JP2020187119A - 地下ダム止水壁の透水性評価方法 - Google Patents
地下ダム止水壁の透水性評価方法 Download PDFInfo
- Publication number
- JP2020187119A JP2020187119A JP2020076601A JP2020076601A JP2020187119A JP 2020187119 A JP2020187119 A JP 2020187119A JP 2020076601 A JP2020076601 A JP 2020076601A JP 2020076601 A JP2020076601 A JP 2020076601A JP 2020187119 A JP2020187119 A JP 2020187119A
- Authority
- JP
- Japan
- Prior art keywords
- groundwater
- underground dam
- permeability
- downstream
- age
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 145
- 230000035699 permeability Effects 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 42
- 239000003673 groundwater Substances 0.000 claims abstract description 169
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 62
- 230000000903 blocking effect Effects 0.000 claims description 39
- 239000000126 substance Substances 0.000 claims description 35
- 239000005431 greenhouse gas Substances 0.000 claims description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 229910052754 neon Inorganic materials 0.000 claims description 7
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 claims description 5
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Examining Or Testing Airtightness (AREA)
Abstract
Description
最初に施工された地下ダム止水壁は、完成してから既に20年以上が経過しており、施設の老朽化が懸念される時期に差し掛かってきている。2015年に閣議決定された食料・農業・農村基本計画では、農業水利施設の点検、機能診断、及び監視を通じた適切なリスク管理の下で、施設の徹底した長寿命化とライフサイクルコストの低減を図ることとされており、地下ダムについてもこのようなストックマネジメント手法の導入が必要と考えられる。
しかし、地下ダム止水壁は、地中深くに造られており、目視で漏水の有無や劣化の程度を確認することができない。延長数km、深度50m以上の止水壁を掘削によって露わにして点検することは、工事費を考慮すると現実的ではなく、経済的でかつ有効な止水壁の機能診断技術の確立が求められている。
図1を用いてこの診断方法について説明する。
図1(a)は漏水が無い状態を示し、図1(b)は漏水時の状態を示している。
この診断方法は、地下ダム止水壁1の上流に地下水観測孔2aを、地下ダム止水壁1の下流に地下水観測孔2bをそれぞれ設けて地下水位を観測する。そして、下流に設けた地下水観測孔2bで観測される地下水位の上昇が検知されると、上流に設けた地下水観測孔2aで観測される地下水位以下の位置において漏水が発生したと推定する。
なお、特許文献1には、地下水観測孔2aおよび地下水観測孔2bに検出器を設置し、両者の検出値を比較することによって、壁材の水理学的性質を推定する方法が記載されている。
一例として、日本で最初に完成した大規模地下ダムである沖縄県宮古島砂川地下ダムでは、漏水箇所から観測孔までの距離が20mであり、500m3/日の漏水があった場合でも水位上昇は3cm程度である。また、止水壁下流での地下水位は降雨によって大きく変動する。従って、3cm程度の僅かな水位上昇によって漏水を推定することは事実上不可能であった。
請求項2記載の本発明は、請求項1に記載の地下ダム止水壁1の透水性評価方法において、前記上流側地下水年代及び前記下流側地下水年代を、前記上流側地下水4a及び前記下流側地下水4bに含まれる物質濃度によって推定することを特徴とする。
請求項3記載の本発明は、請求項2に記載の地下ダム止水壁1の透水性評価方法において、前記物質濃度として、温室効果ガスの濃度を用いることを特徴とする。
請求項4記載の本発明は、請求項3に記載の地下ダム止水壁1の透水性評価方法において、前記温室効果ガスとして、SF6、HFC−134a、CFC−11、及びCH3CCl3の少なくともいずれかを用いることを特徴とする。
請求項5記載の本発明は、請求項1から請求項4のいずれか1項に記載の地下ダム止水壁1の透水性評価方法において、前記上流側地下水年代及び前記下流側地下水年代を、経時的に推定して監視することを特徴とする。
請求項6記載の本発明は、請求項1から請求項5のいずれか1項に記載の地下ダム止水壁1の透水性評価方法において、前記上流側地下水年代が前記上流側地下水4aの深度によって異なる場合には、前記深度によって異なる前記上流側地下水年代を用いて前記地下ダム止水壁1の漏水深度を判定することを特徴とする。
請求項7記載の本発明の地下ダム止水壁1の透水性評価方法は、地下ダム止水壁1によって形成される貯水域3aにある上流側地下水4aに含まれる物質濃度と、前記地下ダム止水壁1の下流域3bにある下流側地下水4bに含まれる前記物質濃度とを比較することで前記地下ダム止水壁1の漏水を判定することを特徴とする。
請求項8記載の本発明は、請求項7に記載の地下ダム止水壁1の透水性評価方法において、前記物質濃度として、温室効果ガスの濃度を用いることを特徴とする。
請求項9記載の本発明は、請求項7に記載の地下ダム止水壁1の透水性評価方法において、前記物質濃度として、空気の濃度を用いることを特徴とする。
請求項10記載の本発明は、請求項7に記載の地下ダム止水壁1の透水性評価方法において、前記物質濃度として、窒素又はネオンの濃度を用いることを特徴とする。
本実施の形態によれば、地下水年代や水圧により上流側地下水と下流側地下水とで相違が生じる物質濃度を用いることで、地下水位の変化によらずに漏水を判定できる。
本実施の形態によれば、地下水に含まれる物質濃度によって地下水年代を推定できる。
本実施の形態によれば、既に長年の測定値が存在する温室効果ガスを用いることで地下水年代を推定できる。
本実施の形態によれば、既に気象庁が公表しているこれらの化学物質を用いることで地下水年代を推定できる。
本実施の形態によれば、地下水年代の経時的変化を監視することで、更に精度良く漏水を判定できる。
本実施の形態によれば、漏水深度を判定できることで、補修工事を容易にすることができる。
本実施の形態によれば、地下水年代や水圧により上流側地下水と下流側地下水とで相違が生じる物質濃度を用いることで、地下水位の変化によらずに漏水を判定できる。
本実施の形態によれば、既に長年の測定値が存在する温室効果ガスを用いることで地下水年代を推定でき、地下水位の変化によらずに漏水を判定できる。
地下ダム止水壁によって形成される貯水域にある上流側地下水には、水圧が加わっているために下流側地下水に比較して空気の溶け込み量が多くなるため、本実施の形態によれば、地下水に含まれる空気の濃度によって、地下水位の変化によらずに漏水を判定できる。
地下ダム止水壁によって形成される貯水域にある上流側地下水には、水圧が加わっているために下流側地下水に比較して空気の溶け込み量が多く、更に空気に含まれる窒素又はネオンは地下水中において岩石との反応による増減が少ないため、本実施の形態によれば、地下水に含まれる窒素又はネオンの濃度によって、地下水位の変化によらずに漏水を判定できる。
図1に示すように、地下ダム止水壁1は、難透水性基盤11に至る深度まで、透水性が高い地質12に形成する。
地下ダム止水壁1によって、地下ダム止水壁1の上流には、貯水域3aが形成される。
貯水域3aにある上流側地下水4aは地下水観測孔2aから採取し、地下ダム止水壁1の下流域3bにある下流側地下水4bは地下水観測孔2bから採取する。
本発明による地下ダム止水壁の透水性評価方法は、地下ダム止水壁1によって形成される貯水域3aにある上流側地下水4aの上流側地下水年代と、地下ダム止水壁1の下流域3bにある下流側地下水4bの下流側地下水年代とを比較することで地下ダム止水壁1の漏水を判定するものである。
上流側地下水年代及び下流側地下水年代は、上流側地下水4a及び下流側地下水4bに含まれる物質濃度によって推定する。なお、本発明において地下水年代とは、水が地下に浸透してからの経過年である。
物質濃度として、温室効果ガスの濃度を用いることができる。
しかし、図1(b)に示すように地下ダム止水壁1に透水性劣化部位1xが生じた場合には、比較的古い年代の上流側地下水4aが下流側地下水4bとして流れ込むため、下流側地下水4bの地下水年代が古くなる。
このように、上流側地下水4aの上流側地下水年代と下流側地下水4bの下流側地下水年代とを比較することで、下流側地下水年代が上流側地下水年代と同じ年代又は近い年代の場合には漏水と判定でき、又は、下流側地下水年代を経時的に比較することで、下流側地下水年代が古い年代に変化した場合には漏水と判定できる。
温室効果ガスの一つであるSF6(六フッ化硫黄)は、1960年代から電気及び電子機器の分野で絶縁材などとして広く使用されている化学物質であり、図2(a)に示すように大気中の濃度は年間約7%の割合で上昇を続けている。降水中のSF6濃度は、その時の大気中の濃度と平衡しており、地下水として涵養された後は大気との接触が断たれるため浸透時の濃度を保つ。
従って、図2(b)に示すように、地下水中のSF6濃度を測定することによって、その地下水の涵養年、言い換えれば地下水年代を推定することができる。
図中に示すダム軸の下に地下ダム止水壁1が形成されている。貯水域3aは、地下ダム止水壁1の上流に、貯留域境界までの間に形成される。
貯水域3aにおいて15箇所で採取した上流側地下水4aの平均地下水年代は6年であった。
図4(a)はSF6、図4(b)はHFC−134a、図4(c)はCFC−11、図4(d)はCH3CCl3の濃度変化を示している。
このように、温室効果ガスとして、SF6、HFC−134a、CFC−11、及びCH3CCl3の少なくともいずれか一つ又はこれらを組み合わせて用いることで、地下水年代を推定することができる。
図中に示すダム軸の下に地下ダム止水壁1が形成されている。貯水域3aは、地下ダム止水壁1の上流に形成される。
図5(a)に示すように、米須地下ダムにおける貯水域3aでの過剰大気(大気開放状態で水に溶け込む空気量を越えた溶存空気量)は4.2〜4.3cc/kg、図5(b)に示すように、慶座地下ダムにおける貯水域3aでの過剰大気(大気開放状態で水に溶け込む空気量を越えた溶存空気量)は2.2〜4.3cc/kgであった。
このように、地下ダム止水壁1によって形成される貯水域3aにある上流側地下水4aには、水圧が加わっているために下流側地下水に比較して空気の溶け込み量が多くなる。
従って、物質濃度として空気の濃度を用い、地下ダム止水壁1によって形成される貯水域3aにある上流側地下水4aに含まれる物質濃度と、地下ダム止水壁1の下流域3bにある下流側地下水4bに含まれる物質濃度とを比較することでも、水圧により上流側地下水4aと下流側地下水4bとで物質濃度に違いが生じ、地下水位の変化によらずに漏水を判定できる。
空気に含まれる窒素又はネオンは地下水中において岩石との反応による増減が少ない。従って、物質濃度として、窒素又はネオンの濃度を用いることで、地下水位の変化によらずに更に正確に漏水を判定できる。
なお、上流側地下水年代及び下流側地下水年代を、経時的に推定して監視することで、更に精度良く漏水を判定できる。
また、上流側地下水年代が上流側地下水4aの深度によって異なる場合には、深度によって異なる上流側地下水年代を用いて地下ダム止水壁1の漏水深度を判定することで、補修工事を容易にすることができる。
また本発明の地下ダム止水壁の透水性評価方法によれば、地下水年代や水圧により上流側地下水と下流側地下水とで相違が生じる物質濃度を用いることで、地下水位の変化によらずに漏水を判定できる。
1x 透水性劣化部位
2a、2b 地下水観測孔
3a 貯水域
3b 下流域
4a 上流側地下水
4b 下流側地下水
11 難透水性基盤
12 透水性が高い地質
Claims (10)
- 地下ダム止水壁によって形成される貯水域にある上流側地下水の上流側地下水年代と、前記地下ダム止水壁の下流域にある下流側地下水の下流側地下水年代とを比較することで前記地下ダム止水壁の漏水を判定する
ことを特徴とする地下ダム止水壁の透水性評価方法。 - 前記上流側地下水年代及び前記下流側地下水年代を、前記上流側地下水及び前記下流側地下水に含まれる物質濃度によって推定する
ことを特徴とする請求項1に記載の地下ダム止水壁の透水性評価方法。 - 前記物質濃度として、温室効果ガスの濃度を用いる
ことを特徴とする請求項2に記載の地下ダム止水壁の透水性評価方法。 - 前記温室効果ガスとして、SF6、HFC−134a、CFC−11、及びCH3CCl3の少なくともいずれかを用いる
ことを特徴とする請求項3に記載の地下ダム止水壁の透水性評価方法。 - 前記上流側地下水年代及び前記下流側地下水年代を、経時的に推定して監視する
ことを特徴とする請求項1から請求項4のいずれか1項に記載の地下ダム止水壁の透水性評価方法。 - 前記上流側地下水年代が前記上流側地下水の深度によって異なる場合には、前記深度によって異なる前記上流側地下水年代を用いて前記地下ダム止水壁の漏水深度を判定する
ことを特徴とする請求項1から請求項5のいずれか1項に記載の地下ダム止水壁の透水性評価方法。 - 地下ダム止水壁によって形成される貯水域にある上流側地下水に含まれる物質濃度と、前記地下ダム止水壁の下流域にある下流側地下水に含まれる前記物質濃度とを比較することで前記地下ダム止水壁の漏水を判定する
ことを特徴とする地下ダム止水壁の透水性評価方法。 - 前記物質濃度として、温室効果ガスの濃度を用いる
ことを特徴とする請求項7に記載の地下ダム止水壁の透水性評価方法。 - 前記物質濃度として、空気の濃度を用いる
ことを特徴とする請求項7に記載の地下ダム止水壁の透水性評価方法。 - 前記物質濃度として、窒素又はネオンの濃度を用いる
ことを特徴とする請求項7に記載の地下ダム止水壁の透水性評価方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023206574A JP2024020627A (ja) | 2019-05-13 | 2023-12-07 | 地下ダム止水壁の透水性評価方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019090420 | 2019-05-13 | ||
JP2019090420 | 2019-05-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023206574A Division JP2024020627A (ja) | 2019-05-13 | 2023-12-07 | 地下ダム止水壁の透水性評価方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020187119A true JP2020187119A (ja) | 2020-11-19 |
JP7460132B2 JP7460132B2 (ja) | 2024-04-02 |
Family
ID=73221002
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020076601A Active JP7460132B2 (ja) | 2019-05-13 | 2020-04-23 | 地下ダム止水壁の透水性評価方法 |
JP2023206574A Pending JP2024020627A (ja) | 2019-05-13 | 2023-12-07 | 地下ダム止水壁の透水性評価方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023206574A Pending JP2024020627A (ja) | 2019-05-13 | 2023-12-07 | 地下ダム止水壁の透水性評価方法 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7460132B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113203527A (zh) * | 2021-05-22 | 2021-08-03 | 崇金玲 | 一种地下混凝土连续墙渗漏点位置的检测方法 |
CN114232664A (zh) * | 2022-01-12 | 2022-03-25 | 中国海洋大学 | 一种可自动调节的地下帷幕及其施工方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020172559A1 (en) * | 2001-05-15 | 2002-11-21 | Peters Stanley R. | Underground alluvial water storage reservoir and method |
JP2008304414A (ja) * | 2007-06-11 | 2008-12-18 | Jfe Steel Kk | 遮水壁漏洩検知方法 |
JP2009041229A (ja) * | 2007-08-07 | 2009-02-26 | Ohbayashi Corp | 遮水材の漏水監視システム及び漏水検知方法、並びに遮水壁 |
JP2014062871A (ja) * | 2012-09-24 | 2014-04-10 | Shinshu Univ | 地下水資源の解析方法 |
JP2019027964A (ja) * | 2017-08-01 | 2019-02-21 | 国立研究開発法人農業・食品産業技術総合研究機構 | 地下埋設壁材の評価方法 |
-
2020
- 2020-04-23 JP JP2020076601A patent/JP7460132B2/ja active Active
-
2023
- 2023-12-07 JP JP2023206574A patent/JP2024020627A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020172559A1 (en) * | 2001-05-15 | 2002-11-21 | Peters Stanley R. | Underground alluvial water storage reservoir and method |
JP2008304414A (ja) * | 2007-06-11 | 2008-12-18 | Jfe Steel Kk | 遮水壁漏洩検知方法 |
JP2009041229A (ja) * | 2007-08-07 | 2009-02-26 | Ohbayashi Corp | 遮水材の漏水監視システム及び漏水検知方法、並びに遮水壁 |
JP2014062871A (ja) * | 2012-09-24 | 2014-04-10 | Shinshu Univ | 地下水資源の解析方法 |
JP2019027964A (ja) * | 2017-08-01 | 2019-02-21 | 国立研究開発法人農業・食品産業技術総合研究機構 | 地下埋設壁材の評価方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113203527A (zh) * | 2021-05-22 | 2021-08-03 | 崇金玲 | 一种地下混凝土连续墙渗漏点位置的检测方法 |
CN113203527B (zh) * | 2021-05-22 | 2021-12-24 | 崇金玲 | 一种地下混凝土连续墙渗漏点位置的检测方法 |
CN114232664A (zh) * | 2022-01-12 | 2022-03-25 | 中国海洋大学 | 一种可自动调节的地下帷幕及其施工方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2024020627A (ja) | 2024-02-14 |
JP7460132B2 (ja) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024020627A (ja) | 地下ダム止水壁の透水性評価方法 | |
Stephens et al. | Leak-before-break main failure prevention for water distribution pipes using acoustic smart water technologies: Case study in Adelaide | |
Smart et al. | The dynamics of natural pipe hydrological behaviour in blanket peat | |
Castro et al. | A new noble gas paleoclimate record in Texas—Basic assumptions revisited | |
Rahardjo et al. | Comprehensive instrumentation for real time monitoring of flux boundary conditions in slope | |
Beheshti et al. | Detection of extraneous water ingress into the sewer system using tandem methods–a case study in Trondheim city | |
Maurice et al. | The influence of flow and bed slope on gas transfer in steep streams and their implications for evasion of CO2 | |
Perez et al. | Experimental study on sinkholes: soil–groundwater behaviors under varied hydrogeological conditions | |
Jain et al. | Case study of landfill leachate recirculation using small-diameter vertical wells | |
Suryadi et al. | Effectiveness Analysis of Canal Blocking in Sub-peatland Hydrological Unit 5 and 6 Kahayan Sebangau, Central Kalimantan, Indonesia. | |
Blackwood et al. | Factors influencing exfiltration processes in sewers | |
JP5718186B2 (ja) | 地盤変位の予測方法および予測装置 | |
JP2012215002A (ja) | 地盤変位の予測方法および予測装置 | |
JP5669313B2 (ja) | 地盤変位の予測方法および予測装置 | |
Feng et al. | New view of flood frequency incorporating duration | |
JP5005611B2 (ja) | 地下構造物の被覆物質異常判断装置および被覆物質異常判断方法 | |
JP5781820B2 (ja) | 地盤変位の予測方法および予測装置 | |
Bagherzadeh et al. | Estimating and mapping sediment production at Kardeh watershed by using GIS | |
JP2004037315A (ja) | 地下水に海水を含む漏水の流量算出方法、流量算出装置および漏水汲み出し量の制御装置 | |
Adams et al. | Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona | |
JP3880327B2 (ja) | 地下構造物の安定度の判定方法および判定装置 | |
KR20090015431A (ko) | 펜스형 전극배치 침출수 누출검지 장치를 이용한위생매립지의 구획분할 누출검지 방법 | |
JP4863918B2 (ja) | Ofケーブル異常検出装置およびofケーブルの漏油検出方法 | |
Lamontagne et al. | Interconnection of surface and groundwater systems–River losses from losing/disconnected streams. Border Rivers site report. Water for a Healthy Country Flagship: Adelaide. 1CSIRO Land and Water, PMB 2, Glen Osmond SA 5064 2NSW Office of Water, 155–157 Marius Street, PO Box 550, Tamworth NSW 2340 This project is a National Water Commission (NWC) initiative, funded through the Raising National Water Standards Program. Additional funding was provided by NSW Office of Water | |
Kruger | Potential use of Subsidence Rates Determined From GPS-Based Height Modernization Measurements of NGS Benchmarks in Southeast Texas for Flood Risk Planning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231107 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240313 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7460132 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |