photoelectric conversion layer can perform photoelectric conversion of a specific color (wavelength band). Because of these characteristics, when used as an image sensor in a solid-state image sensor, sub-pixels are formed from a combination of an on-chip color filter (OCCF) and an image sensor, and the sub-pixels are arranged in two dimensions. It is possible to obtain a structure in which sub-pixels are laminated (stacked image sensor), which is impossible with a conventional solid-state image sensor (see, for example, Japanese Patent Application Laid-Open No. 2011-138927). Further, since no demosaic processing is required, there is an advantage that false color does not occur. In the following description, an image pickup element provided with a photoelectric conversion unit provided above or above the semiconductor substrate is referred to as a "first type image pickup element" for convenience, and the photoelectric light constituting the first type image pickup element is referred to. The conversion unit is referred to as a "first type photoelectric conversion unit" for convenience, and the image pickup element provided in the semiconductor substrate is referred to as a "second type image pickup element" for convenience, and constitutes a second type image pickup element. For convenience, the photoelectric conversion unit may be referred to as a "second type photoelectric conversion unit".

図49に従来の積層型撮像素子(積層型固体撮像装置)の構造例を示す。図49に示す例では、半導体基板370内に、第2タイプの撮像素子である第3撮像素子330及び第2撮像素子320を構成する第2タイプの光電変換部である第3光電変換部331及び第2光電変換部321が積層され、形成されている。また、半導体基板370の上方(具体的には、第2撮像素子320の上方)には、第1タイプの光電変換部である第1光電変換部311が配置されている。ここで、第1光電変換部311は、第1電極311、有機材料から成る光電変換層315、第2電極316を備えており、第1タイプの撮像素子である第1撮像素子310を構成する。第2光電変換部321及び第3光電変換部331においては、吸収係数の違いにより、それぞれ、例えば、青色及び赤色の光が光電変換される。また、第1光電変換部311においては、例えば、緑色の光が光電変換される。 FIG. 49 shows a structural example of a conventional stacked image sensor (stacked solid-state image sensor). In the example shown in FIG. 49, the third photoelectric conversion unit 331, which is a second type photoelectric conversion unit constituting the third image sensor 330, which is the second type image sensor, and the second image sensor 320, are contained in the semiconductor substrate 370. And the second photoelectric conversion unit 321 are laminated and formed. Further, above the semiconductor substrate 370 (specifically, above the second imaging element 320), a first photoelectric conversion unit 311 which is a first type photoelectric conversion unit is arranged. Here, the first photoelectric conversion unit 311 includes a first electrode 311, a photoelectric conversion layer 315 made of an organic material, and a second electrode 316, and constitutes a first image pickup element 310 which is a first type image pickup element. .. In the second photoelectric conversion unit 321 and the third photoelectric conversion unit 331, for example, blue and red light are photoelectrically converted due to the difference in absorption coefficient, respectively. Further, in the first photoelectric conversion unit 311 for example, green light is photoelectrically converted.

第2光電変換部321及び第3光電変換部331において光電変換によって生成した電荷は、これらの第2光電変換部321及び第3光電変換部331に一旦蓄積された後、それぞれ、縦型トランジスタ(ゲート部322を図示する)と転送トランジスタ(ゲート部332を図示する)によって第2浮遊拡散層(Floating Diffusion)FD2及び第3浮遊拡散層FD3に転送され、更に、外部の読み出し回路(図示せず)に出力される。これらのトランジスタ及び浮遊拡散層FD2,FD3も半導体基板370に形成されている。 The electric charges generated by the photoelectric conversion in the second photoelectric conversion unit 321 and the third photoelectric conversion unit 331 are temporarily stored in the second photoelectric conversion unit 321 and the third photoelectric conversion unit 331, and then the vertical transistors (respectively). It is transferred to the second floating diffusion layer (Floating Diffusion) FD 2 and the third floating diffusion layer FD 3 by a gate portion 322 (shown) and a transfer transistor (gate portion 332 is shown), and further, an external readout circuit (FIG. (Not shown) is output. These transistors and the floating diffusion layers FD 2 and FD 3 are also formed on the semiconductor substrate 370.

第1光電変換部311において光電変換によって生成した電荷は、コンタクトホール部361、配線層362を介して、半導体基板370に形成された第1浮遊拡散層FD1に蓄積される。また、第1光電変換部311は、コンタクトホール部361、配線層362を介して、電荷量を電圧に変換する増幅トランジスタのゲート部318にも接続されている。そして、第1浮遊拡散層FD1は、リセット・トランジスタ(ゲート部317を図示する)の一部を構成している。尚、参照番号371は素子分離領域であり、参照番号372は半導体基板370の表面に形成された酸化膜であり、参照番号376,381は層間絶縁層であり、参照番号383は保護層であり、参照番号390はオンチップ・マイクロ・レンズである。 The electric charge generated by the photoelectric conversion in the first photoelectric conversion unit 311 is accumulated in the first floating diffusion layer FD 1 formed on the semiconductor substrate 370 via the contact hole portion 361 and the wiring layer 362. Further, the first photoelectric conversion unit 311 is also connected to the gate portion 318 of the amplification transistor that converts the amount of electric charge into a voltage via the contact hole portion 361 and the wiring layer 362. The first floating diffusion layer FD 1 constitutes a part of the reset transistor (gate portion 317 is shown). Reference number 371 is an element separation region, reference number 372 is an oxide film formed on the surface of the semiconductor substrate 370, reference numbers 376 and 381 are interlayer insulating layers, and reference number 383 is a protective layer. , Reference number 390 is an on-chip microlens.

特開2011−138927JP 2011-138927

ところで、第2光電変換部321及び第3光電変換部331において光電変換によって生成した電荷は、第2光電変換部321及び第3光電変換部331に一旦蓄積された後、第2浮遊拡散層FD2及び第3浮遊拡散層FD3に転送される。それ故、第2光電変換部321及び第3光電変換部331を完全空乏化することができる。しかしながら、第1光電変換部311において光電変換によって生成した電荷は、直接、第1浮遊拡散層FD1に蓄積される。それ故、第1光電変換部311を完全空乏化することは困難である。そして、以上の結果、kTCノイズが大きくなり、ランダムノイズが悪化し、撮像画質の低下をもたらす。 By the way, the electric charges generated by the photoelectric conversion in the second photoelectric conversion unit 321 and the third photoelectric conversion unit 331 are once accumulated in the second photoelectric conversion unit 321 and the third photoelectric conversion unit 331, and then the second floating diffusion layer FD. It is transferred to the 2nd and 3rd floating diffusion layer FD 3 . Therefore, the second photoelectric conversion unit 321 and the third photoelectric conversion unit 331 can be completely depleted. However, the electric charge generated by the photoelectric conversion in the first photoelectric conversion unit 311 is directly accumulated in the first floating diffusion layer FD 1 . Therefore, it is difficult to completely deplete the first photoelectric conversion unit 311. As a result of the above, the kTC noise becomes large, the random noise deteriorates, and the image quality is deteriorated.

従って、本開示の目的は、半導体基板の上あるいは上方に光電変換部が配置された撮像素子であって、撮像画質の低下を抑制し得る構成、構造の撮像素子、係る撮像素子から構成された積層型撮像素子、係る撮像素子あるいは積層型撮像素子を備えた固体撮像装置、並びに、固体撮像装置の駆動方法を提供することにある。 Therefore, an object of the present disclosure is an image sensor in which a photoelectric conversion unit is arranged on or above a semiconductor substrate, and is composed of an image sensor having a structure and a structure capable of suppressing deterioration of image quality, and such an image sensor. It is an object of the present invention to provide a stacked image pickup device, a solid-state image pickup device including such an image pickup element or a stack-type image pickup element, and a method for driving the solid-state image pickup device.

上記の目的を達成するための本開示の撮像素子は、
第1電極、光電変換層及び第2電極が積層されて成る光電変換部を備えており、
光電変換部は、更に、第1電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された電荷蓄積用電極を備えている。
The image pickup device of the present disclosure for achieving the above object is
It is provided with a photoelectric conversion unit in which a first electrode, a photoelectric conversion layer, and a second electrode are laminated.
The photoelectric conversion unit further includes a charge storage electrode arranged apart from the first electrode and facing the photoelectric conversion layer via an insulating layer.

上記の目的を達成するための本開示の積層型撮像素子は、本開示の撮像素子を少なくとも1つ有する。 The stacked image sensor of the present disclosure for achieving the above object has at least one image sensor of the present disclosure.

上記の目的を達成するための本開示の第1の態様に係る固体撮像装置は、本開示の撮像素子を、複数、備えている。また、上記の目的を達成するための本開示の第2の態様に係る固体撮像装置は、本開示の積層型撮像素子を、複数、備えている。 The solid-state image sensor according to the first aspect of the present disclosure for achieving the above object includes a plurality of image pickup elements of the present disclosure. In addition, the solid-state image pickup device according to the second aspect of the present disclosure for achieving the above object includes a plurality of stacked image pickup devices of the present disclosure.

上記の目的を達成するための本開示の固体撮像装置の駆動方法は、
第1電極、光電変換層及び第2電極が積層されて成る光電変換部を備えており、
光電変換部は、更に、第1電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された電荷蓄積用電極を備えており、
第2電極側から光が入射し、第1電極には光が入射しない構造を有する撮像素子を、複数、備えた固体撮像装置の駆動方法であって、
全ての撮像素子において、一斉に、光電変換層に電荷を蓄積しながら、第1電極における電荷を系外に排出し、その後、
全ての撮像素子において、一斉に、光電変換層に蓄積された電荷を第1電極に転送し、転送完了後、順次、各撮像素子において第1電極に転送された電荷を読み出す、
各工程を繰り返す。
The method of driving the solid-state image sensor of the present disclosure for achieving the above object is described.
It is provided with a photoelectric conversion unit in which a first electrode, a photoelectric conversion layer, and a second electrode are laminated.
The photoelectric conversion unit further includes a charge storage electrode that is arranged apart from the first electrode and is arranged so as to face the photoelectric conversion layer via an insulating layer.
This is a method of driving a solid-state image pickup device provided with a plurality of image pickup elements having a structure in which light is incident from the second electrode side and light is not incident on the first electrode.
In all the image sensors, while accumulating charges in the photoelectric conversion layer all at once, the charges in the first electrode are discharged to the outside of the system, and then.
In all the image pickup devices, the electric charge accumulated in the photoelectric conversion layer is transferred to the first electrode all at once, and after the transfer is completed, the electric charge transferred to the first electrode in each image sensor is sequentially read out.
Repeat each process.

本開示の撮像素子、本開示の積層型撮像素子を構成する本開示の撮像素子、本開示の第1の態様〜第2の態様に係る固体撮像装置を構成する本開示の撮像素子(これらの撮像素子を総称して、以下、『本開示の撮像素子等』と呼ぶ場合がある)にあっては、第1電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された電荷蓄積用電極が備えられているので、光電変換部に光が照射され、光電変換部において光電変換されるとき、光電変換層に電荷を蓄えることができる。それ故、露光開始時、電荷蓄積部を完全空乏化し、電荷を消去することが可能となる。その結果、kTCノイズが大きくなり、ランダムノイズが悪化し、撮像画質の低下をもたらすといった現象の発生を抑制することができる。本開示の固体撮像装置の駆動方法にあっては、各撮像素子は、第2電極側から入射した光が第1電極には入射しない構造を有し、全ての撮像素子において、一斉に、光電変換層に電荷を蓄積しながら、第1電極における電荷を系外に排出するので、全撮像素子において同時に第1電極のリセットを確実に行うことができる。そして、その後、全ての撮像素子において、一斉に、光電変換層に蓄積された電荷を第1電極に転送し、転送完了後、順次、各撮像素子において第1電極に転送された電荷を読み出す。それ故、所謂グローバルシャッター機能を容易に実現することができる。尚、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また、付加的な効果があってもよい。 The image sensor of the present disclosure, the image sensor of the present disclosure constituting the stacked image sensor of the present disclosure, and the image sensor of the present disclosure constituting the solid-state image sensor according to the first to second aspects of the present disclosure (these). The image sensor (hereinafter, may be collectively referred to as "the image sensor and the like of the present disclosure") is arranged apart from the first electrode and faces the photoelectric conversion layer via an insulating layer. Since the charge storage electrode is provided, the charge can be stored in the photoelectric conversion layer when the photoelectric conversion unit is irradiated with light and the photoelectric conversion unit performs photoelectric conversion. Therefore, at the start of exposure, the charge storage portion is completely depleted and the charge can be erased. As a result, it is possible to suppress the occurrence of a phenomenon in which the kTC noise becomes large, the random noise deteriorates, and the image quality is deteriorated. In the driving method of the solid-state image pickup device of the present disclosure, each image pickup element has a structure in which the light incident from the second electrode side does not enter the first electrode, and all the image pickup elements are simultaneously photoelectric. Since the electric charge in the first electrode is discharged to the outside of the system while accumulating the electric charge in the conversion layer, it is possible to reliably reset the first electrode at the same time in all the image pickup devices. Then, after that, the electric charges accumulated in the photoelectric conversion layer are simultaneously transferred to the first electrode in all the image pickup elements, and after the transfer is completed, the electric charges transferred to the first electrode in each image pickup element are sequentially read out. Therefore, the so-called global shutter function can be easily realized. The effects described in the present specification are merely examples and are not limited, and may have additional effects.

図1は、実施例1の撮像素子、積層型撮像素子の模式的な一部断面図である。FIG. 1 is a schematic partial cross-sectional view of the image sensor and the stacked image sensor of the first embodiment. 図2は、実施例1の撮像素子、積層型撮像素子の等価回路図である。FIG. 2 is an equivalent circuit diagram of the image sensor and the stacked image sensor of the first embodiment. 図3は、実施例1の撮像素子、積層型撮像素子の等価回路図である。FIG. 3 is an equivalent circuit diagram of the image sensor and the stacked image sensor of the first embodiment. 図4は、実施例1の撮像素子を構成する第1電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図である。FIG. 4 is a schematic layout diagram of the first electrode constituting the image pickup device of the first embodiment, the charge storage electrode, and the transistor constituting the control unit. 図5は、実施例1の撮像素子の動作時の各部位における電位の状態を模式的に示す図である。FIG. 5 is a diagram schematically showing a state of electric potential at each portion during operation of the image pickup device of Example 1. 図6は、実施例1の撮像素子を構成する第1電極及び電荷蓄積用電極の模式的な配置図である。FIG. 6 is a schematic layout diagram of the first electrode and the charge storage electrode constituting the image pickup device of the first embodiment. 図7は、実施例1の撮像素子を構成する第1電極、電荷蓄積用電極、第2電極及びコンタクトホール部の模式的な透視斜視図である。FIG. 7 is a schematic perspective perspective view of the first electrode, the charge storage electrode, the second electrode, and the contact hole portion constituting the image pickup device of the first embodiment. 図8は、実施例1の固体撮像装置の概念図である。FIG. 8 is a conceptual diagram of the solid-state image sensor of the first embodiment. 図9は、実施例1の撮像素子、積層型撮像素子の変形例の等価回路図である。FIG. 9 is an equivalent circuit diagram of a modified example of the image sensor and the stacked image sensor of the first embodiment. 図10は、図9に示した実施例1の撮像素子の変形例を構成する第1電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図である。FIG. 10 is a schematic layout diagram of a first electrode, a charge storage electrode, and a transistor constituting a control unit, which constitute a modification of the image pickup device of the first embodiment shown in FIG. 図11は、実施例2の撮像素子、積層型撮像素子の模式的な一部断面図である。FIG. 11 is a schematic partial cross-sectional view of the image pickup device and the stacked image pickup device of the second embodiment. 図12は、実施例3の撮像素子、積層型撮像素子の模式的な一部断面図である。FIG. 12 is a schematic partial cross-sectional view of the image pickup device and the stacked image pickup device of the third embodiment. 図13は、実施例3の撮像素子、積層型撮像素子の変形例の模式的な一部断面図である。FIG. 13 is a schematic partial cross-sectional view of a modified example of the image pickup device and the stacked image pickup device of the third embodiment. 図14は、実施例3の撮像素子の別の変形例の模式的な一部断面図である。FIG. 14 is a schematic partial cross-sectional view of another modified example of the image sensor of the third embodiment. 図15は、実施例3の撮像素子の更に別の変形例の模式的な一部断面図である。FIG. 15 is a schematic partial cross-sectional view of still another modification of the image sensor of Example 3. 図16は、実施例4の撮像素子、積層型撮像素子の一部分の模式的な一部断面図である。FIG. 16 is a schematic partial cross-sectional view of a part of the image pickup device and the stacked image pickup device of the fourth embodiment. 図17は、実施例4の撮像素子、積層型撮像素子の等価回路図である。FIG. 17 is an equivalent circuit diagram of the image sensor and the stacked image sensor of the fourth embodiment. 図18は、実施例4の撮像素子、積層型撮像素子の等価回路図である。FIG. 18 is an equivalent circuit diagram of the image sensor and the stacked image sensor of the fourth embodiment. 図19は、実施例4の撮像素子を構成する第1電極、転送制御用電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図である。FIG. 19 is a schematic layout diagram of the first electrode constituting the image pickup device of the fourth embodiment, the transfer control electrode, the charge storage electrode, and the transistor constituting the control unit. 図20は、実施例4の撮像素子の動作時の各部位における電位の状態を模式的に示す図である。FIG. 20 is a diagram schematically showing a state of electric potential at each portion during operation of the image pickup device of Example 4. 図21は、実施例4の撮像素子の別の動作時の各部位における電位の状態を模式的に示す図である。FIG. 21 is a diagram schematically showing a state of electric potential at each portion during another operation of the image pickup device of the fourth embodiment. 図22は、実施例4の撮像素子を構成する第1電極、転送制御用電極及び電荷蓄積用電極の模式的な配置図である。FIG. 22 is a schematic layout diagram of the first electrode, the transfer control electrode, and the charge storage electrode constituting the image pickup device of the fourth embodiment. 図23は、実施例4の撮像素子を構成する第1電極、転送制御用電極、電荷蓄積用電極、第2電極及びコンタクトホール部の模式的な透視斜視図である。FIG. 23 is a schematic perspective perspective view of the first electrode, the transfer control electrode, the charge storage electrode, the second electrode, and the contact hole portion constituting the image pickup device of the fourth embodiment. 図24は、実施例4の撮像素子の変形例を構成する第1電極、転送制御用電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図である。FIG. 24 is a schematic layout diagram of a first electrode, a transfer control electrode, a charge storage electrode, and a transistor constituting a control unit, which constitute a modification of the image pickup device of the fourth embodiment. 図25は、実施例5の撮像素子、積層型撮像素子の一部分の模式的な一部断面図である。FIG. 25 is a schematic partial cross-sectional view of a part of the image pickup device and the stacked image pickup device of the fifth embodiment. 図26は、実施例5の撮像素子を構成する第1電極、電荷蓄積用電極及び電荷排出電極の模式的な配置図である。FIG. 26 is a schematic layout diagram of the first electrode, the charge storage electrode, and the charge discharge electrode constituting the image pickup device of the fifth embodiment. 図27は、実施例5の撮像素子を構成する第1電極、電荷蓄積用電極、電荷排出電極、第2電極及びコンタクトホール部の模式的な透視斜視図である。FIG. 27 is a schematic perspective perspective view of the first electrode, the charge storage electrode, the charge discharge electrode, the second electrode, and the contact hole portion constituting the image pickup device of the fifth embodiment. 図28は、実施例6の撮像素子、積層型撮像素子の一部分の模式的な一部断面図である。FIG. 28 is a schematic partial cross-sectional view of a part of the image pickup device and the stacked image pickup device of the sixth embodiment. 図29は、実施例6の撮像素子、積層型撮像素子の等価回路図である。FIG. 29 is an equivalent circuit diagram of the image sensor and the stacked image sensor of the sixth embodiment. 図30は、実施例6の撮像素子、積層型撮像素子の等価回路図である。FIG. 30 is an equivalent circuit diagram of the image sensor and the stacked image sensor of the sixth embodiment. 図31は、実施例6の撮像素子を構成する第1電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図である。FIG. 31 is a schematic layout diagram of the first electrode constituting the image pickup device of the sixth embodiment, the charge storage electrode, and the transistor constituting the control unit. 図32は、実施例6の撮像素子の動作時の各部位における電位の状態を模式的に示す図である。FIG. 32 is a diagram schematically showing a state of potential at each portion during operation of the image pickup device of Example 6. 図33は、実施例6の撮像素子の別の動作時(転送時)の各部位における電位の状態を模式的に示す図である。FIG. 33 is a diagram schematically showing the state of the potential at each portion of the image pickup device of the sixth embodiment during another operation (during transfer). 図34は、実施例6の撮像素子を構成する第1電極及び電荷蓄積用電極の模式的な配置図である。FIG. 34 is a schematic layout diagram of the first electrode and the charge storage electrode constituting the image pickup device of the sixth embodiment. 図35は、実施例6の撮像素子を構成する第1電極、電荷蓄積用電極、第2電極及びコンタクトホール部の模式的な透視斜視図である。FIG. 35 is a schematic perspective perspective view of the first electrode, the charge storage electrode, the second electrode, and the contact hole portion constituting the image pickup device of the sixth embodiment. 図36は、実施例6の撮像素子の変形例を構成する第1電極及び電荷蓄積用電極の模式的な配置図である。FIG. 36 is a schematic layout diagram of the first electrode and the charge storage electrode constituting the modified example of the image pickup device of the sixth embodiment. 図37は、実施例1の撮像素子、積層型撮像素子の別の変形例の模式的な一部断面図である。FIG. 37 is a schematic partial cross-sectional view of another modification of the image pickup device and the stacked image pickup device of the first embodiment. 図38は、実施例1の撮像素子、積層型撮像素子の更に別の変形例の模式的な一部断面図である。FIG. 38 is a schematic partial cross-sectional view of still another modified example of the image pickup device and the stacked image pickup device of the first embodiment. 図39A、図39B及び図39Cは、実施例1の撮像素子、積層型撮像素子の更に別の変形例の第1電極の部分等の拡大された模式的な一部断面図である。39A, 39B, and 39C are enlarged schematic partial cross-sectional views of the image pickup device of the first embodiment, the first electrode portion of still another modification of the stacked image pickup device, and the like. 図40は、実施例5の撮像素子、積層型撮像素子の別の変形例の電荷排出電極の部分等の拡大された模式的な一部断面図である。FIG. 40 is an enlarged schematic partial cross-sectional view of the image pickup device of Example 5, the charge discharge electrode portion of another modification of the stacked image pickup device, and the like. 図41は、実施例1の撮像素子、積層型撮像素子の更に別の変形例の模式的な一部断面図である。FIG. 41 is a schematic partial cross-sectional view of still another modified example of the image pickup device and the stacked image pickup device of the first embodiment. 図42は、実施例1の撮像素子、積層型撮像素子の更に別の変形例の模式的な一部断面図である。FIG. 42 is a schematic partial cross-sectional view of still another modified example of the image pickup device and the stacked image pickup device of the first embodiment. 図43は、実施例1の撮像素子、積層型撮像素子の更に別の変形例の模式的な一部断面図である。FIG. 43 is a schematic partial cross-sectional view of still another modified example of the image pickup device and the stacked image pickup device of the first embodiment. 図44は、実施例4の撮像素子、積層型撮像素子の別の変形例の模式的な一部断面図である。FIG. 44 is a schematic partial cross-sectional view of another modification of the image pickup device and the stacked image pickup device of the fourth embodiment. 図45は、実施例1の撮像素子、積層型撮像素子の更に別の変形例の模式的な一部断面図である。FIG. 45 is a schematic partial cross-sectional view of still another modified example of the image pickup device and the stacked image pickup device of the first embodiment. 図46は、実施例1の撮像素子、積層型撮像素子の更に別の変形例の模式的な一部断面図である。FIG. 46 is a schematic partial cross-sectional view of still another modified example of the image pickup device and the stacked image pickup device of the first embodiment. 図47は、実施例4の撮像素子、積層型撮像素子の更に別の変形例の模式的な一部断面図である。FIG. 47 is a schematic partial cross-sectional view of still another modified example of the image pickup device and the stacked image pickup device of the fourth embodiment. 図48は、本開示の撮像素子、積層型撮像素子から構成された固体撮像装置を電子機器(カメラ)を用いた例の概念図である。FIG. 48 is a conceptual diagram of an example of a solid-state image sensor composed of the image sensor and the stacked image sensor of the present disclosure using an electronic device (camera). 図49は、従来の積層型撮像素子(積層型固体撮像装置)の概念図である。FIG. 49 is a conceptual diagram of a conventional stacked image sensor (stacked solid-state image sensor).

以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の撮像素子、本開示の積層型撮像素子及び本開示の第1の態様〜第2の態様に係る固体撮像装置、並びに、固体撮像装置の駆動方法、全般に関する説明
2.実施例1(本開示の撮像素子、本開示の積層型撮像素子及び本開示の第2の態様に係る固体撮像装置)
3.実施例2(実施例1の変形)
4.実施例3(実施例1〜実施例2の変形)
5.実施例4(実施例1〜実施例3の変形、転送制御用電極を備えた撮像素子)
6.実施例5(実施例1〜実施例4の変形、電荷排出電極を備えた撮像素子)
7.実施例6(実施例1〜実施例5の変形、複数の電荷蓄積用電極セグメントを備えた撮像素子)
8.その他
Hereinafter, the present disclosure will be described based on examples with reference to the drawings, but the present disclosure is not limited to the examples, and various numerical values and materials in the examples are examples. The description will be given in the following order.
1. 1. Description of the image pickup device of the present disclosure, the stacked image pickup device of the present disclosure, the solid-state image pickup device according to the first to second aspects of the present disclosure, and the driving method of the solid-state image pickup device in general. Example 1 (the image pickup device of the present disclosure, the stacked image sensor of the present disclosure, and the solid-state image pickup device according to the second aspect of the present disclosure).
3. 3. Example 2 (Modification of Example 1)
4. Example 3 (Modifications of Examples 1 and 2)
5. Example 4 (Imaging element provided with electrodes for controlling transfer and deformation of Examples 1 to 3)
6. Example 5 (deformation of Examples 1 to 4 and an image sensor provided with a charge discharge electrode)
7. Example 6 (Modifications of Examples 1 to 5, an image sensor provided with a plurality of charge storage electrode segments)
8. Other

〈本開示の撮像素子、本開示の積層型撮像素子及び本開示の第1の態様〜第2の態様に係る固体撮像装置、並びに、固体撮像装置の駆動方法、全般に関する説明〉
本開示の撮像素子等にあっては、
半導体基板を更に備えており、
光電変換部は、半導体基板の上方に配置されている形態とすることができる。尚、第1電極、電荷蓄積用電極及び第2電極は、後述する駆動回路に接続されている。
<Explanation of the image pickup device of the present disclosure, the stacked image pickup device of the present disclosure, the solid-state image pickup device according to the first to second aspects of the present disclosure, and the driving method of the solid-state image pickup device in general>
In the image sensor and the like of the present disclosure,
It also has a semiconductor substrate,
The photoelectric conversion unit may be arranged above the semiconductor substrate. The first electrode, the charge storage electrode, and the second electrode are connected to a drive circuit described later.

光入射側に位置する第2電極は、複数の撮像素子において共通化されていてもよい。即ち、第2電極を所謂ベタ電極とすることができる。光電変換層は、複数の撮像素子において共通化されていてもよいし、即ち、複数の撮像素子において1層の光電変換層が形成されていてもよいし、撮像素子毎に設けられていてもよい。 The second electrode located on the light incident side may be shared by a plurality of image pickup devices. That is, the second electrode can be a so-called solid electrode. The photoelectric conversion layer may be shared by a plurality of image pickup elements, that is, one photoelectric conversion layer may be formed in the plurality of image pickup elements, or may be provided for each image pickup element. Good.

更には、以上に説明した各種の好ましい形態、構成を含む本開示の撮像素子等において、第1電極は、絶縁層に設けられた開口部内を延在し、光電変換層と接続されている形態とすることができる。あるいは又、光電変換層は、絶縁層に設けられた開口部内を延在し、第1電極と接続されている形態とすることができ、この場合、
第1電極の頂面の縁部は絶縁層で覆われており、
開口部の底面には第1電極が露出しており、
第1電極の頂面と接する絶縁層の面を第1面、電荷蓄積用電極と対向する光電変換層の部分と接する絶縁層の面を第2面としたとき、開口部の側面は、第1面から第2面に向かって広がる傾斜を有する形態とすることができ、更には、第1面から第2面に向かって広がる傾斜を有する開口部の側面は、電荷蓄積用電極側に位置する形態とすることができる。尚、光電変換層と第1電極との間に他の層が形成されている形態(例えば、光電変換層と第1電極との間に電荷蓄積に適した材料層が形成されている形態)を包含する。
Further, in the image pickup device and the like of the present disclosure including various preferable forms and configurations described above, the first electrode extends in the opening provided in the insulating layer and is connected to the photoelectric conversion layer. Can be. Alternatively, the photoelectric conversion layer may extend in the opening provided in the insulating layer and be connected to the first electrode, in this case.
The edge of the top surface of the first electrode is covered with an insulating layer.
The first electrode is exposed on the bottom surface of the opening.
When the surface of the insulating layer in contact with the top surface of the first electrode is the first surface and the surface of the insulating layer in contact with the portion of the photoelectric conversion layer facing the charge storage electrode is the second surface, the side surface of the opening is the first surface. It can be in a form having an inclination extending from the first surface to the second surface, and further, the side surface of the opening having an inclination extending from the first surface to the second surface is located on the charge storage electrode side. It can be in the form of In addition, a form in which another layer is formed between the photoelectric conversion layer and the first electrode (for example, a form in which a material layer suitable for charge accumulation is formed between the photoelectric conversion layer and the first electrode). Including.

更には、以上に説明した各種の好ましい形態、構成を含む本開示の撮像素子等において、
半導体基板に設けられ、駆動回路を有する制御部を更に備えており、
第1電極及び電荷蓄積用電極は、駆動回路に接続されており、
電荷蓄積期間において、駆動回路から、第1電極に電位V11が印加され、電荷蓄積用電極に電位V12が印加され、光電変換層に電荷が蓄積され、
電荷転送期間において、駆動回路から、第1電極に電位V21が印加され、電荷蓄積用電極に電位V22が印加され、光電変換層に蓄積された電荷が第1電極を経由して制御部に読み出される構成とすることができる。但し、第1電極の電位が第2電極の電位よりも高い場合、
12≧V11、且つ、V22<V21
であり、第1電極の電位が第2電極の電位よりも低い場合、
12≦V11、且つ、V22>V21
である。
Furthermore, in the image sensor and the like of the present disclosure including various preferable forms and configurations described above,
It is further provided with a control unit provided on a semiconductor substrate and having a drive circuit.
The first electrode and the charge storage electrode are connected to the drive circuit.
In the charge accumulation period, the driving circuit, the potential V 11 is applied to the first electrode, the potential V 12 is applied to the charge storage electrode, charges are accumulated in the photoelectric conversion layer,
During the charge transfer period, the potential V 21 is applied to the first electrode from the drive circuit, the potential V 22 is applied to the charge storage electrode, and the charge accumulated in the photoelectric conversion layer is transferred to the control unit via the first electrode. It can be configured to be read out. However, when the potential of the first electrode is higher than the potential of the second electrode,
V 12 ≥ V 11 and V 22 <V 21
When the potential of the first electrode is lower than the potential of the second electrode,
V 12 ≤ V 11 and V 22 > V 21
Is.

更には、以上に説明した各種の好ましい形態、構成を含む本開示の撮像素子等にあっては、第1電極と電荷蓄積用電極との間に、第1電極及び電荷蓄積用電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された転送制御用電極(電荷転送電極)を更に備えている形態とすることができる。尚、このような形態の本開示の撮像素子等を、便宜上、『転送制御用電極を備えた本開示の撮像素子等』と呼ぶ。 Further, in the image pickup device and the like of the present disclosure including the various preferable forms and configurations described above, the first electrode and the charge storage electrode are separated from each other between the first electrode and the charge storage electrode. It is possible to form a form in which a transfer control electrode (charge transfer electrode) is further provided, which is arranged so as to face the photoelectric conversion layer via an insulating layer. The image sensor and the like of the present disclosure having such a form are referred to as "the image sensor and the like of the present disclosure provided with transfer control electrodes" for convenience.

また、転送制御用電極を備えた本開示の撮像素子等にあっては、
半導体基板に設けられ、駆動回路を有する制御部を更に備えており、
第1電極、電荷蓄積用電極及び転送制御用電極は、駆動回路に接続されており、
電荷蓄積期間において、駆動回路から、第1電極に電位V11が印加され、電荷蓄積用電極に電位V12が印加され、転送制御用電極に電位V13が印加され、光電変換層に電荷が蓄積され、
電荷転送期間において、駆動回路から、第1電極に電位V21が印加され、電荷蓄積用電極に電位V22が印加され、転送制御用電極に電位V23が印加され、光電変換層に蓄積された電荷が第1電極を介して制御部に読み出される構成とすることができる。但し、第1電極の電位が第2電極の電位よりも高い場合、
12>V13、且つ、V22≦V23≦V21
であり、第1電極の電位が第2電極の電位よりも低い場合、
12<V13、且つ、V22≧V23≧V21
である。
Further, in the image pickup device and the like of the present disclosure provided with the transfer control electrode,
It is further provided with a control unit provided on a semiconductor substrate and having a drive circuit.
The first electrode, the charge storage electrode, and the transfer control electrode are connected to the drive circuit.
During the charge storage period, the drive circuit applies the potential V 11 to the first electrode, the potential V 12 to the charge storage electrode, the potential V 13 to the transfer control electrode, and charges to the photoelectric conversion layer. Accumulated,
In the charge transfer period, the driving circuit, the potential V 21 is applied to the first electrode, the potential V 22 is applied to the charge storage electrode, the potential V 23 is applied to the transfer control electrodes are accumulated in the photoelectric conversion layer The charge can be read out to the control unit via the first electrode. However, when the potential of the first electrode is higher than the potential of the second electrode,
V 12 > V 13 and V 22 ≤ V 23 ≤ V 21
When the potential of the first electrode is lower than the potential of the second electrode,
V 12 <V 13 and V 22 ≧ V 23 ≧ V 21
Is.

更には、以上に説明した各種の好ましい形態、構成を含む本開示の撮像素子等にあっては、光電変換層に接続され、第1電極及び電荷蓄積用電極と離間して配置された電荷排出電極を更に備えている形態とすることができる。尚、このような形態の本開示の撮像素子等を、便宜上、『電荷排出電極を備えた本開示の撮像素子等』と呼ぶ。そして、電荷排出電極を備えた本開示の撮像素子等において、電荷排出電極は、第1電極及び電荷蓄積用電極を取り囲むように(即ち、額縁状に)配置されている形態とすることができる。電荷排出電極は、複数の撮像素子において共有化(共通化)することができる。そして、この場合、
光電変換層は、絶縁層に設けられた第2開口部内を延在し、電荷排出電極と接続されており、
電荷排出電極の頂面の縁部は絶縁層で覆われており、
第2開口部の底面には電荷排出電極が露出しており、
電荷排出電極の頂面と接する絶縁層の面を第3面、電荷蓄積用電極と対向する光電変換層の部分と接する絶縁層の面を第2面としたとき、第2開口部の側面は、第3面から第2面に向かって広がる傾斜を有する形態とすることができる。
Further, in the image pickup device and the like of the present disclosure including the various preferable forms and configurations described above, the charge discharge is connected to the photoelectric conversion layer and is arranged apart from the first electrode and the charge storage electrode. The form may be further provided with electrodes. The image sensor and the like of the present disclosure having such a form are referred to as "the image sensor and the like of the present disclosure provided with a charge discharge electrode" for convenience. Then, in the image pickup device and the like of the present disclosure provided with the charge discharge electrode, the charge discharge electrode may be arranged so as to surround the first electrode and the charge storage electrode (that is, in a frame shape). .. The charge discharge electrode can be shared (common) in a plurality of image pickup devices. And in this case
The photoelectric conversion layer extends in the second opening provided in the insulating layer and is connected to the charge discharge electrode.
The edge of the top surface of the charge discharge electrode is covered with an insulating layer.
The charge discharge electrode is exposed on the bottom surface of the second opening.
When the surface of the insulating layer in contact with the top surface of the charge discharge electrode is the third surface and the surface of the insulating layer in contact with the portion of the photoelectric conversion layer facing the charge storage electrode is the second surface, the side surface of the second opening is , The form may have an inclination extending from the third surface to the second surface.

更には、電荷排出電極を備えた本開示の撮像素子等にあっては、
半導体基板に設けられ、駆動回路を有する制御部を更に備えており、
第1電極、電荷蓄積用電極及び電荷排出電極は、駆動回路に接続されており、
電荷蓄積期間において、駆動回路から、第1電極に電位V11が印加され、電荷蓄積用電極に電位V12が印加され、電荷排出電極に電位V14が印加され、光電変換層に電荷が蓄積され、
電荷転送期間において、駆動回路から、第1電極に電位V21が印加され、電荷蓄積用電極に電位V22が印加され、電荷排出電極に電位V24が印加され、光電変換層に蓄積された電荷が第1電極を介して制御部に読み出される構成とすることができる。但し、第1電極の電位が第2電極の電位よりも高い場合、
14>V11、且つ、V24<V21
であり、第1電極の電位が第2電極の電位よりも低い場合、
14<V11、且つ、V24>V21
である。
Furthermore, in the image pickup device and the like of the present disclosure provided with the charge discharge electrode,
It is further provided with a control unit provided on a semiconductor substrate and having a drive circuit.
The first electrode, the charge storage electrode, and the charge discharge electrode are connected to the drive circuit.
In the charge accumulation period, the driving circuit, the potential V 11 is applied to the first electrode, the potential V 12 is applied to the charge storage electrode, the potential V 14 is applied to the charge discharging electrodes, electric charges accumulated in the photoelectric conversion layer Being done
In the charge transfer period, the driving circuit, the potential V 21 is applied to the first electrode, the potential V 22 is applied to the charge storage electrode, the potential V 24 is applied to the charge discharging electrode, which is accumulated in the photoelectric conversion layer The electric charge can be read out to the control unit via the first electrode. However, when the potential of the first electrode is higher than the potential of the second electrode,
V 14 > V 11 and V 24 <V 21
When the potential of the first electrode is lower than the potential of the second electrode,
V 14 <V 11 and V 24 > V 21
Is.

更には、本開示の撮像素子等における以上に説明した各種の好ましい形態、構成において、電荷蓄積用電極は、複数の電荷蓄積用電極セグメントから構成されている形態とすることができる。尚、このような形態の本開示の撮像素子等を、便宜上、『複数の電荷蓄積用電極セグメントを備えた本開示の撮像素子等』と呼ぶ。電荷蓄積用電極セグメントの数は、2以上であればよい。そして、複数の電荷蓄積用電極セグメントを備えた本開示の撮像素子等にあっては、
第1電極の電位が第2電極の電位よりも高い場合、電荷転送期間において、第1電極に最も近い所に位置する電荷蓄積用電極セグメントに印加される電位は、第1電極に最も遠い所に位置する電荷蓄積用電極セグメントに印加される電位よりも高く、
第1電極の電位が第2電極の電位よりも低い場合、電荷転送期間において、第1電極に最も近い所に位置する電荷蓄積用電極セグメントに印加される電位は、第1電極に最も遠い所に位置する電荷蓄積用電極セグメントに印加される電位よりも低い形態とすることができる。
Further, in the various preferable forms and configurations described above in the image pickup device and the like of the present disclosure, the charge storage electrode may be in a form composed of a plurality of charge storage electrode segments. The image pickup device and the like of the present disclosure having such a form are referred to as "the image pickup device and the like of the present disclosure provided with a plurality of charge storage electrode segments" for convenience. The number of charge storage electrode segments may be 2 or more. Then, in the image sensor or the like of the present disclosure provided with a plurality of charge storage electrode segments,
When the potential of the first electrode is higher than the potential of the second electrode, the potential applied to the charge storage electrode segment located closest to the first electrode during the charge transfer period is the farthest from the first electrode. Higher than the potential applied to the charge storage electrode segment located at
When the potential of the first electrode is lower than the potential of the second electrode, the potential applied to the charge storage electrode segment located closest to the first electrode during the charge transfer period is the farthest from the first electrode. The form can be lower than the potential applied to the charge storage electrode segment located in.

以上に説明した各種の好ましい形態、構成を含む本開示の撮像素子等において、
半導体基板には、制御部を構成する少なくとも浮遊拡散層及び増幅トランジスタが設けられており、
第1電極は、浮遊拡散層及び増幅トランジスタのゲート部に接続されている構成とすることができ、この場合、更には、
半導体基板には、更に、制御部を構成するリセット・トランジスタ及び選択トランジスタが設けられており、
浮遊拡散層は、リセット・トランジスタの一方のソース/ドレイン領域に接続されており、
増幅トランジスタの一方のソース/ドレイン領域は、選択トランジスタの一方のソース/ドレイン領域に接続されており、選択トランジスタの他方のソース/ドレイン領域は信号線に接続されている構成とすることができる。
In the image pickup device and the like of the present disclosure including various preferable forms and configurations described above,
The semiconductor substrate is provided with at least a floating diffusion layer and an amplification transistor constituting a control unit.
The first electrode can be configured to be connected to the floating diffusion layer and the gate portion of the amplification transistor, and in this case, further
The semiconductor substrate is further provided with a reset transistor and a selection transistor that form a control unit.
The stray diffusion layer is connected to one source / drain region of the reset transistor and
One source / drain region of the amplification transistor may be connected to one source / drain region of the selection transistor, and the other source / drain region of the selection transistor may be connected to the signal line.

更には、以上に説明した各種の好ましい形態、構成を含む本開示の撮像素子等において、電荷蓄積用電極の大きさは第1電極よりも大きい形態とすることができる。電荷蓄積用電極の面積をS1’、第1電極の面積をS1としたとき、限定するものではないが、
4≦S1’/S1
を満足することが好ましい。
Further, in the image pickup device and the like of the present disclosure including various preferable forms and configurations described above, the size of the charge storage electrode can be made larger than that of the first electrode. The area of the charge storage electrode S 1 ', when the area of the first electrode and S 1, but are not limited to,
4 ≤ S 1 '/ S 1
It is preferable to satisfy.

更には、以上に説明した各種の好ましい形態、構成を含む本開示の撮像素子等において、第2電極側から光が入射し、第2電極よりの光入射側には遮光層が形成されている形態とすることができる。あるいは又、第2電極側から光が入射し、第1電極(場合によっては、第1電極及び転送制御用電極)には光が入射しない形態とすることができ、この場合、第2電極よりの光入射側であって、第1電極(場合によっては、第1電極及び転送制御用電極)の上方には遮光層が形成されている構成とすることができ、あるいは又、
電荷蓄積用電極及び第2電極の上方にはオンチップ・マイクロ・レンズが設けられており、
オンチップ・マイクロ・レンズに入射する光は、電荷蓄積用電極に集光される構成とすることができる。ここで、遮光層は、第2電極の光入射側の面よりも上方に配設されてもよいし、第2電極の光入射側の面の上に配設されてもよい。場合によっては、第2電極に遮光層が形成されていてもよい。遮光層を構成する材料として、クロム(Cr)や銅(Cu)、アルミニウム(Al)、タングステン(W)、光を通さない樹脂(例えば、ポリイミド樹脂)を例示することができる。
Furthermore, in the image pickup device and the like of the present disclosure including the various preferable forms and configurations described above, light is incident from the second electrode side, and a light shielding layer is formed on the light incident side from the second electrode. It can be in the form. Alternatively, the light may be incident from the second electrode side, and the light may not be incident on the first electrode (in some cases, the first electrode and the transfer control electrode). In this case, the light is incident from the second electrode. A light-shielding layer may be formed above the first electrode (in some cases, the first electrode and the transfer control electrode) on the light incident side of the above.
An on-chip micro lens is provided above the charge storage electrode and the second electrode.
The light incident on the on-chip microlens can be focused on the charge storage electrode. Here, the light-shielding layer may be disposed above the surface of the second electrode on the light incident side, or may be disposed on the surface of the second electrode on the light incident side. In some cases, a light-shielding layer may be formed on the second electrode. Examples of the material constituting the light-shielding layer include chromium (Cr), copper (Cu), aluminum (Al), tungsten (W), and a light-impermeable resin (for example, a polyimide resin).

本開示の撮像素子として、具体的には、青色の光(425nm乃至495nmの光)を吸収する光電変換層(便宜上、『第1タイプの青色光電変換層』と呼ぶ)を備えた青色に感度を有する撮像素子(便宜上、『第1タイプの青色用撮像素子』と呼ぶ)、緑色の光(495nm乃至570nmの光)を吸収する光電変換層(便宜上、『第1タイプの緑色光電変換層』と呼ぶ)を備えた緑色に感度を有する撮像素子(便宜上、『第1タイプの緑色用撮像素子』と呼ぶ)、赤色の光(620nm乃至750nmの光)を吸収する光電変換層(便宜上、『第1タイプの赤色光電変換層』と呼ぶ)を備えた赤色に感度を有する撮像素子(便宜上、『第1タイプの赤色用撮像素子』と呼ぶ)を挙げることができる。また、電荷蓄積用電極を備えていない従来の撮像素子であって、青色に感度を有する撮像素子を、便宜上、『第2タイプの青色用撮像素子』と呼び、緑色に感度を有する撮像素子を、便宜上、『第2タイプの緑色用撮像素子』と呼び、赤色に感度を有する撮像素子を、便宜上、『第2タイプの赤色用撮像素子』と呼び、第2タイプの青色用撮像素子を構成する光電変換層を、便宜上、『第2タイプの青色光電変換層』と呼び、第2タイプの緑色用撮像素子を構成する光電変換層を、便宜上、『第2タイプの緑色光電変換層』と呼び、第2タイプの赤色用撮像素子を構成する光電変換層を、便宜上、『第2タイプの赤色光電変換層』と呼ぶ。 Specifically, the image pickup element of the present disclosure is sensitive to blue color having a photoelectric conversion layer (referred to as "first type blue photoelectric conversion layer" for convenience) that absorbs blue light (light of 425 nm to 495 nm). (For convenience, it is referred to as "first type blue imaging element"), and a photoelectric conversion layer that absorbs green light (light of 495 nm to 570 nm) (for convenience, "first type green photoelectric conversion layer"). An image pickup element having a sensitivity to green (referred to as "first type green image pickup element" for convenience) and a photoelectric conversion layer (for convenience, referred to as "light of 620 nm to 750 nm") that absorbs red light. An imaging element having sensitivity to red (referred to as a "first type red photoelectric conversion layer") (referred to as a "first type red imaging element" for convenience) can be mentioned. Further, a conventional image sensor that does not have a charge storage electrode and has sensitivity to blue is referred to as a "second type image sensor for blue" for convenience, and an image sensor having sensitivity to green is referred to. For the sake of convenience, the image sensor having a sensitivity to red is referred to as a "second type image sensor for red" for convenience, and is referred to as a "second type image sensor for red" to form a second type image sensor for blue. For convenience, the photoelectric conversion layer is referred to as a "second type blue photoelectric conversion layer", and the photoelectric conversion layer constituting the second type green image sensor is referred to as a "second type green photoelectric conversion layer" for convenience. The photoelectric conversion layer constituting the second type red image sensor is referred to as a "second type red photoelectric conversion layer" for convenience.

本開示の積層型撮像素子は、少なくとも本開示の撮像素子(光電変換素子)を1つ有するが、具体的には、例えば、
[A]第1タイプの青色用光電変換部、第1タイプの緑色用光電変換部及び第1タイプの赤色用光電変換部が、垂直方向に積層され、
第1タイプの青色用撮像素子、第1タイプの緑色用撮像素子及び第1タイプの赤色用撮像素子の制御部のそれぞれが、半導体基板に設けられた構成、構造
[B]第1タイプの青色用光電変換部及び第1タイプの緑色用光電変換部が、垂直方向に積層され、
これらの2層の第1タイプの光電変換部の下方に、第2タイプの赤色用光電変換部が配置され、
第1タイプの青色用撮像素子、第1タイプの緑色用撮像素子及び第2タイプの赤色用撮像素子の制御部のそれぞれが、半導体基板に設けられた構成、構造
[C]第1タイプの緑色用光電変換部の下方に、第2タイプの青色用光電変換部及び第2タイプの赤色用光電変換部が配置され、
第1タイプの緑色用撮像素子、第2タイプの青色用撮像素子及び第2タイプの赤色用撮像素子の制御部のそれぞれが、半導体基板に設けられた構成、構造
[D]第1タイプの青色用光電変換部の下方に、第2タイプの緑色用光電変換部及び第2タイプの赤色用光電変換部が配置され、
第1タイプの青色用撮像素子、第2タイプの緑色用撮像素子及び第2タイプの赤色用撮像素子の制御部のそれぞれが、半導体基板に設けられた構成、構造
を挙げることができる。尚、これらの撮像素子の光電変換部の垂直方向における配置順は、光入射方向から青色用光電変換部、緑色用光電変換部、赤色用光電変換部の順、あるいは、光入射方向から緑色用光電変換部、青色用光電変換部、赤色用光電変換部の順であることが好ましい。これは、より短い波長の光がより入射表面側において効率良く吸収されるからである。赤色は3色の中では最も長い波長であるので、光入射面から見て赤色用光電変換部を最下層に位置させることが好ましい。これらの撮像素子の積層構造によって、1つの画素が構成される。また、第1タイプの赤外線用光電変換部を備えていてもよい。ここで、第1タイプの赤外線用光電変換部の光電変換層は、例えば、有機系材料から構成され、第1タイプの撮像素子の積層構造の最下層であって、第2タイプの撮像素子よりも上に配置することが好ましい。あるいは又、第1タイプの光電変換部の下方に、第2タイプの赤外線用光電変換部を備えていてもよい。
The stacked image sensor of the present disclosure has at least one image sensor (photoelectric conversion element) of the present disclosure, and specifically, for example,
[A] The first type blue photoelectric conversion unit, the first type green photoelectric conversion unit, and the first type red photoelectric conversion unit are vertically laminated.
Each of the control units of the first type blue image sensor, the first type green image sensor, and the first type red image sensor is provided on the semiconductor substrate in a configuration and structure [B] first type blue. The photoelectric conversion unit for green and the photoelectric conversion unit for green of the first type are laminated in the vertical direction.
A second type red photoelectric conversion unit is arranged below the first type photoelectric conversion unit of these two layers.
Each of the control units of the first type blue image sensor, the first type green image sensor, and the second type red image sensor is provided on the semiconductor substrate in the configuration and structure [C] first type green. A second type photoelectric conversion unit for blue and a second type photoelectric conversion unit for red are arranged below the photoelectric conversion unit for red.
Each of the control units of the first type green image sensor, the second type blue image sensor, and the second type red image sensor is provided on the semiconductor substrate in a configuration and structure [D] first type blue. A second type of green photoelectric conversion unit and a second type of red photoelectric conversion unit are arranged below the photoelectric conversion unit for red.
The configuration and structure of each of the control units of the first type blue image sensor, the second type green image sensor, and the second type red image sensor are provided on the semiconductor substrate. The order of arrangement of the photoelectric conversion units of these imaging elements in the vertical direction is from the light incident direction to the blue photoelectric conversion unit, the green photoelectric conversion unit, the red photoelectric conversion unit, or from the light incident direction to green. The order is preferably the photoelectric conversion unit, the blue photoelectric conversion unit, and the red photoelectric conversion unit. This is because light having a shorter wavelength is more efficiently absorbed on the incident surface side. Since red has the longest wavelength among the three colors, it is preferable to position the red photoelectric conversion unit at the bottom layer when viewed from the light incident surface. One pixel is formed by the laminated structure of these image pickup elements. Further, it may be provided with a first type photoelectric conversion unit for infrared rays. Here, the photoelectric conversion layer of the first type infrared photoelectric conversion unit is composed of, for example, an organic material, and is the lowest layer of the laminated structure of the first type image sensor, and is more than the second type image sensor. Is also preferably placed on top. Alternatively, a second type infrared photoelectric conversion unit may be provided below the first type photoelectric conversion unit.

第1タイプの撮像素子にあっては、例えば、第1電極が、半導体基板の上に設けられた層間絶縁層上に形成されている。半導体基板に形成された撮像素子は、裏面照射型とすることもできるし、表面照射型とすることもできる。 In the first type image sensor, for example, the first electrode is formed on an interlayer insulating layer provided on a semiconductor substrate. The image pickup device formed on the semiconductor substrate may be a back-illuminated type or a front-illuminated type.

光電変換層を有機系材料から構成する場合、光電変換層を、
(1)p型有機半導体から構成する。
(2)n型有機半導体から構成する。
(3)p型有機半導体層/n型有機半導体層の積層構造から構成する。p型有機半導体層/p型有機半導体とn型有機半導体との混合層(バルクヘテロ構造)/n型有機半導体層の積層構造から構成する。p型有機半導体層/p型有機半導体とn型有機半導体との混合層(バルクヘテロ構造)の積層構造から構成する。n型有機半導体層/p型有機半導体とn型有機半導体との混合層(バルクヘテロ構造)の積層構造から構成する。
(4)p型有機半導体とn型有機半導体の混合(バルクヘテロ構造)から構成する。
の4態様のいずれかとすることができる。但し、積層順は任意に入れ替えた構成とすることができる。
When the photoelectric conversion layer is composed of an organic material, the photoelectric conversion layer is
(1) It is composed of a p-type organic semiconductor.
(2) It is composed of an n-type organic semiconductor.
(3) It is composed of a laminated structure of a p-type organic semiconductor layer / n-type organic semiconductor layer. It is composed of a p-type organic semiconductor layer / a mixed layer of a p-type organic semiconductor and an n-type organic semiconductor (bulk heterostructure) / a laminated structure of an n-type organic semiconductor layer. It is composed of a laminated structure of a p-type organic semiconductor layer / a mixed layer (bulk heterostructure) of a p-type organic semiconductor and an n-type organic semiconductor. It is composed of an n-type organic semiconductor layer / a laminated structure of a mixed layer (bulk heterostructure) of a p-type organic semiconductor and an n-type organic semiconductor.
(4) It is composed of a mixture of a p-type organic semiconductor and an n-type organic semiconductor (bulk heterostructure).
It can be any of the four aspects. However, the stacking order can be arbitrarily changed.

p型有機半導体として、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、ペリレン誘導体、テトラセン誘導体、ペンタセン誘導体、キナクリドン誘導体、チオフェン誘導体、チエノチオフェン誘導体、ベンゾチオフェン誘導体、ベンゾチエノベンゾチオフェン誘導体、トリアリルアミン誘導体、カルバゾール誘導体、ペリレン誘導体、ピセン誘導体、クリセン誘導体、フルオランテン誘導体、フタロシアニン誘導体、サブフタロシアニン誘導体、サブポルフィラジン誘導体、複素環化合物を配位子とする金属錯体、ポリチオフェン誘導体、ポリベンゾチアジアゾール誘導体、ポリフルオレン誘導体等を挙げることができる。n型有機半導体として、フラーレン及びフラーレン誘導体〈例えば、C60や、C70,C74等のフラーレン(高次フラーレン)、内包フラーレン等)又はフラーレン誘導体(例えば、フラーレンフッ化物やPCBMフラーレン化合物、フラーレン多量体等)〉、p型有機半導体よりもHOMO及びLUMOが大きい(深い)有機半導体、透明な無機金属酸化物を挙げることができる。n型有機半導体として、具体的には、窒素原子、酸素原子、硫黄原子を含有する複素環化合物、例えば、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、イソキノリン誘導体、アクリジン誘導体、フェナジン誘導体、フェナントロリン誘導体、テトラゾール誘導体、ピラゾール誘導体、イミダゾール誘導体、チアゾール誘導体、オキサゾール誘導体、イミダゾール誘導体、ベンズイミダゾール誘導体、ベンゾトリアゾール誘導体、ベンズオキサゾール誘導体、ベンズオキサゾール誘導体、カルバゾール誘導体、ベンゾフラン誘導体、ジベンゾフラン誘導体、サブポルフィラジン誘導体、ポリフェニレンビニレン誘導体、ポリベンゾチアジアゾール誘導体、ポリフルオレン誘導体等を分子骨格の一部に有する有機分子、有機金属錯体やサブフタロシアニン誘導体を挙げることができる。フラーレン誘導体に含まれる基等として、ハロゲン原子;直鎖、分岐若しくは環状のアルキル基若しくはフェニル基;直鎖若しくは縮環した芳香族化合物を有する基;ハロゲン化物を有する基;パーシャルフルオロアルキル基;パーフルオロアルキル基;シリルアルキル基;シリルアルコキシ基;アリールシリル基;アリールスルファニル基;アルキルスルファニル基;アリールスルホニル基;アルキルスルホニル基;アリールスルフィド基;アルキルスルフィド基;アミノ基;アルキルアミノ基;アリールアミノ基;ヒドロキシ基;アルコキシ基;アシルアミノ基;アシルオキシ基;カルボニル基;カルボキシ基;カルボキソアミド基;カルボアルコキシ基;アシル基;スルホニル基;シアノ基;ニトロ基;カルコゲン化物を有する基;ホスフィン基;ホスホン基;これらの誘導体を挙げることができる。有機系材料から構成された光電変換層(『有機光電変換層』と呼ぶ場合がある)の厚さは、限定するものではないが、例えば、1×10-8m乃至5×10-7m、好ましくは2.5×10-8m乃至3×10-7m、より好ましくは2.5×10-8m乃至2×10-7m、一層好ましくは1×10-7m乃至1.8×10-7mを例示することができる。尚、有機半導体は、p型、n型と分類されることが多いが、p型とは正孔を輸送し易いという意味であり、n型とは電子を輸送し易いという意味であり、無機半導体のように熱励起の多数キャリアとして正孔又は電子を有しているという解釈に限定されない。 As p-type organic semiconductors, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, perylene derivatives, tetracene derivatives, pentacene derivatives, quinacridone derivatives, thiophene derivatives, thienothiophene derivatives, benzothiophene derivatives, benzothienobenzothiophene derivatives, triarylamine derivatives , Carbazole derivative, Perylene derivative, Picene derivative, Chrycene derivative, Fluolanthene derivative, Phthalocyanin derivative, Subphthalocyanine derivative, Subporphyrazine derivative, Metal complex with heterocyclic compound as ligand, Polythiophene derivative, Polybenzothiasizole derivative, Polyfluorene Derivatives and the like can be mentioned. Examples of the n-type organic semiconductor include fullerenes and fullerene derivatives (for example, fullerenes (higher-order fullerenes) such as C60, C70 and C74, encapsulated fullerenes, etc.) or fullerenes derivatives (eg, fullerenes fluoride, PCBM fullerene compounds, fullerene multimers, etc.). )>, Organic semiconductors having a larger HOMO and LUMO (deeper) than p-type organic semiconductors, and transparent inorganic metal oxides can be mentioned. Specific examples of the n-type organic semiconductor include heterocyclic compounds containing nitrogen atoms, oxygen atoms, and sulfur atoms, such as pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, quinoxalin derivatives, isoquinoline derivatives, and acrydin. Derivatives, phenazine derivatives, phenanthroline derivatives, tetrazole derivatives, pyrazole derivatives, imidazole derivatives, thiazole derivatives, oxazole derivatives, imidazole derivatives, benzimidazole derivatives, benzotriazole derivatives, benzoxazole derivatives, benzoxazole derivatives, carbazole derivatives, benzofuran derivatives, dibenzofuran derivatives , Subporphyrazine derivative, polyphenylene vinylene derivative, polybenzothianidazole derivative, polyfluorene derivative and the like as a part of the molecular skeleton, organic molecule, organic metal complex and subphthalocyanine derivative can be mentioned. Examples of the group contained in the fullerene derivative include a halogen atom; a linear, branched or cyclic alkyl group or phenyl group; a group having a linear or condensed aromatic compound; a group having a halide; a partial fluoroalkyl group; Fluoroalkyl group; silylalkyl group; silylalkoxy group; arylsilyl group;arylsulfanyl group; alkylsulfanyl group; arylsulfonyl group;alkylsulfonyl group;arylsulfide group; alkylsulfide group;amino group; alkylamino group;arylamino group Hydroxy group; alkoxy group; acylamino group; acyloxy group; carbonyl group; carboxy group; carboxoamide group; carboalkoxy group; acyl group; sulfonyl group; cyano group; nitro group; chalcogenized group; phosphine group; phosphon Groups; These derivatives can be mentioned. The thickness of the photoelectric conversion layer (sometimes referred to as "organic photoelectric conversion layer") composed of an organic material is not limited, but is, for example, 1 × 10 -8 m to 5 × 10 -7 m. , Preferably 2.5 × 10 -8 m to 3 × 10 -7 m, more preferably 2.5 × 10 -8 m to 2 × 10 -7 m, and even more preferably 1 × 10 -7 m to 1. 8 × 10 -7 m can be exemplified. Organic semiconductors are often classified into p-type and n-type, but p-type means that holes are easily transported, and n-type means that electrons are easily transported, and they are inorganic. It is not limited to the interpretation that it has holes or electrons as a majority carrier of thermal excitation like a semiconductor.

あるいは又、緑色の波長の光を光電変換する有機光電変換層を構成する材料として、例えば、ローダミン系色素、メラシアニン系色素、キナクリドン誘導体、サブフタロシアニン系色素(サブフタロシアニン誘導体)等を挙げることができるし、青色の光を光電変換する有機光電変換層を構成する材料として、例えば、クマリン酸色素、トリス−8−ヒドリキシキノリアルミニウム(Alq3)、メラシアニン系色素等を挙げることができるし、赤色の光を光電変換する有機光電変換層を構成する材料として、例えば、フタロシアニン系色素、サブフタロシアニン系色素(サブフタロシアニン誘導体)を挙げることができる。 Alternatively, as a material constituting the organic photoelectric conversion layer that photoelectrically converts light having a green wavelength, for example, a rhodamine dye, a melanicin dye, a quinacridone derivative, a subphthalocyanine dye (subphthalocyanine derivative) and the like can be mentioned. Examples of the material constituting the organic photoelectric conversion layer for photoelectric conversion of blue light include coumarin acid dye, tris-8-hydroxyquinolialuminum (Alq3), melocyanine dye, and the like, and red. Examples of the material constituting the organic photoelectric conversion layer that photoelectrically converts light include a phthalocyanine dye and a subphthalocyanine dye (subphthalocyanine derivative).

あるいは又、光電変換層を構成する無機系材料として、結晶シリコン、アモルファスシリコン、微結晶シリコン、結晶セレン、アモルファスセレン、及び、カルコパライト系化合物であるCIGS(CuInGaSe)、CIS(CuInSe2)、CuInS2、CuAlS2、CuAlSe2、CuGaS2、CuGaSe2、AgAlS2、AgAlSe2、AgInS2、AgInSe2、あるいは又、III−V族化合物であるGaAs、InP、AlGaAs、InGaP、AlGaInP、InGaAsP、更には、CdSe、CdS、In2Se3、In23、Bi2Se3、Bi23、ZnSe、ZnS、PbSe、PbS等の化合物半導体を挙げることができる。加えて、これらの材料から成る量子ドットを光電変換層に使用することも可能である。 Alternatively, as the inorganic material constituting the photoelectric conversion layer, crystalline silicon, amorphous silicon, microcrystalline silicon, crystalline selenium, amorphous selenium, and calcopalite compounds CIGS (CuInGaSe), CIS (CuInSe 2 ), CuInS 2 , CuAlS 2 , CuAlSe 2 , CuGaS 2 , CuGaSe 2 , AgAlS 2 , AgAlSe 2 , AgInS 2 , AgInSe 2 , or also group III-V compounds GaAs, InP, AlGaAs, InGaP, AlGaInP, InGaAsP, and more. Examples thereof include compound semiconductors such as CdSe, CdS, In 2 Se 3 , In 2 S 3 , Bi 2 Se 3 , Bi 2 S 3 , ZnSe, ZnS, PbSe, and PbS. In addition, quantum dots made of these materials can also be used in the photoelectric conversion layer.

あるいは又、光電変換層を、下層半導体層と、上層光電変換層の積層構造とすることができる。このように下層半導体層を設けることで、電荷蓄積時の再結合を防止することができ、光電変換層に蓄積した電荷の第1電極への転送効率を増加させることができるし、暗電流の生成を抑制することができる。上層光電変換層を構成する材料は、上記の光電変換層を構成する各種材料から、適宜、選択すればよい。一方、下層半導体層を構成する材料として、バンドギャップエネルギーの値が大きく(例えば、3.0eV以上のバンドギャップエネルギーの値)、しかも、光電変換層を構成する材料よりも高い移動度を有する材料を用いることが好ましい。具体的には、IGZO等の酸化物半導体材料;遷移金属ダイカルコゲナイド;シリコンカーバイド;ダイヤモンド;グラフェン;カーボンナノチューブ;縮合多環炭化水素化合物や縮合複素環化合物等の有機半導体材料を挙げることができる。あるいは又、下層半導体層を構成する材料として、蓄積すべき電荷が正孔である場合、光電変換層を構成する材料のイオン化ポテンシャルよりも小さなイオン化ポテンシャルを有する材料を挙げることができるし、蓄積すべき電荷が電子である場合、光電変換層を構成する材料の電子親和力よりも大きな電子親和力を有する材料を挙げることができる。あるいは又、下層半導体層を構成する材料における不純物濃度は1×1018cm-3以下であることが好ましい。下層半導体層は、単層構成であってもよいし、多層構成であってもよい。また、電荷蓄積用電極の上方に位置する下層半導体層を構成する材料と、第1電極の上方に位置する下層半導体層を構成する材料とを、異ならせてもよい。 Alternatively, the photoelectric conversion layer can have a laminated structure of a lower semiconductor layer and an upper photoelectric conversion layer. By providing the lower semiconductor layer in this way, recombination during charge accumulation can be prevented, the transfer efficiency of the charge accumulated in the photoelectric conversion layer to the first electrode can be increased, and the dark current can be increased. The generation can be suppressed. The material constituting the upper photoelectric conversion layer may be appropriately selected from the various materials constituting the above-mentioned photoelectric conversion layer. On the other hand, as a material constituting the lower semiconductor layer, a material having a large bandgap energy value (for example, a bandgap energy value of 3.0 eV or more) and having a higher mobility than the material constituting the photoelectric conversion layer. Is preferably used. Specific examples thereof include oxide semiconductor materials such as IGZO; transition metal dichalcogenides; silicon carbide; diamonds; graphene; carbon nanotubes; organic semiconductor materials such as condensed polycyclic hydrocarbon compounds and condensed heterocyclic compounds. Alternatively, as a material constituting the lower semiconductor layer, when the charge to be accumulated is a hole, a material having an ionization potential smaller than the ionization potential of the material constituting the photoelectric conversion layer can be mentioned and accumulated. When the power charge is an electron, a material having an electron affinity larger than the electron affinity of the material constituting the photoelectric conversion layer can be mentioned. Alternatively, the impurity concentration in the material constituting the lower semiconductor layer is preferably 1 × 10 18 cm -3 or less. The lower semiconductor layer may have a single-layer structure or a multi-layer structure. Further, the material forming the lower semiconductor layer located above the charge storage electrode and the material forming the lower semiconductor layer located above the first electrode may be different from each other.

本開示の第1の態様〜第2の態様に係る固体撮像装置によって、単板式カラー固体撮像装置を構成することができる。 A single-plate color solid-state image sensor can be configured by the solid-state image sensor according to the first to second aspects of the present disclosure.

積層型撮像素子を備えた本開示の第2の態様に係る固体撮像装置にあっては、ベイヤ配列の撮像素子を備えた固体撮像装置と異なり(即ち、カラーフィルタを用いて青色、緑色、赤色の分光を行うのではなく)、同一画素内で光の入射方向において、複数種の波長の光に対して感度を有する撮像素子を積層して1つの画素を構成するので、感度の向上及び単位体積当たりの画素密度の向上を図ることができる。また、有機系材料は吸収係数が高いため、有機光電変換層の膜厚を従来のSi系光電変換層と比較して薄くすることができ、隣接画素からの光漏れや、光の入射角の制限が緩和される。更には、従来のSi系撮像素子では3色の画素間で補間処理を行って色信号を作成するために偽色が生じるが、積層型撮像素子を備えた本開示の第2の態様に係る固体撮像装置にあっては、偽色の発生が抑えられる。有機光電変換層それ自体がカラーフィルタとしても機能するので、カラーフィルタを配設しなくとも色分離が可能である。 The solid-state image sensor according to the second aspect of the present disclosure provided with a stacked image sensor is different from the solid-state image sensor provided with a bayer-arranged image sensor (that is, blue, green, and red using a color filter). In the incident direction of light in the same pixel, image sensors having sensitivity to light of multiple kinds of wavelengths are laminated to form one pixel, so that the sensitivity is improved and the unit is It is possible to improve the pixel density per volume. Further, since the organic material has a high absorption coefficient, the film thickness of the organic photoelectric conversion layer can be made thinner than that of the conventional Si photoelectric conversion layer, and the light leakage from the adjacent pixels and the incident angle of light can be reduced. The restrictions are relaxed. Further, in the conventional Si-based image sensor, false colors are generated because the color signal is created by performing interpolation processing between the pixels of three colors, but the second aspect of the present disclosure including the stacked image sensor is provided. In the solid-state image sensor, the generation of false color is suppressed. Since the organic photoelectric conversion layer itself also functions as a color filter, color separation is possible without disposing a color filter.

一方、本開示の第1の態様に係る固体撮像装置にあっては、カラーフィルタを用いることで、青色、緑色、赤色の分光特性への要求を緩和することができるし、また、高い量産性を有する。本開示の第1の態様に係る固体撮像装置における撮像素子の配列として、ベイヤ配列の他、インターライン配列、GストライプRB市松配列、GストライプRB完全市松配列、市松補色配列、ストライプ配列、斜めストライプ配列、原色色差配列、フィールド色差順次配列、フレーム色差順次配列、MOS型配列、改良MOS型配列、フレームインターリーブ配列、フィールドインターリーブ配列を挙げることができる。ここで、1つの撮像素子によって1つの画素(あるいは副画素)が構成される。 On the other hand, in the solid-state image sensor according to the first aspect of the present disclosure, by using a color filter, the requirements for the spectral characteristics of blue, green, and red can be alleviated, and high mass productivity can be achieved. Has. As the arrangement of the imaging elements in the solid-state imaging device according to the first aspect of the present disclosure, in addition to the bayer arrangement, the interline arrangement, the G stripe RB checkered arrangement, the G stripe RB complete checkered arrangement, the checkered complementary color arrangement, the stripe arrangement, and the diagonal stripe Examples thereof include an array, a primary color difference array, a field color difference sequential array, a frame color difference sequential array, a MOS type array, an improved MOS type array, a frame interleaved array, and a field interleaved array. Here, one pixel (or sub-pixel) is configured by one image sensor.

本開示の撮像素子あるいは本開示の積層型撮像素子が複数配列された画素領域は、2次元アレイ状に規則的に複数配列された画素から構成される。画素領域は、通常、実際に光を受光し光電変換によって生成された信号電荷を増幅して駆動回路に読み出す有効画素領域と、黒レベルの基準になる光学的黒を出力するための黒基準画素領域とから構成されている。黒基準画素領域は、通常は、有効画素領域の外周部に配置されている。 The pixel region in which a plurality of the image pickup devices of the present disclosure or the stacked image pickup devices of the present disclosure are arranged is composed of pixels that are regularly arranged in a two-dimensional array. The pixel area is usually an effective pixel area that actually receives light, amplifies the signal charge generated by photoelectric conversion, and reads it out to a drive circuit, and a black reference pixel for outputting optical black that serves as a reference for the black level. It is composed of areas. The black reference pixel region is usually arranged on the outer peripheral portion of the effective pixel region.

以上に説明した各種の好ましい形態、構成を含む本開示の撮像素子等において、光が照射され、光電変換層で光電変換が生じ、正孔(ホール)と電子がキャリア分離される。そして、正孔が取り出される電極を陽極、電子が取り出される電極を陰極とする。第1電極が陽極を構成し、第2電極が陰極を構成する形態もあるし、逆に、第1電極が陰極を構成し、第2電極が陽極を構成する形態もある。 In the image pickup device and the like of the present disclosure including various preferable forms and configurations described above, light is irradiated, photoelectric conversion occurs in the photoelectric conversion layer, and holes and electrons are carrier-separated. The electrode from which holes are taken out is used as an anode, and the electrode from which electrons are taken out is used as a cathode. In some forms, the first electrode constitutes the anode and the second electrode forms the cathode, and conversely, in the form, the first electrode forms the cathode and the second electrode forms the anode.

積層型撮像素子を構成する場合、第1電極、電荷蓄積用電極、転送制御用電極、電荷排出電極及び第2電極は透明導電材料から成る構成とすることができる。尚、第1電極、電荷蓄積用電極、転送制御用電極及び電荷排出電極を総称して、『第1電極等』と呼ぶ場合がある。あるいは又、本開示の撮像素子等が、例えばベイヤ配列のように平面に配される場合には、第2電極は透明導電材料から成り、第1電極は金属材料から成る構成とすることができ、この場合、具体的には、光入射側に位置する第2電極は透明導電材料から成り、第1電極等は、例えば、Al−Nd(アルミニウム及びネオジウムの合金)又はASC(アルミニウム、サマリウム及び銅の合金)から成る構成とすることができる。尚、透明導電材料から成る電極を『透明電極』と呼ぶ場合がある。ここで、透明導電材料のバンドギャップエネルギーは、2.5eV以上、好ましくは3.1eV以上であることが望ましい。透明電極を構成する透明導電材料として、導電性のある金属酸化物を挙げることができ、具体的には、酸化インジウム、インジウム−錫酸化物(ITO,Indium Tin Oxide,SnドープのIn23、結晶性ITO及びアモルファスITOを含む)、酸化亜鉛にドーパントとしてインジウムを添加したインジウム−亜鉛酸化物(IZO,Indium Zinc Oxide)、酸化ガリウムにドーパントとしてインジウムを添加したインジウム−ガリウム酸化物(IGO)、酸化亜鉛にドーパントとしてインジウムとガリウムを添加したインジウム−ガリウム−亜鉛酸化物(IGZO,In−GaZnO4)、酸化亜鉛にドーパントとしてインジウムと錫を添加したインジウム−錫−亜鉛酸化物(ITZO)、IFO(FドープのIn23)、酸化錫(SnO2)、ATO(SbドープのSnO2)、FTO(FドープのSnO2)、酸化亜鉛(他元素をドープしたZnOを含む)、酸化亜鉛にドーパントとしてアルミニウムを添加したアルミニウム−亜鉛酸化物(AZO)、酸化亜鉛にドーパントとしてガリウムを添加したガリウム−亜鉛酸化物(GZO)、酸化チタン(TiO2)、酸化チタンにドーパントとしてニオブを添加したニオブ−チタン酸化物(TNO)、酸化アンチモン、スピネル型酸化物、YbFe24構造を有する酸化物を例示することができる。あるいは又、ガリウム酸化物、チタン酸化物、ニオブ酸化物、ニッケル酸化物等を母層とする透明電極を挙げることができる。透明電極の厚さとして、2×10-8m乃至2×10-7m、好ましくは3×10-8m乃至1×10-7mを挙げることができる。第1電極が透明性を要求される場合、製造プロセスの簡素化といった観点から、電荷排出電極も透明導電材料から構成することが好ましい。 When the stacked image sensor is configured, the first electrode, the charge storage electrode, the transfer control electrode, the charge discharge electrode, and the second electrode can be made of a transparent conductive material. The first electrode, the charge storage electrode, the transfer control electrode, and the charge discharge electrode may be collectively referred to as the "first electrode or the like". Alternatively, when the imaging elements and the like of the present disclosure are arranged in a plane as in a bayer arrangement, the second electrode may be made of a transparent conductive material and the first electrode may be made of a metal material. In this case, specifically, the second electrode located on the light incident side is made of a transparent conductive material, and the first electrode and the like are, for example, Al-Nd (alloy of aluminum and neodium) or ASC (aluminum, sumalium and It can be composed of an alloy of copper). An electrode made of a transparent conductive material may be referred to as a "transparent electrode". Here, it is desirable that the bandgap energy of the transparent conductive material is 2.5 eV or more, preferably 3.1 eV or more. Examples of the transparent conductive material constituting the transparent electrode include conductive metal oxides. Specifically, indium oxide and indium-tin oxide (ITO, Indium Tin Oxide, Sn-doped In 2 O 3) can be mentioned. (Including crystalline ITO and amorphous ITO), indium-zinc oxide (IZO, Indium Zinc Oxide) in which indium is added as a dopant to zinc oxide, indium-gallium oxide (IGO) in which indium is added as a dopant to gallium oxide. , Indium-gallium-zinc oxide (IGZO, In-GaZnO 4 ) with indium and gallium added as dopants to zinc oxide, indium-tin-zinc oxide (ITZO) with indium and tin added as dopants to zinc oxide, IFO (F-doped In 2 O 3 ), tin oxide (SnO 2 ), ATO (Sb-doped SnO 2 ), FTO (F-doped SnO 2 ), zinc oxide (including ZnO doped with other elements), oxidation Aluminum-zinc oxide (AZO) with aluminum added as a dopant to zinc, gallium-zinc oxide (GZO) with gallium added as a dopant to zinc oxide, titanium oxide (TIO 2 ), and niobium added as a dopant to titanium oxide Niob-titanium oxide (TNO), antimony oxide, spinel-type oxide, and oxide having a YbFe 2 O 4 structure can be exemplified. Alternatively, a transparent electrode having gallium oxide, titanium oxide, niobium oxide, nickel oxide or the like as a base layer can be mentioned. Examples of the thickness of the transparent electrode include 2 × 10 -8 m to 2 × 10 -7 m, preferably 3 × 10 -8 m to 1 × 10 -7 m. When the first electrode is required to be transparent, it is preferable that the charge discharging electrode is also made of a transparent conductive material from the viewpoint of simplifying the manufacturing process.

あるいは又、透明性が不要である場合、正孔を取り出す電極としての機能を有する陽極を構成する導電材料として、高仕事関数(例えば、φ=4.5eV〜5.5eV)を有する導電材料から構成することが好ましく、具体的には、金(Au)、銀(Ag)、クロム(Cr)、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)、鉄(Fe)、イリジウム(Ir)、ゲルマニウム(Ge)、オスミウム(Os)、レニウム(Re)、テルル(Te)を例示することができる。一方、電子を取り出す電極としての機能を有する陰極を構成する導電材料として、低仕事関数(例えば、φ=3.5eV〜4.5eV)を有する導電材料から構成することが好ましく、具体的には、アルカリ金属(例えばLi、Na、K等)及びそのフッ化物又は酸化物、アルカリ土類金属(例えばMg、Ca等)及びそのフッ化物又は酸化物、アルミニウム(Al)、亜鉛(Zn)、錫(Sn)、タリウム(Tl)、ナトリウム−カリウム合金、アルミニウム−リチウム合金、マグネシウム−銀合金、インジウム、イッテリビウム等の希土類金属、あるいは、これらの合金を挙げることができる。あるいは又、陽極や陰極を構成する材料として、白金(Pt)、金(Au)、パラジウム(Pd)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)、銀(Ag)、タンタル(Ta)、タングステン(W)、銅(Cu)、チタン(Ti)、インジウム(In)、錫(Sn)、鉄(Fe)、コバルト(Co)、モリブデン(Mo)等の金属、あるいは、これらの金属元素を含む合金、これらの金属から成る導電性粒子、これらの金属を含む合金の導電性粒子、不純物を含有したポリシリコン、炭素系材料、酸化物半導体、カーボン・ナノ・チューブ、グラフェン等の導電性材料を挙げることができるし、これらの元素を含む層の積層構造とすることもできる。更には、陽極や陰極を構成する材料として、ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸[PEDOT/PSS]といった有機材料(導電性高分子)を挙げることもできる。また、これらの導電性材料をバインダー(高分子)に混合してペースト又はインクとしたものを硬化させ、電極として用いてもよい。 Alternatively, when transparency is not required, from a conductive material having a high work function (for example, φ = 4.5 eV to 5.5 eV) as a conductive material constituting an anode having a function as an electrode for extracting holes. It is preferably configured, and specifically, gold (Au), silver (Ag), chromium (Cr), nickel (Ni), palladium (Pd), platinum (Pt), iron (Fe), and iridium (Ir). , Germanium (Ge), osmium (Os), renium (Re), tellurium (Te) can be exemplified. On the other hand, the conductive material constituting the cathode having a function as an electrode for extracting electrons is preferably composed of a conductive material having a low work function (for example, φ = 3.5 eV to 4.5 eV), specifically. , Alkali metals (eg Li, Na, K, etc.) and their fluorides or oxides, alkaline earth metals (eg Mg, Ca, etc.) and their fluorides or oxides, aluminum (Al), zinc (Zn), tin Examples thereof include rare earth metals such as (Sn), tarium (Tl), sodium-potassium alloy, aluminum-lithium alloy, magnesium-silver alloy, indium and itteribium, or alloys thereof. Alternatively, as materials constituting the anode and the cathode, platinum (Pt), gold (Au), palladium (Pd), chromium (Cr), nickel (Ni), aluminum (Al), silver (Ag), and tantalum (Ta). ), Tungsten (W), Copper (Cu), Titanium (Ti), Indium (In), Tin (Sn), Iron (Fe), Cobalt (Co), Molybdenum (Mo) and other metals, or these metals Alloys containing elements, conductive particles made of these metals, conductive particles of alloys containing these metals, polysilicon containing impurities, carbon-based materials, oxide semiconductors, carbon nanotubes, conductivity of graphene, etc. A sex material can be mentioned, and a laminated structure of layers containing these elements can also be used. Further, as a material constituting the anode and the cathode, an organic material (conductive polymer) such as poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid [PEDOT / PSS] can be mentioned. Further, these conductive materials may be mixed with a binder (polymer) to form a paste or ink, which may be cured and used as an electrode.

第1電極等や第2電極(陽極や陰極)の成膜方法として、乾式法あるいは湿式法を用いることが可能である。乾式法として、物理的気相成長法(PVD法)及び化学的気相成長法(CVD法)を挙げることができる。PVD法の原理を用いた成膜方法として、抵抗加熱あるいは高周波加熱を用いた真空蒸着法、EB(電子ビーム)蒸着法、各種スパッタリング法(マグネトロンスパッタリング法、RF−DC結合形バイアススパッタリング法、ECRスパッタリング法、対向ターゲットスパッタリング法、高周波スパッタリング法)、イオンプレーティング法、レーザーアブレーション法、分子線エピタキシー法、レーザー転写法を挙げることができる。また、CVD法として、プラズマCVD法、熱CVD法、有機金属(MO)CVD法、光CVD法を挙げることができる。一方、湿式法として、電解メッキ法や無電解メッキ法、スピンコート法、インクジェット法、スプレーコート法、スタンプ法、マイクロコンタクトプリント法、フレキソ印刷法、オフセット印刷法、グラビア印刷法、ディップ法等の方法を挙げることができる。パターニング法として、シャドーマスク、レーザー転写、フォトリソグラフィー等の化学的エッチング、紫外線やレーザー等による物理的エッチング等を挙げることができる。第1電極等や第2電極の平坦化技術として、レーザー平坦化法、リフロー法、CMP(Chemical Mechanical Polishing)法等を用いることができる。 As a film forming method for the first electrode and the like and the second electrode (anode or cathode), a dry method or a wet method can be used. Examples of the dry method include a physical vapor deposition method (PVD method) and a chemical vapor deposition method (CVD method). As a film forming method using the principle of PVD method, vacuum vapor deposition method using resistance heating or high frequency heating, EB (electron beam) deposition method, various sputtering methods (magnettron sputtering method, RF-DC coupled bias sputtering method, ECR) Sputtering method, opposed target sputtering method, high frequency sputtering method), ion plating method, laser ablation method, molecular beam epitaxy method, laser transfer method can be mentioned. Further, examples of the CVD method include a plasma CVD method, a thermal CVD method, an organic metal (MO) CVD method, and an optical CVD method. On the other hand, as wet methods, electroplating method, electroless plating method, spin coating method, inkjet method, spray coating method, stamp method, micro contact printing method, flexographic printing method, offset printing method, gravure printing method, dip method, etc. The method can be mentioned. Examples of the patterning method include chemical etching such as shadow mask, laser transfer, and photolithography, and physical etching by ultraviolet rays, laser, and the like. As a flattening technique for the first electrode and the like and the second electrode, a laser flattening method, a reflow method, a CMP (Chemical Mechanical Polishing) method, or the like can be used.

絶縁層を構成する材料として、酸化ケイ素系材料;窒化ケイ素(SiNY);酸化アルミニウム(Al23)等の金属酸化物高誘電絶縁材料に例示される無機系絶縁材料だけでなく、ポリメチルメタクリレート(PMMA);ポリビニルフェノール(PVP);ポリビニルアルコール(PVA);ポリイミド;ポリカーボネート(PC);ポリエチレンテレフタレート(PET);ポリスチレン;N−2(アミノエチル)3−アミノプロピルトリメトキシシラン(AEAPTMS)、3−メルカプトプロピルトリメトキシシラン(MPTMS)、オクタデシルトリクロロシラン(OTS)等のシラノール誘導体(シランカップリング剤);ノボラック型フェノール樹脂;フッ素系樹脂;オクタデカンチオール、ドデシルイソシアネイト等の一端に制御電極と結合可能な官能基を有する直鎖炭化水素類にて例示される有機系絶縁材料(有機ポリマー)を挙げることができるし、これらの組み合わせを用いることもできる。尚、酸化ケイ素系材料として、酸化シリコン(SiOX)、BPSG、PSG、BSG、AsSG、PbSG、酸化窒化シリコン(SiON)、SOG(スピンオングラス)、低誘電率材料(例えば、ポリアリールエーテル、シクロパーフルオロカーボンポリマー及びベンゾシクロブテン、環状フッ素樹脂、ポリテトラフルオロエチレン、フッ化アリールエーテル、フッ化ポリイミド、アモルファスカーボン、有機SOG)を例示することができる。各種層間絶縁層や絶縁膜を構成する材料も、これらの材料から適宜選択すればよい。 As the material constituting the insulating layer, a silicon oxide materials; silicon nitride (SiN Y); as well inorganic insulating materials exemplified in the metal oxide high dielectric insulating material such as aluminum oxide (Al 2 O 3), poly Methyl methacrylate (PMMA); Polyvinylphenol (PVP); Polypolyalcohol (PVA); Polyethylene; Polycarbonate (PC); Polyethylene terephthalate (PET); Polystyrene; N-2 (Aminoethyl) 3-Aminopropyltrimethoxysilane (AEAPTMS) , 3-Mercaptopropyltrimethoxysilane (MPTMS), octadecyltrichlorosilane (OTS) and other silanol derivatives (silane coupling agents); novolak-type phenolic resin; fluororesin; octadecanethiol, dodecylisosocyanate, etc. Examples thereof include organic insulating materials (organic polymers) exemplified by linear hydrocarbons having a functional group capable of binding to, and combinations thereof can also be used. As the silicon oxide-based material, silicon oxide (SiO X ), BPSG, PSG, BSG, AsSG, PbSG, silicon oxide nitride (SiON), SOG (spin-on glass), low dielectric constant material (for example, polyaryl ether, cyclo). Perfluorocarbon polymer and benzocyclobutene, cyclic fluororesin, polytetrafluoroethylene, aryl ether fluoride, polyimide fluoride, amorphous carbon, organic SOG) can be exemplified. The materials constituting the various interlayer insulating layers and insulating films may be appropriately selected from these materials.

制御部を構成する浮遊拡散層、増幅トランジスタ、リセット・トランジスタ及び選択トランジスタの構成、構造は、従来の浮遊拡散層、増幅トランジスタ、リセット・トランジスタ及び選択トランジスタの構成、構造と同様とすることができる。駆動回路も周知の構成、構造とすることができる。 The configuration and structure of the floating diffusion layer, amplification transistor, reset transistor and selection transistor constituting the control unit can be the same as the configuration and structure of the conventional floating diffusion layer, amplification transistor, reset transistor and selection transistor. .. The drive circuit can also have a well-known configuration and structure.

第1電極は、浮遊拡散層及び増幅トランジスタのゲート部に接続されているが、第1電極と浮遊拡散層及び増幅トランジスタのゲート部との接続のためにコンタクトホール部を形成すればよい。コンタクトホール部を構成する材料として、不純物がドーピングされたポリシリコンや、タングステン、Ti、Pt、Pd、Cu、TiW、TiN、TiNW、WSi2、MoSi2等の高融点金属や金属シリサイド、これらの材料から成る層の積層構造(例えば、Ti/TiN/W)を例示することができる。 The first electrode is connected to the floating diffusion layer and the gate portion of the amplification transistor, but a contact hole portion may be formed for connecting the first electrode to the floating diffusion layer and the gate portion of the amplification transistor. Materials constituting the contact hole include polysilicon doped with impurities, refractory metals such as tungsten, Ti, Pt, Pd, Cu, TiW, TiN, TiNW, WSi 2 , and MoSi 2, and metal silicides thereof. A laminated structure of layers made of a material (eg, Ti / TiN / W) can be exemplified.

有機光電変換層と第1電極との間に、第1キャリアブロッキング層を設けてもよいし、有機光電変換層と第2電極との間に、第2キャリアブロッキング層を設けてもよい。また、第1キャリアブロッキング層と第1電極との間に第1電荷注入層を設けてもよいし、第2キャリアブロッキング層と第2電極との間に第2電荷注入層を設けてもよい。例えば、電子注入層を構成する材料として、例えば、リチウム(Li)、ナトリウム(Na)、カリウム(K)といったアルカリ金属及びそのフッ化物や酸化物、マグネシウム(Mg)、カルシウム(Ca)といったアルカリ土類金属及びそのフッ化物や酸化物を挙げることができる。 A first carrier blocking layer may be provided between the organic photoelectric conversion layer and the first electrode, or a second carrier blocking layer may be provided between the organic photoelectric conversion layer and the second electrode. Further, a first charge injection layer may be provided between the first carrier blocking layer and the first electrode, or a second charge injection layer may be provided between the second carrier blocking layer and the second electrode. .. For example, as a material constituting the electron injection layer, for example, alkali metals such as lithium (Li), sodium (Na) and potassium (K) and their fluorides and oxides, and alkaline soils such as magnesium (Mg) and calcium (Ca). Examples thereof include similar metals and their fluorides and oxides.

各種有機層の成膜方法として、乾式成膜法及び湿式成膜法を挙げることができる。乾式成膜法として、抵抗加熱あるいは高周波加熱、電子ビーム加熱を用いた真空蒸着法、フラッシュ蒸着法、プラズマ蒸着法、EB蒸着法、各種スパッタリング法(2極スパッタリング法、直流スパッタリング法、直流マグネトロンスパッタリング法、高周波スパッタリング法、マグネトロンスパッタリング法、RF−DC結合形バイアススパッタリング法、ECRスパッタリング法、対向ターゲットスパッタリング法、高周波スパッタリング法、イオンビームスパッタリング法)、DC(Direct Current)法、RF法、多陰極法、活性化反応法、電界蒸着法、高周波イオンプレーティング法や反応性イオンプレーティング法等の各種イオンプレーティング法、レーザーアブレーション法、分子線エピタキシー法、レーザー転写法、分子線エピタキシー法(MBE法)を挙げることができる。また、CVD法として、プラズマCVD法、熱CVD法、MOCVD法、光CVD法を挙げることができる。一方、湿式法として、具体的には、スピンコート法;浸漬法;キャスト法;マイクロコンタクトプリント法;ドロップキャスト法;スクリーン印刷法やインクジェット印刷法、オフセット印刷法、グラビア印刷法、フレキソ印刷法といった各種印刷法;スタンプ法;スプレー法;エアドクタコーター法、ブレードコーター法、ロッドコーター法、ナイフコーター法、スクイズコーター法、リバースロールコーター法、トランスファーロールコーター法、グラビアコーター法、キスコーター法、キャストコーター法、スプレーコーター法、スリットオリフィスコーター法、カレンダーコーター法といった各種コーティング法を例示することができる。尚、塗布法においては、溶媒として、トルエン、クロロホルム、ヘキサン、エタノールといった無極性又は極性の低い有機溶媒を例示することができる。パターニング法として、シャドーマスク、レーザー転写、フォトリソグラフィー等の化学的エッチング、紫外線やレーザー等による物理的エッチング等を挙げることができる。各種有機層の平坦化技術として、レーザー平坦化法、リフロー法等を用いることができる。 Examples of the method for forming various organic layers include a dry film forming method and a wet film forming method. As a dry film forming method, resistance heating, high frequency heating, vacuum vapor deposition method using electron beam heating, flash vapor deposition method, plasma vapor deposition method, EB vapor deposition method, various sputtering methods (bipolar sputtering method, DC sputtering method, DC magnetron sputtering) Method, high frequency sputtering method, magnetron sputtering method, RF-DC coupled bias sputtering method, ECR sputtering method, opposed target sputtering method, high frequency sputtering method, ion beam sputtering method), DC (Direct Current) method, RF method, multi-cathode Various ion plating methods such as methods, activation reaction methods, electrodeposition methods, high frequency ion plating methods and reactive ion plating methods, laser ablation methods, molecular beam epitaxy methods, laser transfer methods, molecular beam epitaxy methods (MBE). Law) can be mentioned. Further, examples of the CVD method include a plasma CVD method, a thermal CVD method, a MOCVD method, and an optical CVD method. On the other hand, as the wet method, specifically, spin coating method; immersion method; casting method; micro contact printing method; drop casting method; screen printing method, inkjet printing method, offset printing method, gravure printing method, flexo printing method, etc. Various printing methods; Stamp method; Spray method; Air doctor coater method, Blade coater method, Rod coater method, Knife coater method, Squeeze coater method, Reverse roll coater method, Transfer roll coater method, Gravure coater method, Kiss coater method, Cast coater Various coating methods such as a method, a spray coater method, a slit orifice coater method, and a calendar coater method can be exemplified. In the coating method, examples of the solvent include non-polar or low-polar organic solvents such as toluene, chloroform, hexane, and ethanol. Examples of the patterning method include chemical etching such as shadow mask, laser transfer, and photolithography, and physical etching by ultraviolet rays, laser, and the like. As a flattening technique for various organic layers, a laser flattening method, a reflow method, or the like can be used.

撮像素子あるいは固体撮像装置には、前述したとおり、必要に応じて、オンチップ・マイクロ・レンズや遮光層を設けてもよいし、撮像素子を駆動するための駆動回路や配線が設けられている。必要に応じて、撮像素子への光の入射を制御するためのシャッターを配設してもよいし、固体撮像装置の目的に応じて光学カットフィルタを具備してもよい。 As described above, the image sensor or the solid-state image sensor may be provided with an on-chip microlens or a light-shielding layer, if necessary, and is provided with a drive circuit and wiring for driving the image sensor. .. If necessary, a shutter for controlling the incident of light on the image pickup device may be provided, or an optical cut filter may be provided depending on the purpose of the solid-state image pickup device.

例えば、固体撮像装置を読出し用集積回路(ROIC)と積層する場合、読出し用集積回路及び銅(Cu)から成る接続部が形成された駆動用基板と、接続部が形成された撮像素子とを、接続部同士が接するように重ね合わせ、接続部同士を接合することで、積層することができるし、接続部同士をハンダバンプ等を用いて接合することもできる。 For example, when a solid-state image pickup device is laminated with a read-out integrated circuit (ROIC), a drive substrate on which a read-out integrated circuit and a connection portion made of copper (Cu) are formed, and an image pickup device on which the connection portion is formed are formed. , The connecting portions can be overlapped so as to be in contact with each other, and the connecting portions can be joined to each other, or the connecting portions can be joined to each other by using a solder bump or the like.

実施例1は、本開示の撮像素子、本開示の積層型撮像素子、及び、本開示の第2の態様に係る固体撮像装置に関する。 The first embodiment relates to the image pickup device of the present disclosure, the stacked image pickup device of the present disclosure, and the solid-state image pickup device according to the second aspect of the present disclosure.

実施例1の撮像素子、積層型撮像素子の模式的な一部断面図を図1に示し、実施例1の撮像素子、積層型撮像素子の等価回路図を図2及び図3に示し、実施例1の撮像素子を構成する第1電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図を図4に示し、実施例1の撮像素子の動作時の各部位における電位の状態を模式的に図5に示す。また、実施例1の撮像素子を構成する第1電極及び電荷蓄積用電極の模式的な配置図を図6に示し、実施例1の撮像素子を構成する第1電極、電荷蓄積用電極、第2電極及びコンタクトホール部の模式的な透視斜視図を図7に示し、実施例1の固体撮像装置の概念図を図8に示す。 A schematic partial cross-sectional view of the image sensor and the stacked image sensor of the first embodiment is shown in FIG. 1, and an equivalent circuit diagram of the image sensor and the stacked image sensor of the first embodiment is shown in FIGS. 2 and 3. FIG. 4 shows a schematic layout diagram of the first electrode constituting the image sensor of Example 1, the charge storage electrode, and the transistor constituting the control unit, and shows the potential of each part during operation of the image sensor of Example 1. The state is schematically shown in FIG. Further, FIG. 6 shows a schematic layout diagram of the first electrode and the charge storage electrode constituting the image pickup device of the first embodiment, and the first electrode, the charge storage electrode, and the first electrode constituting the image pickup device of the first embodiment are shown in FIG. A schematic perspective perspective view of the two electrodes and the contact hole portion is shown in FIG. 7, and a conceptual diagram of the solid-state image sensor of Example 1 is shown in FIG.

実施例1の撮像素子(例えば、後述する緑色用撮像素子)は、第1電極11、光電変換層15及び第2電極16が積層されて成る光電変換部を備えており、光電変換部は、更に、第1電極11と離間して配置され、且つ、絶縁層82を介して光電変換層15と対向して配置された電荷蓄積用電極12を備えている。 The image pickup device of the first embodiment (for example, a green image pickup device described later) includes a photoelectric conversion section in which a first electrode 11, a photoelectric conversion layer 15 and a second electrode 16 are laminated, and the photoelectric conversion section includes a photoelectric conversion section. Further, the charge storage electrode 12 is provided which is arranged apart from the first electrode 11 and is arranged so as to face the photoelectric conversion layer 15 via the insulating layer 82.

また、実施例1の積層型撮像素子は、実施例1の撮像素子を少なくとも1つ、実施例1にあっては実施例1の撮像素子を1つ、有する。 Further, the stacked image sensor of Example 1 has at least one image sensor of Example 1, and in Example 1, one image sensor of Example 1.

更には、実施例1の固体撮像装置は、実施例1の積層型撮像素子を、複数、備えている。 Further, the solid-state image pickup device of the first embodiment includes a plurality of stacked image pickup devices of the first embodiment.

そして、半導体基板(より具体的には、シリコン半導体層)70を更に備えており、光電変換部は、半導体基板70の上方に配置されている。また、半導体基板70に設けられ、第1電極11が接続された駆動回路を有する制御部を更に備えている。ここで、半導体基板70における光入射面を上方とし、半導体基板70の反対側を下方とする。半導体基板70の下方には複数の配線から成る配線層62が設けられている。また、半導体基板70には、制御部を構成する少なくとも浮遊拡散層FD1及び増幅トランジスタTR1ampが設けられており、第1電極11は、浮遊拡散層FD1及び増幅トランジスタTR1ampのゲート部に接続されている。半導体基板70には、更に、制御部を構成するリセット・トランジスタTR1rst及び選択トランジスタTR1selが設けられている。また、浮遊拡散層FD1は、リセット・トランジスタTR1rstの一方のソース/ドレイン領域に接続されており、増幅トランジスタTR1ampの一方のソース/ドレイン領域は、選択トランジスタTR1selの一方のソース/ドレイン領域に接続されており、選択トランジスタTR1selの他方のソース/ドレイン領域は信号線VSL1に接続されている。これらの増幅トランジスタTR1amp、リセット・トランジスタTR1rst及び選択トランジスタTR1selは、駆動回路を構成する。 A semiconductor substrate (more specifically, a silicon semiconductor layer) 70 is further provided, and the photoelectric conversion unit is arranged above the semiconductor substrate 70. Further, a control unit provided on the semiconductor substrate 70 and having a drive circuit to which the first electrode 11 is connected is further provided. Here, the light incident surface of the semiconductor substrate 70 is upward, and the opposite side of the semiconductor substrate 70 is downward. A wiring layer 62 composed of a plurality of wirings is provided below the semiconductor substrate 70. Further, the semiconductor substrate 70 is provided with at least a floating diffusion layer FD 1 and an amplification transistor TR1 amp constituting a control unit, and the first electrode 11 is provided at a gate portion of the floating diffusion layer FD 1 and the amplification transistor TR1 amp. It is connected. The semiconductor substrate 70 is further provided with a reset transistor TR1 rst and a selection transistor TR1 sel that form a control unit. Further, the floating diffusion layer FD 1 is connected to one source / drain region of the reset transistor TR1 rst , and one source / drain region of the amplification transistor TR1 amp is one source / drain region of the selection transistor TR1 sel. It is connected to a region and the other source / drain region of the selection transistor TR1 sel is connected to the signal line VSL 1 . These amplification transistor TR1 amp , reset transistor TR1 rst, and selection transistor TR1 sel constitute a drive circuit.

具体的には、実施例1の撮像素子、積層型撮像素子は、裏面照射型の撮像素子、積層型撮像素子であり、緑色の光を吸収する第1タイプの緑色光電変換層を備えた緑色に感度を有する第1タイプの実施例1の緑色用撮像素子(以下、『第1撮像素子』と呼ぶ)、青色の光を吸収する第2タイプの青色光電変換層を備えた青色に感度を有する第2タイプの従来の青色用撮像素子(以下、『第2撮像素子』と呼ぶ)、赤色の光を吸収する第2タイプの赤色光電変換層を備えた赤色に感度を有する第2タイプの従来の赤色用撮像素子(以下、『第3撮像素子』と呼ぶ)の3つの撮像素子が積層された構造を有する。ここで赤色用撮像素子(第3撮像素子)及び青色用撮像素子(第2撮像素子)は、半導体基板70内に設けられており、第2撮像素子の方が、第3撮像素子よりも光入射側に位置する。また、緑色用撮像素子(第1撮像素子)は、青色用撮像素子(第2撮像素子)の上方に設けられている。第1撮像素子、第2撮像素子及び第3撮像素子の積層構造によって、1画素が構成される。カラーフィルタは設けられていない。 Specifically, the image sensor and the laminated image sensor of the first embodiment are a back-illuminated image sensor and a laminated image sensor, and are green having a first type green photoelectric conversion layer that absorbs green light. Sensitivity to blue with the first type of image sensor for green of Example 1 (hereinafter referred to as "first image sensor") and the second type of blue photoelectric conversion layer that absorbs blue light. A second type of conventional blue image sensor (hereinafter referred to as "second image sensor") having a second type, and a second type having sensitivity to red having a second type red photoelectric conversion layer that absorbs red light. It has a structure in which three image pickup elements of a conventional red image sensor (hereinafter referred to as "third image pickup element") are laminated. Here, the red image sensor (third image sensor) and the blue image sensor (second image sensor) are provided in the semiconductor substrate 70, and the second image sensor is lighter than the third image sensor. Located on the incident side. Further, the green image sensor (first image sensor) is provided above the blue image sensor (second image sensor). One pixel is formed by the laminated structure of the first image sensor, the second image sensor, and the third image sensor. No color filter is provided.

第1撮像素子にあっては、層間絶縁層81上に、第1電極11及び電荷蓄積用電極12が、離間して形成されている。層間絶縁層81及び電荷蓄積用電極12は、絶縁層82によって覆われている。絶縁層82上には光電変換層15が形成され、光電変換層15上には第2電極16が形成されている。第2電極16を含む全面には、保護層83が形成されており、保護層83上にオンチップ・マイクロ・レンズ90が設けられている。第1電極11、電荷蓄積用電極12及び第2電極16は、例えば、ITOから成る透明電極から構成されている。光電変換層15は、少なくとも緑色に感度を有する周知の有機光電変換材料(例えば、ローダミン系色素、メラシアニン系色素、キナクリドン等の有機系材料)を含む層から構成されている。また、光電変換層15は、更に、電荷蓄積に適した材料層を含む構成であってもよい。即ち、光電変換層15と第1電極11との間に(例えば、接続部67内に)、更に、電荷蓄積に適した材料層が形成されていてもよい。層間絶縁層81や絶縁層82、保護層83は、周知の絶縁材料(例えば、SiO2やSiN)から構成されている。光電変換層15と第1電極11とは、絶縁層82に設けられた接続部67によって接続されている。接続部67内には、光電変換層15が延在している。即ち、光電変換層15は、絶縁層82に設けられた開口部84内を延在し、第1電極11と接続されている。 In the first image pickup device, the first electrode 11 and the charge storage electrode 12 are formed on the interlayer insulating layer 81 so as to be separated from each other. The interlayer insulating layer 81 and the charge storage electrode 12 are covered with the insulating layer 82. A photoelectric conversion layer 15 is formed on the insulating layer 82, and a second electrode 16 is formed on the photoelectric conversion layer 15. A protective layer 83 is formed on the entire surface including the second electrode 16, and an on-chip micro lens 90 is provided on the protective layer 83. The first electrode 11, the charge storage electrode 12, and the second electrode 16 are composed of, for example, a transparent electrode made of ITO. The photoelectric conversion layer 15 is composed of a layer containing at least a well-known organic photoelectric conversion material having sensitivity to green (for example, an organic material such as a rhodamine dye, a melanin dye, or quinacridone). Further, the photoelectric conversion layer 15 may further include a material layer suitable for charge accumulation. That is, a material layer suitable for charge accumulation may be further formed between the photoelectric conversion layer 15 and the first electrode 11 (for example, in the connection portion 67). The interlayer insulating layer 81, the insulating layer 82, and the protective layer 83 are made of a well-known insulating material (for example, SiO 2 or SiN). The photoelectric conversion layer 15 and the first electrode 11 are connected by a connecting portion 67 provided in the insulating layer 82. A photoelectric conversion layer 15 extends in the connection portion 67. That is, the photoelectric conversion layer 15 extends in the opening 84 provided in the insulating layer 82 and is connected to the first electrode 11.

電荷蓄積用電極12は駆動回路に接続されている。具体的には、電荷蓄積用電極12は、層間絶縁層81内に設けられた接続孔66、パッド部64及び配線VOAを介して、駆動回路を構成する垂直駆動回路112に接続されている。 The charge storage electrode 12 is connected to the drive circuit. Specifically, the charge storage electrode 12 is connected to the vertical drive circuit 112 constituting the drive circuit via the connection hole 66, the pad portion 64, and the wiring VOA provided in the interlayer insulating layer 81. ..

電荷蓄積用電極12の大きさは第1電極11よりも大きい。電荷蓄積用電極12の面積をS1’、第1電極11の面積をS1としたとき、限定するものではないが、
4≦S1’/S1
を満足することが好ましく、実施例1にあっては、限定するものではないが、例えば、
1’/S1=8
とした。
The size of the charge storage electrode 12 is larger than that of the first electrode 11. The area of the charge storage electrode 12 S 1 ', when the area of the first electrode 11 and the S 1, but are not limited to,
4 ≤ S 1 '/ S 1
Is preferable, and in Example 1, for example, although not limited to
S 1 '/ S 1 = 8
And said.

半導体基板70の第1面(おもて面)70Aの側には素子分離領域71が形成され、また、半導体基板70の第1面70Aには酸化膜72が形成されている。更には、半導体基板70の第1面側には、第1撮像素子の制御部を構成するリセット・トランジスタTR1rst、増幅トランジスタTR1amp及び選択トランジスタTR1selが設けられ、更に、第1浮遊拡散層FD1が設けられている。 An element separation region 71 is formed on the side of the first surface (front surface) 70A of the semiconductor substrate 70, and an oxide film 72 is formed on the first surface 70A of the semiconductor substrate 70. Further, on the first surface side of the semiconductor substrate 70, a reset transistor TR1 rst , an amplification transistor TR1 amp, and a selection transistor TR1 sel constituting the control unit of the first image sensor are provided, and further, a first floating diffusion layer. FD 1 is provided.

リセット・トランジスタTR1rstは、ゲート部51、チャネル形成領域51A、及び、ソース/ドレイン領域51B,51Cから構成されている。リセット・トランジスタTR1rstのゲート部51はリセット線RST1に接続され、リセット・トランジスタTR1rstの一方のソース/ドレイン領域51Cは、第1浮遊拡散層FD1を兼ねており、他方のソース/ドレイン領域51Bは、電源VDDに接続されている。 The reset transistor TR1 rst is composed of a gate portion 51, a channel forming region 51A, and source / drain regions 51B and 51C. The gate portion 51 of the reset transistor TR1 rst is connected to the reset line RST 1 , and one source / drain region 51C of the reset transistor TR1 rst also serves as the first floating diffusion layer FD 1 and the other source / drain. The area 51B is connected to the power supply V DD .

第1電極11は、層間絶縁層81内に設けられた接続孔65、パッド部63、半導体基板70及び層間絶縁層76に形成されたコンタクトホール部61、層間絶縁層76に形成された配線層62を介して、リセット・トランジスタTR1rstの一方のソース/ドレイン領域51C(第1浮遊拡散層FD1)に接続されている。 The first electrode 11 is a connection hole 65 provided in the interlayer insulating layer 81, a pad portion 63, a contact hole portion 61 formed in the semiconductor substrate 70 and the interlayer insulating layer 76, and a wiring layer formed in the interlayer insulating layer 76. It is connected to one source / drain region 51C (first floating diffusion layer FD 1 ) of the reset transistor TR1 rst via 62.

増幅トランジスタTR1ampは、ゲート部52、チャネル形成領域52A、及び、ソース/ドレイン領域52B,52Cから構成されている。ゲート部52は配線層62を介して、第1電極11及びリセット・トランジスタTR1rstの一方のソース/ドレイン領域51C(第1浮遊拡散層FD1)に接続されている。また、一方のソース/ドレイン領域52Bは、リセット・トランジスタTR1rstを構成する他方のソース/ドレイン領域51Bと、領域を共有しており、電源VDDに接続されている。 The amplification transistor TR1 amp is composed of a gate portion 52, a channel forming region 52A, and source / drain regions 52B and 52C. The gate portion 52 is connected to the source / drain region 51C (first floating diffusion layer FD 1 ) of one of the first electrode 11 and the reset transistor TR1 rst via the wiring layer 62. Further, one source / drain region 52B shares an area with the other source / drain region 51B constituting the reset transistor TR1 rst, and is connected to the power supply V DD .

選択トランジスタTR1selは、ゲート部53、チャネル形成領域53A、及び、ソース/ドレイン領域53B,53Cから構成されている。ゲート部53は、選択線SEL1に接続されている。また、一方のソース/ドレイン領域53Bは、増幅トランジスタTR1ampを構成する他方のソース/ドレイン領域52Cと、領域を共有しており、他方のソース/ドレイン領域53Cは、信号線(データ出力線)VSL1(117)に接続されている。 The selection transistor TR1 sel is composed of a gate portion 53, a channel formation region 53A, and source / drain regions 53B and 53C. The gate portion 53 is connected to the selection line SEL 1 . Further, one source / drain region 53B shares an area with the other source / drain region 52C constituting the amplification transistor TR1 amp , and the other source / drain region 53C is a signal line (data output line). It is connected to VSL 1 (117).

第2撮像素子は、半導体基板70に設けられたn型半導体領域41を光電変換層として備えている。縦型トランジスタから成る転送トランジスタTR2trsのゲート部45が、n型半導体領域41まで延びており、且つ、転送ゲート線TG2に接続されている。また、転送トランジスタTR2trsのゲート部45の近傍の半導体基板70の領域45Cには、第2浮遊拡散層FD2が設けられている。n型半導体領域41に蓄積された電荷は、ゲート部45に沿って形成される転送チャネルを介して第2浮遊拡散層FD2に読み出される。 The second image sensor includes an n-type semiconductor region 41 provided on the semiconductor substrate 70 as a photoelectric conversion layer. The gate portion 45 of the transfer transistor TR2 trs composed of a vertical transistor extends to the n-type semiconductor region 41 and is connected to the transfer gate line TG 2 . Further, a second floating diffusion layer FD 2 is provided in the region 45C of the semiconductor substrate 70 near the gate portion 45 of the transfer transistor TR2 trs . The electric charge accumulated in the n-type semiconductor region 41 is read out to the second floating diffusion layer FD 2 via the transfer channel formed along the gate portion 45.

第2撮像素子にあっては、更に、半導体基板70の第1面側に、第2撮像素子の制御部を構成するリセット・トランジスタTR2rst、増幅トランジスタTR2amp及び選択トランジスタTR2selが設けられている。 In the second image sensor, a reset transistor TR2 rst , an amplification transistor TR2 amp, and a selection transistor TR2 sel , which form a control unit of the second image sensor, are further provided on the first surface side of the semiconductor substrate 70. There is.

リセット・トランジスタTR2rstは、ゲート部、チャネル形成領域、及び、ソース/ドレイン領域から構成されている。リセット・トランジスタTR2rstのゲート部はリセット線RST2に接続され、リセット・トランジスタTR2rstの一方のソース/ドレイン領域は電源VDDに接続され、他方のソース/ドレイン領域は、第2浮遊拡散層FD2を兼ねている。 The reset transistor TR2 rst is composed of a gate portion, a channel forming region, and a source / drain region. The gate of the reset transistor TR2 rst is connected to the reset line RST 2 , one source / drain region of the reset transistor TR2 rst is connected to the power supply V DD , and the other source / drain region is the second floating diffusion layer. Also serves as FD 2 .

増幅トランジスタTR2ampは、ゲート部、チャネル形成領域、及び、ソース/ドレイン領域から構成されている。ゲート部は、リセット・トランジスタTR2rstの他方のソース/ドレイン領域(第2浮遊拡散層FD2)に接続されている。また、一方のソース/ドレイン領域は、リセット・トランジスタTR2rstを構成する一方のソース/ドレイン領域と、領域を共有しており、電源VDDに接続されている。 The amplification transistor TR2 amp is composed of a gate portion, a channel forming region, and a source / drain region. The gate portion is connected to the other source / drain region (second floating diffusion layer FD 2 ) of the reset transistor TR2 rst . Further, one source / drain region shares an region with one source / drain region constituting the reset transistor TR2 rst, and is connected to the power supply V DD .

選択トランジスタTR2selは、ゲート部、チャネル形成領域、及び、ソース/ドレイン領域から構成されている。ゲート部は、選択線SEL2に接続されている。また、一方のソース/ドレイン領域は、増幅トランジスタTR2ampを構成する他方のソース/ドレイン領域と、領域を共有しており、他方のソース/ドレイン領域は、信号線(データ出力線)VSL2に接続されている。 The selection transistor TR2 sel is composed of a gate portion, a channel forming region, and a source / drain region. The gate portion is connected to the selection line SEL 2 . Further, one source / drain region shares an area with the other source / drain region constituting the amplification transistor TR2 amp , and the other source / drain region is on the signal line (data output line) VSL 2 . It is connected.

第3撮像素子は、半導体基板70に設けられたn型半導体領域43を光電変換層として備えている。転送トランジスタTR3trsのゲート部46は転送ゲート線TG3に接続されている。また、転送トランジスタTR3trsのゲート部46の近傍の半導体基板70の領域46Cには、第3浮遊拡散層FD3が設けられている。n型半導体領域43に蓄積された電荷は、ゲート部46に沿って形成される転送チャネル46Aを介して第3浮遊拡散層FD3に読み出される。 The third image sensor includes an n-type semiconductor region 43 provided on the semiconductor substrate 70 as a photoelectric conversion layer. The gate portion 46 of the transfer transistor TR3 trs is connected to the transfer gate line TG 3 . Further, a third floating diffusion layer FD 3 is provided in the region 46C of the semiconductor substrate 70 near the gate portion 46 of the transfer transistor TR3 trs . The electric charge accumulated in the n-type semiconductor region 43 is read out to the third floating diffusion layer FD 3 via the transfer channel 46A formed along the gate portion 46.

第3撮像素子にあっては、更に、半導体基板70の第1面側に、第3撮像素子の制御部を構成するリセット・トランジスタTR3rst、増幅トランジスタTR3amp及び選択トランジスタTR3selが設けられている。 In the third image sensor, a reset transistor TR3 rst , an amplification transistor TR3 amp, and a selection transistor TR3 sel , which constitute a control unit of the third image sensor, are further provided on the first surface side of the semiconductor substrate 70. There is.

リセット・トランジスタTR3rstは、ゲート部、チャネル形成領域、及び、ソース/ドレイン領域から構成されている。リセット・トランジスタTR3rstのゲート部はリセット線RST3に接続され、リセット・トランジスタTR3rstの一方のソース/ドレイン領域は電源VDDに接続され、他方のソース/ドレイン領域は、第3浮遊拡散層FD3を兼ねている。 The reset transistor TR3 rst is composed of a gate portion, a channel forming region, and a source / drain region. The gate of the reset transistor TR3 rst is connected to the reset line RST 3 , one source / drain region of the reset transistor TR3 rst is connected to the power supply V DD , and the other source / drain region is the third floating diffusion layer. Also serves as FD 3 .

増幅トランジスタTR3ampは、ゲート部、チャネル形成領域、及び、ソース/ドレイン領域から構成されている。ゲート部は、リセット・トランジスタTR3rstの他方のソース/ドレイン領域(第3浮遊拡散層FD3)に接続されている。また、一方のソース/ドレイン領域は、リセット・トランジスタTR3rstを構成する一方のソース/ドレイン領域と、領域を共有しており、電源VDDに接続されている。 The amplification transistor TR3 amp is composed of a gate portion, a channel forming region, and a source / drain region. The gate portion is connected to the other source / drain region (third floating diffusion layer FD 3 ) of the reset transistor TR3 rst . Further, one source / drain region shares an region with one source / drain region constituting the reset transistor TR3 rst, and is connected to the power supply V DD .

選択トランジスタTR3selは、ゲート部、チャネル形成領域、及び、ソース/ドレイン領域から構成されている。ゲート部は、選択線SEL3に接続されている。また、一方のソース/ドレイン領域は、増幅トランジスタTR3ampを構成する他方のソース/ドレイン領域と、領域を共有しており、他方のソース/ドレイン領域は、信号線(データ出力線)VSL3に接続されている。 The selection transistor TR3 sel is composed of a gate portion, a channel forming region, and a source / drain region. The gate portion is connected to the selection line SEL 3 . Further, one source / drain region shares an region with the other source / drain region constituting the amplification transistor TR3 amp , and the other source / drain region is on the signal line (data output line) VSL 3 . It is connected.

リセット線RST1,RST2,RST3、選択線SEL1,SEL2,SEL3、転送ゲート線TG2,TG3は、駆動回路を構成する垂直駆動回路112に接続され、信号線(データ出力線)VSL1,VSL2,VSL3は、駆動回路を構成するカラム信号処理回路113に接続されている。 The reset lines RST 1 , RST 2 , RST 3 , selection lines SEL 1 , SEL 2 , SEL 3 , transfer gate lines TG 2 , and TG 3 are connected to the vertical drive circuit 112 that constitutes the drive circuit, and the signal line (data output). Line) VSL 1 , VSL 2 , and VSL 3 are connected to the column signal processing circuit 113 constituting the drive circuit.

n型半導体領域43と半導体基板70の表面70Aとの間にはp+層44が設けられており、暗電流発生を抑制している。n型半導体領域41とn型半導体領域43との間には、p+層42が形成されており、更には、n型半導体領域43の側面の一部はp+層42によって囲まれている。半導体基板70の裏面70Bの側には、p+層73が形成されており、p+層73から半導体基板70の内部のコンタクトホール部61を形成すべき部分には、HfO2膜74及び絶縁膜75が形成されている。層間絶縁層76には、複数の層に亙り配線が形成されているが、図示は省略した。 A p + layer 44 is provided between the n-type semiconductor region 43 and the surface 70A of the semiconductor substrate 70 to suppress the generation of dark current. A p + layer 42 is formed between the n-type semiconductor region 41 and the n-type semiconductor region 43, and a part of the side surface of the n-type semiconductor region 43 is further surrounded by the p + layer 42. .. A p + layer 73 is formed on the back surface 70B side of the semiconductor substrate 70, and an HfO 2 film 74 and insulation are formed on the portion where the contact hole portion 61 inside the semiconductor substrate 70 should be formed from the p + layer 73. A film 75 is formed. Wiring is formed in a plurality of layers in the interlayer insulating layer 76, but the illustration is omitted.

HfO2膜74は、負の固定電荷を有する膜であり、このような膜を設けることによって、暗電流の発生を抑制することができる。尚、HfO2膜の代わりに、酸化アルミニウム(Al23)膜、酸化ジルコニウム(ZrO2)膜、酸化タンタル(Ta25)膜、酸化チタン(TiO2)膜、酸化ランタン(La23)膜、酸化プラセオジム(Pr23)膜、酸化セリウム(CeO2)膜、酸化ネオジム(Nd23)膜、酸化プロメチウム(Pm23)膜、酸化サマリウム(Sm23)膜、酸化ユウロピウム(Eu23)膜、酸化ガドリニウム((Gd23)膜、酸化テルビウム(Tb23)膜、酸化ジスプロシウム(Dy23)膜、酸化ホルミウム(Ho23)膜、酸化ツリウム(Tm23)膜、酸化イッテルビウム(Yb23)膜、酸化ルテチウム(Lu23)膜、酸化イットリウム(Y23)膜、窒化ハフニウム膜、窒化アルミニウム膜、酸窒化ハフニウム膜、酸窒化アルミニウム膜を用いることもできる。これらの膜の成膜方法として、例えば、CVD法、PVD法、ALD法が挙げることができる。 The HfO 2 film 74 is a film having a negative fixed charge, and by providing such a film, the generation of dark current can be suppressed. Instead of HfO 2 film, aluminum oxide (Al 2 O 3 ) film, zirconium oxide (ZrO 2 ) film, tantalum oxide (Ta 2 O 5 ) film, titanium oxide (TIO 2 ) film, lanthanum oxide (La 2) O 3 ) membrane, placeodymium oxide (Pr 2 O 3 ) membrane, cerium oxide (CeO 2 ) membrane, neodymium oxide (Nd 2 O 3 ) membrane, promethium oxide (Pm 2 O 3 ) membrane, samarium oxide (Sm 2 O 3) ) Membrane, Europium Oxide (Eu 2 O 3 ) Membrane, Gadolinium Oxide ((Gd 2 O 3 ) Membrane, Terbium Oxide (Tb 2 O 3 ) Membrane, Disprosium Oxide (Dy 2 O 3 ) Membrane, Formium Oxide (Ho 2 O) 3 ) Film, thurium oxide (Tm 2 O 3 ) film, ytterbium oxide (Yb 2 O 3 ) film, lutetium oxide (Lu 2 O 3 ) film, yttrium oxide (Y 2 O 3 ) film, hafnium nitride film, aluminum nitride A film, a hafnium oxynitride film, and an aluminum oxynitride film can also be used. Examples of the film forming method for these films include a CVD method, a PVD method, and an ALD method.

以下、図5を参照して、実施例1の撮像素子(第1撮像素子)の動作を説明する。ここで、第1電極11の電位を第2電極の電位よりも高くした。即ち、例えば、第1電極11を正の電位とし、第2電極を負の電位とし、光電変換層15において光電変換によって生成した電子が浮遊拡散層に読み出される。他の実施例においても同様とする。尚、第1電極11を負の電位とし、第2電極を正の電位とし、光電変換層15において光電変換に基づき生成した正孔が浮遊拡散層に読み出される形態にあっては、以下の述べる電位の高低を逆にすればよい。 Hereinafter, the operation of the image pickup device (first image pickup device) of the first embodiment will be described with reference to FIG. Here, the potential of the first electrode 11 was made higher than the potential of the second electrode. That is, for example, the first electrode 11 has a positive potential, the second electrode has a negative potential, and the electrons generated by the photoelectric conversion in the photoelectric conversion layer 15 are read out to the floating diffusion layer. The same applies to other examples. The following describes a mode in which the first electrode 11 has a negative potential, the second electrode has a positive potential, and the holes generated by the photoelectric conversion in the photoelectric conversion layer 15 are read out to the floating diffusion layer. The high and low potentials may be reversed.

図5、後述する実施例4における図20、図21、実施例6における図32、図33中で使用している符号は、以下のとおりである。
PA・・・・・・・電荷蓄積用電極12と対向した光電変換層15の領域の点PAにおける電位、あるいは、電荷蓄積用電極セグメント12Cと対向した光電変換層15の領域の点PAにおける電位
PB・・・・・・・電荷蓄積用電極12と第1電極11の中間に位置する領域と対向した光電変換層15の領域の点PBにおける電位、又は、転送制御用電極(電荷転送電極)13と対向した光電変換層15の領域の点PBにおける電位、あるいは、電荷蓄積用電極セグメント12Bと対向した光電変換層15の領域の点PBにおける電位
PC・・・・・・・第1電極11と対向した光電変換層15の領域の点PCにおける電位、あるいは、電荷蓄積用電極セグメント12Aと対向した光電変換層15の領域の点PCにおける電位
PD・・・・・・・電荷蓄積用電極セグメント12Cと第1電極11の中間に位置する領域と対向した光電変換層15の領域の点PDにおける電位
FD・・・・・・・第1浮遊拡散層FD1における電位
VOA・・・・・・電荷蓄積用電極12における電位
VOA−A・・・・電荷蓄積用電極セグメント12Aにおける電位
VOA−B・・・・電荷蓄積用電極セグメント12Bにおける電位
VOA−C・・・・電荷蓄積用電極セグメント12Cにおける電位
VOT・・・・・・転送制御用電極(電荷転送電極)13における電位
RST・・・・・・リセット・トランジスタTR1rstのゲート部51における電位
VDD・・・・・・電源の電位
VSL_1・・・・信号線(データ出力線)VSL1
TR1_rst・・リセット・トランジスタTR1rst
TR1_amp・・増幅トランジスタTR1amp
TR1_sel・・選択トランジスタTR1sel
Reference numerals used in FIGS. 5, 20 and 21 in FIG. 5 and FIG. 21 and FIGS. 32 and 33 in the sixth embodiment, which will be described later, are as follows.
PA: The potential at the point PA in the region of the photoelectric conversion layer 15 facing the charge storage electrode 12, or the potential at the point PA in the region of the photoelectric conversion layer 15 facing the charge storage electrode segment 12C. PB: The potential at the point PB in the region of the photoelectric conversion layer 15 facing the region located between the charge storage electrode 12 and the first electrode 11, or the transfer control electrode (charge transfer electrode). The potential at the point PB in the region of the photoelectric conversion layer 15 facing the 13 or the potential PC at the point PB in the region of the photoelectric conversion layer 15 facing the charge storage electrode segment 12B. The potential at the point PC in the region of the photoelectric conversion layer 15 facing the charge PD, or the potential PD at the point PC in the region of the photoelectric conversion layer 15 facing the charge storage electrode segment 12A. Potential FD at point PD in the region of the photoelectric conversion layer 15 facing the region located between 12C and the first electrode 11 ..... Electric charge VOA in the first floating diffusion layer FD 1 ... Potential VOA-A in the charge storage electrode 12 ... Potential VOA-B in the charge storage electrode segment 12A ... Potential VOA-C in the charge storage electrode segment 12B ... Charge storage electrode segment 12C Potential VOT in the transfer control electrode (charge transfer electrode) 13 Potential RST ... Potential in the gate 51 of the reset transistor TR1 rst VDD ... Power supply potential VSL_1・ ・ ・ ・ Signal line (data output line) VSL 1
TR1_rst ... reset transistor TR1 rst
TR1_amp ... Amplification transistor TR1 amp
TR1_sel ... Selective transistor TR1 sel

電荷蓄積期間においては、駆動回路から、第1電極11に電位V11が印加され、電荷蓄積用電極12に電位V12が印加される。光電変換層15に入射された光によって光電変換層15において光電変換が生じる。光電変換によって生成した正孔は、第2電極16から配線VOUを介して駆動回路へと送出される。一方、第1電極11の電位を第2電極16の電位よりも高くしたので、即ち、例えば、第1電極11に正の電位が印加され、第2電極16に負の電位が印加されるとしたので、V12≧V11、好ましくは、V12>V11とする。これによって、光電変換によって生成した電子は、電荷蓄積用電極12に引き付けられ、電荷蓄積用電極12と対向した光電変換層15の領域に止まる。即ち、光電変換層15に電荷が蓄積される。V12>V11であるが故に、光電変換層15の内部に生成した電子が、第1電極11に向かって移動することはない。光電変換の時間経過に伴い、電荷蓄積用電極12と対向した光電変換層15の領域における電位は、より負側の値となる。 In the charge accumulation period, the driving circuit, the potential V 11 is applied to the first electrode 11, the potential V 12 is applied to the charge storage electrode 12. The light incident on the photoelectric conversion layer 15 causes photoelectric conversion in the photoelectric conversion layer 15. The holes generated by the photoelectric conversion are sent from the second electrode 16 to the drive circuit via the wiring V OU . On the other hand, since the potential of the first electrode 11 is made higher than the potential of the second electrode 16, that is, for example, when a positive potential is applied to the first electrode 11 and a negative potential is applied to the second electrode 16. Therefore, V 12 ≥ V 11 , preferably V 12 > V 11 . As a result, the electrons generated by the photoelectric conversion are attracted to the charge storage electrode 12, and stay in the region of the photoelectric conversion layer 15 facing the charge storage electrode 12. That is, electric charges are accumulated in the photoelectric conversion layer 15. Since V 12 > V 11 , the electrons generated inside the photoelectric conversion layer 15 do not move toward the first electrode 11. With the passage of time of photoelectric conversion, the potential in the region of the photoelectric conversion layer 15 facing the charge storage electrode 12 becomes a value on the more negative side.

電荷蓄積期間の後期において、リセット動作がなされる。これによって、第1浮遊拡散層FD1の電位がリセットされ、第1浮遊拡散層FD1の電位は電源の電位VDDとなる。 A reset operation is performed in the latter part of the charge accumulation period. As a result, the potential of the first floating diffusion layer FD 1 is reset, and the potential of the first floating diffusion layer FD 1 becomes the potential V DD of the power supply.

リセット動作の完了後、電荷の読み出しを行う。即ち、電荷転送期間において、駆動回路から、第1電極11に電位V21が印加され、電荷蓄積用電極12に電位V22が印加される。ここで、V22<V21とする。これによって、電荷蓄積用電極12と対向した光電変換層15の領域に止まっていた電子は、第1電極11、更には、第1浮遊拡散層FD1へと読み出される。即ち、光電変換層15に蓄積された電荷が制御部に読み出される。 After the reset operation is completed, the electric charge is read out. That is, in the charge transfer period, the driving circuit, the potential V 21 is applied to the first electrode 11, the potential V 22 is applied to the charge storage electrode 12. Here, V 22 <V 21 . As a result, the electrons that have stopped in the region of the photoelectric conversion layer 15 facing the charge storage electrode 12 are read out to the first electrode 11 and further to the first floating diffusion layer FD 1 . That is, the electric charge accumulated in the photoelectric conversion layer 15 is read out to the control unit.

以上で、電荷蓄積、リセット動作、電荷転送といった一連の動作が完了する。 This completes a series of operations such as charge accumulation, reset operation, and charge transfer.

第1浮遊拡散層FD1へ電子が読み出された後の増幅トランジスタTR1amp、選択トランジスタTR1selの動作は、従来のこれらのトランジスタの動作と同じである。また、第2撮像素子、第3撮像素子の電荷蓄積、リセット動作、電荷転送といった一連の動作は、従来の電荷蓄積、リセット動作、電荷転送といった一連の動作と同様である。また、第1浮遊拡散層FD1のリセットノイズは、従来と同様に、相関2重サンプリング(CDS,Correlated Double Sampling)処理によって除去することができる。 The operation of the amplification transistor TR1 amp and the selection transistor TR1 sel after the electrons are read out to the first floating diffusion layer FD 1 is the same as the operation of these conventional transistors. Further, a series of operations such as charge storage, reset operation, and charge transfer of the second image sensor and the third image sensor are the same as the conventional series of operations such as charge storage, reset operation, and charge transfer. Further, the reset noise of the first floating diffusion layer FD 1 can be removed by the correlation double sampling (CDS, Correlated Double Sampling) processing as in the conventional case.

以上のとおり、実施例1にあっては、第1電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された電荷蓄積用電極が備えられているので、光電変換部に光が照射され、光電変換部において光電変換されるとき、光電変換層と絶縁層と電荷蓄積用電極とによって一種のキャパシタが形成され、光電変換層に電荷を蓄えることができる。それ故、露光開始時、電荷蓄積部を完全空乏化し、電荷を消去することが可能となる。その結果、kTCノイズが大きくなり、ランダムノイズが悪化し、撮像画質の低下をもたらすといった現象の発生を抑制することができる。また、全画素を一斉にリセットすることができるので、所謂グローバルシャッター機能を実現することができる。 As described above, in the first embodiment, the charge storage electrode is provided which is arranged apart from the first electrode and is arranged so as to face the photoelectric conversion layer via the insulating layer. When the photoelectric conversion unit is irradiated with light and the photoelectric conversion unit performs photoelectric conversion, a kind of capacitor is formed by the photoelectric conversion layer, the insulating layer, and the charge storage electrode, and the charge can be stored in the photoelectric conversion layer. Therefore, at the start of exposure, the charge storage portion is completely depleted and the charge can be erased. As a result, it is possible to suppress the occurrence of a phenomenon in which the kTC noise becomes large, the random noise deteriorates, and the image quality is deteriorated. Moreover, since all the pixels can be reset at once, the so-called global shutter function can be realized.

図8に、実施例1の固体撮像装置の概念図を示す。実施例1の固体撮像装置100は、積層型撮像素子101が2次元アレイ状に配列された撮像領域111、並びに、その駆動回路(周辺回路)としての垂直駆動回路112、カラム信号処理回路113、水平駆動回路114、出力回路115及び駆動制御回路116等から構成されている。尚、これらの回路は周知の回路から構成することができるし、また、他の回路構成(例えば、従来のCCD撮像装置やCMOS撮像装置にて用いられる各種の回路)を用いて構成することができることは云うまでもない。尚、図8において、積層型撮像素子101における参照番号「101」の表示は、1行のみとした。 FIG. 8 shows a conceptual diagram of the solid-state image sensor of the first embodiment. The solid-state image pickup device 100 of the first embodiment includes an image pickup region 111 in which stacked image pickup elements 101 are arranged in a two-dimensional array, a vertical drive circuit 112 as a drive circuit (peripheral circuit) thereof, and a column signal processing circuit 113. It is composed of a horizontal drive circuit 114, an output circuit 115, a drive control circuit 116, and the like. It should be noted that these circuits can be configured from well-known circuits, or can be configured using other circuit configurations (for example, various circuits used in a conventional CCD imaging device or a CMOS imaging device). It goes without saying that you can do it. In FIG. 8, the reference number “101” in the stacked image sensor 101 is displayed on only one line.

駆動制御回路116は、垂直同期信号、水平同期信号及びマスター・クロックに基づいて、垂直駆動回路112、カラム信号処理回路113及び水平駆動回路114の動作の基準となるクロック信号や制御信号を生成する。そして、生成されたクロック信号や制御信号は、垂直駆動回路112、カラム信号処理回路113及び水平駆動回路114に入力される。 The drive control circuit 116 generates a clock signal or a control signal that serves as a reference for the operation of the vertical drive circuit 112, the column signal processing circuit 113, and the horizontal drive circuit 114 based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock. .. Then, the generated clock signal and control signal are input to the vertical drive circuit 112, the column signal processing circuit 113, and the horizontal drive circuit 114.

垂直駆動回路112は、例えば、シフトレジスタによって構成され、撮像領域111の各積層型撮像素子101を行単位で順次垂直方向に選択走査する。そして、各積層型撮像素子101における受光量に応じて生成した電流(信号)に基づく画素信号(画像信号)は、信号線(データ出力線)117,VSLを介してカラム信号処理回路113に送られる。 The vertical drive circuit 112 is composed of, for example, a shift register, and sequentially selects and scans each stacked image sensor 101 in the image pickup region 111 in the vertical direction in row units. Then, the pixel signal (image signal) based on the current (signal) generated according to the amount of light received by each stacked image sensor 101 is sent to the column signal processing circuit 113 via the signal line (data output line) 117 and VSL. Be done.

カラム信号処理回路113は、例えば、積層型撮像素子101の列毎に配置されており、1行分の積層型撮像素子101から出力される画像信号を撮像素子毎に黒基準画素(図示しないが、有効画素領域の周囲に形成される)からの信号によって、ノイズ除去や信号増幅の信号処理を行う。カラム信号処理回路113の出力段には、水平選択スイッチ(図示せず)が水平信号線118との間に接続されて設けられる。 The column signal processing circuit 113 is arranged for each row of the stacked image sensor 101, for example, and outputs an image signal output from the stacked image sensor 101 for one row to a black reference pixel (not shown) for each image sensor. , The signal from (formed around the effective pixel area) is used to perform signal processing for noise removal and signal amplification. A horizontal selection switch (not shown) is provided in the output stage of the column signal processing circuit 113 so as to be connected to the horizontal signal line 118.

水平駆動回路114は、例えばシフトレジスタによって構成され、水平走査パルスを順次出力することによって、カラム信号処理回路113の各々を順次選択し、カラム信号処理回路113の各々から信号を水平信号線118に出力する。 The horizontal drive circuit 114 is composed of, for example, a shift register, and by sequentially outputting horizontal scanning pulses, each of the column signal processing circuits 113 is sequentially selected, and signals from each of the column signal processing circuits 113 are sequentially output to the horizontal signal line 118. Output.

出力回路115は、カラム信号処理回路113の各々から水平信号線118を介して順次供給される信号に対して、信号処理を行って出力する。 The output circuit 115 performs signal processing on signals sequentially supplied from each of the column signal processing circuits 113 via the horizontal signal line 118 and outputs the signals.

実施例1の撮像素子、積層型撮像素子の変形例の等価回路図を図9に示し、実施例1の撮像素子の変形例を構成する第1電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図を図10に示すように、リセット・トランジスタTR1rstの他方のソース/ドレイン領域51Bを、電源VDDに接続する代わりに、接地してもよい。 FIG. 9 shows an equivalent circuit diagram of a modified example of the image pickup device and the stacked image sensor of the first embodiment, and constitutes a first electrode, a charge storage electrode, and a control unit that constitute a modified example of the image pickup device of the first embodiment. As shown in FIG. 10 for a schematic layout diagram of the transistors, the other source / drain region 51B of the reset transistor TR1 rst may be grounded instead of being connected to the power supply V DD .

実施例1の撮像素子、積層型撮像素子は、例えば、以下の方法で作製することができる。即ち、先ず、SOI基板を準備する。そして、SOI基板の表面に第1シリコン層をエピタキシャル成長法に基づき形成し、この第1シリコン層に、p+層73、n型半導体領域41を形成する。次いで、第1シリコン層上に第2シリコン層をエピタキシャル成長法に基づき形成し、この第2シリコン層に、素子分離領域71、酸化膜72、p+層42、n型半導体領域43、p+層44を形成する。また、第2シリコン層に、撮像素子の制御部を構成する各種トランジスタ等を形成し、更にその上に、配線層62や層間絶縁層76、各種配線を形成した後、層間絶縁層76と支持基板(図示せず)とを貼り合わせる。その後、SOI基板を除去して第1シリコン層を露出させる。尚、第2シリコン層の表面が半導体基板70の表面70Aに該当し、第1シリコン層の表面が半導体基板70の裏面70Bに該当する。また、第1シリコン層と第2シリコン層を纏めて半導体基板70と表現している。次いで、半導体基板70の裏面70Bの側に、コンタクトホール部61を形成するための開口部を形成し、HfO2膜74、絶縁膜75及びコンタクトホール部61を形成し、更に、パッド部63,64、層間絶縁層81、接続孔65,66、第1電極11、電荷蓄積用電極12、絶縁層82を形成する。次に、接続部67を開口し、光電変換層15、第2電極16、保護層83及びオンチップ・マイクロ・レンズ90を形成する。以上によって、実施例1の撮像素子、積層型撮像素子を得ることができる。 The image pickup device and the stacked image pickup device of the first embodiment can be manufactured by, for example, the following methods. That is, first, the SOI substrate is prepared. Then, a first silicon layer is formed on the surface of the SOI substrate based on the epitaxial growth method, and a p + layer 73 and an n-type semiconductor region 41 are formed on the first silicon layer. Next, a second silicon layer is formed on the first silicon layer based on the epitaxial growth method, and the element separation region 71, the oxide film 72, the p + layer 42, the n-type semiconductor region 43, and the p + layer are formed on the second silicon layer. Form 44. Further, various transistors and the like constituting the control unit of the image pickup device are formed on the second silicon layer, and a wiring layer 62, an interlayer insulating layer 76, and various wirings are formed on the transistor, and then supported by the interlayer insulating layer 76. Attach to the substrate (not shown). After that, the SOI substrate is removed to expose the first silicon layer. The surface of the second silicon layer corresponds to the surface 70A of the semiconductor substrate 70, and the surface of the first silicon layer corresponds to the back surface 70B of the semiconductor substrate 70. Further, the first silicon layer and the second silicon layer are collectively referred to as a semiconductor substrate 70. Next, an opening for forming the contact hole portion 61 is formed on the back surface 70B side of the semiconductor substrate 70, the HfO 2 film 74, the insulating film 75 and the contact hole portion 61 are formed, and further, the pad portion 63, 64, the interlayer insulating layer 81, the connection holes 65 and 66, the first electrode 11, the charge storage electrode 12, and the insulating layer 82 are formed. Next, the connection portion 67 is opened to form the photoelectric conversion layer 15, the second electrode 16, the protective layer 83, and the on-chip micro lens 90. From the above, the image pickup device and the stacked image pickup device of Example 1 can be obtained.

実施例2は、実施例1の変形である。図11に模式的な一部断面図を示す実施例2の撮像素子、積層型撮像素子は、表面照射型の撮像素子、積層型撮像素子であり、緑色の光を吸収する第1タイプの緑色光電変換層を備えた緑色に感度を有する第1タイプの実施例1の緑色用撮像素子(第1撮像素子)、青色の光を吸収する第2タイプの青色光電変換層を備えた青色に感度を有する第2タイプの従来の青色用撮像素子(第2撮像素子)、赤色の光を吸収する第2タイプの赤色光電変換層を備えた赤色に感度を有する第2タイプの従来の赤色用撮像素子(第3撮像素子)の3つの撮像素子が積層された構造を有する。ここで赤色用撮像素子(第3撮像素子)及び青色用撮像素子(第2撮像素子)は、半導体基板70内に設けられており、第2撮像素子の方が、第3撮像素子よりも光入射側に位置する。また、緑色用撮像素子(第1撮像素子)は、青色用撮像素子(第2撮像素子)の上方に設けられている。 The second embodiment is a modification of the first embodiment. The image sensor and the stacked image sensor of the second embodiment showing a schematic partial cross-sectional view in FIG. 11 are a surface-illuminated image sensor and a stacked image sensor, and are the first type of green that absorbs green light. First type of image sensor for green (first image sensor) of the first type having a photoelectric conversion layer and having sensitivity to green, and sensitivity to blue having a second type of blue photoelectric conversion layer that absorbs blue light. A second type conventional blue image sensor (second image sensor) having a red light, and a second type conventional red image sensor having a sensitivity to red with a second type red photoelectric conversion layer that absorbs red light. It has a structure in which three image pickup elements of the element (third image pickup element) are laminated. Here, the red image sensor (third image sensor) and the blue image sensor (second image sensor) are provided in the semiconductor substrate 70, and the second image sensor is lighter than the third image sensor. Located on the incident side. Further, the green image sensor (first image sensor) is provided above the blue image sensor (second image sensor).

半導体基板70の表面70A側には、実施例1と同様に制御部を構成する各種トランジスタが設けられている。これらのトランジスタは、実質的に実施例1において説明したトランジスタと同様の構成、構造とすることができる。また、半導体基板70には、第2撮像素子、第3撮像素子が設けられているが、これらの撮像素子も、実質的に実施例1において説明した第2撮像素子、第3撮像素子と同様の構成、構造とすることができる。 Similar to the first embodiment, various transistors constituting the control unit are provided on the surface 70A side of the semiconductor substrate 70. These transistors can have substantially the same configuration and structure as the transistors described in the first embodiment. Further, the semiconductor substrate 70 is provided with a second image sensor and a third image sensor, and these image sensors are also substantially the same as the second image sensor and the third image sensor described in the first embodiment. It can be configured and structured.

半導体基板70の表面70Aの上には、層間絶縁層77,78が形成されており、層間絶縁層78の上に、実施例1の撮像素子を構成する光電変換部(第1電極11、光電変換層15及び第2電極16)、並びに、電荷蓄積用電極12等が設けられている。 Interlayer insulation layers 77 and 78 are formed on the surface 70A of the semiconductor substrate 70, and the photoelectric conversion unit (first electrode 11, photoelectric) constituting the image pickup element of Example 1 is formed on the interlayer insulation layer 78. The conversion layer 15 and the second electrode 16), the charge storage electrode 12, and the like are provided.

このように、表面照射型である点を除き、実施例2の撮像素子、積層型撮像素子の構成、構造は、実施例1の撮像素子、積層型撮像素子の構成、構造と同様とすることができるので、詳細な説明は省略する。 As described above, the configuration and structure of the image sensor and the laminated image sensor of the second embodiment are the same as those of the image sensor and the laminated image sensor of the first embodiment except that the surface irradiation type is used. Therefore, detailed description will be omitted.

実施例3は、実施例1及び実施例2の変形である。 Example 3 is a modification of Example 1 and Example 2.

図12に模式的な一部断面図を示す実施例3の撮像素子、積層型撮像素子は、裏面照射型の撮像素子、積層型撮像素子であり、第1タイプの実施例1の第1撮像素子、及び、第2タイプの第2撮像素子の2つの撮像素子が積層された構造を有する。また、図13に模式的な一部断面図を示す実施例3の撮像素子、積層型撮像素子の変形例は、表面照射型の撮像素子、積層型撮像素子であり、第1タイプの実施例1の第1撮像素子、及び、第2タイプの第2撮像素子の2つの撮像素子が積層された構造を有する。ここで、第1撮像素子は原色の光を吸収し、第2撮像素子は補色の光を吸収する。あるいは又、第1撮像素子は白色の光を吸収し、第2撮像素子は赤外線を吸収する。 The image sensor and the stacked image sensor of the third embodiment showing a schematic partial cross-sectional view in FIG. 12 are a back-illuminated image sensor and a laminated image sensor, and the first image sensor of the first type of the first embodiment. It has a structure in which two image pickup elements, an element and a second type second image pickup element, are laminated. Further, modifications of the image sensor and the stacked image sensor of the third embodiment showing a schematic partial cross-sectional view in FIG. 13 are a surface-illuminated image sensor and a stacked image sensor, and are examples of the first type. It has a structure in which two image pickup elements, a first image pickup element of 1 and a second image pickup element of the second type, are laminated. Here, the first image sensor absorbs the light of the primary color, and the second image sensor absorbs the light of the complementary color. Alternatively, the first image sensor absorbs white light and the second image sensor absorbs infrared light.

図14に模式的な一部断面図を示す実施例3の撮像素子の変形例は、裏面照射型の撮像素子であり、第1タイプの実施例1の第1撮像素子から構成されている。また、図15に模式的な一部断面図を示す実施例3の撮像素子の変形例は、表面照射型の撮像素子であり、第1タイプの実施例1の第1撮像素子から構成されている。ここで、第1撮像素子は、赤色の光を吸収する撮像素子、緑色の光を吸収する撮像素子、青色の光を吸収する撮像素子の3種類の撮像素子から構成されている。更には、これらの撮像素子の複数から、本開示の第1の態様に係る固体撮像装置が構成される。複数のこれらの撮像素子の配置として、ベイヤ配列を挙げることができる。各撮像素子の光入射側には、必要に応じて、青色、緑色、赤色の分光を行うためのカラーフィルタが配設されている。 A modified example of the image pickup device of Example 3 showing a schematic partial cross-sectional view in FIG. 14 is a back-illuminated image pickup device, which is composed of the first image pickup device of Example 1 of the first type. Further, a modified example of the image pickup device of Example 3 showing a schematic partial cross-sectional view in FIG. 15 is a surface-illuminated image pickup device, which is composed of the first image pickup device of Example 1 of the first type. There is. Here, the first image sensor is composed of three types of image sensors: an image sensor that absorbs red light, an image sensor that absorbs green light, and an image sensor that absorbs blue light. Further, a solid-state image pickup device according to the first aspect of the present disclosure is configured from a plurality of these image pickup elements. A Bayer array can be mentioned as an arrangement of a plurality of these image pickup devices. A color filter for performing blue, green, and red spectroscopy is provided on the light incident side of each image sensor, if necessary.

尚、第1タイプの実施例1の撮像素子を1つ、設ける代わりに、2つ、積層する形態(即ち、光電変換部を2つ、積層し、半導体基板に2つの撮像素子の制御部を設ける形態)、あるいは又、3つ、積層する形態(即ち、光電変換部を3つ、積層し、半導体基板に3つの撮像素子の制御部を設ける形態)とすることもできる。第1タイプの撮像素子と第2タイプの撮像素子の積層構造例を、以下の表に例示する。 In addition, instead of providing one image pickup element of the first type of Example 1, two are laminated (that is, two photoelectric conversion units are laminated, and the control unit of the two image pickup elements is provided on the semiconductor substrate. It is also possible to form a form in which three photoelectric conversion units are laminated (that is, three photoelectric conversion units are laminated and a control unit for three image pickup elements is provided on the semiconductor substrate). An example of the laminated structure of the first type image sensor and the second type image sensor is illustrated in the table below.

実施例4は、実施例1〜実施例3の変形であり、転送制御用電極(電荷転送電極)を備えた本開示の撮像素子等に関する。実施例4の撮像素子、積層型撮像素子の一部分の模式的な一部断面図を図16に示し、実施例4の撮像素子、積層型撮像素子の等価回路図を図17及び図18に示し、実施例4の撮像素子を構成する第1電極、転送制御用電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図を図19に示し、実施例4の撮像素子の動作時の各部位における電位の状態を模式的に図20及び図21に示す。また、実施例4の撮像素子を構成する第1電極、転送制御用電極及び電荷蓄積用電極の模式的な配置図を図22に示し、実施例4の撮像素子を構成する第1電極、転送制御用電極、電荷蓄積用電極、第2電極及びコンタクトホール部の模式的な透視斜視図を図23に示す。 The fourth embodiment is a modification of the first to third embodiments, and relates to an image pickup device and the like of the present disclosure provided with a transfer control electrode (charge transfer electrode). FIG. 16 shows a schematic partial cross-sectional view of a part of the image sensor and the stacked image sensor of the fourth embodiment, and FIGS. 17 and 18 show equivalent circuit diagrams of the image sensor and the stacked image sensor of the fourth embodiment. FIG. 19 shows a schematic layout diagram of the first electrode constituting the image pickup device of Example 4, the transfer control electrode, the charge storage electrode, and the transistor constituting the control unit, and the operation of the image pickup device of Example 4. The state of the electric potential at each part of time is schematically shown in FIGS. 20 and 21. Further, FIG. 22 shows a schematic arrangement diagram of the first electrode constituting the image pickup device of Example 4, the transfer control electrode, and the charge storage electrode, and the first electrode constituting the image pickup device of Example 4 and transfer. FIG. 23 shows a schematic perspective perspective view of the control electrode, the charge storage electrode, the second electrode, and the contact hole portion.

実施例4の撮像素子、積層型撮像素子にあっては、第1電極11と電荷蓄積用電極12との間に、第1電極11及び電荷蓄積用電極12と離間して配置され、且つ、絶縁層82を介して光電変換層15と対向して配置された転送制御用電極(電荷転送電極)13を更に備えている。転送制御用電極13は、層間絶縁層81内に設けられた接続孔68B、パッド部68A及び配線VOTを介して、駆動回路を構成する画素駆動回路に接続されている。尚、層間絶縁層81より下方に位置する各種の撮像素子構成要素を、図面を簡素化するために、便宜上、纏めて、参照番号91で示す。 In the image pickup element and the stacked image pickup device of the fourth embodiment, the first electrode 11 and the charge storage electrode 12 are arranged apart from each other and separated from the first electrode 11 and the charge storage electrode 12. Further, a transfer control electrode (charge transfer electrode) 13 arranged to face the photoelectric conversion layer 15 via the insulating layer 82 is further provided. The transfer control electrode 13, connection hole 68B provided in the interlayer insulating layer 81, through the pad portion 68A and the wiring V OT, and is connected to the pixel drive circuit included in the driver circuit. The various image sensor components located below the interlayer insulating layer 81 are collectively shown by reference number 91 for convenience in order to simplify the drawing.

以下、図20、図21を参照して、実施例4の撮像素子(第1撮像素子)の動作を説明する。尚、図20と図21とでは、特に、電荷蓄積用電極12に印加される電位及び点PBにおける電位の値が相違している。 Hereinafter, the operation of the image pickup device (first image pickup device) of the fourth embodiment will be described with reference to FIGS. 20 and 21. In particular, the values of the potential applied to the charge storage electrode 12 and the potential at the point PB are different between FIGS. 20 and 21.

電荷蓄積期間において、駆動回路から、第1電極11に電位V11が印加され、電荷蓄積用電極12に電位V12が印加され、転送制御用電極13に電位V13が印加される。光電変換層15に入射された光によって光電変換層15において光電変換が生じる。光電変換によって生成した正孔は、第2電極16から配線VOUを介して駆動回路へと送出される。一方、第1電極11の電位を第2電極16の電位よりも高くしたので、即ち、例えば、第1電極11に正の電位が印加され、第2電極16に負の電位が印加されるとしたので、V12>V13(例えば、V12>V11>V13、又は、V11>V12>V13)とする。これによって、光電変換によって生成した電子は、電荷蓄積用電極12に引き付けられ、電荷蓄積用電極12と対向した光電変換層15の領域に止まる。即ち、光電変換層15に電荷が蓄積される。V12>V13であるが故に、光電変換層15の内部に生成した電子が、第1電極11に向かって移動することを確実に防止することができる。光電変換の時間経過に伴い、電荷蓄積用電極12と対向した光電変換層15の領域における電位は、より負側の値となる。 In the charge accumulation period, the driving circuit, the potential V 11 is applied to the first electrode 11, the potential V 12 is applied to the charge storage electrode 12, the potential V 13 is applied to the transfer control electrode 13. The light incident on the photoelectric conversion layer 15 causes photoelectric conversion in the photoelectric conversion layer 15. The holes generated by the photoelectric conversion are sent from the second electrode 16 to the drive circuit via the wiring V OU . On the other hand, since the potential of the first electrode 11 is made higher than the potential of the second electrode 16, that is, for example, when a positive potential is applied to the first electrode 11 and a negative potential is applied to the second electrode 16. Therefore, V 12 > V 13 (for example, V 12 > V 11 > V 13 or V 11 > V 12 > V 13 ). As a result, the electrons generated by the photoelectric conversion are attracted to the charge storage electrode 12, and stay in the region of the photoelectric conversion layer 15 facing the charge storage electrode 12. That is, electric charges are accumulated in the photoelectric conversion layer 15. Since V 12 > V 13, it is possible to reliably prevent the electrons generated inside the photoelectric conversion layer 15 from moving toward the first electrode 11. With the passage of time of photoelectric conversion, the potential in the region of the photoelectric conversion layer 15 facing the charge storage electrode 12 becomes a value on the more negative side.

電荷蓄積期間の後期において、リセット動作がなされる。これによって、第1浮遊拡散層FD1の電位がリセットされ、第1浮遊拡散層FD1の電位は電源の電位VDDとなる。 A reset operation is performed in the latter part of the charge accumulation period. As a result, the potential of the first floating diffusion layer FD 1 is reset, and the potential of the first floating diffusion layer FD 1 becomes the potential V DD of the power supply.

リセット動作の完了後、電荷の読み出しを行う。即ち、電荷転送期間において、駆動回路から、第1電極11に電位V21が印加され、電荷蓄積用電極12に電位V22が印加され、転送制御用電極13に電位V23が印加される。ここで、V22≦V23≦V21とする。これによって、電荷蓄積用電極12と対向した光電変換層15の領域に止まっていた電子は、第1電極11、更には、第1浮遊拡散層FD1へと確実に読み出される。即ち、光電変換層15に蓄積された電荷が制御部に読み出される。 After the reset operation is completed, the electric charge is read out. That is, in the charge transfer period, the driving circuit, the potential V 21 is applied to the first electrode 11, the potential V 22 is applied to the charge storage electrode 12, the potential V 23 is applied to the transfer control electrode 13. Here, V 22 ≤ V 23 ≤ V 21 . As a result, the electrons that have stopped in the region of the photoelectric conversion layer 15 facing the charge storage electrode 12 are surely read out to the first electrode 11 and further to the first floating diffusion layer FD 1 . That is, the electric charge accumulated in the photoelectric conversion layer 15 is read out to the control unit.

以上で、電荷蓄積、リセット動作、電荷転送といった一連の動作が完了する。 This completes a series of operations such as charge accumulation, reset operation, and charge transfer.

第1浮遊拡散層FD1へ電子が読み出された後の増幅トランジスタTR1amp、選択トランジスタTR1selの動作は、従来のこれらのトランジスタの動作と同じである。また、例えば、第2撮像素子、第3撮像素子の電荷蓄積、リセット動作、電荷転送といった一連の動作は、従来の電荷蓄積、リセット動作、電荷転送といった一連の動作と同様である。 The operation of the amplification transistor TR1 amp and the selection transistor TR1 sel after the electrons are read out to the first floating diffusion layer FD 1 is the same as the operation of these conventional transistors. Further, for example, a series of operations such as charge storage, reset operation, and charge transfer of the second image sensor and the third image sensor are the same as the conventional series of operations such as charge storage, reset operation, and charge transfer.

実施例4の撮像素子の変形例を構成する第1電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図を図24に示すように、リセット・トランジスタTR1rstの他方のソース/ドレイン領域51Bを、電源VDDに接続する代わりに、接地してもよい。 As shown in FIG. 24, a schematic layout diagram of the first electrode and the charge storage electrode constituting the modified example of the image pickup device of the fourth embodiment and the transistor constituting the control unit is shown in FIG. 24, and the other source of the reset transistor TR1 rst. The / drain region 51B may be grounded instead of being connected to the power supply V DD .

実施例5は、実施例1〜実施例4の変形であり、電荷排出電極を備えた本開示の撮像素子等に関する。実施例5の撮像素子、積層型撮像素子の一部分の模式的な一部断面図を図25に示し、実施例5の撮像素子を構成する第1電極、電荷蓄積用電極及び電荷排出電極の模式的な配置図を図26に示し、実施例5の撮像素子を構成する第1電極、電荷蓄積用電極、電荷排出電極、第2電極及びコンタクトホール部の模式的な透視斜視図を図27に示す。 The fifth embodiment is a modification of the first to fourth embodiments, and relates to an image pickup device and the like of the present disclosure provided with a charge discharge electrode. FIG. 25 shows a schematic partial cross-sectional view of a part of the image pickup element of Example 5 and the stacked image pickup device, and is a schematic view of the first electrode, the charge storage electrode, and the charge discharge electrode constituting the image pickup device of Example 5. A schematic layout of the first electrode, the charge storage electrode, the charge discharge electrode, the second electrode, and the contact hole portion constituting the image pickup element of the fifth embodiment is shown in FIG. 26. Shown.

実施例5の撮像素子、積層型撮像素子にあっては、接続部69を介して光電変換層15に接続され、第1電極11及び電荷蓄積用電極12と離間して配置された電荷排出電極14を更に備えている。ここで、電荷排出電極14は、第1電極11及び電荷蓄積用電極12を取り囲むように(即ち、額縁状に)配置されている。電荷排出電極14は、駆動回路を構成する画素駆動回路に接続されている。接続部69内には、光電変換層15が延在している。即ち、光電変換層15は、絶縁層82に設けられた第2開口部85内を延在し、電荷排出電極14と接続されている。電荷排出電極14は、複数の撮像素子において共有化(共通化)されている。 In the image pickup device and the stacked image pickup device of the fifth embodiment, the charge discharge electrode is connected to the photoelectric conversion layer 15 via the connection portion 69 and is arranged apart from the first electrode 11 and the charge storage electrode 12. 14 is further provided. Here, the charge discharge electrode 14 is arranged so as to surround the first electrode 11 and the charge storage electrode 12 (that is, in a frame shape). The charge discharge electrode 14 is connected to a pixel drive circuit that constitutes the drive circuit. A photoelectric conversion layer 15 extends in the connection portion 69. That is, the photoelectric conversion layer 15 extends in the second opening 85 provided in the insulating layer 82 and is connected to the charge discharge electrode 14. The charge discharge electrode 14 is shared (common) in a plurality of image pickup devices.

実施例5にあっては、電荷蓄積期間において、駆動回路から、第1電極11に電位V11が印加され、電荷蓄積用電極12に電位V12が印加され、電荷排出電極14に電位V14が印加され、光電変換層15に電荷が蓄積される。光電変換層15に入射された光によって光電変換層15において光電変換が生じる。光電変換によって生成した正孔は、第2電極16から配線VOUを介して駆動回路へと送出される。一方、第1電極11の電位を第2電極16の電位よりも高くしたので、即ち、例えば、第1電極11に正の電位が印加され、第2電極16に負の電位が印加されるとしたので、V14>V11(例えば、V12>V14>V11)とする。これによって、光電変換によって生成した電子は、電荷蓄積用電極12に引き付けられ、電荷蓄積用電極12と対向した光電変換層15の領域に止まり、第1電極11に向かって移動することを確実に防止することができる。但し、電荷蓄積用電極12による引き付けが充分ではなく、あるいは又、光電変換層15に蓄積しきれなかった電子(所謂オーバーフローした電子)は、電荷排出電極14を経由して、駆動回路に送出される。 In Example 5, the charge accumulation period, the driving circuit, the potential V 11 is applied to the first electrode 11, the potential V 12 is applied to the charge storage electrode 12, the potential V 14 to the charge discharging electrode 14 Is applied, and charges are accumulated in the photoelectric conversion layer 15. The light incident on the photoelectric conversion layer 15 causes photoelectric conversion in the photoelectric conversion layer 15. The holes generated by the photoelectric conversion are sent from the second electrode 16 to the drive circuit via the wiring V OU . On the other hand, since the potential of the first electrode 11 is made higher than the potential of the second electrode 16, that is, for example, when a positive potential is applied to the first electrode 11 and a negative potential is applied to the second electrode 16. Therefore, V 14 > V 11 (for example, V 12 > V 14 > V 11 ). As a result, the electrons generated by the photoelectric conversion are attracted to the charge storage electrode 12, stay in the region of the photoelectric conversion layer 15 facing the charge storage electrode 12, and surely move toward the first electrode 11. Can be prevented. However, the electrons that are not sufficiently attracted by the charge storage electrode 12 or cannot be completely stored in the photoelectric conversion layer 15 (so-called overflow electrons) are sent to the drive circuit via the charge discharge electrode 14. To.

電荷蓄積期間の後期において、リセット動作がなされる。これによって、第1浮遊拡散層FD1の電位がリセットされ、第1浮遊拡散層FD1の電位は電源の電位VDDとなる。 A reset operation is performed in the latter part of the charge accumulation period. As a result, the potential of the first floating diffusion layer FD 1 is reset, and the potential of the first floating diffusion layer FD 1 becomes the potential V DD of the power supply.

リセット動作の完了後、電荷の読み出しを行う。即ち、電荷転送期間において、駆動回路から、第1電極11に電位V21が印加され、電荷蓄積用電極12に電位V22が印加され、電荷排出電極14に電位V24が印加される。ここで、V24<V21(例えば、V24<V22<V21)とする。これによって、電荷蓄積用電極12と対向した光電変換層15の領域に止まっていた電子は、第1電極11、更には、第1浮遊拡散層FD1へと確実に読み出される。即ち、光電変換層15に蓄積された電荷が制御部に読み出される。 After the reset operation is completed, the electric charge is read out. That is, in the charge transfer period, the driving circuit, the potential V 21 is applied to the first electrode 11, the potential V 22 is applied to the charge storage electrode 12, the potential V 24 is applied to the charge discharging electrode 14. Here, V 24 <V 21 (for example, V 24 <V 22 <V 21 ). As a result, the electrons that have stopped in the region of the photoelectric conversion layer 15 facing the charge storage electrode 12 are surely read out to the first electrode 11 and further to the first floating diffusion layer FD 1 . That is, the electric charge accumulated in the photoelectric conversion layer 15 is read out to the control unit.

以上で、電荷蓄積、リセット動作、電荷転送といった一連の動作が完了する。 This completes a series of operations such as charge accumulation, reset operation, and charge transfer.

第1浮遊拡散層FD1へ電子が読み出された後の増幅トランジスタTR1amp、選択トランジスタTR1selの動作は、従来のこれらのトランジスタの動作と同じである。また、例えば、第2撮像素子、第3撮像素子の電荷蓄積、リセット動作、電荷転送といった一連の動作は、従来の電荷蓄積、リセット動作、電荷転送といった一連の動作と同様である。 The operation of the amplification transistor TR1 amp and the selection transistor TR1 sel after the electrons are read out to the first floating diffusion layer FD 1 is the same as the operation of these conventional transistors. Further, for example, a series of operations such as charge storage, reset operation, and charge transfer of the second image sensor and the third image sensor are the same as the conventional series of operations such as charge storage, reset operation, and charge transfer.

実施例5にあっては、所謂オーバーフローした電子は電荷排出電極14を経由して駆動回路に送出されるので、隣接画素の電荷蓄積部への漏れ込みを抑制することができ、ブルーミングの発生を抑えることができる。そして、これにより、撮像素子の撮像性能を向上させることができる。 In the fifth embodiment, since the so-called overflowed electrons are sent to the drive circuit via the charge discharge electrode 14, it is possible to suppress leakage of adjacent pixels to the charge storage portion and cause blooming. It can be suppressed. As a result, the image pickup performance of the image sensor can be improved.

実施例6は、実施例1〜実施例5の変形であり、複数の電荷蓄積用電極セグメントを備えた本開示の撮像素子等に関する。 The sixth embodiment is a modification of the first to fifth embodiments, and relates to the image sensor and the like of the present disclosure provided with a plurality of charge storage electrode segments.

実施例6の撮像素子の一部分の模式的な一部断面図を図28に示し、実施例6の撮像素子、積層型撮像素子の等価回路図を図29及び図30に示し、実施例6の撮像素子を構成する第1電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図を図31に示し、実施例6の撮像素子の動作時の各部位における電位の状態を模式的に図32、図33に示す。また、実施例6の撮像素子を構成する第1電極及び電荷蓄積用電極の模式的な配置図を図34に示し、実施例6の撮像素子を構成する第1電極、電荷蓄積用電極、第2電極及びコンタクトホール部の模式的な透視斜視図を図35に示す。 A schematic partial cross-sectional view of a part of the image sensor of Example 6 is shown in FIG. 28, and an equivalent circuit diagram of the image sensor and the stacked image sensor of Example 6 are shown in FIGS. 29 and 30, respectively. FIG. 31 shows a schematic layout diagram of the first electrode constituting the image sensor, the charge storage electrode, and the transistor constituting the control unit, and illustrates the state of the potential at each part during the operation of the image sensor according to the sixth embodiment. It is shown in FIGS. 32 and 33. Further, FIG. 34 shows a schematic layout diagram of the first electrode and the charge storage electrode constituting the image pickup device of the sixth embodiment, and the first electrode, the charge storage electrode, and the charge storage electrode constituting the image pickup device of the sixth embodiment are shown in FIG. A schematic perspective perspective view of the two electrodes and the contact hole portion is shown in FIG. 35.

実施例6において、電荷蓄積用電極12は、複数の電荷蓄積用電極セグメント12A,12B,12Cから構成されている。電荷蓄積用電極セグメントの数は、2以上であればよく、実施例6においては「3」とした。そして、実施例6の撮像素子、積層型撮像素子にあっては、第1電極11の電位が第2電極16の電位よりも高いので、即ち、例えば、第1電極11に正の電位が印加され、第2電極16に負の電位が印加されるので、電荷転送期間において、第1電極11に最も近い所に位置する電荷蓄積用電極セグメント12Aに印加される電位は、第1電極11に最も遠い所に位置する電荷蓄積用電極セグメント12Cに印加される電位よりも高い。このように、電荷蓄積用電極12に電位勾配を付与することで、電荷蓄積用電極12と対向した光電変換層15の領域に止まっていた電子は、第1電極11、更には、第1浮遊拡散層FD1へと一層確実に読み出される。即ち、光電変換層15に蓄積された電荷が制御部に読み出される。 In Example 6, the charge storage electrode 12 is composed of a plurality of charge storage electrode segments 12A, 12B, 12C. The number of charge storage electrode segments may be 2 or more, and is set to “3” in Example 6. Then, in the image pickup element and the stacked image pickup device of the sixth embodiment, the potential of the first electrode 11 is higher than the potential of the second electrode 16, that is, for example, a positive potential is applied to the first electrode 11. Then, a negative potential is applied to the second electrode 16, so that the potential applied to the charge storage electrode segment 12A located closest to the first electrode 11 during the charge transfer period is applied to the first electrode 11. It is higher than the potential applied to the charge storage electrode segment 12C located at the farthest place. By applying the potential gradient to the charge storage electrode 12 in this way, the electrons that have stopped in the region of the photoelectric conversion layer 15 facing the charge storage electrode 12 are transferred to the first electrode 11 and further to the first floating. It is read more reliably to the diffusion layer FD 1 . That is, the electric charge accumulated in the photoelectric conversion layer 15 is read out to the control unit.

図32に示す例では、電荷転送期間において、電荷蓄積用電極セグメント12Cの電位<電荷蓄積用電極セグメント12Bの電位<電荷蓄積用電極セグメント12Aの電位とすることで、光電変換層15の領域に止まっていた電子を、一斉に、第1浮遊拡散層FD1へと読み出す。一方、図33に示す例では、電荷転送期間において、電荷蓄積用電極セグメント12Cの電位、電荷蓄積用電極セグメント12Bの電位、電荷蓄積用電極セグメント12Aの電位を段々と変化させることで(即ち、階段状あるいはスロープ状に変化させることで)、電荷蓄積用電極セグメント12Cと対向する光電変換層15の領域に止まっていた電子を、電荷蓄積用電極セグメント12Bと対向する光電変換層15の領域に移動させ、次いで、電荷蓄積用電極セグメント12Bと対向する光電変換層15の領域に止まっていた電子を、電荷蓄積用電極セグメント12Aと対向する光電変換層15の領域に移動させ、次いで、電荷蓄積用電極セグメント12Aと対向する光電変換層15の領域に止まっていた電子を、第1浮遊拡散層FD1へと確実に読み出す。 In the example shown in FIG. 32, in the charge transfer period, the potential of the charge storage electrode segment 12C <the potential of the charge storage electrode segment 12B <the potential of the charge storage electrode segment 12A is set so that the region of the photoelectric conversion layer 15 is formed. The stopped electrons are read out to the first floating diffusion layer FD 1 all at once. On the other hand, in the example shown in FIG. 33, the potential of the charge storage electrode segment 12C, the potential of the charge storage electrode segment 12B, and the potential of the charge storage electrode segment 12A are gradually changed during the charge transfer period (that is,). The electrons that had stopped in the region of the photoelectric conversion layer 15 facing the charge storage electrode segment 12C in a stepped shape or a slope shape are moved to the region of the photoelectric conversion layer 15 facing the charge storage electrode segment 12B. The electrons are then moved and then stopped in the region of the photoelectric conversion layer 15 facing the charge storage electrode segment 12B, moved to the region of the photoelectric conversion layer 15 facing the charge storage electrode segment 12A, and then charged. The electrons stopped in the region of the photoelectric conversion layer 15 facing the electrode segment 12A for use are surely read out to the first floating diffusion layer FD 1 .

実施例6の撮像素子の変形例を構成する第1電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図を図36に示すように、リセット・トランジスタTR1rstの他方のソース/ドレイン領域51Bを、電源VDDに接続する代わりに、接地してもよい。 As shown in FIG. 36, a schematic layout diagram of the first electrode and the charge storage electrode constituting the modified example of the image pickup device of the sixth embodiment and the transistor constituting the control unit is shown in FIG. 36, and the other source of the reset transistor TR1 rst. The / drain region 51B may be grounded instead of being connected to the power supply V DD .

以上、本開示を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定されるものではない。実施例にて説明した撮像素子、積層型撮像素子、固体撮像装置の構造や構成、製造条件、製造方法、使用した材料は例示であり、適宜変更することができる。1つの撮像素子に1つの浮遊拡散層を設ける形態だけでなく、複数の撮像素子に対して1つの浮遊拡散層を設ける形態とすることもできる。即ち、電荷転送期間のタイミングを適切に制御することで、複数の撮像素子が1つの浮遊拡散層を共有することが可能となる。そして、この場合、複数の撮像素子が1つのコンタクトホール部を共有することも可能となる。 Although the present disclosure has been described above based on preferred examples, the present disclosure is not limited to these examples. The structure and configuration of the image pickup device, the stacked image pickup device, and the solid-state image pickup device described in the examples, the manufacturing conditions, the manufacturing method, and the materials used are examples and can be changed as appropriate. Not only a form in which one floating diffusion layer is provided in one image sensor, but also a form in which one floating diffusion layer is provided in a plurality of image pickup elements can be used. That is, by appropriately controlling the timing of the charge transfer period, it becomes possible for a plurality of image pickup devices to share one floating diffusion layer. Then, in this case, it is possible for a plurality of image pickup devices to share one contact hole portion.

図37に、例えば、実施例1において説明した撮像素子、積層型撮像素子の変形例を示すように、第1電極11は、絶縁層82に設けられた開口部84A内を延在し、光電変換層15と接続されている構成とすることもできる。 FIG. 37 shows, for example, a modification of the image pickup device and the laminated image pickup device described in the first embodiment. The first electrode 11 extends in the opening 84A provided in the insulating layer 82 and is photoelectric. It may be configured to be connected to the conversion layer 15.

あるいは又、図38に、例えば、実施例1において説明した撮像素子、積層型撮像素子の変形例を示し、図39Aに第1電極の部分等の拡大された模式的な一部断面図を示すように、第1電極11の頂面の縁部は絶縁層82で覆われており、開口部84Bの底面には第1電極11が露出しており、第1電極11の頂面と接する絶縁層82の面を第1面82a、電荷蓄積用電極12と対向する光電変換層15の部分と接する絶縁層82の面を第2面82bとしたとき、開口部84Bの側面は、第1面82aから第2面82bに向かって広がる傾斜を有する。このように、開口部84Bの側面に傾斜を付けることで、光電変換層15から第1電極11への電荷の移動がより滑らかとなる。尚、図39Aに示した例では、開口部84Bの軸線を中心として、開口部84Bの側面は回転対称であるが、図39Bに示すように、第1面82aから第2面82bに向かって広がる傾斜を有する開口部84Cの側面が電荷蓄積用電極12側に位置するように、開口部84Cを設けてもよい。これによって、開口部84Cを挟んで電荷蓄積用電極12とは反対側の光電変換層15の部分からの電荷の移動が行われ難くなる。また、開口部84Bの側面は、第1面82aから第2面82bに向かって広がる傾斜を有するが、第2面82bにおける開口部84Bの側面の縁部は、図39Aに示したように、第1電極11の縁部よりも外側に位置してもよいし、図39Cに示すように、第1電極11の縁部よりも内側に位置してもよい。前者の構成を採用することで、電荷の転送が一層容易になるし、後者の構成を採用することで、開口部の形成時の形状バラツキを小さくすることができる。 Alternatively, FIG. 38 shows, for example, a modified example of the imaging element and the laminated imaging element described in the first embodiment, and FIG. 39A shows an enlarged schematic partial cross-sectional view of a portion of the first electrode and the like. As described above, the edge of the top surface of the first electrode 11 is covered with the insulating layer 82, and the first electrode 11 is exposed on the bottom surface of the opening 84B, and the insulation is in contact with the top surface of the first electrode 11. When the surface of the layer 82 is the first surface 82a and the surface of the insulating layer 82 in contact with the portion of the photoelectric conversion layer 15 facing the charge storage electrode 12 is the second surface 82b, the side surface of the opening 84B is the first surface. It has an inclination extending from 82a toward the second surface 82b. By inclining the side surface of the opening 84B in this way, the transfer of electric charge from the photoelectric conversion layer 15 to the first electrode 11 becomes smoother. In the example shown in FIG. 39A, the side surfaces of the opening 84B are rotationally symmetric with respect to the axis of the opening 84B, but as shown in FIG. 39B, from the first surface 82a to the second surface 82b. The opening 84C may be provided so that the side surface of the opening 84C having a widening inclination is located on the charge storage electrode 12 side. This makes it difficult for the charge to move from the portion of the photoelectric conversion layer 15 on the side opposite to the charge storage electrode 12 with the opening 84C interposed therebetween. Further, the side surface of the opening 84B has an inclination extending from the first surface 82a to the second surface 82b, and the side edge of the opening 84B on the second surface 82b is as shown in FIG. 39A. It may be located outside the edge of the first electrode 11, or may be located inside of the edge of the first electrode 11, as shown in FIG. 39C. By adopting the former configuration, charge transfer becomes easier, and by adopting the latter configuration, it is possible to reduce the shape variation at the time of forming the opening.

これらの開口部84B,84Cは、絶縁層に開口部をエッチング法に基づき形成するときに形成するレジスト材料から成るエッチング用マスクをリフローすることで、エッチング用マスクの開口側面に傾斜を付け、このエッチング用マスクを用いて絶縁層82をエッチングすることで、形成することができる。 These openings 84B and 84C tilt the opening side surfaces of the etching mask by reflowing an etching mask made of a resist material formed when the openings are formed in the insulating layer based on the etching method. It can be formed by etching the insulating layer 82 with an etching mask.

あるいは又、実施例5において説明した電荷排出電極14に関して、図40に示すように、光電変換層15は、絶縁層82に設けられた第2開口部85A内を延在し、電荷排出電極14と接続されており、電荷排出電極14の頂面の縁部は絶縁層82で覆われており、第2開口部85Aの底面には電荷排出電極14が露出しており、電荷排出電極14の頂面と接する絶縁層82の面を第3面82c、電荷蓄積用電極12と対向する光電変換層15の部分と接する絶縁層82の面を第2面82bとしたとき、第2開口部85Aの側面は、第3面82cから第2面82bに向かって広がる傾斜を有する形態とすることができる。 Alternatively, regarding the charge discharge electrode 14 described in the fifth embodiment, as shown in FIG. 40, the photoelectric conversion layer 15 extends in the second opening 85A provided in the insulating layer 82, and the charge discharge electrode 14 extends. The edge of the top surface of the charge discharge electrode 14 is covered with an insulating layer 82, and the charge discharge electrode 14 is exposed on the bottom surface of the second opening 85A. When the surface of the insulating layer 82 in contact with the top surface is the third surface 82c and the surface of the insulating layer 82 in contact with the portion of the photoelectric conversion layer 15 facing the charge storage electrode 12 is the second surface 82b, the second opening 85A The side surface of the above can be in a form having an inclination extending from the third surface 82c toward the second surface 82b.

また、図41に、例えば、実施例1において説明した撮像素子、積層型撮像素子の変形例を示すように、第2電極16の側から光が入射し、第2電極16よりの光入射側には遮光層92が形成されている構成とすることもできる。尚、光電変換層よりも光入射側に設けられた各種配線を遮光層として機能させることもできる。 Further, as shown in FIG. 41, for example, as shown in a modified example of the image pickup device and the stacked image pickup device described in the first embodiment, light is incident from the side of the second electrode 16 and the light incident side from the second electrode 16. The light-shielding layer 92 may be formed on the surface. It should be noted that various wirings provided on the light incident side of the photoelectric conversion layer can function as a light shielding layer.

尚、図41に示した例では、遮光層92は、第2電極16の上方に形成されているが、即ち、第2電極16よりの光入射側であって、第1電極11の上方に遮光層92が形成されているが、図42に示すように、第2電極16の光入射側の面の上に配設されてもよい。また、場合によっては、図43に示すように、第2電極16に遮光層92が形成されていてもよい。 In the example shown in FIG. 41, the light-shielding layer 92 is formed above the second electrode 16, that is, on the light incident side of the second electrode 16 and above the first electrode 11. Although the light-shielding layer 92 is formed, as shown in FIG. 42, it may be arranged on the surface of the second electrode 16 on the light incident side. Further, in some cases, as shown in FIG. 43, a light shielding layer 92 may be formed on the second electrode 16.

あるいは又、第2電極16側から光が入射し、第1電極11には光が入射しない構造とすることもできる。具体的には、図41に示したように、第2電極16よりの光入射側であって、第1電極11の上方には遮光層92が形成されている。あるいは又、図45に示すように、電荷蓄積用電極12及び第2電極16の上方にはオンチップ・マイクロ・レンズ90が設けられており、オンチップ・マイクロ・レンズ90に入射する光は、電荷蓄積用電極12に集光され、第1電極11には到達しない構造とすることもできる。尚、実施例4において説明したように、転送制御用電極13が設けられている場合、第1電極11及び転送制御用電極13には光が入射しない形態とすることができ、具体的には、図44に図示するように、第1電極11及び転送制御用電極13の上方には遮光層92が形成されている構造とすることもできる。あるいは又、オンチップ・マイクロ・レンズ90に入射する光は、第1電極11及び転送制御用電極13には到達しない構造とすることもできる。 Alternatively, the structure may be such that light is incident from the second electrode 16 side and light is not incident on the first electrode 11. Specifically, as shown in FIG. 41, a light-shielding layer 92 is formed on the light incident side of the second electrode 16 and above the first electrode 11. Alternatively, as shown in FIG. 45, an on-chip micro lens 90 is provided above the charge storage electrode 12 and the second electrode 16, and the light incident on the on-chip micro lens 90 is emitted. The structure may be such that the light is focused on the charge storage electrode 12 and does not reach the first electrode 11. As described in the fourth embodiment, when the transfer control electrode 13 is provided, the first electrode 11 and the transfer control electrode 13 can be configured so that no light is incident on the first electrode 11 and the transfer control electrode 13. As shown in FIG. 44, a light-shielding layer 92 may be formed above the first electrode 11 and the transfer control electrode 13. Alternatively, the structure may be such that the light incident on the on-chip microlens 90 does not reach the first electrode 11 and the transfer control electrode 13.

これらの構成、構造を採用することで、あるいは又、電荷蓄積用電極12の上方に位置する光電変換層15の部分のみに光が入射するように遮光層92を設け、あるいは又、オンチップ・マイクロ・レンズ90を設計することで、第1電極11の上方(あるいは、第1電極11及び転送制御用電極13の上方)に位置する光電変換層15の部分は光電変換に寄与しなくなるので、全画素をより確実に一斉にリセットすることができ、グローバルシャッター機能を一層容易に実現することができる。即ち、これらの構成、構造を有する撮像素子を、複数、備えた固体撮像装置の駆動方法にあっては、
全ての撮像素子において、一斉に、光電変換層15に電荷を蓄積しながら、第1電極11における電荷を系外に排出し、その後、
全ての撮像素子において、一斉に、光電変換層15に蓄積された電荷を第1電極11に転送し、転送完了後、順次、各撮像素子において第1電極11に転送された電荷を読み出す、
各工程を繰り返す。
By adopting these configurations and structures, or by providing a light-shielding layer 92 so that light is incident only on the portion of the photoelectric conversion layer 15 located above the charge storage electrode 12, or also on-chip. By designing the micro lens 90, the portion of the photoelectric conversion layer 15 located above the first electrode 11 (or above the first electrode 11 and the transfer control electrode 13) does not contribute to photoelectric conversion. All pixels can be reset all at once more reliably, and the global shutter function can be realized more easily. That is, in the driving method of the solid-state image pickup device provided with a plurality of image pickup elements having these configurations and structures,
In all the image pickup devices, the electric charges in the first electrode 11 are discharged to the outside of the system while accumulating the electric charges in the photoelectric conversion layer 15 all at once, and then.
In all the image pickup devices, the electric charges accumulated in the photoelectric conversion layer 15 are transferred to the first electrode 11 all at once, and after the transfer is completed, the electric charges transferred to the first electrode 11 are sequentially read out in each image sensor.
Repeat each process.

光電変換層は1層からの構成に限定されない。例えば、実施例1において説明した撮像素子、積層型撮像素子の変形例を図46に示すように、光電変換層15を、例えば、IGZOから成る下層半導体層15Aと、実施例1において説明した光電変換層15を構成する材料から成る上層光電変換層15Bの積層層構造とすることもできる。このように下層半導体層15Aを設けることで、電荷蓄積時の再結合を防止することができ、光電変換層15に蓄積した電荷の第1電極11への転送効率を増加させることができるし、暗電流の生成を抑制することができる。また、実施例4の変形例として、図47に示すように、第1電極11に最も近い位置から電荷蓄積用電極12に向けて、複数の転送制御用電極を設けてもよい。尚、図47には、2つの転送制御用電極13A,13Bを設けた例を示した。 The photoelectric conversion layer is not limited to the configuration of one layer. For example, as shown in FIG. 46, a modification of the image pickup device and the laminated image pickup device described in Example 1, the photoelectric conversion layer 15 is, for example, a lower semiconductor layer 15A made of IGZO and the photoelectric beam described in Example 1. It is also possible to have a laminated layer structure of the upper photoelectric conversion layer 15B made of the material constituting the conversion layer 15. By providing the lower semiconductor layer 15A in this way, recombination at the time of charge accumulation can be prevented, and the transfer efficiency of the charge accumulated in the photoelectric conversion layer 15 to the first electrode 11 can be increased. The generation of dark current can be suppressed. Further, as a modification of the fourth embodiment, as shown in FIG. 47, a plurality of transfer control electrodes may be provided from the position closest to the first electrode 11 toward the charge storage electrode 12. Note that FIG. 47 shows an example in which two transfer control electrodes 13A and 13B are provided.

以上に説明した各種の変形例は、実施例1以外の実施例に対しても適用することができることは云うまでもない。 Needless to say, the various modifications described above can be applied to examples other than the first embodiment.

実施例においては、電子を信号電荷としており、半導体基板に形成された光電変換層の導電型をn型としたが、正孔を信号電荷とする固体撮像装置にも適用できる。この場合には、各半導体領域を逆の導電型の半導体領域で構成すればよく、半導体基板に形成された光電変換層の導電型はp型とすればよい。 In the embodiment, electrons are used as signal charges and the conductive type of the photoelectric conversion layer formed on the semiconductor substrate is n-type, but the present invention can also be applied to a solid-state image sensor using holes as signal charges. In this case, each semiconductor region may be composed of the opposite conductive type semiconductor region, and the conductive type of the photoelectric conversion layer formed on the semiconductor substrate may be p-type.

また、実施例にあっては、入射光量に応じた信号電荷を物理量として検知する単位画素が行列状に配置されて成るCMOS型固体撮像装置に適用した場合を例に挙げて説明したが、CMOS型固体撮像装置への適用に限られるものではなく、CCD型固体撮像装置に適用することもできる。後者の場合、信号電荷は、CCD型構造の垂直転送レジスタによって垂直方向に転送され、水平転送レジスタによって水平方向に転送され、増幅されることにより画素信号(画像信号)が出力される。また、画素が2次元マトリックス状に形成され、画素列毎にカラム信号処理回路を配置して成るカラム方式の固体撮像装置全般に限定するものでもない。更には、場合によっては、選択トランジスタを省略することもできる。 Further, in the embodiment, a case where the unit pixels for detecting the signal charge according to the amount of incident light as a physical quantity are arranged in a matrix is applied to a CMOS type solid-state image sensor has been described as an example. The application is not limited to the type solid-state image sensor, and can also be applied to the CCD type solid-state image sensor. In the latter case, the signal charge is transferred in the vertical direction by the vertical transfer register having a CCD type structure, transferred in the horizontal direction by the horizontal transfer register, and amplified to output a pixel signal (image signal). Further, the present invention is not limited to all column-type solid-state image pickup devices in which pixels are formed in a two-dimensional matrix and column signal processing circuits are arranged for each pixel row. Furthermore, in some cases, the selection transistor can be omitted.

更には、本開示の撮像素子、積層型撮像素子は、可視光の入射光量の分布を検知して画像として撮像する固体撮像装置への適用に限らず、赤外線やX線、あるいは、粒子等の入射量の分布を画像として撮像する固体撮像装置にも適用可能である。また、広義には、圧力や静電容量等、他の物理量の分布を検知して画像として撮像する指紋検出センサ等の固体撮像装置(物理量分布検知装置)全般に対して適用可能である。 Further, the image pickup device and the stacked image sensor of the present disclosure are not limited to application to a solid-state image pickup device that detects the distribution of the amount of incident light of visible light and captures an image as an image, but also infrared rays, X-rays, particles, or the like. It can also be applied to a solid-state image sensor that captures the distribution of incident amount as an image. Further, in a broad sense, it can be applied to all solid-state imaging devices (physical quantity distribution detecting devices) such as fingerprint detection sensors that detect the distribution of other physical quantities such as pressure and capacitance and capture images as images.

更には、撮像領域の各単位画素を行単位で順に走査して各単位画素から画素信号を読み出す固体撮像装置に限られるものではない。画素単位で任意の画素を選択して、選択画素から画素単位で画素信号を読み出すX−Yアドレス型の固体撮像装置に対しても適用可能である。固体撮像装置はワンチップとして形成された形態であってもよいし、撮像領域と、駆動回路又は光学系とを纏めてパッケージングされた撮像機能を有するモジュール状の形態であってもよい。 Furthermore, the present invention is not limited to a solid-state image sensor that sequentially scans each unit pixel in the imaging region line by line and reads a pixel signal from each unit pixel. It is also applicable to an XY address type solid-state image sensor in which an arbitrary pixel is selected in pixel units and a pixel signal is read from the selected pixels in pixel units. The solid-state image sensor may be formed as a single chip, or may be a modular form having an image pickup function in which an image pickup region and a drive circuit or an optical system are packaged together.

また、固体撮像装置への適用に限られるものではなく、撮像装置にも適用可能である。ここで、撮像装置とは、デジタルスチルカメラやビデオカメラ等のカメラシステムや、携帯電話機等の撮像機能を有する電子機器を指す。電子機器に搭載されるモジュール状の形態、即ち、カメラモジュールを撮像装置とする場合もある。 Further, the application is not limited to a solid-state image sensor, and can also be applied to an image sensor. Here, the imaging device refers to a camera system such as a digital still camera or a video camera, or an electronic device having an imaging function such as a mobile phone. In some cases, a modular form mounted on an electronic device, that is, a camera module is used as an image pickup device.

本開示の撮像素子、積層型撮像素子から構成された固体撮像装置201を電子機器(カメラ)200に用いた例を、図48に概念図として示す。電子機器200は、固体撮像装置201、光学レンズ210、シャッタ装置211、駆動回路212、及び、信号処理回路213を有する。光学レンズ210は、被写体からの像光(入射光)を固体撮像装置201の撮像面上に結像させる。これにより固体撮像装置201内に、一定期間、信号電荷が蓄積される。シャッタ装置211は、固体撮像装置201への光照射期間及び遮光期間を制御する。駆動回路212は、固体撮像装置201の転送動作等及びシャッタ装置211のシャッタ動作を制御する駆動信号を供給する。駆動回路212から供給される駆動信号(タイミング信号)により、固体撮像装置201の信号転送を行う。信号処理回路213は、各種の信号処理を行う。信号処理が行われた映像信号は、メモリ等の記憶媒体に記憶され、あるいは、モニタに出力される。このような電子機器200では、固体撮像装置201における画素サイズの微細化及び転送効率の向上を達成することができるので、画素特性の向上が図られた電子機器200を得ることができる。固体撮像装置201を適用できる電子機器200としては、カメラに限られるものではなく、デジタルスチルカメラ、携帯電話機等のモバイル機器向けカメラモジュール等の撮像装置に適用可能である。 An example in which the solid-state image sensor 201 composed of the image sensor and the stacked image sensor of the present disclosure is used in the electronic device (camera) 200 is shown as a conceptual diagram in FIG. 48. The electronic device 200 includes a solid-state imaging device 201, an optical lens 210, a shutter device 211, a drive circuit 212, and a signal processing circuit 213. The optical lens 210 forms an image light (incident light) from the subject on the image pickup surface of the solid-state image pickup device 201. As a result, signal charges are accumulated in the solid-state image sensor 201 for a certain period of time. The shutter device 211 controls the light irradiation period and the light blocking period of the solid-state image sensor 201. The drive circuit 212 supplies a drive signal that controls the transfer operation of the solid-state image sensor 201 and the shutter operation of the shutter device 211. The signal transfer of the solid-state image sensor 201 is performed by the drive signal (timing signal) supplied from the drive circuit 212. The signal processing circuit 213 performs various signal processing. The video signal after signal processing is stored in a storage medium such as a memory or output to a monitor. In such an electronic device 200, the pixel size of the solid-state image sensor 201 can be miniaturized and the transfer efficiency can be improved, so that the electronic device 200 with improved pixel characteristics can be obtained. The electronic device 200 to which the solid-state imaging device 201 can be applied is not limited to a camera, but can be applied to an imaging device such as a digital still camera or a camera module for mobile devices such as mobile phones.

尚、本開示は、以下のような構成を取ることもできる。
[A01]《撮像素子》
第1電極、光電変換層及び第2電極が積層されて成る光電変換部を備えており、
光電変換部は、更に、第1電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された電荷蓄積用電極を備えている撮像素子。
[A02]半導体基板を更に備えており、
光電変換部は、半導体基板の上方に配置されている[A01]に記載の撮像素子。
[A03]第1電極は、絶縁層に設けられた開口部内を延在し、光電変換層と接続されている[A01]又は[A02]に記載の撮像素子。
[A04]光電変換層は、絶縁層に設けられた開口部内を延在し、第1電極と接続されている[A01]又は[A02]に記載の撮像素子。
[A05]第1電極の頂面の縁部は絶縁層で覆われており、
開口部の底面には第1電極が露出しており、
第1電極の頂面と接する絶縁層の面を第1面、電荷蓄積用電極と対向する光電変換層の部分と接する絶縁層の面を第2面としたとき、開口部の側面は、第1面から第2面に向かって広がる傾斜を有する[A04]に記載の撮像素子。
[A06]第1面から第2面に向かって広がる傾斜を有する開口部の側面は、電荷蓄積用電極側に位置する[A05]に記載の撮像素子。
[A07]《第1電極及び電荷蓄積用電極の電位の制御》
半導体基板に設けられ、駆動回路を有する制御部を更に備えており、
第1電極及び電荷蓄積用電極は、駆動回路に接続されており、
電荷蓄積期間において、駆動回路から、第1電極に電位V11が印加され、電荷蓄積用電極に電位V12が印加され、光電変換層に電荷が蓄積され、
電荷転送期間において、駆動回路から、第1電極に電位V21が印加され、電荷蓄積用電極に電位V22が印加され、光電変換層に蓄積された電荷が第1電極を経由して制御部に読み出される[A01]乃至[A06]のいずれか1項に記載の撮像素子。
但し、第1電極の電位が第2電極より高い場合、
12≧V11、且つ、V22<V21
であり、第1電極の電位が第2電極より低い場合、
12≦V11、且つ、V22>V21
である。
[A08]《転送制御用電極》
第1電極と電荷蓄積用電極との間に、第1電極及び電荷蓄積用電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された転送制御用電極を更に備えている[A01]乃至[A06]のいずれか1項に記載の撮像素子。
[A09]《第1電極、電荷蓄積用電極及び転送制御用電極の電位の制御》
半導体基板に設けられ、駆動回路を有する制御部を更に備えており、
第1電極、電荷蓄積用電極及び転送制御用電極は、駆動回路に接続されており、
電荷蓄積期間において、駆動回路から、第1電極に電位V11が印加され、電荷蓄積用電極に電位V12が印加され、転送制御用電極に電位V13が印加され、光電変換層に電荷が蓄積され、
電荷転送期間において、駆動回路から、第1電極に電位V21が印加され、電荷蓄積用電極に電位V22が印加され、転送制御用電極に電位V23が印加され、光電変換層に蓄積された電荷が第1電極を介して制御部に読み出される[A08]に記載の撮像素子。
但し、第1電極の電位が第2電極より高い場合、
12>V13、且つ、V22≦V23≦V21
であり、第1電極の電位が第2電極より低い場合、
12<V13、且つ、V22≧V23≧V21
である。
[A10]《電荷排出電極》
光電変換層に接続され、第1電極及び電荷蓄積用電極と離間して配置された電荷排出電極を更に備えている[A01]乃至[A09]のいずれか1項に記載の撮像素子。
[A11]電荷排出電極は、第1電極及び電荷蓄積用電極を取り囲むように配置されている[A10]に記載の撮像素子。
[A12]光電変換層は、絶縁層に設けられた第2開口部内を延在し、電荷排出電極と接続されており、
電荷排出電極の頂面の縁部は絶縁層で覆われており、
第2開口部の底面には電荷排出電極が露出しており、
電荷排出電極の頂面と接する絶縁層の面を第3面、電荷蓄積用電極と対向する光電変換層の部分と接する絶縁層の面を第2面としたとき、第2開口部の側面は、第3面から第2面に向かって広がる傾斜を有する[A10]又は[A11]に記載の撮像素子。
[A13]《第1電極、電荷蓄積用電極及び電荷排出電極の電位の制御》
半導体基板に設けられ、駆動回路を有する制御部を更に備えており、
第1電極、電荷蓄積用電極及び電荷排出電極は、駆動回路に接続されており、
電荷蓄積期間において、駆動回路から、第1電極に電位V11が印加され、電荷蓄積用電極に電位V12が印加され、電荷排出電極に電位V14が印加され、光電変換層に電荷が蓄積され、
電荷転送期間において、駆動回路から、第1電極に電位V21が印加され、電荷蓄積用電極に電位V22が印加され、電荷排出電極に電位V24が印加され、光電変換層に蓄積された電荷が第1電極を介して制御部に読み出される[A10]乃至[A12]のいずれか1項に記載の撮像素子。
但し、第1電極の電位が第2電極より高い場合、
14>V11、且つ、V24<V21
であり、第1電極の電位が第2電極より低い場合、
14<V11、且つ、V24>V21
である。
[A14]《電荷蓄積用電極セグメント》
電荷蓄積用電極は、複数の電荷蓄積用電極セグメントから構成されている[A01]乃至[A13]のいずれか1項に記載の撮像素子。
[A15]第1電極の電位が第2電極より高い場合、電荷転送期間において、第1電極に最も近い所に位置する電荷蓄積用電極セグメントに印加される電位は、第1電極に最も遠い所に位置する電荷蓄積用電極セグメントに印加される電位よりも高く、
第1電極の電位が第2電極より低い場合、電荷転送期間において、第1電極に最も近い所に位置する電荷蓄積用電極セグメントに印加される電位は、第1電極に最も遠い所に位置する電荷蓄積用電極セグメントに印加される電位よりも低い[A14]に記載の撮像素子。
[B01]半導体基板には、制御部を構成する少なくとも浮遊拡散層及び増幅トランジスタが設けられており、
第1電極は、浮遊拡散層及び増幅トランジスタのゲート部に接続されている[A01]乃至[A15]のいずれか1項に記載の撮像素子。
[B02]半導体基板には、更に、制御部を構成するリセット・トランジスタ及び選択トランジスタが設けられており、
浮遊拡散層は、リセット・トランジスタの一方のソース/ドレイン領域に接続されており、
増幅トランジスタの一方のソース/ドレイン領域は、選択トランジスタの一方のソース/ドレイン領域に接続されており、選択トランジスタの他方のソース/ドレイン領域は信号線に接続されている[B01]に記載の撮像素子。
[B03]電荷蓄積用電極の大きさは第1電極よりも大きい[A01]乃至[B02]のいずれか1項に記載の撮像素子。
[B04]第2電極側から光が入射し、第2電極よりの光入射側には遮光層が形成されている[A01]乃至[B03]のいずれか1項に記載の撮像素子。
[B05]第2電極側から光が入射し、第1電極には光が入射しない[A01]乃至[B03]のいずれか1項に記載の撮像素子。
[B06]第2電極よりの光入射側であって、第1電極の上方には遮光層が形成されている[B05]に記載の撮像素子。
[B07]電荷蓄積用電極及び第2電極の上方にはオンチップ・マイクロ・レンズが設けられており、
オンチップ・マイクロ・レンズに入射する光は、電荷蓄積用電極に集光される[B05]に記載の撮像素子。
[C01]《積層型撮像素子》
[A01]乃至[B07]のいずれか1項に記載の撮像素子を少なくとも1つ有する積層型撮像素子。
[D01]《固体撮像装置・・・第1の態様》
[A01]乃至[B04]のいずれか1項に記載の撮像素子を、複数、備えた固体撮像装置。
[D02]《固体撮像装置・・・第2の態様》
[C01]に記載の積層型撮像素子を、複数、備えた固体撮像装置。
[E01]《固体撮像装置の駆動方法》
第1電極、光電変換層及び第2電極が積層されて成る光電変換部を備えており、
光電変換部は、更に、第1電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された電荷蓄積用電極を備えており、
第2電極側から光が入射し、第1電極には光が入射しない構造を有する撮像素子を、複数、備えた固体撮像装置の駆動方法であって、
全ての撮像素子において、一斉に、光電変換層に電荷を蓄積しながら、第1電極における電荷を系外に排出し、その後、
全ての撮像素子において、一斉に、光電変換層に蓄積された電荷を第1電極に転送し、転送完了後、順次、各撮像素子において第1電極に転送された電荷を読み出す、
各工程を繰り返す固体撮像装置の駆動方法。
The present disclosure may also have the following configuration.
[A01] << Image sensor >>
It is provided with a photoelectric conversion unit in which a first electrode, a photoelectric conversion layer, and a second electrode are laminated.
The photoelectric conversion unit is an image pickup device further provided with a charge storage electrode arranged separately from the first electrode and facing the photoelectric conversion layer via an insulating layer.
[A02] Further equipped with a semiconductor substrate,
The image pickup device according to [A01], wherein the photoelectric conversion unit is arranged above the semiconductor substrate.
[A03] The image pickup device according to [A01] or [A02], wherein the first electrode extends in an opening provided in the insulating layer and is connected to the photoelectric conversion layer.
[A04] The image pickup device according to [A01] or [A02], wherein the photoelectric conversion layer extends in an opening provided in the insulating layer and is connected to the first electrode.
[A05] The edge of the top surface of the first electrode is covered with an insulating layer.
The first electrode is exposed on the bottom surface of the opening.
When the surface of the insulating layer in contact with the top surface of the first electrode is the first surface and the surface of the insulating layer in contact with the portion of the photoelectric conversion layer facing the charge storage electrode is the second surface, the side surface of the opening is the first surface. The image pickup device according to [A04], which has an inclination extending from the first surface to the second surface.
[A06] The image pickup device according to [A05], wherein the side surface of the opening having an inclination extending from the first surface to the second surface is located on the charge storage electrode side.
[A07] << Control of potential of first electrode and charge storage electrode >>
It is further provided with a control unit provided on a semiconductor substrate and having a drive circuit.
The first electrode and the charge storage electrode are connected to the drive circuit.
In the charge accumulation period, the driving circuit, the potential V 11 is applied to the first electrode, the potential V 12 is applied to the charge storage electrode, charges are accumulated in the photoelectric conversion layer,
During the charge transfer period, the potential V 21 is applied to the first electrode from the drive circuit, the potential V 22 is applied to the charge storage electrode, and the charge accumulated in the photoelectric conversion layer is transferred to the control unit via the first electrode. The image pickup device according to any one of [A01] to [A06] read out in 1.
However, when the potential of the first electrode is higher than that of the second electrode,
V 12 ≥ V 11 and V 22 <V 21
When the potential of the first electrode is lower than that of the second electrode,
V 12 ≤ V 11 and V 22 > V 21
Is.
[A08] << Electrode for transfer control >>
A transfer control electrode is arranged between the first electrode and the charge storage electrode so as to be separated from the first electrode and the charge storage electrode and is arranged so as to face the photoelectric conversion layer via an insulating layer. The image pickup device according to any one of [A01] to [A06].
[A09] << Control of potential of first electrode, charge storage electrode and transfer control electrode >>
It is further provided with a control unit provided on a semiconductor substrate and having a drive circuit.
The first electrode, the charge storage electrode, and the transfer control electrode are connected to the drive circuit.
During the charge storage period, the drive circuit applies the potential V 11 to the first electrode, the potential V 12 to the charge storage electrode, the potential V 13 to the transfer control electrode, and charges to the photoelectric conversion layer. Accumulated,
In the charge transfer period, the driving circuit, the potential V 21 is applied to the first electrode, the potential V 22 is applied to the charge storage electrode, the potential V 23 is applied to the transfer control electrodes are accumulated in the photoelectric conversion layer The image pickup device according to [A08], wherein the electric charge is read out to the control unit via the first electrode.
However, when the potential of the first electrode is higher than that of the second electrode,
V 12 > V 13 and V 22 ≤ V 23 ≤ V 21
When the potential of the first electrode is lower than that of the second electrode,
V 12 <V 13 and V 22 ≧ V 23 ≧ V 21
Is.
[A10] << Charge discharge electrode >>
The image pickup device according to any one of [A01] to [A09], further comprising a charge discharge electrode connected to a photoelectric conversion layer and arranged apart from a first electrode and a charge storage electrode.
[A11] The image pickup device according to [A10], wherein the charge discharge electrode is arranged so as to surround the first electrode and the charge storage electrode.
[A12] The photoelectric conversion layer extends in the second opening provided in the insulating layer and is connected to the charge discharge electrode.
The edge of the top surface of the charge discharge electrode is covered with an insulating layer.
The charge discharge electrode is exposed on the bottom surface of the second opening.
When the surface of the insulating layer in contact with the top surface of the charge discharge electrode is the third surface and the surface of the insulating layer in contact with the portion of the photoelectric conversion layer facing the charge storage electrode is the second surface, the side surface of the second opening is The image pickup device according to [A10] or [A11], which has an inclination extending from the third surface to the second surface.
[A13] << Control of potential of first electrode, charge storage electrode and charge discharge electrode >>
It is further provided with a control unit provided on a semiconductor substrate and having a drive circuit.
The first electrode, the charge storage electrode, and the charge discharge electrode are connected to the drive circuit.
In the charge accumulation period, the driving circuit, the potential V 11 is applied to the first electrode, the potential V 12 is applied to the charge storage electrode, the potential V 14 is applied to the charge discharging electrodes, electric charges accumulated in the photoelectric conversion layer Being done
In the charge transfer period, the driving circuit, the potential V 21 is applied to the first electrode, the potential V 22 is applied to the charge storage electrode, the potential V 24 is applied to the charge discharging electrode, which is accumulated in the photoelectric conversion layer The imaging device according to any one of [A10] to [A12], wherein the electric charge is read out to the control unit via the first electrode.
However, when the potential of the first electrode is higher than that of the second electrode,
V 14 > V 11 and V 24 <V 21
When the potential of the first electrode is lower than that of the second electrode,
V 14 <V 11 and V 24 > V 21
Is.
[A14] << Electrode segment for charge storage >>
The image pickup device according to any one of [A01] to [A13], wherein the charge storage electrode is composed of a plurality of charge storage electrode segments.
[A15] When the potential of the first electrode is higher than that of the second electrode, the potential applied to the charge storage electrode segment located closest to the first electrode during the charge transfer period is the farthest from the first electrode. Higher than the potential applied to the charge storage electrode segment located at
When the potential of the first electrode is lower than that of the second electrode, the potential applied to the charge storage electrode segment located closest to the first electrode is located farthest from the first electrode during the charge transfer period. The imaging device according to [A14], which is lower than the potential applied to the charge storage electrode segment.
[B01] The semiconductor substrate is provided with at least a floating diffusion layer and an amplification transistor constituting a control unit.
The image pickup device according to any one of [A01] to [A15], wherein the first electrode is connected to the floating diffusion layer and the gate portion of the amplification transistor.
[B02] The semiconductor substrate is further provided with a reset transistor and a selection transistor constituting a control unit.
The stray diffusion layer is connected to one source / drain region of the reset transistor and
The image pickup according to [B01], wherein one source / drain region of the amplification transistor is connected to one source / drain region of the selection transistor, and the other source / drain region of the selection transistor is connected to the signal line. element.
[B03] The image pickup device according to any one of [A01] to [B02], wherein the size of the charge storage electrode is larger than that of the first electrode.
[B04] The image pickup device according to any one of [A01] to [B03], wherein light is incident from the second electrode side and a light shielding layer is formed on the light incident side from the second electrode.
[B05] The image pickup device according to any one of [A01] to [B03], wherein light is incident from the second electrode side and light is not incident on the first electrode.
[B06] The image pickup device according to [B05], which is on the light incident side of the second electrode and has a light-shielding layer formed above the first electrode.
[B07] An on-chip microlens is provided above the charge storage electrode and the second electrode.
The image sensor according to [B05], wherein the light incident on the on-chip micro lens is focused on the charge storage electrode.
[C01] << Stacked image sensor >>
A stacked image sensor having at least one image sensor according to any one of [A01] to [B07].
[D01] << Solid-state image sensor ... First aspect >>
A solid-state image pickup device including a plurality of image pickup devices according to any one of [A01] to [B04].
[D02] << Solid-state image sensor ... Second aspect >>
A solid-state image pickup device including a plurality of stacked image pickup devices according to [C01].
[E01] << Driving method of solid-state image sensor >>
It is provided with a photoelectric conversion unit in which a first electrode, a photoelectric conversion layer, and a second electrode are laminated.
The photoelectric conversion unit further includes a charge storage electrode that is arranged apart from the first electrode and is arranged so as to face the photoelectric conversion layer via an insulating layer.
This is a method of driving a solid-state image pickup device provided with a plurality of image pickup elements having a structure in which light is incident from the second electrode side and light is not incident on the first electrode.
In all the image sensors, while accumulating charges in the photoelectric conversion layer all at once, the charges in the first electrode are discharged to the outside of the system, and then.
In all the image pickup devices, the electric charge accumulated in the photoelectric conversion layer is transferred to the first electrode all at once, and after the transfer is completed, the electric charge transferred to the first electrode in each image sensor is sequentially read out.
A method of driving a solid-state image sensor that repeats each process.

11・・・第1電極、12・・・電荷蓄積用電極、12A,12B,12C・・・電荷蓄積用電極セグメント、13,13A,13B・・・転送制御用電極(電荷転送電極)、14・・・電荷排出電極、15・・・光電変換層、16・・・第2電極、41・・・第2撮像素子を構成するn型半導体領域、43・・・第3撮像素子を構成するn型半導体領域、42,44,73・・・p+層、FD1,FD2,FD3,45C,46C・・・浮遊拡散層、TR1amp・・・増幅トランジスタ、TR1rst・・・リセット・トランジスタ、TR1sel・・・選択トランジスタ、51・・・リセット・トランジスタTR1rstのゲート部、51A・・・リセット・トランジスタTR1rstのチャネル形成領域、51B,51C・・・リセット・トランジスタTR1rstのソース/ドレイン領域、52・・・増幅トランジスタTR1ampのゲート部、52A・・・増幅トランジスタTR1ampチャネル形成領域、52B,52C・・・増幅トランジスタTR1ampのソース/ドレイン領域、53・・・選択トランジスタTR1selのゲート部、53A・・・選択トランジスタTR1selのチャネル形成領域、53B,53C・・・選択トランジスタTR1selのソース/ドレイン領域、TR2trs・・・転送トランジスタ、45・・・転送トランジスタのゲート部、TR2rst・・・リセット・トランジスタ、TR2amp・・・増幅トランジスタ、TR2sel・・・選択トランジスタ、TR3trs・・・転送トランジスタ、46・・・転送トランジスタのゲート部、TR3rst・・・リセット・トランジスタ、TR3amp・・・増幅トランジスタ、TR3sel・・・選択トランジスタ、VDD・・・電源、RST1,RST2,RST3・・・リセット線、SEL1,SEL2,SEL3・・・選択線、117,VSL1,VSL2,VSL3・・・信号線、TG2,TG3・・・転送ゲート線、VOA,VOT,VOU・・・配線、61・・・コンタクトホール部、62・・・配線層、63,64,68A・・・パッド部、65,68B・・・接続孔、66,67,69・・・接続部、70・・・半導体基板、70A・・・半導体基板の第1面(おもて面)、70B・・・半導体基板の第2面(裏面)、71・・・素子分離領域、72・・・酸化膜、74・・・HfO2膜、75・・・絶縁膜、76・・・層間絶縁層、77,78,81・・・層間絶縁層、82・・・絶縁層、82a・・・絶縁層の第1面、82b・・・絶縁層の第2面、82c・・・絶縁層の第3面、83・・・保護層、84,84A,84B,84C・・・開口部、85,85A・・・第2開口部、90・・・オンチップ・マイクロ・レンズ、91・・・層間絶縁層81より下方に位置する各種の撮像素子構成要素、92・・・遮光層、100・・・固体撮像装置、101・・・積層型撮像素子、111・・・撮像領域、112・・・垂直駆動回路、113・・・カラム信号処理回路、114・・・水平駆動回路、115・・・出力回路、116・・・駆動制御回路、118・・・水平信号線、200・・・電子機器(カメラ)、201・・・固体撮像装置、210・・・光学レンズ、211・・・シャッタ装置、212・・・駆動回路、213・・・信号処理回路 11 ... 1st electrode, 12 ... Charge storage electrode, 12A, 12B, 12C ... Charge storage electrode segment, 13, 13A, 13B ... Transfer control electrode (charge transfer electrode), 14 ... Charge discharge electrode, 15 ... Photoelectric conversion layer, 16 ... Second electrode, 41 ... N-type semiconductor region constituting the second image pickup element, 43 ... Third image pickup element. n-type semiconductor region, 42, 44, 73 ... p + layer, FD 1 , FD 2 , FD 3 , 45C, 46C ... floating diffusion layer, TR1 amp ... amplification transistor, TR1 rst ... reset Transistor, TR1 sel ... Selected transistor, 51 ... Reset transistor TR1 rst gate, 51A ... Reset transistor TR1 rst channel formation region, 51B, 51C ... Reset transistor TR1 rst source / drain regions, 52 ... gate section of the amplifying transistor TR1 # 038, 52A ... amplifying transistor TR1 # 038 channel formation region, 52B, 52C ... source / drain region of the amplifying transistor TR1 # 038, 53 ... selection Transistor TR1 sel gate, 53A ... channel formation region of selective transistor TR1 sel , 53B, 53C ... source / drain region of selective transistor TR1 sel , TR2 trs ... transfer transistor, 45 ... transfer transistor Gate part, TR2 rst ... reset transistor, TR2 amp ... amplification transistor, TR2 sel ... selection transistor, TR3 trs ... transfer transistor, 46 ... transfer transistor gate, TR3 rst ...・ ・ Reset transistor, TR3 amp・ ・ ・ Amplification transistor, TR3 sel・ ・ ・ Select transistor, V DD・ ・ ・ Power supply, RST 1 , RST 2 , RST 3・ ・ ・ Reset line, SEL 1 , SEL 2 , SEL 3 ... Selection line 117, VSL 1 , VSL 2 , VSL 3 ... Signal line, TG 2 , TG 3 ... Transfer gate line, V OA , V OT , V OU ... Wiring, 61. .. Contact hole part, 62 ... Wiring layer, 63, 64, 68A ... Pad part, 65, 68B ... Connection hole, 66, 67, 69 ... Connection part, 70 ... Semiconductor substrate , 70A ... First surface (front surface) of the semiconductor substrate, 70B ... Second surface (back surface) of semiconductor substrate, 71 ... element separation region, 72 ... oxide film, 74 ... HfO 2 film, 75 ... insulating film, 76 ... interlayer insulating layer, 77, 78, 81 ... Interlayer insulation layer, 82 ... Insulation layer, 82a ... First surface of insulation layer, 82b ... Second surface of insulation layer, 82c ... Third surface of insulation layer, 83 ... protective layer, 84, 84A, 84B, 84C ... opening, 85, 85A ... second opening, 90 ... on-chip micro lens, 91 ... interlayer insulation layer 81 Various imaging element components located below, 92 ... light-shielding layer, 100 ... solid-state imaging device, 101 ... stacked imaging element, 111 ... imaging region, 112 ... vertical drive circuit , 113 ... Column signal processing circuit, 114 ... Horizontal drive circuit, 115 ... Output circuit, 116 ... Drive control circuit, 118 ... Horizontal signal line, 200 ... Electronic equipment (camera) , 201 ... Solid-state imaging device, 210 ... Optical lens, 211 ... Shutter device, 212 ... Drive circuit, 213 ... Signal processing circuit

Claims (27)

第1電極、光電変換層及び第2電極が積層されて成る光電変換部を備えており、
光電変換部は、更に、第1電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された電荷蓄積用電極を備えており、
光電変換層は、第1電極側から、下層半導体層と上層光電変換層との積層層構造を有する撮像素子。
It is provided with a photoelectric conversion unit in which a first electrode, a photoelectric conversion layer, and a second electrode are laminated.
The photoelectric conversion unit further includes a charge storage electrode that is arranged apart from the first electrode and is arranged so as to face the photoelectric conversion layer via an insulating layer.
The photoelectric conversion layer is an image sensor having a laminated layer structure of a lower semiconductor layer and an upper photoelectric conversion layer from the first electrode side.
下層半導体層を構成する材料は、3.0eV以上のバンドギャップ値を有し、且つ、上層光電変換層を構成する材料よりも高い移動度を有する請求項1に記載の撮像素子。 The image pickup device according to claim 1, wherein the material constituting the lower semiconductor layer has a bandgap value of 3.0 eV or more and has a higher mobility than the material constituting the upper photoelectric conversion layer. 下層半導体層は酸化物半導体材料から成る請求項1又は請求項2に記載の撮像素子。 The image pickup device according to claim 1 or 2, wherein the lower semiconductor layer is made of an oxide semiconductor material. 電荷蓄積用電極の上方に位置する下層半導体層を構成する材料と、第1電極の上方に位置する下層半導体層を構成する材料とは、異なっている請求項1乃至請求項3のいずれか1項に記載の撮像素子。 Any one of claims 1 to 3 in which the material constituting the lower semiconductor layer located above the charge storage electrode and the material constituting the lower semiconductor layer located above the first electrode are different. The image pickup device according to the section. 第1電極、光電変換層及び第2電極が積層されて成る光電変換部を備えており、
光電変換部は、更に、第1電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された電荷蓄積用電極を備えており、
光電変換層に接続され、第1電極及び電荷蓄積用電極と離間して配置され、且つ、第1電極及び電荷蓄積用電極を取り囲むように配置されている電荷排出電極を更に備えている撮像素子。
It is provided with a photoelectric conversion unit in which a first electrode, a photoelectric conversion layer, and a second electrode are laminated.
The photoelectric conversion unit further includes a charge storage electrode that is arranged apart from the first electrode and is arranged so as to face the photoelectric conversion layer via an insulating layer.
An image sensor further including a charge discharge electrode connected to a photoelectric conversion layer, separated from the first electrode and the charge storage electrode, and arranged so as to surround the first electrode and the charge storage electrode. ..
光電変換層は、絶縁層に設けられた第2開口部内を延在し、電荷排出電極と接続されており、
電荷排出電極の頂面の縁部は絶縁層で覆われており、
第2開口部の底面には電荷排出電極が露出しており、
電荷排出電極の頂面と接する絶縁層の面を第3面、電荷蓄積用電極と対向する光電変換層の部分と接する絶縁層の面を第2面としたとき、第2開口部の側面は、第3面から第2面に向かって広がる傾斜を有する請求項5に記載の撮像素子。
The photoelectric conversion layer extends in the second opening provided in the insulating layer and is connected to the charge discharge electrode.
The edge of the top surface of the charge discharge electrode is covered with an insulating layer.
The charge discharge electrode is exposed on the bottom surface of the second opening.
When the surface of the insulating layer in contact with the top surface of the charge discharge electrode is the third surface and the surface of the insulating layer in contact with the portion of the photoelectric conversion layer facing the charge storage electrode is the second surface, the side surface of the second opening is The image pickup device according to claim 5, which has an inclination extending from the third surface to the second surface.
半導体基板に設けられ、駆動回路を有する制御部を更に備えており、
第1電極、電荷蓄積用電極及び電荷排出電極は、駆動回路に接続されており、
電荷蓄積期間において、駆動回路から、第1電極に電位V11が印加され、電荷蓄積用電極に電位V12が印加され、電荷排出電極に電位V14が印加され、光電変換層に電荷が蓄積され、
電荷転送期間において、駆動回路から、第1電極に電位V21が印加され、電荷蓄積用電極に電位V22が印加され、電荷排出電極に電位V24が印加され、光電変換層に蓄積された電荷が第1電極を介して制御部に読み出される請求項5又は請求項6に記載の撮像素子。
但し、第1電極の電位が第2電極の電位よりも高い場合、
14>V11、且つ、V24<V21
であり、第1電極の電位が第2電極の電位よりも低い場合、
14<V11、且つ、V24>V21
である。
It is further provided with a control unit provided on a semiconductor substrate and having a drive circuit.
The first electrode, the charge storage electrode, and the charge discharge electrode are connected to the drive circuit.
In the charge accumulation period, the driving circuit, the potential V 11 is applied to the first electrode, the potential V 12 is applied to the charge storage electrode, the potential V 14 is applied to the charge discharging electrodes, electric charges accumulated in the photoelectric conversion layer Being done
In the charge transfer period, the driving circuit, the potential V 21 is applied to the first electrode, the potential V 22 is applied to the charge storage electrode, the potential V 24 is applied to the charge discharging electrode, which is accumulated in the photoelectric conversion layer The imaging device according to claim 5 or 6, wherein the electric charge is read out to the control unit via the first electrode.
However, when the potential of the first electrode is higher than the potential of the second electrode,
V 14 > V 11 and V 24 <V 21
When the potential of the first electrode is lower than the potential of the second electrode,
V 14 <V 11 and V 24 > V 21
Is.
第1電極、光電変換層及び第2電極が積層されて成る光電変換部を備えており、
光電変換部は、更に、第1電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された電荷蓄積用電極を備えており、
第2電極側から光が入射し、第2電極より光入射側には遮光層が形成されており、第1電極には光が入射しない撮像素子。
It is provided with a photoelectric conversion unit in which a first electrode, a photoelectric conversion layer, and a second electrode are laminated.
The photoelectric conversion unit further includes a charge storage electrode that is arranged apart from the first electrode and is arranged so as to face the photoelectric conversion layer via an insulating layer.
An image sensor in which light is incident from the second electrode side, a light-shielding layer is formed on the light incident side of the second electrode, and light is not incident on the first electrode.
第2電極より光入射側であって、第1電極の上方には遮光層が形成されており、第1電極には光が入射しない請求項8に記載の撮像素子。 The image pickup device according to claim 8, wherein a light-shielding layer is formed above the first electrode on the light incident side of the second electrode, and no light is incident on the first electrode. 第1電極、光電変換層及び第2電極が積層されて成る光電変換部を備えており、
光電変換部は、更に、第1電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された電荷蓄積用電極を備えており、
電荷蓄積用電極及び第2電極の上方にはオンチップ・マイクロ・レンズが設けられており、
オンチップ・マイクロ・レンズに入射する光は、電荷蓄積用電極に集光され、第1電極には光が入射しない撮像素子。
It is provided with a photoelectric conversion unit in which a first electrode, a photoelectric conversion layer, and a second electrode are laminated.
The photoelectric conversion unit further includes a charge storage electrode that is arranged apart from the first electrode and is arranged so as to face the photoelectric conversion layer via an insulating layer.
An on-chip micro lens is provided above the charge storage electrode and the second electrode.
An image sensor in which light incident on an on-chip micro lens is focused on a charge storage electrode and no light is incident on the first electrode.
半導体基板を更に備えており、
光電変換部は、半導体基板の上方に配置されている請求項1乃至請求項10のいずれか1項に記載の撮像素子。
It also has a semiconductor substrate,
The image pickup device according to any one of claims 1 to 10, wherein the photoelectric conversion unit is arranged above the semiconductor substrate.
第1電極は、絶縁層に設けられた開口部内を延在し、光電変換層と接続されている請求項1乃至請求項11のいずれか1項に記載の撮像素子。 The image pickup device according to any one of claims 1 to 11, wherein the first electrode extends in an opening provided in the insulating layer and is connected to the photoelectric conversion layer. 光電変換層は、絶縁層に設けられた開口部内を延在し、第1電極と接続されている請求項1乃至請求項11のいずれか1項に記載の撮像素子。 The image pickup device according to any one of claims 1 to 11, wherein the photoelectric conversion layer extends in an opening provided in the insulating layer and is connected to the first electrode. 第1電極の頂面の縁部は絶縁層で覆われており、
開口部の底面には第1電極が露出しており、
第1電極の頂面と接する絶縁層の面を第1面、電荷蓄積用電極と対向する光電変換層の部分と接する絶縁層の面を第2面としたとき、開口部の側面は、第1面から第2面に向かって広がる傾斜を有する請求項13に記載の撮像素子。
The edge of the top surface of the first electrode is covered with an insulating layer.
The first electrode is exposed on the bottom surface of the opening.
When the surface of the insulating layer in contact with the top surface of the first electrode is the first surface and the surface of the insulating layer in contact with the portion of the photoelectric conversion layer facing the charge storage electrode is the second surface, the side surface of the opening is the first surface. The image pickup device according to claim 13, which has an inclination extending from the first surface to the second surface.
第1面から第2面に向かって広がる傾斜を有する開口部の側面は、電荷蓄積用電極側に位置する請求項14に記載の撮像素子。 The image pickup device according to claim 14, wherein the side surface of the opening having an inclination extending from the first surface to the second surface is located on the charge storage electrode side. 半導体基板に設けられ、駆動回路を有する制御部を更に備えており、
第1電極及び電荷蓄積用電極は、駆動回路に接続されており、
電荷蓄積期間において、駆動回路から、第1電極に電位V11が印加され、電荷蓄積用電極に電位V12が印加され、光電変換層に電荷が蓄積され、
電荷転送期間において、駆動回路から、第1電極に電位V21が印加され、電荷蓄積用電極に電位V22が印加され、光電変換層に蓄積された電荷が第1電極を経由して制御部に読み出される請求項1乃至請求項15のいずれか1項に記載の撮像素子。
但し、第1電極の電位が第2電極の電位よりも高い場合、
12≧V11、且つ、V22<V21
であり、第1電極の電位が第2電極の電位よりも低い場合、
12≦V11、且つ、V22>V21
である。
It is further provided with a control unit provided on a semiconductor substrate and having a drive circuit.
The first electrode and the charge storage electrode are connected to the drive circuit.
In the charge accumulation period, the driving circuit, the potential V 11 is applied to the first electrode, the potential V 12 is applied to the charge storage electrode, charges are accumulated in the photoelectric conversion layer,
During the charge transfer period, the potential V 21 is applied to the first electrode from the drive circuit, the potential V 22 is applied to the charge storage electrode, and the charge accumulated in the photoelectric conversion layer is transferred to the control unit via the first electrode. The image pickup device according to any one of claims 1 to 15, which is read out from the above.
However, when the potential of the first electrode is higher than the potential of the second electrode,
V 12 ≥ V 11 and V 22 <V 21
When the potential of the first electrode is lower than the potential of the second electrode,
V 12 ≤ V 11 and V 22 > V 21
Is.
第1電極と電荷蓄積用電極との間に、第1電極及び電荷蓄積用電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された転送制御用電極を更に備えている請求項1乃至請求項16のいずれか1項に記載の撮像素子。 A transfer control electrode is arranged between the first electrode and the charge storage electrode so as to be separated from the first electrode and the charge storage electrode, and is arranged so as to face the photoelectric conversion layer via an insulating layer. The imaging device according to any one of claims 1 to 16, further provided. 半導体基板に設けられ、駆動回路を有する制御部を更に備えており、
第1電極、電荷蓄積用電極及び転送制御用電極は、駆動回路に接続されており、
電荷蓄積期間において、駆動回路から、第1電極に電位V11が印加され、電荷蓄積用電極に電位V12が印加され、転送制御用電極に電位V13が印加され、光電変換層に電荷が蓄積され、
電荷転送期間において、駆動回路から、第1電極に電位V21が印加され、電荷蓄積用電極に電位V22が印加され、転送制御用電極に電位V23が印加され、光電変換層に蓄積された電荷が第1電極を介して制御部に読み出される請求項17に記載の撮像素子。
但し、第1電極の電位が第2電極の電位よりも高い場合、
12>V13、且つ、V22≦V23≦V21
であり、第1電極の電位が第2電極の電位よりも低い場合、
12<V13、且つ、V22≧V23≧V21
である。
It is further provided with a control unit provided on a semiconductor substrate and having a drive circuit.
The first electrode, the charge storage electrode, and the transfer control electrode are connected to the drive circuit.
During the charge storage period, the drive circuit applies the potential V 11 to the first electrode, the potential V 12 to the charge storage electrode, the potential V 13 to the transfer control electrode, and charges to the photoelectric conversion layer. Accumulated,
In the charge transfer period, the driving circuit, the potential V 21 is applied to the first electrode, the potential V 22 is applied to the charge storage electrode, the potential V 23 is applied to the transfer control electrodes are accumulated in the photoelectric conversion layer The imaging device according to claim 17, wherein the electric charge is read out to the control unit via the first electrode.
However, when the potential of the first electrode is higher than the potential of the second electrode,
V 12 > V 13 and V 22 ≤ V 23 ≤ V 21
When the potential of the first electrode is lower than the potential of the second electrode,
V 12 <V 13 and V 22 ≧ V 23 ≧ V 21
Is.
電荷蓄積用電極は、複数の電荷蓄積用電極セグメントから構成されている請求項1乃至請求項18のいずれか1項に記載の撮像素子。 The image pickup device according to any one of claims 1 to 18, wherein the charge storage electrode is composed of a plurality of charge storage electrode segments. 第1電極の電位が第2電極の電位よりも高い場合、電荷転送期間において、第1電極に最も近い所に位置する電荷蓄積用電極セグメントに印加される電位は、第1電極に最も遠い所に位置する電荷蓄積用電極セグメントに印加される電位よりも高く、
第1電極の電位が第2電極の電位よりも低い場合、電荷転送期間において、第1電極に最も近い所に位置する電荷蓄積用電極セグメントに印加される電位は、第1電極に最も遠い所に位置する電荷蓄積用電極セグメントに印加される電位よりも低い請求項19に記載の撮像素子。
When the potential of the first electrode is higher than the potential of the second electrode, the potential applied to the charge storage electrode segment located closest to the first electrode during the charge transfer period is the farthest from the first electrode. Higher than the potential applied to the charge storage electrode segment located at
When the potential of the first electrode is lower than the potential of the second electrode, the potential applied to the charge storage electrode segment located closest to the first electrode during the charge transfer period is the farthest from the first electrode. The imaging device according to claim 19, wherein the potential is lower than the potential applied to the charge storage electrode segment located in.
半導体基板には、制御部を構成する少なくとも浮遊拡散層及び増幅トランジスタが設けられており、
第1電極は、浮遊拡散層及び増幅トランジスタのゲート部に接続されている請求項1乃至請求項20のいずれか1項に記載の撮像素子。
The semiconductor substrate is provided with at least a floating diffusion layer and an amplification transistor constituting a control unit.
The image pickup device according to any one of claims 1 to 20, wherein the first electrode is connected to a floating diffusion layer and a gate portion of an amplification transistor.
半導体基板には、更に、制御部を構成するリセット・トランジスタ及び選択トランジスタが設けられており、
浮遊拡散層は、リセット・トランジスタの一方のソース/ドレイン領域に接続されており、
増幅トランジスタの一方のソース/ドレイン領域は、選択トランジスタの一方のソース/ドレイン領域に接続されており、選択トランジスタの他方のソース/ドレイン領域は信号線に接続されている請求項21に記載の撮像素子。
The semiconductor substrate is further provided with a reset transistor and a selection transistor that form a control unit.
The stray diffusion layer is connected to one source / drain region of the reset transistor and
21. The imaging according to claim 21, wherein one source / drain region of the amplification transistor is connected to one source / drain region of the selection transistor, and the other source / drain region of the selection transistor is connected to the signal line. element.
電荷蓄積用電極の大きさは第1電極よりも大きい請求項1乃至請求項22のいずれか1項に記載の撮像素子。 The image pickup device according to any one of claims 1 to 22, wherein the size of the charge storage electrode is larger than that of the first electrode. 請求項1乃至請求項23のいずれか1項に記載の撮像素子を少なくとも1つ有する積層型撮像素子。 A stacked image sensor having at least one image sensor according to any one of claims 1 to 23. 請求項1乃至請求項23のいずれか1項に記載の撮像素子を、複数、備えた固体撮像装置。 A solid-state image pickup device including a plurality of image pickup devices according to any one of claims 1 to 23. 請求項24に記載の積層型撮像素子を、複数、備えた固体撮像装置。 A solid-state image pickup device including a plurality of stacked image pickup devices according to claim 24. 第1電極、光電変換層及び第2電極が積層されて成る光電変換部を備えており、
光電変換部は、更に、第1電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向して配置された電荷蓄積用電極を備えており、
第2電極側から光が入射し、第1電極には光が入射しない構造を有する撮像素子を、複数、備えた固体撮像装置の駆動方法であって、
全ての撮像素子において、一斉に、光電変換層に電荷を蓄積しながら、第1電極における電荷を系外に排出し、その後、
全ての撮像素子において、一斉に、光電変換層に蓄積された電荷を第1電極に転送し、転送完了後、順次、各撮像素子において第1電極に転送された電荷を読み出す、
各工程を繰り返す固体撮像装置の駆動方法。
It is provided with a photoelectric conversion unit in which a first electrode, a photoelectric conversion layer, and a second electrode are laminated.
The photoelectric conversion unit further includes a charge storage electrode that is arranged apart from the first electrode and is arranged so as to face the photoelectric conversion layer via an insulating layer.
This is a method of driving a solid-state image pickup device provided with a plurality of image pickup elements having a structure in which light is incident from the second electrode side and light is not incident on the first electrode.
In all the image sensors, while accumulating charges in the photoelectric conversion layer all at once, the charges in the first electrode are discharged to the outside of the system, and then.
In all the image pickup devices, the electric charge accumulated in the photoelectric conversion layer is transferred to the first electrode all at once, and after the transfer is completed, the electric charge transferred to the first electrode in each image sensor is sequentially read out.
A method of driving a solid-state image sensor that repeats each process.
JP2020121264A 2016-03-01 2020-07-15 Image sensor, stacked image sensor, solid-state image sensor, and driving method of solid-state image sensor Active JP6992851B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021198113A JP7347487B2 (en) 2016-03-01 2021-12-06 Image sensor, stacked image sensor, solid-state image sensor, and method for driving a solid-state image sensor
JP2023135339A JP2023157977A (en) 2016-03-01 2023-08-23 light detection element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016038777 2016-03-01
JP2016038777 2016-03-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016193919A Division JP6780421B2 (en) 2016-03-01 2016-09-30 Image sensor, stacked image sensor, solid-state image sensor, and driving method of solid-state image sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021198113A Division JP7347487B2 (en) 2016-03-01 2021-12-06 Image sensor, stacked image sensor, solid-state image sensor, and method for driving a solid-state image sensor

Publications (2)

Publication Number Publication Date
JP2020188269A true JP2020188269A (en) 2020-11-19
JP6992851B2 JP6992851B2 (en) 2022-01-13

Family

ID=59783351

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020121264A Active JP6992851B2 (en) 2016-03-01 2020-07-15 Image sensor, stacked image sensor, solid-state image sensor, and driving method of solid-state image sensor
JP2021198113A Active JP7347487B2 (en) 2016-03-01 2021-12-06 Image sensor, stacked image sensor, solid-state image sensor, and method for driving a solid-state image sensor
JP2023135339A Pending JP2023157977A (en) 2016-03-01 2023-08-23 light detection element

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021198113A Active JP7347487B2 (en) 2016-03-01 2021-12-06 Image sensor, stacked image sensor, solid-state image sensor, and method for driving a solid-state image sensor
JP2023135339A Pending JP2023157977A (en) 2016-03-01 2023-08-23 light detection element

Country Status (3)

Country Link
JP (3) JP6992851B2 (en)
CN (2) CN110459551B (en)
TW (1) TWI756207B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019041018A (en) 2017-08-25 2019-03-14 ソニー株式会社 Imaging device, lamination layer type imaging device and solid-state image sensor
TWI820114B (en) * 2018-04-20 2023-11-01 日商索尼股份有限公司 Imaging elements, multilayer imaging elements and solid-state imaging devices
CN112368836A (en) 2018-07-03 2021-02-12 索尼半导体解决方案公司 Imaging element and solid-state imaging device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133575A (en) * 2001-10-22 2003-05-09 Shimadzu Corp Radiation detection device
JP2007081137A (en) * 2005-09-14 2007-03-29 Fujifilm Corp Photoelectric conversion device and solid-state imaging device
JP2011138927A (en) * 2009-12-28 2011-07-14 Sony Corp Solid-state image pickup device, method of manufacturing the same, and electronic apparatus
US20130093932A1 (en) * 2011-10-14 2013-04-18 Kyo Jin CHOO Organic pixels including organic photodiode, manufacturing methods thereof, and apparatuses including the same
US20130093911A1 (en) * 2011-10-17 2013-04-18 Samsung Electronics Co., Ltd. Image sensor, electronic device including the same, and image sensing method
JP2014195296A (en) * 2009-04-07 2014-10-09 Rohm Co Ltd Pixel circuit and photoelectric conversion device using the same
JP2015050331A (en) * 2013-09-02 2015-03-16 ソニー株式会社 Solid state image pickup element, manufacturing method of the same and electronic apparatus
WO2015045829A1 (en) * 2013-09-27 2015-04-02 富士フイルム株式会社 Imaging device and imaging method
JP2015192125A (en) * 2014-03-28 2015-11-02 パナソニックIpマネジメント株式会社 Solid state image sensor and imaging apparatus
JP2016063165A (en) * 2014-09-19 2016-04-25 株式会社東芝 Imaging element and solid-state imaging apparatus
JP2016201449A (en) * 2015-04-09 2016-12-01 株式会社東芝 Solid-state imaging device and method of manufacturing solid-state imaging device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468065B1 (en) * 1999-09-29 2002-10-22 Anvil Iron Works, Inc. Brick molding apparatus
US9123653B2 (en) * 2009-07-23 2015-09-01 Sony Corporation Solid-state imaging device, method of manufacturing the same, and electronic apparatus
US9490441B2 (en) * 2012-08-02 2016-11-08 Sony Corporation Semiconductor device, method of manufacturing semiconductor device, solid-state image pickup unit, and electronic apparatus
WO2014112279A1 (en) 2013-01-16 2014-07-24 ソニー株式会社 Solid-state imaging element and electronic device
CN110265550B (en) * 2014-07-17 2023-10-24 索尼公司 Photoelectric conversion element, method of manufacturing the same, imaging device, and optical sensor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133575A (en) * 2001-10-22 2003-05-09 Shimadzu Corp Radiation detection device
JP2007081137A (en) * 2005-09-14 2007-03-29 Fujifilm Corp Photoelectric conversion device and solid-state imaging device
JP2014195296A (en) * 2009-04-07 2014-10-09 Rohm Co Ltd Pixel circuit and photoelectric conversion device using the same
JP2011138927A (en) * 2009-12-28 2011-07-14 Sony Corp Solid-state image pickup device, method of manufacturing the same, and electronic apparatus
US20130093932A1 (en) * 2011-10-14 2013-04-18 Kyo Jin CHOO Organic pixels including organic photodiode, manufacturing methods thereof, and apparatuses including the same
US20130093911A1 (en) * 2011-10-17 2013-04-18 Samsung Electronics Co., Ltd. Image sensor, electronic device including the same, and image sensing method
JP2015050331A (en) * 2013-09-02 2015-03-16 ソニー株式会社 Solid state image pickup element, manufacturing method of the same and electronic apparatus
WO2015045829A1 (en) * 2013-09-27 2015-04-02 富士フイルム株式会社 Imaging device and imaging method
JP2015192125A (en) * 2014-03-28 2015-11-02 パナソニックIpマネジメント株式会社 Solid state image sensor and imaging apparatus
JP2016063165A (en) * 2014-09-19 2016-04-25 株式会社東芝 Imaging element and solid-state imaging apparatus
JP2016201449A (en) * 2015-04-09 2016-12-01 株式会社東芝 Solid-state imaging device and method of manufacturing solid-state imaging device

Also Published As

Publication number Publication date
JP2022027844A (en) 2022-02-14
TW201801297A (en) 2018-01-01
CN110459551A (en) 2019-11-15
JP6992851B2 (en) 2022-01-13
JP2023157977A (en) 2023-10-26
CN113206116A (en) 2021-08-03
TW202224201A (en) 2022-06-16
CN110459551B (en) 2021-04-20
JP7347487B2 (en) 2023-09-20
CN206992154U (en) 2018-02-09
TWI756207B (en) 2022-03-01

Similar Documents

Publication Publication Date Title
JP6780421B2 (en) Image sensor, stacked image sensor, solid-state image sensor, and driving method of solid-state image sensor
JP6926450B2 (en) Image sensor, stacked image sensor and solid-state image sensor
JP7090087B2 (en) Image sensor, stacked image sensor and solid-state image sensor
KR102595958B1 (en) Imaging devices, stacked imaging devices, and solid-state imaging devices
JP7099073B2 (en) Image sensor, stacked image sensor and solid-state image sensor
US11430833B2 (en) Imaging element, laminated imaging element, and solid-state imaging device
KR102604847B1 (en) Image pickup element, laminated image pickup element, and solid-state image pickup device
JPWO2019035270A1 (en) Image sensor, stacked image sensor and solid-state image sensor
JP7347487B2 (en) Image sensor, stacked image sensor, solid-state image sensor, and method for driving a solid-state image sensor
JP7392767B2 (en) Image sensors, stacked image sensors, and solid-state imaging devices
JP2019041018A (en) Imaging device, lamination layer type imaging device and solid-state image sensor
JPWO2019044103A1 (en) Image sensor, stacked image sensor and solid-state image sensor
JPWO2019235130A1 (en) Image sensor, stacked image sensor and solid-state image sensor
CN113206116B (en) Imaging device, driving method thereof, and electronic apparatus
TWI840736B (en) Imaging element, stacked-type imaging element, solid-state imaging device, and driving method for solid-state imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R151 Written notification of patent or utility model registration

Ref document number: 6992851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151