JP2020187871A - Internal surface treatment method for superconducting accelerated cavity, manufacturing method for superconducting accelerated cavity, and surface treatment method for superconducting material - Google Patents

Internal surface treatment method for superconducting accelerated cavity, manufacturing method for superconducting accelerated cavity, and surface treatment method for superconducting material Download PDF

Info

Publication number
JP2020187871A
JP2020187871A JP2019090162A JP2019090162A JP2020187871A JP 2020187871 A JP2020187871 A JP 2020187871A JP 2019090162 A JP2019090162 A JP 2019090162A JP 2019090162 A JP2019090162 A JP 2019090162A JP 2020187871 A JP2020187871 A JP 2020187871A
Authority
JP
Japan
Prior art keywords
superconducting
cavity
acceleration cavity
vacuum
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019090162A
Other languages
Japanese (ja)
Inventor
剛 柳澤
Takeshi Yanagisawa
剛 柳澤
仙入 克也
Katsuya Sennyu
克也 仙入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Original Assignee
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Machinery Systems Co Ltd filed Critical Mitsubishi Heavy Industries Machinery Systems Co Ltd
Priority to JP2019090162A priority Critical patent/JP2020187871A/en
Publication of JP2020187871A publication Critical patent/JP2020187871A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Particle Accelerators (AREA)

Abstract

To provide an inner surface treatment method of a superconducting accelerating cavity, a manufacturing method of a superconducting accelerating cavity, and a surface treatment method of a superconducting material which can store nitrogen in the inner surface of the superconducting accelerating cavity without using a dedicated vacuum heat treatment furnace.SOLUTION: An inner surface treatment method of a superconducting accelerating cavity includes a high-pressure ultrapure water cleaning step of cleaning the inner surface 2 of an acceleration cavity 1, a suction step of vacuum-sucking the internal space of the sealed acceleration cavity 1 after cleaning, a heating step of arranging a heating heater 33 on the outer surface of the acceleration cavity 1 to heat the vacuum-suctioned acceleration cavity 1, and a nitrogen introduction step of introducing nitrogen into the internal space of the vacuum-suctioned and heated acceleration cavity 1.SELECTED DRAWING: Figure 2

Description

本発明は、超伝導加速空洞の内面の処理方法に関する。 The present invention relates to a method for treating the inner surface of a superconducting accelerating cavity.

一般に、電子や陽子などの荷電粒子を超伝導加速空洞により加速する超伝導加速器が知られている。この種の超伝導加速器では、超伝導材料(例えばニオブ)で形成された超伝導加速空洞内にマイクロ波を導入して内部を通過する荷電粒子を加速している。超伝導加速空洞が所定の性能を発揮するためには、超伝導加速空洞の内面(内表面)が非常に滑らかで、かつ清浄に保たれていなければならず、そのための処理法として、例えば電解研磨が挙げられる(特許文献1参照)。近年は、超伝導加速空洞の内面(内表面)の表層に微量の窒素を取り込ませることで超伝導特性を向上させる技術の開発が進められている。超伝導加速空洞の内面を化学研磨もしくは電解研磨した後、真空熱処理炉に収納して加熱し、加熱中もしくは加熱後に炉内温度を下げた状態で窒素を真空炉内部に導入することで、超伝導加速空洞の内面に窒素が吸蔵される。内面の最終仕上げとして、微量の電解研磨や高圧超純水洗浄等が行われる。 Generally, a superconducting accelerator that accelerates charged particles such as electrons and protons by a superconducting accelerating cavity is known. In this type of superconducting accelerator, microwaves are introduced into a superconducting accelerating cavity formed of a superconducting material (for example, niobium) to accelerate charged particles passing through the inside. In order for the superconducting accelerating cavity to exhibit the specified performance, the inner surface (inner surface) of the superconducting accelerating cavity must be kept very smooth and clean, and as a treatment method for that, for example, electrolysis Polishing can be mentioned (see Patent Document 1). In recent years, the development of a technique for improving superconducting characteristics by incorporating a small amount of nitrogen into the surface layer of the inner surface (inner surface) of the superconducting acceleration cavity has been promoted. After chemically polishing or electrolytic polishing the inner surface of the superconducting acceleration cavity, it is stored in a vacuum heat treatment furnace and heated, and nitrogen is introduced into the vacuum furnace while the temperature inside the furnace is lowered during or after heating. Nitrogen is occluded on the inner surface of the conduction acceleration cavity. As the final finish of the inner surface, a small amount of electrolytic polishing and high-pressure ultrapure water cleaning are performed.

特許第2947270号公報Japanese Patent No. 2947270

上記の超伝導加速空洞の内面に窒素を吸蔵させる手法では、窒素を導入する際に清浄な雰囲気が必要であるため、一般的な真空熱処理炉では清浄度が不十分であり、例えばオイルフリーの排気系を用いた専用設備が必要となる。 In the above method of occluding nitrogen on the inner surface of the superconducting acceleration cavity, a clean atmosphere is required when introducing nitrogen, so the cleanliness is insufficient in a general vacuum heat treatment furnace, for example, oil-free. Dedicated equipment using an exhaust system is required.

本発明は、上記に鑑みてなされたものであって、専用の真空熱処理炉を用いることなく、超伝導加速空洞の内面に窒素を吸蔵させることができる超伝導加速空洞の内面処理方法、超伝導加速空洞の製造方法、及び超伝導材料の表面処理方法を提供することを目的とする。 The present invention has been made in view of the above, and is a method for treating the inner surface of a superconducting accelerating cavity, which can occlude nitrogen on the inner surface of the superconducting accelerating cavity without using a dedicated vacuum heat treatment furnace. It is an object of the present invention to provide a method for producing an accelerating cavity and a method for surface treatment of a superconducting material.

上述した課題を解決し、目的を達成するために、本発明は、超伝導材料によって筒状に形成された超伝導加速空洞の内面を処理する超伝導加速空洞の内面処理方法であって、超伝導加速空洞の内面を洗浄する洗浄工程と、洗浄後密閉された超伝導加速空洞の内部空間を真空吸引する吸引工程と、真空吸引された超伝導加速空洞を超伝導加速空洞の外面から加熱する加熱工程と、真空吸引及び加熱された超伝導加速空洞の内部空間に窒素を導入する窒素導入工程とを備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the present invention is a method for treating the inner surface of a superconducting accelerating cavity formed in a tubular shape by a superconducting material. A cleaning step of cleaning the inner surface of the superconducting acceleration cavity, a suction step of vacuum-sucking the internal space of the sealed superconducting acceleration cavity after cleaning, and heating the vacuum-suctioned superconducting acceleration cavity from the outer surface of the superconducting acceleration cavity. It is characterized by including a heating step and a nitrogen introduction step of introducing nitrogen into the internal space of the superconducting acceleration cavity heated by vacuum suction.

この構成において、加熱工程は、超伝導加速空洞を120℃以上250℃以下に加熱してもよい。 In this configuration, the heating step may heat the superconducting accelerating cavity to 120 ° C. or higher and 250 ° C. or lower.

また、本発明は、超伝導材料によって筒状に形成された超伝導加速空洞の内面を処理する超伝導加速空洞の内面処理方法であって、レーザ光を照射する照射ヘッドを超伝導加速空洞の内部空間に挿入した状態で該内部空間を真空吸引する吸引工程と、照射ヘッドと超伝導加速空洞との少なくとも一方を移動させて、真空吸引された該超伝導加速空洞の内面にレーザ光を照射して該内面を洗浄するレーザクリーニング工程と、レーザ光の照射と並行して超伝導加速空洞の内部空間に窒素を導入する窒素導入工程とを備えることを特徴とする。 Further, the present invention is a method for treating the inner surface of a superconducting accelerating cavity formed in a tubular shape by a superconducting material, wherein the irradiation head for irradiating a laser beam is a superconducting accelerating cavity. A suction step of vacuum-sucking the internal space while inserted into the internal space, and moving at least one of the irradiation head and the superconducting acceleration cavity to irradiate the inner surface of the vacuum-sucked superconducting acceleration cavity with laser light. It is characterized by including a laser cleaning step of cleaning the inner surface thereof and a nitrogen introduction step of introducing nitrogen into the internal space of the superconducting accelerating cavity in parallel with irradiation of the laser beam.

また、本発明は、超伝導材料によって筒状に形成された超伝導加速空洞の組立と内面を処理する超伝導加速空洞の製造方法であって、超伝導加速空洞を構成する部品の内部空間にレーザ光を照射する照射ヘッドを挿入した状態で、照射ヘッドと超伝導加速空洞との少なくとも一方を移動させて、該超伝導加速空洞の部品の接合部の内面にレーザ光を照射して該接合部を溶接するレーザ溶接工程と、レーザ光の照射と並行して超伝導加速空洞の内部空間に窒素を導入する窒素導入工程とを備えることを特徴とする。この構成において、レーザ溶接工程は超伝導加速空洞の外面から行ってもよい。 Further, the present invention is a method for assembling a superconducting accelerating cavity formed in a tubular shape by a superconducting material and manufacturing a superconducting accelerating cavity for processing the inner surface, in an internal space of a component constituting the superconducting accelerating cavity. With the irradiation head that irradiates the laser beam inserted, at least one of the irradiation head and the superconducting acceleration cavity is moved, and the inner surface of the joint portion of the parts of the superconducting acceleration cavity is irradiated with the laser beam to join the joint. It is characterized by including a laser welding step of welding a portion and a nitrogen introducing step of introducing nitrogen into the internal space of the superconducting accelerating cavity in parallel with irradiation of laser light. In this configuration, the laser welding step may be performed from the outer surface of the superconducting acceleration cavity.

また、本発明は、筒状に形成されようとする超伝導材料の表面処理方法であって、真空吸引された環境下で、超伝導材料を含む鉱石に電子ビームを照射して該超伝導材料を精製する精製工程と、精製された超伝導材料を圧延した後に所定形状に切削する切削工程と、切削された超伝導材料を真空吸引された環境下で熱処理する熱処理工程とを備え、精製工程及び熱処理工程の少なくとも一方を実施する際に、真空吸引された環境に窒素を導入することを特徴とする。 Further, the present invention is a surface treatment method for a superconducting material that is to be formed into a tubular shape, and the superconducting material is irradiated with an electron beam on an ore containing the superconducting material in a vacuum suction environment. A refining step including a refining step of rolling a refined superconducting material and then cutting it into a predetermined shape, and a heat treatment step of heat-treating the cut superconducting material in a vacuum-sucked environment. And when performing at least one of the heat treatment steps, it is characterized by introducing nitrogen into the vacuum sucked environment.

本発明によれば、専用の真空熱処理炉を用いることなく、超伝導加速空洞の内面に窒素を吸蔵させることができる。 According to the present invention, nitrogen can be occluded on the inner surface of the superconducting acceleration cavity without using a dedicated vacuum heat treatment furnace.

図1は、第1実施形態に係る超伝導加速空洞の内面処理方法の手順を示すフローチャートである。FIG. 1 is a flowchart showing a procedure of an inner surface treatment method for a superconducting accelerating cavity according to the first embodiment. 図2は、超伝導加速空洞の内面処理方法の吸引工程、加熱工程及び窒素導入工程を示す図である。FIG. 2 is a diagram showing a suction step, a heating step, and a nitrogen introduction step of the inner surface treatment method of the superconducting acceleration cavity. 図3は、第2実施形態に係る超伝導加速空洞の内面処理方法の手順を示すフローチャートである。FIG. 3 is a flowchart showing the procedure of the inner surface treatment method of the superconducting acceleration cavity according to the second embodiment. 図4は、超伝導加速空洞の内面処理方法のレーザクリーニング工程を示す図である。FIG. 4 is a diagram showing a laser cleaning step of a method for treating the inner surface of a superconducting accelerated cavity. 図5は、第3実施形態に係る超伝導加速空洞の製造方法の手順を示すフローチャートである。FIG. 5 is a flowchart showing a procedure of a method for manufacturing a superconducting accelerating cavity according to a third embodiment. 図6は、超伝導加速空洞の製造方法のレーザ溶接工程を示す図である。FIG. 6 is a diagram showing a laser welding process of a method for manufacturing a superconducting accelerated cavity. 図7は、第4実施形態に係る超伝導加速空洞を構成する超伝導材料の表面処理方法の手順を示すフローチャートである。FIG. 7 is a flowchart showing the procedure of the surface treatment method of the superconducting material constituting the superconducting accelerating cavity according to the fourth embodiment.

本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換又は変更を行うことができる。 An embodiment (embodiment) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described in the following embodiments. In addition, the components described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Further, the configurations described below can be combined as appropriate. In addition, various omissions, substitutions or changes of the configuration can be made without departing from the gist of the present invention.

[第1実施形態]
第1実施形態に係る超伝導加速空洞の内面処理方法について説明する。図1は、第1実施形態に係る超伝導加速空洞の内面処理方法の手順を示すフローチャートである。図2は、超伝導加速空洞の内面処理方法の吸引工程、加熱工程及び窒素導入工程を示す図である。
[First Embodiment]
The method for treating the inner surface of the superconducting accelerating cavity according to the first embodiment will be described. FIG. 1 is a flowchart showing a procedure of an inner surface treatment method for a superconducting accelerating cavity according to the first embodiment. FIG. 2 is a diagram showing a suction step, a heating step, and a nitrogen introduction step of the inner surface treatment method of the superconducting acceleration cavity.

第1実施形態に係る超伝導加速空洞の内面処理方法は、図1に示すように、加速空洞形成工程S11と、電解研磨工程(研磨工程)S12と、高圧超純水洗浄工程(洗浄工程)S13と、吸引工程S14と、加熱工程S15と、窒素導入工程S16とを備える。加速空洞(超伝導加速空洞)1は、図2に示すように、中央部が膨らんだ略円筒形状のセル3を軸線方向に複数(例えば9個)組み合わされた構造体である。加速空洞1は、例えば、超伝導材料であるニオブ(Nb)材を曲げ加工、プレス成型加工、電子ビーム溶接またはレーザ溶接などの溶接加工を行うことによって所定形状に形成される(ステップS11:加速空洞形成工程)。 As shown in FIG. 1, the method for treating the inner surface of the superconducting accelerated cavity according to the first embodiment includes an accelerated cavity forming step S11, an electrolytic polishing step (polishing step) S12, and a high-pressure ultrapure water cleaning step (cleaning step). S13, a suction step S14, a heating step S15, and a nitrogen introduction step S16 are provided. As shown in FIG. 2, the acceleration cavity (superconducting acceleration cavity) 1 is a structure in which a plurality (for example, nine) of substantially cylindrical cells 3 having a bulging central portion are combined in the axial direction. The acceleration cavity 1 is formed into a predetermined shape by, for example, bending a niobium (Nb) material which is a superconducting material, press molding, electron beam welding, laser welding, or other welding (step S11: acceleration). Cavity forming process).

次いで、加速空洞1の内面2の処理として、まず、電解研磨工程が行われる(ステップS12)。電解研磨工程S12は、加速空洞1の材料の不純物を取り除くとともに加速空洞1の内面2の付着物を取り除くために行われ、例えば、特許第2947270号に示される装置または方法等を用いて実施される。 Next, as a treatment of the inner surface 2 of the acceleration cavity 1, first, an electrolytic polishing step is performed (step S12). The electrolytic polishing step S12 is performed to remove impurities in the material of the acceleration cavity 1 and remove deposits on the inner surface 2 of the acceleration cavity 1, and is carried out using, for example, the apparatus or method shown in Japanese Patent No. 2947270. To.

電解研磨工程S12が終了すると、加速空洞1の内面2に付着した異物を除去するために、高圧超純水洗浄工程(洗浄工程)を行う(ステップS13)。高圧超純水洗浄工程S13は、例えば、特許第5535572号に示される装置または方法等を用いて実施される。 When the electrolytic polishing step S12 is completed, a high-pressure ultrapure water cleaning step (cleaning step) is performed in order to remove foreign substances adhering to the inner surface 2 of the acceleration cavity 1 (step S13). The high-pressure ultrapure water cleaning step S13 is carried out using, for example, the apparatus or method shown in Japanese Patent No. 55355772.

高圧超純水洗浄工程S13が終了すると、続いて、吸引工程(ステップS14)、加熱工程(ステップS15)及び窒素導入工程(ステップS16)を実施する。これら各工程は、図2に示すような熱処理装置31により実施される。加速空洞1の両方の開口端1A,1Bにはそれぞれ液体、気体等の流体の漏洩を防ぐ(密閉する)キャップ17が取り付けられる。 When the high-pressure ultrapure water cleaning step S13 is completed, a suction step (step S14), a heating step (step S15), and a nitrogen introduction step (step S16) are subsequently carried out. Each of these steps is carried out by the heat treatment apparatus 31 as shown in FIG. Caps 17 for preventing (sealing) leakage of fluids such as liquids and gases are attached to both open ends 1A and 1B of the acceleration cavity 1, respectively.

熱処理装置31は、加速空洞1の内部を真空吸引する真空吸引装置32と、加速空洞1の外面に配設されて加速空洞1を加熱する加熱ヒータ33と、加速空洞1の内部に窒素を導入する窒素導入装置34とを備えている。真空吸引装置32は、潤滑油を使用しないオイルフリーの真空ポンプであり、キャップ17を通じて、加速空洞1の一方の開口端1Bに連通する吸引配管35に接続されている。本実施形態では、排気空間が加速空洞1内部に限定されるため、クライオポンプのような大型の専用設備を必要とせず、クライオポンプよりも小型の真空ポンプによる吸引が可能となる。加熱ヒータ33は、例えば電熱式のヒータが用いられ、加速空洞1の外面を覆うように巻き付けられている。なお、加熱する手段はヒータに限るものではなく、加速空洞1の外面から加速空洞1を加熱できるものであれば周知の加熱手段を用いることができる。窒素導入装置34は、例えば、窒素ガスを保有する加圧容器(ボンベ)を有し、キャップ17を通じて、加速空洞1の他方の開口端1Aに連通する導入配管36に接続されている。 The heat treatment device 31 introduces a vacuum suction device 32 that vacuum sucks the inside of the acceleration cavity 1, a heating heater 33 that is arranged on the outer surface of the acceleration cavity 1 and heats the acceleration cavity 1, and nitrogen inside the acceleration cavity 1. The nitrogen introduction device 34 is provided. The vacuum suction device 32 is an oil-free vacuum pump that does not use lubricating oil, and is connected to a suction pipe 35 that communicates with one open end 1B of the acceleration cavity 1 through a cap 17. In the present embodiment, since the exhaust space is limited to the inside of the acceleration cavity 1, a large dedicated facility such as a cryopump is not required, and suction by a vacuum pump smaller than the cryopump is possible. For example, an electric heater is used as the heating heater 33, and the heating heater 33 is wound so as to cover the outer surface of the acceleration cavity 1. The means for heating is not limited to the heater, and a well-known heating means can be used as long as the acceleration cavity 1 can be heated from the outer surface of the acceleration cavity 1. The nitrogen introduction device 34 has, for example, a pressurized container (cylinder) holding nitrogen gas, and is connected to an introduction pipe 36 communicating with the other open end 1A of the acceleration cavity 1 through a cap 17.

吸引工程S14において、真空吸引装置32は、加速空洞1の内部空間を真空吸引し、該加速空洞1の内部を例えば、1×10−2Pa程度の圧力とする。この際、加速空洞1の外部空間は大気圧となっているため、加速空洞1の内部空間のみが真空吸引される。また、加熱工程S15において、加熱ヒータ33は、加速空洞1の温度が例えば、120℃以上250℃以下の範囲となるように調整される。 In the suction step S14, the vacuum suction device 32 vacuum-sucks the internal space of the acceleration cavity 1 and makes the inside of the acceleration cavity 1 have a pressure of, for example, about 1 × 10 -2 Pa. At this time, since the external space of the acceleration cavity 1 is at atmospheric pressure, only the internal space of the acceleration cavity 1 is evacuated. Further, in the heating step S15, the heating heater 33 is adjusted so that the temperature of the acceleration cavity 1 is, for example, in the range of 120 ° C. or higher and 250 ° C. or lower.

これら吸引工程S14及び加熱工程S15によって、加速空洞1の内面2(ニオブ材)に吸蔵されたガス(例えば水素)を内面2から離脱させて除去することができる。続いて、真空吸引及び加熱された加速空洞1の内部空間に窒素ガスを導入する窒素導入工程S16を実施する。これら吸引工程S14、加熱工程S15及び窒素導入工程S16は並行して実施される。この窒素導入工程S16において、窒素導入装置34は、真空吸引されている加速空洞1の内部空間の圧力が、例えば3Paになるように、所定時間(例えば2分以上48時間以下)に亘って、窒素を導入し続ける。これにより、加速空洞1の内面2(ニオブ材)に簡便に窒素ガスを吸蔵させることができる。窒素導入工程S16が終了すると、吸引工程S14及び加熱工程S15を終了して、第1実施形態に係る超伝導加速空洞の内面処理方法の動作を終了する。 By these suction step S14 and heating step S15, the gas (for example, hydrogen) occluded in the inner surface 2 (niobium material) of the acceleration cavity 1 can be separated from the inner surface 2 and removed. Subsequently, the nitrogen introduction step S16 for introducing the nitrogen gas into the internal space of the vacuum suction and the heated acceleration cavity 1 is carried out. The suction step S14, the heating step S15, and the nitrogen introduction step S16 are carried out in parallel. In the nitrogen introduction step S16, the nitrogen introduction device 34 takes a predetermined time (for example, 2 minutes or more and 48 hours or less) so that the pressure in the internal space of the acceleration cavity 1 vacuum-sucked becomes, for example, 3 Pa. Continue to introduce nitrogen. As a result, nitrogen gas can be easily occluded on the inner surface 2 (niobium material) of the acceleration cavity 1. When the nitrogen introduction step S16 is completed, the suction step S14 and the heating step S15 are completed, and the operation of the inner surface treatment method for the superconducting acceleration cavity according to the first embodiment is completed.

第1実施形態によれば、加速空洞1の内面2を洗浄する高圧超純水洗浄工程S13と、洗浄後密閉された加速空洞1の内部空間を真空吸引する吸引工程S14と、真空吸引された加速空洞1の外面に加熱ヒータ33を配設して加速空洞1を外面から加熱する加熱工程S15と、真空吸引及び加熱された加速空洞1の内部空間に窒素を導入する窒素導入工程S16とを備えるため、高圧超純水洗浄工程S13後の清浄な加速空洞1の内面2に、簡便に窒素を吸蔵させることができる。また、加熱工程S15では、加速空洞1の外面に加熱ヒータ33を配設して真空吸引された加速空洞を加熱できるため、専用の真空熱処理炉を用いる必要がなく、装置構成の小型化及び簡略化を実現できる。 According to the first embodiment, the high-pressure ultrapure water cleaning step S13 for cleaning the inner surface 2 of the acceleration cavity 1 and the suction step S14 for vacuum-sucking the internal space of the accelerated cavity 1 sealed after cleaning are vacuum-sucked. A heating step S15 in which a heating heater 33 is arranged on the outer surface of the acceleration cavity 1 to heat the acceleration cavity 1 from the outer surface, and a nitrogen introduction step S16 for introducing nitrogen into the internal space of the vacuum suction and heated acceleration cavity 1 are performed. Therefore, nitrogen can be easily occluded in the inner surface 2 of the clean acceleration cavity 1 after the high-pressure ultrapure water cleaning step S13. Further, in the heating step S15, since the heating heater 33 can be arranged on the outer surface of the acceleration cavity 1 to heat the vacuum-suctioned acceleration cavity, it is not necessary to use a dedicated vacuum heat treatment furnace, and the apparatus configuration can be miniaturized and simplified. Can be realized.

また、第1実施形態によれば、加熱工程S15は、加速空洞1を120℃以上250℃以下に加熱するため、加熱ヒータ33を利用した簡素な構成で加速空洞1を所望の温度に加熱できる。 Further, according to the first embodiment, since the heating step S15 heats the acceleration cavity 1 to 120 ° C. or higher and 250 ° C. or lower, the acceleration cavity 1 can be heated to a desired temperature with a simple configuration using the heating heater 33. ..

[第2実施形態]
次に、第2実施形態に係る超伝導加速空洞の内面処理方法について説明する。図3は、第2実施形態に係る超伝導加速空洞の内面処理方法の手順を示すフローチャートである。図4は、超伝導加速空洞の内面処理方法のレーザクリーニング工程を示す図である。第2実施形態に係る超伝導加速空洞の内面処理方法は、図3に示すように、加速空洞形成工程S21と、電解研磨工程(研磨工程)S22と、吸引工程S23と、レーザクリーニング工程S24と、窒素導入工程S25とを備える。加速空洞形成工程S21と電解研磨工程S22とは、上記した加速空洞形成工程S1と電解研磨工程S12とそれぞれ同等であるため説明を省略する。
[Second Embodiment]
Next, a method for treating the inner surface of the superconducting accelerating cavity according to the second embodiment will be described. FIG. 3 is a flowchart showing the procedure of the inner surface treatment method of the superconducting acceleration cavity according to the second embodiment. FIG. 4 is a diagram showing a laser cleaning step of a method for treating the inner surface of a superconducting accelerated cavity. As shown in FIG. 3, the method for treating the inner surface of the superconducting accelerating cavity according to the second embodiment includes an accelerating cavity forming step S21, an electrolytic polishing step (polishing step) S22, a suction step S23, and a laser cleaning step S24. , The nitrogen introduction step S25 is provided. Since the accelerated cavity forming step S21 and the electrolytic polishing step S22 are equivalent to the accelerated cavity forming step S1 and the electrolytic polishing step S12, the description thereof will be omitted.

電解研磨工程S22が終了すると、続いて、吸引工程(ステップS23)、レーザクリーニング工程(ステップS24)及び窒素導入工程(ステップS25)を実施する。これら各工程は、図4に示すようなレーザクリーニング装置40により実施される。レーザクリーニング装置40は、加速空洞1を軸線回りに回転可能に保持する一対の回転保持具6と、回転保持具6を回転させる回転装置7とを備える。一対の回転保持具6はそれぞれ円板形状で、加速空洞1の軸線方向の端部を保持し、保持軸12によって連結されている。一対の回転保持具6の対向する面には外周に歯が刻まれた歯車13が設けられている。回転装置7は、各歯車13と噛み合う一対の歯車14と、歯車14を連結する回転軸15と、回転軸15を回転させるモータ16とを備える。 When the electrolytic polishing step S22 is completed, a suction step (step S23), a laser cleaning step (step S24), and a nitrogen introduction step (step S25) are subsequently carried out. Each of these steps is carried out by the laser cleaning device 40 as shown in FIG. The laser cleaning device 40 includes a pair of rotation holders 6 that rotatably hold the acceleration cavity 1 around an axis, and a rotation device 7 that rotates the rotation holder 6. Each of the pair of rotation holders 6 has a disk shape, holds an axial end portion of the acceleration cavity 1, and is connected by a holding shaft 12. Gears 13 having teeth engraved on the outer periphery are provided on the facing surfaces of the pair of rotation holders 6. The rotating device 7 includes a pair of gears 14 that mesh with each gear 13, a rotating shaft 15 that connects the gears 14, and a motor 16 that rotates the rotating shaft 15.

また、レーザクリーニング装置40は、加速空洞1の内部を真空吸引する真空吸引装置32と、加速空洞1の内部に窒素を導入する窒素導入装置34と、レーザ光を発振するレーザ発振装置41と、レーザ発振装置41に接続される光ファイバケーブル42と、光ファイバケーブル42の先端に配設される照射ヘッド43とを備える。真空吸引装置32及び窒素導入装置34の構成については、上記したものと同等であるため、同一の符号を付して説明を省略する。 Further, the laser cleaning device 40 includes a vacuum suction device 32 that vacuum-sucks the inside of the acceleration cavity 1, a nitrogen introduction device 34 that introduces nitrogen into the acceleration cavity 1, a laser oscillation device 41 that oscillates laser light, and the like. An optical fiber cable 42 connected to the laser oscillation device 41 and an irradiation head 43 arranged at the tip of the optical fiber cable 42 are provided. Since the configurations of the vacuum suction device 32 and the nitrogen introduction device 34 are the same as those described above, the same reference numerals are given and the description thereof will be omitted.

照射ヘッド43は、不図示のミラー及びレンズを備えており、ミラーは、光ファイバケーブル42を通って入射されたレーザ光43Aを加速空洞1の内面2に向けて角度を変える。レンズは、レーザ光43Aを加速空洞1の内面2に焦点を合わせる。光ファイバケーブル42は、キャップ17を通じて加速空洞1の内部に挿入され、加速空洞1の軸線方向(矢印A方向)に沿って照射ヘッド43を移動自在に構成される。 The irradiation head 43 includes a mirror and a lens (not shown), and the mirror changes the angle of the laser beam 43A incident through the optical fiber cable 42 toward the inner surface 2 of the acceleration cavity 1. The lens focuses the laser beam 43A on the inner surface 2 of the acceleration cavity 1. The optical fiber cable 42 is inserted into the acceleration cavity 1 through the cap 17, and the irradiation head 43 is movably configured along the axial direction (arrow A direction) of the acceleration cavity 1.

レーザクリーニングは、レーザ光の照射による物質の蒸散を利用する加工プロセスである。レーザ光43Aを加速空洞1の内面2の最表面層に照射することにより、内面2にはマイクロプラズマが生成し、その衝撃波、熱膨張圧で内面2のコンタミ層(腐食層、汚染層など)やコーティング層などの異物を蒸発して除去する。除去された異物は、真空吸引装置32によって吸引されて加速空洞1の外部に排出される。 Laser cleaning is a processing process that utilizes the evaporation of substances by irradiating laser light. By irradiating the outermost surface layer of the inner surface 2 of the acceleration cavity 1 with the laser beam 43A, microplasma is generated on the inner surface 2, and the contaminated layer (corrosion layer, contaminated layer, etc.) of the inner surface 2 is generated by the shock wave and the coefficient of thermal expansion. Evaporates and removes foreign matter such as coating layer and coating layer. The removed foreign matter is sucked by the vacuum suction device 32 and discharged to the outside of the acceleration cavity 1.

吸引工程S23において、真空吸引装置32は、加速空洞1の内部空間を真空吸引し、該加速空洞1の内部を例えば、1×10−2Pa程度の圧力とする。この際、加速空洞1の外部空間は大気圧となっているため、加速空洞1の内部空間のみが真空吸引される。また、レーザクリーニング工程S24において、照射ヘッド43は、レーザ光43Aを加速空洞1の内面2に向けて照射する。この際、照射ヘッド43を軸線方向に沿って移動させると共に加速空洞1を回転させることにより、加速空洞1の内面2全体に亘ってレーザ光43Aを照射することで内面2全体を洗浄することができる。なお、加速空洞1の内面2全体にレーザ光43Aを照射できるように、照射ヘッド43と加速空洞1との両方を移動させてもよい。また、加速空洞1を固定して照射ヘッド43を回転させる構成としてもよい。また、加速空洞1の内面2全体でなく、特定箇所をピンポイントに狙って内面2の異物を除去してもよい。 In the suction step S23, the vacuum suction device 32 vacuum-sucks the internal space of the acceleration cavity 1, and sets the pressure inside the acceleration cavity 1 to, for example, about 1 × 10 -2 Pa. At this time, since the external space of the acceleration cavity 1 is at atmospheric pressure, only the internal space of the acceleration cavity 1 is evacuated. Further, in the laser cleaning step S24, the irradiation head 43 irradiates the laser beam 43A toward the inner surface 2 of the acceleration cavity 1. At this time, by moving the irradiation head 43 along the axial direction and rotating the acceleration cavity 1, the entire inner surface 2 can be cleaned by irradiating the laser beam 43A over the entire inner surface 2 of the acceleration cavity 1. it can. Both the irradiation head 43 and the acceleration cavity 1 may be moved so that the laser beam 43A can be irradiated on the entire inner surface 2 of the acceleration cavity 1. Further, the acceleration cavity 1 may be fixed and the irradiation head 43 may be rotated. Further, the foreign matter on the inner surface 2 may be removed by pinpointing a specific portion instead of the entire inner surface 2 of the acceleration cavity 1.

レーザ光43Aを加速空洞1の内面2に照射することにより、加速空洞1が加熱されるため、加速空洞1の内面2に吸蔵されたガス(例えば水素)を内面2から離脱させて除去することができる。続いて、真空吸引及びレーザクリーニングされた加速空洞1の内部空間に窒素ガスを導入する窒素導入工程S25を実施する。これら吸引工程S23、レーザクリーニング工程S24及び窒素導入工程S25は並行して実施される。この窒素導入工程S25において、窒素導入装置34は、真空吸引されている加速空洞1の内部空間の圧力が、例えば3Paになるように、所定時間(例えば2分以上48時間以下)に亘って、窒素を導入し続ける。これにより、加速空洞1の内面2(ニオブ材)に簡便に窒素ガスを吸蔵させることができる。窒素導入工程S25が終了すると、吸引工程S23及びレーザクリーニング工程S24を終了して、第2実施形態に係る超伝導加速空洞の内面処理方法の動作を終了する。 Since the acceleration cavity 1 is heated by irradiating the inner surface 2 of the acceleration cavity 1 with the laser beam 43A, the gas (for example, hydrogen) occluded in the inner surface 2 of the acceleration cavity 1 is separated from the inner surface 2 and removed. Can be done. Subsequently, the nitrogen introduction step S25 for introducing nitrogen gas into the internal space of the accelerated cavity 1 that has been vacuum-sucked and laser-cleaned is carried out. The suction step S23, the laser cleaning step S24, and the nitrogen introduction step S25 are performed in parallel. In the nitrogen introduction step S25, the nitrogen introduction device 34 takes a predetermined time (for example, 2 minutes or more and 48 hours or less) so that the pressure in the internal space of the acceleration cavity 1 vacuum-sucked becomes, for example, 3 Pa. Continue to introduce nitrogen. As a result, nitrogen gas can be easily occluded on the inner surface 2 (niobium material) of the acceleration cavity 1. When the nitrogen introduction step S25 is completed, the suction step S23 and the laser cleaning step S24 are completed, and the operation of the inner surface treatment method for the superconducting accelerating cavity according to the second embodiment is completed.

第2実施形態によれば、レーザ光43Aを照射する照射ヘッド43を加速空洞1の内部空間に挿入した状態で該内部空間を真空吸引する吸引工程S23と、照射ヘッド43と加速空洞1との少なくとも一方を移動させて、真空吸引された該加速空洞1の内面2にレーザ光43Aを照射して内面2を洗浄するレーザクリーニング工程S24と、レーザ光43Aの照射と並行して加速空洞1の内部空間に窒素を導入する窒素導入工程S25とを備えるため、加速空洞1の内面2の洗浄と同時に該内面2に窒素を吸蔵させることができる。また、レーザクリーニング工程S24で加速空洞1の内面2の洗浄を実施するため、例えば、超純水を使用した洗浄工程を省略することができ、作業工程の簡素化及び排水量の低減を実現できる。また、レーザクリーニング工程S24でレーザ光43Aを照射することで、真空吸引された加速空洞1の表層のみを加熱できるため、専用の真空熱処理炉を用いること必要がなく、装置構成の小型化及び簡略化を実現できる。 According to the second embodiment, the suction step S23 in which the irradiation head 43 that irradiates the laser beam 43A is inserted into the internal space of the acceleration cavity 1 and the internal space is vacuum-sucked, and the irradiation head 43 and the acceleration cavity 1 A laser cleaning step S24 in which at least one is moved to irradiate the inner surface 2 of the accelerating cavity 1 that has been evacuated with a laser beam 43A to clean the inner surface 2, and the acceleration cavity 1 in parallel with the irradiation of the laser beam 43A. Since the nitrogen introduction step S25 for introducing nitrogen into the internal space is provided, nitrogen can be occluded in the inner surface 2 at the same time as cleaning the inner surface 2 of the acceleration cavity 1. Further, since the inner surface 2 of the acceleration cavity 1 is cleaned in the laser cleaning step S24, for example, the cleaning step using ultrapure water can be omitted, and the work process can be simplified and the amount of drainage can be reduced. Further, by irradiating the laser beam 43A in the laser cleaning step S24, only the surface layer of the vacuum-suctioned acceleration cavity 1 can be heated, so that it is not necessary to use a dedicated vacuum heat treatment furnace, and the device configuration can be miniaturized and simplified. Can be realized.

なお、上記した第2実施形態では、レーザクリーニング工程S24を実施することで高圧超純水洗浄工程(洗浄工程)を省略する構成を説明したが、この高圧超純水洗浄工程及び超音波洗浄(洗浄工程)を実施しても構わないことは勿論である。 In the second embodiment described above, the configuration in which the high-pressure ultrapure water cleaning step (cleaning step) is omitted by carrying out the laser cleaning step S24 has been described, but the high-pressure ultrapure water cleaning step and ultrasonic cleaning (cleaning) Of course, the cleaning step) may be carried out.

[第3実施形態]
次に、第3実施形態に係る超伝導加速空洞の組立と内面を処理する超伝導加速空洞の製造方法について説明する。図5は、第3実施形態に係る超伝導加速空洞の製造方法の手順を示すフローチャートである。図6は、超伝導加速空洞の製造方法のレーザ溶接工程を示す図である。第3実施形態に係る超伝導加速空洞の製造方法は、図5に示すように、吸引工程S31と、レーザ溶接工程S32と、窒素導入工程S33とを備える。上記した第2実施形態では、レーザクリーニング工程S24におけるレーザ照射に伴う加速空洞1の加熱を利用して内面2への窒素の吸蔵を行ったが、この第3実施形態では、レーザ溶接工程S32におけるレーザ照射に伴う加速空洞1の加熱を利用して内面2への窒素の吸蔵を行っている。
[Third Embodiment]
Next, a method of assembling the superconducting accelerating cavity according to the third embodiment and manufacturing a superconducting accelerating cavity for treating the inner surface will be described. FIG. 5 is a flowchart showing a procedure of a method for manufacturing a superconducting accelerating cavity according to a third embodiment. FIG. 6 is a diagram showing a laser welding process of a method for manufacturing a superconducting accelerated cavity. As shown in FIG. 5, the method for manufacturing the superconducting accelerating cavity according to the third embodiment includes a suction step S31, a laser welding step S32, and a nitrogen introduction step S33. In the second embodiment described above, nitrogen was occluded on the inner surface 2 by utilizing the heating of the acceleration cavity 1 accompanying the laser irradiation in the laser cleaning step S24, but in the third embodiment, the laser welding step S32 Nitrogen is occluded on the inner surface 2 by utilizing the heating of the acceleration cavity 1 accompanying the laser irradiation.

吸引工程S31、レーザ溶接工程S32及び窒素導入工程S33の各工程は、図6に示すようなレーザ溶接装置50により実施される。レーザ溶接装置50は、上記した一対の回転保持具6と回転装置7とを備える。これら回転保持具6及び回転装置7の構成は、上記したものと同等であるため、同一の符号を付して説明を省略する。 Each step of the suction step S31, the laser welding step S32, and the nitrogen introduction step S33 is carried out by the laser welding apparatus 50 as shown in FIG. The laser welding device 50 includes the pair of rotation holders 6 and the rotation device 7 described above. Since the configurations of the rotary holder 6 and the rotary device 7 are the same as those described above, the same reference numerals are given and the description thereof will be omitted.

また、レーザ溶接装置50は、加速空洞1の内部を真空吸引する真空吸引装置32と、加速空洞1の内部に窒素を導入する窒素導入装置34と、レーザ光を発振するレーザ発振装置51と、レーザ発振装置51に接続される光ファイバケーブル52と、光ファイバケーブル52の先端に配設される照射ヘッド53とを備える。真空吸引装置32及び窒素導入装置34の構成についても、上記したものと同等であるため、同一の符号を付して説明を省略する。 Further, the laser welding device 50 includes a vacuum suction device 32 that vacuum sucks the inside of the acceleration cavity 1, a nitrogen introduction device 34 that introduces nitrogen into the inside of the acceleration cavity 1, and a laser oscillation device 51 that oscillates laser light. An optical fiber cable 52 connected to the laser oscillation device 51 and an irradiation head 53 arranged at the tip of the optical fiber cable 52 are provided. Since the configurations of the vacuum suction device 32 and the nitrogen introduction device 34 are the same as those described above, the same reference numerals are given and the description thereof will be omitted.

加速空洞1を構成する複数のセル3は、それぞれ2つの半セル(部品)60、60を組み合わせて形成される。半セル60は、大径開口部と小径開口部とが備えた椀状の形状をしており、セル3は、2つの半セル60の大径開口部同士を接合部62で溶接される。また、加速空洞1は、複数のセル3の小径開口部同士を接合部63でそれぞれ溶接され、両端のセル3の小径開口部と円筒状の開口筒(部品)61とが接合部64でそれぞれ溶接される。 The plurality of cells 3 constituting the acceleration cavity 1 are formed by combining two half cells (parts) 60 and 60, respectively. The half cell 60 has a bowl-like shape provided with a large-diameter opening and a small-diameter opening, and the cell 3 is welded to each other with the large-diameter openings of the two half-cells 60 at a joint portion 62. Further, in the acceleration cavity 1, the small diameter openings of the plurality of cells 3 are welded to each other at the joint portion 63, and the small diameter openings of the cells 3 at both ends and the cylindrical opening cylinder (part) 61 are welded to each other at the joint portion 64, respectively. Will be welded.

照射ヘッド53は、不図示のミラー及びレンズを備えており、ミラーは、光ファイバケーブル52を通って入射されたレーザ光53Aを加速空洞1の各接合部62,63,64に向けて角度を変える。レンズは、レーザ光53Aを加速空洞1の各接合部62,63,64に焦点を合わせる。光ファイバケーブル52は、キャップ17を通じて加速空洞1の内部に挿入され、加速空洞1の軸線方向(矢印A方向)に沿って照射ヘッド53を移動自在に構成される。 The irradiation head 53 includes a mirror and a lens (not shown), and the mirror makes an angle of the laser beam 53A incident through the optical fiber cable 52 toward the joints 62, 63, 64 of the acceleration cavity 1. Change. The lens focuses the laser beam 53A on the junctions 62, 63, 64 of the acceleration cavity 1. The optical fiber cable 52 is inserted into the acceleration cavity 1 through the cap 17, and the irradiation head 53 is movably configured along the axial direction (arrow A direction) of the acceleration cavity 1.

本実施形態のレーザ溶接工程S32では、加速空洞1の内側から各接合部62,63,64を溶接する。このため、加速空洞1が回転保持具6に支持されて、吸引工程S31を実施する前には、外側から半セル60及び開口筒61を接合して加速空洞1を形成しておく。 In the laser welding step S32 of the present embodiment, the joint portions 62, 63, 64 are welded from the inside of the acceleration cavity 1. Therefore, the acceleration cavity 1 is supported by the rotation holder 6, and before the suction step S31 is performed, the half cell 60 and the opening cylinder 61 are joined from the outside to form the acceleration cavity 1.

吸引工程S31において、真空吸引装置32は、加速空洞1の内部空間を真空吸引し、該加速空洞1の内部を例えば、1×10−2Paの圧力とする。この際、この際、加速空洞1の外部空間は大気圧となっているため、加速空洞1の内部空間のみが真空吸引される。また、レーザ溶接工程S32において、照射ヘッド53は、レーザ光53Aを加速空洞1の各接合部62,63,64のいずれかに対向する位置に位置付けられ、対向する接合部に向けて照射する。この際、加速空洞1を回転させることにより、加速空洞1の周方向に亘って接合部にレーザ光53Aを照射することで接合部を溶接することができる。一の接合部の溶接が終了すると、隣に位置する接合部に対向する位置に照射ヘッド53を移動させる。なお、加速空洞1の各接合部にレーザ光53Aを照射できるように、照射ヘッド53と加速空洞1との両方を移動させてもよい。 In the suction step S31, the vacuum suction device 32 vacuum-sucks the internal space of the acceleration cavity 1, and sets the inside of the acceleration cavity 1 to, for example, a pressure of 1 × 10 -2 Pa. At this time, since the external space of the acceleration cavity 1 is at atmospheric pressure, only the internal space of the acceleration cavity 1 is evacuated. Further, in the laser welding step S32, the irradiation head 53 positions the laser beam 53A at a position facing any of the joints 62, 63, 64 of the acceleration cavity 1 and irradiates the laser beam 53 toward the facing joints. At this time, by rotating the acceleration cavity 1, the joint portion can be welded by irradiating the joint portion with the laser beam 53A over the circumferential direction of the acceleration cavity 1. When the welding of one joint is completed, the irradiation head 53 is moved to a position facing the adjacent joint. Both the irradiation head 53 and the acceleration cavity 1 may be moved so that the laser beam 53A can be irradiated to each joint of the acceleration cavity 1.

レーザ光53Aを加速空洞1の各接合部62,63,64にそれぞれ照射して溶接することにより、加速空洞1が加熱されるため、加速空洞1の内面2に吸蔵されたガス(例えば水素)を内面2から離脱させて除去することができる。続いて、真空吸引及びレーザ溶接された加速空洞1の内部空間に窒素ガスを導入する窒素導入工程S33を実施する。これら吸引工程S31、レーザ溶接工程S32及び窒素導入工程S33は並行して実施される。この窒素導入工程S33において、窒素導入装置34は、真空吸引されている加速空洞1の内部空間の圧力が、例えば3Paになるように、所定時間(例えば2分以上48時間以下)に亘って、窒素を導入し続ける。これにより、加速空洞1の内面2(ニオブ材)に簡便に窒素ガスを吸蔵させることができる。窒素導入工程S33が終了すると、吸引工程S31及びレーザ溶接工程S32を終了する。この後、形成された加速空洞1の内面2を化学研磨もしくは電解研磨する研磨工程、研磨された内面2を超音波洗浄及び高圧超純水洗浄する洗浄工程、加速空洞1を所定温度に加熱して熱処理(アニール及びベーキング)する熱処理工程を実施してもよい。 Since the acceleration cavity 1 is heated by irradiating the joint portions 62, 63, and 64 of the acceleration cavity 1 with the laser beam 53A and welding them, the gas (for example, hydrogen) stored in the inner surface 2 of the acceleration cavity 1 is heated. Can be separated from the inner surface 2 and removed. Subsequently, the nitrogen introduction step S33 for introducing nitrogen gas into the internal space of the acceleration cavity 1 vacuum-sucked and laser-welded is carried out. The suction step S31, the laser welding step S32, and the nitrogen introduction step S33 are carried out in parallel. In the nitrogen introduction step S33, the nitrogen introduction device 34 takes a predetermined time (for example, 2 minutes or more and 48 hours or less) so that the pressure in the internal space of the acceleration cavity 1 vacuum-sucked becomes, for example, 3 Pa. Continue to introduce nitrogen. As a result, nitrogen gas can be easily occluded on the inner surface 2 (niobium material) of the acceleration cavity 1. When the nitrogen introduction step S33 is completed, the suction step S31 and the laser welding step S32 are completed. After that, a polishing step of chemically polishing or electrolytically polishing the inner surface 2 of the formed accelerated cavity 1, a cleaning step of ultrasonically cleaning and high-pressure ultrapure water cleaning of the polished inner surface 2, and heating the accelerated cavity 1 to a predetermined temperature. The heat treatment step of heat treatment (annealing and baking) may be carried out.

第3実施形態によれば、加速空洞1を構成する半セル60、開口筒61を組み付けるとともに、レーザ光53Aを照射する照射ヘッド53を加速空洞1の内部空間に挿入した状態で内部空間を真空吸引する吸引工程S31と、照射ヘッド53と加速空洞1との少なくとも一方を移動させて、真空吸引された加速空洞1の半セル60同士及び半セル60と開口筒61との各接合部62,63,64の内面にレーザ光53Aを照射して接合部62,63,64を溶接するレーザ溶接工程S32と、レーザ光53Aの照射と並行して加速空洞1の内部空間に窒素を導入する窒素導入工程S33とを備えるため、加速空洞1の溶接加工と同時に加速空洞1の内面2に窒素を吸蔵させることができる。また、レーザ溶接工程S32でレーザ光53Aを照射することで、真空吸引された加速空洞1を加熱できるため、専用の真空熱処理炉を用いること必要がなく、装置構成の小型化及び簡略化を実現できる。 According to the third embodiment, the half cell 60 and the opening cylinder 61 constituting the acceleration cavity 1 are assembled, and the internal space is evacuated with the irradiation head 53 for irradiating the laser beam 53A inserted into the internal space of the acceleration cavity 1. In the suction step S31 for suction, at least one of the irradiation head 53 and the acceleration cavity 1 is moved, and the half cells 60 of the acceleration cavity 1 vacuum-sucked and the joints 62 between the half cells 60 and the opening cylinder 61, The laser welding step S32 in which the inner surfaces of 63 and 64 are irradiated with the laser beam 53A to weld the joint portions 62, 63 and 64, and the nitrogen that introduces nitrogen into the internal space of the acceleration cavity 1 in parallel with the irradiation of the laser beam 53A. Since the introduction step S33 is provided, nitrogen can be occluded on the inner surface 2 of the acceleration cavity 1 at the same time as the welding process of the acceleration cavity 1. Further, since the vacuum-suctioned acceleration cavity 1 can be heated by irradiating the laser beam 53A in the laser welding step S32, it is not necessary to use a dedicated vacuum heat treatment furnace, and the device configuration can be miniaturized and simplified. it can.

また、本実施形態では、吸引工程S31を実施する前には、外側から半セル60及び開口筒61を接合して加速空洞1を形成しておくことを説明したが、半セル60及び開口筒61を加速空洞1の形状に組み付けた状態で保持しつつ、このまま真空チャンバに投入して真空環境下でレーザ溶接工程S32を実施してもよい。この時,レーザ溶接工程S32は、加速空洞1の内側からだけでなく、加速空洞1の外側から各接合部にレーザ光53Aを照射して実施してもよい。 Further, in the present embodiment, it has been described that the half cell 60 and the opening cylinder 61 are joined from the outside to form the acceleration cavity 1 before the suction step S31 is carried out. While holding the 61 in the state of being assembled in the shape of the acceleration cavity 1, the laser welding step S32 may be carried out in a vacuum environment by putting the 61 into the vacuum chamber as it is. At this time, the laser welding step S32 may be performed by irradiating each joint portion with the laser beam 53A not only from the inside of the acceleration cavity 1 but also from the outside of the acceleration cavity 1.

また、本実施形態で形成された加速空洞1に、上記した第1実施形態及び第2実施形態の各工程を組み合わせて実施してもよい。この際、加速空洞1の内面2には、窒素が吸蔵されているため、各実施形態での窒素導入工程の時間を短縮することができる。 Further, the acceleration cavities 1 formed in the present embodiment may be combined with the above-described steps of the first embodiment and the second embodiment. At this time, since nitrogen is occluded on the inner surface 2 of the acceleration cavity 1, the time of the nitrogen introduction step in each embodiment can be shortened.

[第4実施形態]
図7は、第4実施形態に係る超伝導加速空洞を構成する超伝導材料の表面処理方法の手順を示すフローチャートである。この第4実施形態では、加速空洞1を構成する超伝導材料(ニオブ)に事前に窒素を導入し、表面に窒素を吸蔵させるものである。
[Fourth Embodiment]
FIG. 7 is a flowchart showing the procedure of the surface treatment method of the superconducting material constituting the superconducting accelerating cavity according to the fourth embodiment. In the fourth embodiment, nitrogen is introduced into the superconducting material (niobium) constituting the acceleration cavity 1 in advance, and nitrogen is occluded on the surface.

超伝導材料は、図7に示すように、超伝導材料を含む鉱石(粗材料)を圧縮するプレス工程S41、鉱石を精製する精製工程S42、精製した超伝導材料を鍛造する鍛造工程S43、鍛造した超伝導材料を粉砕する粉砕工程S44、粉砕した超伝導材料を圧延する圧延工程S45、圧延した超伝導材料を所定の形状に切削する切削工程S46、切削した超伝導材料を加熱して熱処理(アニール)する熱処理工程S47及び熱処理した超伝導材料の表面を研磨する研磨工程S48を備えて形成される。 As shown in FIG. 7, the superconducting material includes a pressing step S41 for compressing an ore (crude material) containing the superconducting material, a refining step S42 for refining the ore, a forging step S43 for forging the purified superconducting material, and forging. Crushing step S44 for crushing the superconducting material, rolling step S45 for rolling the crushed superconducting material, cutting step S46 for cutting the rolled superconducting material into a predetermined shape, and heat treatment by heating the cut superconducting material ( It is formed by comprising a heat treatment step S47 for annealing) and a polishing step S48 for polishing the surface of the heat-treated superconducting material.

この中で、精製工程S42は、真空チャンバなどの真空環境下において、超伝導材料を含む鉱石に電子ビームを照射することにより鉱石を溶融させることで、鉱石に含まれる不純物(酸素や炭素など)を放出させて精製する。電子ビームを照射することで加熱されるため、真空チャンバ内に窒素を導入(添加)することにより、表面に窒素が吸蔵された超伝導材料を作ることができる。 Among these, in the purification step S42, impurities (oxygen, carbon, etc.) contained in the ore are melted by irradiating the ore containing the superconducting material with an electron beam in a vacuum environment such as a vacuum chamber. Is released and purified. Since it is heated by irradiating it with an electron beam, it is possible to make a superconducting material in which nitrogen is occluded on the surface by introducing (adding) nitrogen into the vacuum chamber.

また、熱処理工程S47においても、真空チャンバなどの真空環境下において、所定温度(730℃程度)に加熱されるため、真空チャンバ内に窒素を導入することにより、表面に窒素が吸蔵された超伝導材料を作ることができる。本実施形態では、精製工程S42及び熱処理工程S47で窒素を導入しているが、いずれか一方で導入する構成でもよい。このように、窒素が吸蔵された超伝導材料を用いて加速空洞1を形成した後、形成された加速空洞1の内面2を化学研磨もしくは電解研磨する研磨工程、研磨された内面2を超音波洗浄及び高圧超純水洗浄する洗浄工程、加速空洞1を所定温度に加熱して熱処理(アニール及びベーキング)する熱処理工程を実施してもよい。 Further, also in the heat treatment step S47, since the material is heated to a predetermined temperature (about 730 ° C.) in a vacuum environment such as a vacuum chamber, by introducing nitrogen into the vacuum chamber, nitrogen is occluded on the surface of the superconductivity. You can make materials. In the present embodiment, nitrogen is introduced in the purification step S42 and the heat treatment step S47, but either one may be introduced. In this way, after the acceleration cavity 1 is formed using the superconducting material in which nitrogen is occluded, the inner surface 2 of the formed acceleration cavity 1 is chemically polished or electropolished, and the polished inner surface 2 is ultrasonically polished. A cleaning step of cleaning and high-pressure ultrapure water cleaning, and a heat treatment step of heating the acceleration cavity 1 to a predetermined temperature and performing heat treatment (annealing and baking) may be performed.

この第4実施形態によれば、真空環境下で、超伝導材料に電子ビームを照射して超伝導材料を含む鉱石を精製する精製工程S42と、精製された超伝導材料を圧延した後に所定形状に切削する切削工程S46と、切削された超伝導材料を真空環境下で熱処理する熱処理工程S47とを備え、精製工程S42及び熱処理工程S47の少なくとも一方を実施する際に、真空環境下に窒素を導入するため、窒素が吸蔵された超伝導材料を作ることができる。このため、この超伝導材料を用いて加速空洞1を形成した場合、この加速空洞1に対して、上記した第1実施形態〜第3実施形態の各工程を組み合わせて実施してもよい。この構成によれば、超伝導材料に窒素が吸蔵されているため、第1実施形態〜第3実施形態を実施する際に、内面2に窒素を吸蔵させる処理が不要、もしくは、処理時間の短縮を実現できる。 According to this fourth embodiment, in a vacuum environment, a purification step S42 of irradiating a superconducting material with an electron beam to purify an ore containing the superconducting material, and a predetermined shape after rolling the purified superconducting material. A cutting step S46 for cutting the material and a heat treatment step S47 for heat-treating the cut superconducting material in a vacuum environment are provided, and nitrogen is added to the vacuum environment when at least one of the purification step S42 and the heat treatment step S47 is performed. For introduction, a superconducting material in which nitrogen is stored can be made. Therefore, when the acceleration cavity 1 is formed by using this superconducting material, the steps of the first to third embodiments described above may be combined with the acceleration cavity 1. According to this configuration, since nitrogen is occluded in the superconducting material, it is not necessary to occlude nitrogen on the inner surface 2 or the processing time is shortened when the first to third embodiments are carried out. Can be realized.

なお、本発明は、上記実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。例えば、上記した実施形態の各工程を実施する装置構成は一例であり、他の装置を用いて実施してもよい。 The present invention is not limited to the above embodiment. That is, it can be modified in various ways without departing from the gist of the present invention. For example, the device configuration for carrying out each step of the above-described embodiment is an example, and may be carried out using another device.

1 加速空洞(超伝導加速空洞)
2 内面
3 セル
17 キャップ
32 真空吸引装置
33 加熱ヒータ(加熱手段)
34 窒素導入装置
40 レーザクリーニング装置
43 照射ヘッド
43A レーザ光
50 レーザ溶接装置
53 照射ヘッド
53A レーザ光
60 半セル(部品)
61 開口筒(部品)
62、63、64 接合部
1 Acceleration cavity (superconducting acceleration cavity)
2 Inner surface 3 Cell 17 Cap 32 Vacuum suction device 33 Heating heater (heating means)
34 Nitrogen introduction device 40 Laser cleaning device 43 Irradiation head 43A Laser light 50 Laser welding device 53 Irradiation head 53A Laser light 60 Half cell (parts)
61 Opening cylinder (parts)
62, 63, 64 joints

Claims (5)

超伝導材料によって筒状に形成された超伝導加速空洞の内面を処理する超伝導加速空洞の内面処理方法であって、
前記超伝導加速空洞の内面を洗浄する洗浄工程と、
洗浄後密閉された前記超伝導加速空洞の内部空間を真空吸引する吸引工程と、
真空吸引された前記超伝導加速空洞を前記超伝導加速空洞の外面から加熱する加熱工程と、
真空吸引及び加熱された前記超伝導加速空洞の内部空間に窒素を導入する窒素導入工程と、
を備えることを特徴とする超伝導加速空洞の内面処理方法。
A method for treating the inner surface of a superconducting accelerating cavity formed in a tubular shape by a superconducting material.
A cleaning step for cleaning the inner surface of the superconducting acceleration cavity, and
A suction process that vacuum-sucks the internal space of the superconducting acceleration cavity that is sealed after cleaning,
A heating step of heating the vacuum-sucked superconducting accelerating cavity from the outer surface of the superconducting accelerating cavity,
A nitrogen introduction step of introducing nitrogen into the internal space of the superconducting acceleration cavity heated by vacuum suction and
A method for treating the inner surface of a superconducting accelerating cavity, which comprises.
前記加熱工程は、前記超伝導加速空洞を120℃以上250℃以下に加熱することを特徴とする請求項1に記載の超伝導加速空洞の内面処理方法。 The method for treating the inner surface of a superconducting accelerating cavity according to claim 1, wherein the heating step heats the superconducting accelerating cavity to 120 ° C. or higher and 250 ° C. or lower. 超伝導材料によって筒状に形成された超伝導加速空洞の内面を処理する超伝導加速空洞の内面処理方法であって、
レーザ光を照射する照射ヘッドを前記超伝導加速空洞の内部空間に挿入した状態で該内部空間を真空吸引する吸引工程と、
前記照射ヘッドと前記超伝導加速空洞との少なくとも一方を移動させて、真空吸引された該超伝導加速空洞の内面に前記レーザ光を照射して該内面を洗浄するレーザクリーニング工程と、
前記レーザ光の照射と並行して前記超伝導加速空洞の内部空間に窒素を導入する窒素導入工程と、
を備えることを特徴とする超伝導加速空洞の内面処理方法。
A method for treating the inner surface of a superconducting accelerating cavity formed in a tubular shape by a superconducting material.
A suction step of vacuum-sucking the internal space with the irradiation head that irradiates the laser beam inserted into the internal space of the superconducting acceleration cavity.
A laser cleaning step of moving at least one of the irradiation head and the superconducting accelerating cavity to irradiate the inner surface of the vacuum-suctioned superconducting accelerating cavity with the laser beam to clean the inner surface.
A nitrogen introduction step of introducing nitrogen into the internal space of the superconducting acceleration cavity in parallel with the irradiation of the laser beam,
A method for treating the inner surface of a superconducting accelerating cavity, which comprises.
超伝導材料によって筒状に形成された超伝導加速空洞の組立と内面を処理する超伝導加速空洞の製造方法であって、
前記超伝導加速空洞を構成する部品の内部空間にレーザ光を照射する照射ヘッドを挿入した状態で、前記照射ヘッドと前記超伝導加速空洞との少なくとも一方を移動させて、該超伝導加速空洞の前記部品の接合部の内面に前記レーザ光を照射して該接合部を溶接するレーザ溶接工程と、
前記レーザ光の照射と並行して前記超伝導加速空洞の内部空間に窒素を導入する窒素導入工程と、
を備えることを特徴とする超伝導加速空洞の製造方法。
A method for assembling a superconducting accelerating cavity formed in a tubular shape by a superconducting material and manufacturing a superconducting accelerating cavity for treating the inner surface.
With the irradiation head that irradiates the laser beam inserted into the internal space of the component that constitutes the superconducting acceleration cavity, at least one of the irradiation head and the superconducting acceleration cavity is moved to form the superconducting acceleration cavity. A laser welding step of irradiating the inner surface of the joint portion of the component with the laser beam to weld the joint portion.
A nitrogen introduction step of introducing nitrogen into the internal space of the superconducting acceleration cavity in parallel with the irradiation of the laser beam,
A method for manufacturing a superconducting accelerating cavity, which comprises.
筒状に形成されようとする超伝導材料の表面処理方法であって、
真空吸引された環境下で、前記超伝導材料を含む鉱石に電子ビームを照射して該超伝導材料を精製する精製工程と、
精製された前記超伝導材料を圧延した後に所定形状に切削する切削工程と、
切削された前記超伝導材料を真空吸引された環境下で熱処理する熱処理工程と、を備え、
前記精製工程及び前記熱処理工程の少なくとも一方を実施する際に、前記真空吸引された環境に窒素を導入することを特徴とする超伝導材料の表面処理方法。
A surface treatment method for superconducting materials that are about to be formed into a tubular shape.
A purification step of irradiating an ore containing the superconducting material with an electron beam to purify the superconducting material in a vacuum-suctioned environment.
A cutting process in which the refined superconducting material is rolled and then cut into a predetermined shape.
A heat treatment step of heat-treating the cut superconducting material in a vacuum-sucked environment is provided.
A method for surface-treating a superconducting material, which comprises introducing nitrogen into the vacuum-sucked environment when at least one of the purification step and the heat treatment step is carried out.
JP2019090162A 2019-05-10 2019-05-10 Internal surface treatment method for superconducting accelerated cavity, manufacturing method for superconducting accelerated cavity, and surface treatment method for superconducting material Pending JP2020187871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019090162A JP2020187871A (en) 2019-05-10 2019-05-10 Internal surface treatment method for superconducting accelerated cavity, manufacturing method for superconducting accelerated cavity, and surface treatment method for superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019090162A JP2020187871A (en) 2019-05-10 2019-05-10 Internal surface treatment method for superconducting accelerated cavity, manufacturing method for superconducting accelerated cavity, and surface treatment method for superconducting material

Publications (1)

Publication Number Publication Date
JP2020187871A true JP2020187871A (en) 2020-11-19

Family

ID=73221941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019090162A Pending JP2020187871A (en) 2019-05-10 2019-05-10 Internal surface treatment method for superconducting accelerated cavity, manufacturing method for superconducting accelerated cavity, and surface treatment method for superconducting material

Country Status (1)

Country Link
JP (1) JP2020187871A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350200A (en) * 1998-06-09 1999-12-21 Nomura Mekki:Kk Method for polishing inside surface of metallic hollow body and polishing apparatus therefor
JP2000260599A (en) * 1999-03-09 2000-09-22 Toshiba Corp Superconducting cavity, its manufacture, and superconducting accelerator
JP2011040321A (en) * 2009-08-17 2011-02-24 Mitsubishi Heavy Ind Ltd Method of manufacturing superconducting acceleration cavity
JP2011086450A (en) * 2009-10-14 2011-04-28 Mitsubishi Heavy Ind Ltd Surface treatment method of superconducting acceleration cavity
JP2017172040A (en) * 2016-03-16 2017-09-28 三菱ケミカル株式会社 Film deposition apparatus and film deposition method of gas barrier film, and production method of plastic container with gas barrier film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350200A (en) * 1998-06-09 1999-12-21 Nomura Mekki:Kk Method for polishing inside surface of metallic hollow body and polishing apparatus therefor
JP2000260599A (en) * 1999-03-09 2000-09-22 Toshiba Corp Superconducting cavity, its manufacture, and superconducting accelerator
JP2011040321A (en) * 2009-08-17 2011-02-24 Mitsubishi Heavy Ind Ltd Method of manufacturing superconducting acceleration cavity
JP2011086450A (en) * 2009-10-14 2011-04-28 Mitsubishi Heavy Ind Ltd Surface treatment method of superconducting acceleration cavity
JP2017172040A (en) * 2016-03-16 2017-09-28 三菱ケミカル株式会社 Film deposition apparatus and film deposition method of gas barrier film, and production method of plastic container with gas barrier film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
久保毅幸: "超伝導空洞の物理と窒素インフュージョン:国際リニアコライダー計画の実現に向けて", 加速器, vol. Vol. 15, No. 2,, JPN7023000487, 2018, JP, pages 40 - 51, ISSN: 0005097834 *

Similar Documents

Publication Publication Date Title
CN104136737B (en) Turbine rotor
JP5535572B2 (en) Surface treatment method of superconducting acceleration cavity
CN102294541B (en) Electron beam welding method for ultra supercritical partition plates
CA2766382C (en) Superconducting accelerating cavity production method
CN104439676B (en) CLF-1 steel thick plate electro-beam welding process
US3980220A (en) Method of fabricating large titanium pressure hulls
CN105149763A (en) High-voltage electron beam welding method for steam turbine spacer plate
JP2020187871A (en) Internal surface treatment method for superconducting accelerated cavity, manufacturing method for superconducting accelerated cavity, and surface treatment method for superconducting material
JP2003065490A5 (en)
KR100343051B1 (en) Device and method for fuse-connection of material with high melting point
JP3379916B2 (en) High melting point material melt bonding equipment
RU2434726C2 (en) Method of electron beam welding of ceramic parts
JPH1028689A (en) Purification method for surgical sewing needle
KR20100026828A (en) Manufacture method of impeller
JP2003512192A (en) Nanostructure, its application, and its manufacturing method
JP2013094800A (en) Method of manufacturing palladium alloy capillary
JPS6330347A (en) Surface treatment of glass
CN112935508B (en) Large-size titanium alloy bar processing method
JPS6123593A (en) Vaporized elements removing device for zircalloy tubes
JPH10295559A (en) Manufacture of vacuum structure body
CN113617750B (en) Device and method for actively removing volatile pollutants in space application laser
CN112935509B (en) Large-size titanium alloy bar processing device
JPH11132039A (en) Manufacture of double exhaust tube
JP6933601B2 (en) Sealing method and manufacturing equipment for sealed products
RU2635592C2 (en) Method of electron-beam welding glass tube parts

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20220427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240109