JP2020187031A - Optical detector - Google Patents

Optical detector Download PDF

Info

Publication number
JP2020187031A
JP2020187031A JP2019092368A JP2019092368A JP2020187031A JP 2020187031 A JP2020187031 A JP 2020187031A JP 2019092368 A JP2019092368 A JP 2019092368A JP 2019092368 A JP2019092368 A JP 2019092368A JP 2020187031 A JP2020187031 A JP 2020187031A
Authority
JP
Japan
Prior art keywords
light
signal
timing
unit
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019092368A
Other languages
Japanese (ja)
Other versions
JP7080432B2 (en
Inventor
恵亮 村上
Keisuke Murakami
恵亮 村上
尚己 梅野
Yuki Umeno
尚己 梅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Engineering Co Ltd
Original Assignee
Takenaka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Engineering Co Ltd filed Critical Takenaka Engineering Co Ltd
Priority to JP2019092368A priority Critical patent/JP7080432B2/en
Publication of JP2020187031A publication Critical patent/JP2020187031A/en
Application granted granted Critical
Publication of JP7080432B2 publication Critical patent/JP7080432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Abstract

To realize an optical detector constructed in two stages, with two light projection means and two light receiving means arranged in rows one above another, with which one stage detection is possible without complicating the shape of pulse signal light emitted from a light projector.SOLUTION: An optical detector is configured with a light projector equipped with one or a plurality of light projection units, and a light receiver equipped with one or a plurality of light receiving units corresponding to the light projection units, the light projector and light receiver including a synchronizing signal input unit. The light projector accepts input of the PPS signal of a GNSS receiver module from the synchronizing signal input unit and takes it as a synchronizing signal, with each light projection unit projecting a signal at different timing. The light receiver accepts input of the PPS signal of a GNSS receiver module from the synchronizing signal input unit and takes it as a synchronizing signal, and takes a signal received at the same timing as each light projection unit which each light receiving unit corresponds to, as a received light signal, and outputs a detection signal when the received light signal of one of the light receiving units is discontinued for a duration longer than a first set time.SELECTED DRAWING: Figure 1

Description

本発明は、投光器と受光器とで構成される光線式検知装置に関するものであり、特に人間の通過を確実に検出する信頼性の高い装置を実現する技術に関するものである。 The present invention relates to a light beam type detection device including a floodlight and a light receiver, and more particularly to a technique for realizing a highly reliable device that reliably detects the passage of a human being.

従来、侵入者を検出する目的で使用されるこの種の光線式検知装置としては、2個の投光部を備えた投光器と、2個の受光部を有する受光部を備えた受光器とを警戒区間を隔てて対向して設置する形態のものがある。警戒区間を通過する人間(侵入者)は、投光器から発せられている光線を遮断することになり、受光器側でこの状態を検出して侵入者検知信号を出力するものである。2個の投光部と2個の受光部は、上下に並べ2段構成とすることになり、人間が警戒区間を走り抜ける場合と、這って通り過ぎる場合の両方とも検出することを要求される場合には、上段の光線の遮断と下段の光線の遮断は、片段で独立して検出することが求められる。 Conventionally, as a light beam type detection device of this type used for the purpose of detecting an intruder, a light projector having two light emitting parts and a light receiving part having two light receiving parts are used. There is a form in which they are installed facing each other with a warning section in between. A human being (intruder) passing through the caution section blocks the light beam emitted from the floodlight, and the receiver detects this state and outputs an intruder detection signal. The two light emitting parts and the two light receiving parts are arranged one above the other in a two-stage configuration, and when it is required to detect both the case where a human runs through the caution section and the case where the person crawls past. It is required to detect the blocking of the upper ray and the blocking of the lower ray independently in one stage.

このような検知装置を実現するため、2個の投光部から交互にパルス信号光を発する方法や、2個の投光部から異なるパルス信号光を発し、2個の受光部を有する受光部でそれぞれ対応する投光部のパルス信号光のみを受けるようにする方法が採用されていた(例えば、特許文献1、特許文献2参照)。 In order to realize such a detection device, a method of alternately emitting pulse signal light from two light emitting units or a light receiving unit having two light receiving parts by emitting different pulse signal lights from two light emitting parts. (See, for example, Patent Document 1 and Patent Document 2), a method is adopted in which only the pulse signal light of the corresponding light projecting unit is received.

また、投光器と受光器との間を同期信号伝送用ラインで結び、投光器側の2個の投光部が発するパルス光と、受光器側の2個の受光部を有する受光部で受けるパルス光とのタイミングを合わせ、対応するパルス光のみを受光させる方法も用いられていた(例えば、特許文献3参照)。 Further, the projector and the receiver are connected by a synchronous signal transmission line, and the pulsed light emitted by the two projectors on the projector side and the pulsed light received by the receiver having the two receivers on the receiver side. A method of receiving only the corresponding pulsed light by matching the timing with the above has also been used (see, for example, Patent Document 3).

特開2004−355170号公報Japanese Unexamined Patent Publication No. 2004-355170 特開平09−297184号公報Japanese Unexamined Patent Publication No. 09-297184 特開2004−186744号公報Japanese Unexamined Patent Publication No. 2004-186744

しかしながら、前記従来例にはそれぞれ次に示すような問題点があった。
2個の投光部から交互にパルス信号光を発する方法では、上下に複数の光線式検知装置を設置する場合に、受光部に複数の投光部からのパルス信号光が入力されるため、各投光器間、各受光器間、あるいは投光器と受光器間で同期信号伝送用ラインを用いて同期を取らないと干渉して誤報や失報が起こる可能性があるという問題があった。
However, each of the above-mentioned conventional examples has the following problems.
In the method of alternately emitting pulse signal light from two light projecting units, when a plurality of light beam type detection devices are installed above and below, pulse signal light from a plurality of light emitting units is input to the light receiving unit. There is a problem that if synchronization is not performed between each floodlight, between each receiver, or between a floodlight and a receiver using a synchronization signal transmission line, interference may occur and a false report or a false report may occur.

2個の投光部から異なるパルス信号光を発し、受光器側でこのパルス信号光を識別する方法では、隣接する他の光線式検知装置との相互干渉を考慮して割り当てるパルス信号の種類が増加した場合、それにともない受光器側での信号識別能力を高くする必要が生じ、その分回路構成が複雑となるといった問題があった。
また、パルスコードを使用した場合には、コードの識別に時間がかかり、検出の応答速度が長くなってしまうといった問題があった。
In the method of emitting different pulse signal lights from the two light projecting units and identifying the pulse signal light on the receiver side, the type of pulse signal assigned in consideration of mutual interference with other adjacent ray-type detectors is used. When the number increases, it becomes necessary to increase the signal discrimination ability on the receiver side, and there is a problem that the circuit configuration becomes complicated accordingly.
Further, when a pulse code is used, there is a problem that it takes time to identify the code and the detection response speed becomes long.

投光器と受光器との間を同期信号伝送用ラインで結ぶ方法では、その同期信号伝送用ラインの埋設工事の手間やコストが増加するといった問題があった。 The method of connecting the floodlight and the receiver with a synchronous signal transmission line has a problem that the labor and cost of burying the synchronous signal transmission line increase.

上記課題を解決するために、本発明の光線式検知装置は、1個または複数の投光部を備えた投光器と、前記投光部に対応した1個または複数の受光部を備えた受光器とで構成され、前記投光器と前記受光器は、同期信号入力部を備え、GNSS(Global Navigation Satellite System)信号により取得した標準時間からPPS(Pulse Per Second)信号を生成するGNSS受信モジュールを外付けまたは内蔵できる構造とし、前記投光器は、前記GNSS受信モジュールの前記PPS信号を前記同期信号入力部から入力して同期信号とし、各投光部は異なったタイミングで信号を投光し、前記受光器は、前記GNSS受信モジュールの前記PPS信号を前記同期信号入力部から入力して同期信号として、各受光部が対応した各投光部と同タイミングで受光した信号を受光信号とし、いずれかの受光部の受光信号が予め設定した第1の設定時間よりも長く途絶えたときに、検知信号を出力することを特徴とする。 In order to solve the above problems, the light beam type detection device of the present invention has a floodlight having one or more light projectors and a light receiver having one or more light receivers corresponding to the light projectors. The floodlight and the receiver are equipped with a synchronous signal input unit, and an external GNSS receiving module that generates a PPS (Pulse Per Second) signal from a standard time acquired by a GNSS (Global Navigation Satellite System) signal is attached. Alternatively, the projector has a structure that can be built in, and the projector inputs the PPS signal of the GNSS receiving module from the synchronization signal input unit to obtain a synchronization signal, and each projection unit projects signals at different timings to the receiver. Is to input the PPS signal of the GNSS receiving module from the synchronization signal input unit and use it as a synchronization signal, and use a signal received by each light receiving unit at the same timing as the corresponding light projecting unit as a light receiving signal. It is characterized in that a detection signal is output when the received light signal of the unit is interrupted for a longer time than a preset first set time.

本発明によれば、投光器から発せられるパルス信号光を複雑な形態なものにすることなく、いずれか一段のみの検知が可能な光線式検知装置を実現でき、上下に複数の光線式検知装置を設置しても干渉することなく、従来の光線式検知装置と比べ誤報、失報を低減できる。
また、パルス信号のコードを識別する必要がないため、短い検出応答速度が設定できる。
また、受光部へ1個の投光部からのパルス信号のみが入光した場合でも、複数の投光部からパルス信号が入光した場合でも、同じ信号処理とすることが可能となるため、信号処理の煩雑な条件設定が不要となる。
また、投光器と受光器との間を同期信号伝送用ラインで結ぶ必要が無いため、配線工事や配線コストの増加を抑えることができる。また、投光器から発せられるパルス信号光が複雑でなく単純であり、簡単な回路構成で実現できるため、低電流化が図れる。低電流化によりバッテリー駆動が可能となり、同期信号伝送用ラインが不要なことも併せて、警戒区域の変更が可能な可搬型として使用可能となる。
According to the present invention, it is possible to realize a ray-type detection device capable of detecting only one stage without making the pulse signal light emitted from the floodlight into a complicated form, and a plurality of light-ray detection devices can be provided one above the other. Even if it is installed, it does not interfere, and false alarms and false alarms can be reduced compared to conventional ray-type detectors.
Moreover, since it is not necessary to identify the code of the pulse signal, a short detection response speed can be set.
Further, the same signal processing can be performed regardless of whether only the pulse signal from one light emitting unit is input to the light receiving unit or the pulse signal is input from a plurality of light emitting units. There is no need to set complicated conditions for signal processing.
Further, since it is not necessary to connect the floodlight and the receiver with a synchronous signal transmission line, it is possible to suppress an increase in wiring work and wiring cost. In addition, the pulse signal light emitted from the floodlight is not complicated and simple, and can be realized with a simple circuit configuration, so that the current can be reduced. The low current makes it possible to drive the battery, and it does not require a line for transmitting synchronous signals, so it can be used as a portable type that can change the caution area.

本発明の光線式検知装置の第一の実施形態のブロック図である。It is a block diagram of the 1st Embodiment of the ray type detection apparatus of this invention. 本発明の光線式検知装置の第一の実施形態の投光タイミングおよび受光タイミングのタイムチャートである。It is a time chart of the light projection timing and the light reception timing of the first embodiment of the ray type detection device of the present invention. 第一の実施形態において、光線式検知装置を上下に4台設置した状態を示した図である。It is a figure which showed the state which four light ray type detection devices were installed up and down in the 1st Embodiment. 第一の実施形態において、光線式検知装置を上下に4台設置した状態を示した図である。It is a figure which showed the state which four light ray type detection devices were installed up and down in the 1st Embodiment. 第一の実施形態において、8台の光線式検知装置を使用し、直線的に警戒区域を設定した図である。In the first embodiment, eight light ray type detection devices are used, and a warning zone is set linearly. 第一の実施形態において、8台の光線式検知装置を使用し、直線的に警戒区域を設定した図である。In the first embodiment, eight light ray type detection devices are used, and a warning zone is set linearly. 本発明の光線式検知装置の第二の実施形態のブロック図である。It is a block diagram of the 2nd Embodiment of the ray type detection apparatus of this invention.

図1は、本発明の光線式検知装置の第一の実施形態のブロック図、図2は、本発明の光線式検知装置の第一の実施形態の投光タイミングおよび受光タイミングのタイムチャートである。
光線式検知装置は、投光器100と受光器200とで構成され、GNSSモジュール300は、投光器100、および受光器200に外付け、または内蔵とし、投光器100の同期信号入力部、および受光器200の同期信号入力部にGNSS受信モジュールを接続している。GNSS受信モジュールは、GNSS(Global Navigation Satellite System)信号により取得した標準時間からPPS(Pulse Per Second)信号を生成し、PPS信号を同期信号として、投光器100の同期信号入力部、および受光器200の同期信号入力部に入力している。
FIG. 1 is a block diagram of the first embodiment of the light ray type detection device of the present invention, and FIG. 2 is a time chart of the light projection timing and the light reception timing of the first embodiment of the light ray type detection device of the present invention. ..
The light ray type detection device is composed of a floodlight 100 and a receiver 200, and the GNSS module 300 is externally or built in the floodlight 100 and the receiver 200, and the synchronization signal input unit of the floodlight 100 and the receiver 200. A GNSS receiving module is connected to the synchronization signal input unit. The GNSS receiving module generates a PPS (Pulse Per Second) signal from a standard time acquired by a GNSS (Global Navigation Satellite System) signal, and uses the PPS signal as a synchronization signal in the synchronization signal input unit of the floodlight 100 and the receiver 200. It is input to the synchronization signal input section.

投光器100は、同期信号入力部103から入力された同期信号に基づいた後述する投光タイミングで投光信号発生部104からパルス信号を発生し、そのパルス信号に基づいたパルス信号光を発する投光部101と投光部102とを備え、投光部101と投光部102のパルス信号光のタイミングを設定する投光タイミング設定スイッチ105を備えている。投光部101と投光部102とは赤外線LED等の発光素子と放物面反射鏡等の光学系とで構成されており、受光器に向けて効率よくパルス信号光を発するものである。 The floodlight 100 generates a pulse signal from the floodlight signal generation unit 104 at a light projection timing described later based on the synchronization signal input from the synchronization signal input unit 103, and emits a pulse signal light based on the pulse signal. A unit 101 and a light projecting unit 102 are provided, and a light projecting timing setting switch 105 for setting the timing of the pulse signal light of the light projecting unit 101 and the light projecting unit 102 is provided. The light projecting unit 101 and the light projecting unit 102 are composed of a light emitting element such as an infrared LED and an optical system such as a parabolic reflector, and efficiently emit pulse signal light toward a receiver.

図2を用いて投光タイミングの説明を行う。
投光器100において、GNSS受信モジュールから入力されるPPS信号は1PPSとし、設定可能な投光タイミングはタイミングA〜Hの8種類とし、1秒ごとにPPS信号が入力され、投光信号発生部はPPS信号に基づきタイミングの異なるタイミングA〜Hのタイミングを計測する。
The projection timing will be described with reference to FIG.
In the floodlight 100, the PPS signal input from the GNSS receiving module is 1 PPS, the flooding timings that can be set are eight types of timings A to H, the PPS signal is input every second, and the floodlight signal generator is PPS. The timings A to H, which have different timings, are measured based on the signal.

PPS信号を同期信号として、投光パルスのタイミング計測を開始する。PPS信号が入力されるのと同期して、タイミングAの最初の投光パルスのタイミングとする。タイミングBの最初の投光パルスのタイミングはPPS信号が入力されてから時間T/8後、タイミングCの最初の投光パルスのタイミングはその時間T/8後というようにタイミングD〜Hも同様に投光パルスのタイミングを計測する。タイミングA〜Hは周期Tとし、PPS信号が入力されるたびに計測しなおす。PPS信号が入力されてから次のPPS信号が入力されるまでは、投光器の自己発振で時間を計測し、周期Tの投光タイミングを継続して計測する。図2のようにタイミングA〜Hは異なるタイミングとなる。 Using the PPS signal as a synchronization signal, the timing measurement of the floodlight pulse is started. Synchronized with the input of the PPS signal, the timing of the first projection pulse of timing A is set. The timing of the first projection pulse of timing B is after time T / 8 after the PPS signal is input, the timing of the first projection pulse of timing C is after that time T / 8, and so on. Measure the timing of the light projection pulse. The timings A to H are set to the period T, and the measurement is remeasured each time a PPS signal is input. From the input of the PPS signal to the input of the next PPS signal, the time is measured by the self-oscillation of the floodlight, and the projection timing of the period T is continuously measured. As shown in FIG. 2, the timings A to H are different timings.

投光タイミング設定スイッチ105で設定されたタイミングのパルス信号を投光部101と投光部102に送信し、投光部101と投光部102はパルス信号光を発する。投光部101と投光部102のパルス信号光は異なるタイミングとし、例えば、設定1は投光部101がタイミングA、投光部102がタイミングB、設定2は投光部101がタイミングC、投光部102がタイミングD、設定3は投光部101がタイミングE、投光部102がタイミングF、設定4は投光部101がタイミングG、投光部102がタイミングHと設定できるようにしておく。 The pulse signal of the timing set by the light projecting timing setting switch 105 is transmitted to the light projecting unit 101 and the light projecting unit 102, and the light projecting unit 101 and the light projecting unit 102 emit the pulse signal light. The pulse signal lights of the light projecting unit 101 and the light projecting unit 102 have different timings. For example, in setting 1, the light projecting unit 101 has timing A, the light projecting unit 102 has timing B, and in setting 2, the light projecting unit 101 has timing C. The light projecting unit 102 can be set to timing D, the setting 3 allows the light projecting unit 101 to set timing E, the light projecting unit 102 to set timing F, and the setting 4 allows the light projecting unit 101 to set timing G and the light projecting unit 102 to set timing H. Keep it.

受光器200は、受光部201が投光部101に、受光部202が投光部102に対応した上下位置となっている。各受光部は、投光部と同じ光学系と、フォトトランジスタ等の光電変換素子とで構成される受光手段と信号増幅部とで構成されている。2個の受光部には、投光器から発せられるパルス信号光が入光し、ここで光電変換された電気信号は信号増幅部で増幅され、信号処理部204に入力される。 In the light receiver 200, the light receiving unit 201 is in the vertical position corresponding to the light projecting unit 101, and the light receiving unit 202 is in the vertical position corresponding to the light projecting unit 102. Each light receiving unit is composed of the same optical system as the light projecting unit, a light receiving means composed of a photoelectric conversion element such as a phototransistor, and a signal amplification unit. Pulse signal light emitted from the floodlight enters the two light receiving units, and the photoelectrically converted electric signal is amplified by the signal amplification unit and input to the signal processing unit 204.

受光タイミング設定スイッチ205により対応する投光部の投光タイミングと同じタイミングに設定しておき、信号処理部204は、同期信号入力部203から入力された同期信号に基づいた後述する受光タイミングで、各受光部から入力された電気信号が、対応する投光部の投光タイミングと同じ場合に受光信号とする。 The light receiving timing setting switch 205 is set to the same timing as the light emitting timing of the corresponding light emitting unit, and the signal processing unit 204 sets the light receiving timing to be described later based on the synchronization signal input from the synchronization signal input unit 203. When the electric signal input from each light receiving unit is the same as the light emitting timing of the corresponding light emitting unit, the light receiving signal is used.

図2を用いて受光タイミングの説明を行う。
受光器200において、GNSS受信モジュールから入力されるPPS信号は1PPSとし、受光タイミングは投光タイミングと同じタイミングA〜Hの8種類とし、1秒ごとにPPS信号が入力され、信号処理部はPPS信号に基づきタイミングの異なるタイミングA〜Hを計測する。
The light receiving timing will be described with reference to FIG.
In the light receiver 200, the PPS signal input from the GNSS receiving module is 1 PPS, the light receiving timing is 8 types of timings A to H which are the same as the light projection timing, the PPS signal is input every second, and the signal processing unit is PPS. Timings A to H with different timings are measured based on the signal.

PPS信号を同期信号として、受光信号のタイミング計測を開始する。PPS信号が入力されるのと同期して、タイミングAの最初の受光信号のタイミングとする。タイミングBの最初の受光信号のタイミングはPPS信号が入力されてから時間T/8後、タイミングCの最初の受光信号のタイミングはその時間T/8後というようにタイミングD〜Hも同様に受光信号のタイミングを計測する。タイミングA〜Hは周期Tとし、PPS信号が入力されるたびに計測しなおす。PPS信号が入力されてから次のPPS信号が入力されるまでは、受光器の自己発振で時間を計測し、周期Tの受光タイミングを継続して計測する。図2のようにタイミングA〜Hは異なるタイミングとなる。 Using the PPS signal as a synchronization signal, timing measurement of the received signal is started. Synchronized with the input of the PPS signal, the timing of the first received signal at timing A is set. The timing of the first received signal at timing B is time T / 8 after the PPS signal is input, the timing of the first received signal at timing C is after that time T / 8, and so on. Measure the timing of the signal. The timings A to H are set to the period T, and the measurement is remeasured each time a PPS signal is input. From the input of the PPS signal to the input of the next PPS signal, the time is measured by the self-oscillation of the light receiver, and the light receiving timing of the period T is continuously measured. As shown in FIG. 2, the timings A to H are different timings.

受光タイミング設定スイッチ205により、投光器100に対応する受光タイミングを設定する。受光部201と受光部202の受光タイミングは異なるタイミングとし、例えば、設定1は受光部201がタイミングA、受光部202がタイミングB、設定2は受光部201がタイミングC、受光部202がタイミングD、設定3は受光部201がタイミングE、受光部202がタイミングF、設定4は受光部201がタイミングG、受光部202がタイミングHと設定できるようにしておく。 The light receiving timing setting switch 205 sets the light receiving timing corresponding to the floodlight 100. The light receiving timings of the light receiving unit 201 and the light receiving unit 202 are different. For example, in setting 1, the light receiving unit 201 has timing A and the light receiving unit 202 has timing B, and in setting 2, the light receiving unit 201 has timing C and the light receiving unit 202 has timing D. In setting 3, the light receiving unit 201 can be set to timing E, the light receiving unit 202 can be set to timing F, and in setting 4, the light receiving unit 201 can be set to timing G and the light receiving unit 202 can be set to timing H.

投光器100と受光器200は、GNSS受信モジュール300へのGNSS信号が途絶えた場合、自己発振またはGNSSモジュール300の自己発振で同期信号を一定時間保持できるようにしておく。こうすることで、外来ノイズや天候などの環境変化によりGNSS信号が途絶えたとしても一定時間光線式検知装置の動作を保持することができる。 When the GNSS signal to the GNSS receiving module 300 is interrupted, the floodlight 100 and the receiver 200 are capable of holding the synchronization signal for a certain period of time by self-oscillation or self-oscillation of the GNSS module 300. By doing so, even if the GNSS signal is interrupted due to environmental changes such as external noise and weather, the operation of the light ray type detection device can be maintained for a certain period of time.

いずれかの受光部に基づいた受光信号が予め設定した第1の設定時間よりも長く途絶えたときと、全ての受光部に基づいた受光信号が予め設定した第2の設定時間よりも長く途絶えたときに信号を出力部206へ送る。出力部206は信号処理部204から信号が入力されると、リレーの接点信号等の形で外部へ物体を検出した信号を出力する。 When the light receiving signal based on any of the light receiving parts is interrupted for a longer time than the preset first set time, and when the light receiving signal based on all the light receiving parts is interrupted for a longer time than the preset second set time. Sometimes a signal is sent to the output unit 206. When a signal is input from the signal processing unit 204, the output unit 206 outputs a signal that detects an object to the outside in the form of a relay contact signal or the like.

投光器の投光部101と投光部102とは20cm程度離れて上下方向に並べてある。投光部が発したパルス信号光は、円錐状に広がり、投光器と受光器との距離が100m離れている場合では、受光器に達するまでに直径2m〜3mの広がりを有することになる。受光器側の2個の受光部も投光部と同じように上下方向に20cm程度離れた形としてある。従って2個の受光部には投光器から発せられるパルス信号光が上段下段を問わず入光することになる。 The light projecting unit 101 and the light projecting unit 102 of the floodlight are arranged vertically with a distance of about 20 cm. The pulse signal light emitted by the light projecting unit spreads in a conical shape, and when the distance between the light projector and the light receiver is 100 m, the pulse signal light has a wide area of 2 m to 3 m in diameter before reaching the light receiver. The two light receiving parts on the receiver side are also shaped to be separated in the vertical direction by about 20 cm in the same manner as the light projecting part. Therefore, the pulse signal light emitted from the floodlight enters the two light receiving units regardless of the upper or lower stage.

しかし、投光パルスと受光信号はGNSSの標準時間からPPS信号を同期信号としており、投光部101と受光部201、投光部102と受光部202の投光タイミングと受光タイミングはずれることがないため、干渉することなく信頼性の高い光線式検知装置となる。 However, the light projecting pulse and the light receiving signal are synchronized with the PPS signal from the GNSS standard time, and the light projecting timing and the light receiving timing of the light projecting unit 101 and the light receiving unit 201, and the light emitting unit 102 and the light receiving unit 202 do not deviate from each other. Therefore, it becomes a highly reliable ray-type detection device without interference.

また、第1の設定時間は第2の設定時間以上の長さとしておく。そうすることにより、人間が走り抜けるような上段と下段の両方を速く遮断する場合と、人間が這って通り過ぎるような一段のみをゆっくり遮断する場合の両方を確実に検知することができ、鳥などの一段のみしか速く遮断することのない小さな物体の通過は検出することのない信頼性の高い光線式検知器となる。また、第1の設定時間を例えば100m秒〜500m秒に可変できるようにし、第2の設定時間を例えば35m秒〜500m秒に可変できるようにすると、実際の設置場所の条件に合わせて最適な検知信号出力条件の設定が可能となる。 Further, the first set time is set to be longer than the second set time. By doing so, it is possible to reliably detect both the case where both the upper and lower tiers where humans run through are blocked quickly and the case where only one tier where humans crawl past is blocked slowly. It is a highly reliable ray detector that does not detect the passage of small objects that block only one step quickly. Further, if the first set time can be changed to, for example, 100 msec to 500 msec, and the second set time can be changed to, for example, 35 msec to 500 msec, it is optimal according to the conditions of the actual installation location. The detection signal output condition can be set.

図3は第一の実施形態において、光線式検知装置を上下に4台設置した状態を示している。
投光器110は、タイミング設定スイッチで投光部111の投光タイミングをタイミングAに投光部112の投光タイミングをタイミングBに設定し、受光器210は、タイミング設定スイッチで受光部211の受光タイミングをタイミングAに、受光部212の受光タイミングをタイミングBに設定している。
FIG. 3 shows a state in which four light ray type detection devices are installed vertically in the first embodiment.
The floodlight 110 sets the light-emitting timing of the light-emitting unit 111 to timing A with the timing setting switch, and sets the light-emitting timing of the light-emitting unit 112 to timing B with the timing setting switch. Is set to timing A, and the light receiving timing of the light receiving unit 212 is set to timing B.

投光器120は、タイミング設定スイッチで投光部121の投光タイミングをタイミングCに投光部122の投光タイミングをタイミングDに設定し、受光器220は、タイミング設定スイッチで受光部221の受光タイミングをタイミングCに、受光部222の受光タイミングをタイミングDに設定している。 The floodlight 120 sets the light-emitting timing of the light-emitting unit 121 to timing C with the timing setting switch, and sets the light-emitting timing of the light-emitting unit 122 to timing D with the timing setting switch. Is set to the timing C, and the light receiving timing of the light receiving unit 222 is set to the timing D.

投光器130は、タイミング設定スイッチで投光部131の投光タイミングをタイミングEに投光部132の投光タイミングをタイミングFに設定し、受光器230は、タイミング設定スイッチで受光部231の受光タイミングをタイミングEに、受光部232の受光タイミングをタイミングFに設定している。 The floodlight 130 sets the light-emitting timing of the light-emitting unit 131 to timing E with the timing setting switch, and sets the light-emitting timing of the light-emitting unit 132 to timing F with the timing setting switch. Is set to timing E, and the light receiving timing of the light receiving unit 232 is set to timing F.

投光器140は、タイミング設定スイッチで投光部141の投光タイミングをタイミングGに投光部142の投光タイミングをタイミングHに設定し、受光器240は、タイミング設定スイッチで受光部241の受光タイミングをタイミングGに、受光部242の受光タイミングをタイミングHに設定している。 The floodlight 140 sets the light-emitting timing of the light-emitting unit 141 to timing G and the light-emitting timing of the light-emitting unit 142 to timing H with the timing setting switch, and the light-receiving unit 240 uses the timing setting switch to set the light-receiving timing of the light-receiving unit 241. Is set to the timing G, and the light receiving timing of the light receiving unit 242 is set to the timing H.

光線式検知装置は投光器と受光器を数百メートル離れて設置することがあり、受光部に対応していない投光部からのパルス信号光が入力される状況となることがあるが、図3のように各投光部、受光部において、異なるタイミングを設定することで、各受光部に対応しない投光部からのパルス信号光が入力されたとしても、対応する投光部からのパルス信号光のみを受光信号として識別することができる。 In the light beam type detection device, the projector and the receiver may be installed several hundred meters apart, and the pulse signal light from the projector that does not correspond to the receiver may be input. By setting different timings for each light emitting unit and light receiving unit, even if pulse signal light from a light emitting unit that does not correspond to each light receiving unit is input, a pulse signal from the corresponding light emitting unit is input. Only light can be identified as a received signal.

図3の設置状態のように本発明の光線式検知装置を上下に複数台設置することで上下に長い警戒区域を実現することができるとともに、いずれか一段でも遮光されれば検知信号を出力する信頼性の高い検知性能を発揮することができる。 By installing a plurality of light beam type detection devices of the present invention in the vertical direction as shown in the installation state of FIG. 3, a long warning area can be realized in the vertical direction, and a detection signal is output if any one of them is shielded from light. It is possible to demonstrate highly reliable detection performance.

また、図3ではそれぞれの投光器、受光器にGNSS受信モジュール300を内蔵したが、図4のように1個のGNSS受信モジュール300を複数の投光器、または複数の受光器で共用しても良い。GNSS受信モジュール300を共用することで、使用するGNSSモジュールの数量を減らすことができ、コストおよび消費電力の削減ができる。 Further, although the GNSS receiving module 300 is built in each of the floodlights and receivers in FIG. 3, one GNSS receiving module 300 may be shared by a plurality of floodlights or a plurality of receivers as shown in FIG. By sharing the GNSS receiving module 300, the number of GNSS modules used can be reduced, and the cost and power consumption can be reduced.

また、図3、図4では左に投光器、右に受光器とし、上下に4台設置したが、右に投光器、左に受光器とした並びの光線式検知装置を上または下にさらに4台設置し、上下に合計8台まで設置することも可能である。 Further, in FIGS. 3 and 4, four light beam detectors were installed above and below, with a floodlight on the left and a receiver on the right, but four more ray-type detectors were installed on the right and the receiver on the left. It is possible to install up to a total of 8 units above and below.

図5は第一の実施形態において、8台の光線式検知装置を使用し、直線的に警戒区域を設定した図である。図5(1)が側面から見た図、図5(2)が上から見た図である。 FIG. 5 is a diagram in which eight light ray type detection devices are used in the first embodiment and a warning zone is linearly set. FIG. 5 (1) is a side view, and FIG. 5 (2) is a top view.

投光器110、110’は、タイミング設定スイッチで投光部111、111’の投光タイミングをタイミングAに投光部112、112’の投光タイミングをタイミングBに設定し、受光器210、210’は、タイミング設定スイッチで受光部211、211’の受光タイミングをタイミングAに、受光部212の受光タイミングをタイミングBに設定している。 In the floodlights 110 and 110', the light projection timings of the light projectors 111 and 111'are set to timing A and the light projection timings of the light projectors 112 and 112' are set to timing B by the timing setting switch, and the light receivers 210 and 210' Set the light receiving timing of the light receiving units 211 and 211'at the timing A and the light receiving timing of the light receiving unit 212 at the timing B with the timing setting switch.

投光器120、120’は、タイミング設定スイッチで投光部121、121’の投光タイミングをタイミングCに投光部122、122’の投光タイミングをタイミングDに設定し、受光器220、220’は、タイミング設定スイッチで受光部221、221’の受光タイミングをタイミングCに、受光部222、222’の受光タイミングをタイミングDに設定している。 The floodlights 120 and 120'set the light projection timing of the light projectors 121 and 121'to the timing C and the light projection timing of the light projectors 122 and 122' to the timing D by the timing setting switch, and the light receivers 220 and 220' Set the light receiving timing of the light receiving units 221 and 221'to the timing C and the light receiving timing of the light receiving units 222 and 222'to the timing D by the timing setting switch.

投光器130、130’は、タイミング設定スイッチで投光部131、131’の投光タイミングをタイミングEに投光部132、132’の投光タイミングをタイミングFに設定し、受光器230、230’は、タイミング設定スイッチで受光部231、231’の受光タイミングをタイミングEに、受光部232、232’の受光タイミングをタイミングFに設定している。 The floodlights 130 and 130'set the light throwing timing of the light projecting units 131 and 131'to the timing E and the light projecting timing of the light projecting units 132 and 132' to the timing F with the timing setting switch, and the light receivers 230 and 230' Uses the timing setting switch to set the light receiving timing of the light receiving units 231 and 231'to the timing E and the light receiving timing of the light receiving units 232 and 232' to the timing F.

投光器140、140’は、タイミング設定スイッチで投光部141、141’の投光タイミングをタイミングGに投光部142、142’の投光タイミングをタイミングHに設定し、受光器240、240’は、タイミング設定スイッチで受光部241、241’の受光タイミングをタイミングGに、受光部242、242’の受光タイミングをタイミングHに設定している。 The projectors 140 and 140'set the projection timing of the projectors 141 and 141'to the timing G and the projection timing of the projectors 142 and 142' to the timing H by the timing setting switch, and the receivers 240 and 240' Set the light receiving timing of the light receiving units 241 and 241'to the timing G and the light receiving timing of the light receiving units 242 and 242'to the timing H by the timing setting switch.

図3のときと同様に、光線式検知装置は投光器と受光器を数百メートル離れて設置することがあり、受光部に対応していない投光部からのパルス信号光が入力される状況となることがあるが、図5のように各投光部、受光部において、異なるタイミングを設定することで、各受光部に対応しない投光部からのパルス信号光が入力されたとしても、対応する投光部からのパルス信号光のみを受光信号として識別することができる。 As in the case of FIG. 3, in the light beam type detection device, the projector and the receiver may be installed several hundred meters apart, and the pulse signal light from the projector that does not correspond to the receiver is input. However, by setting different timings for each light emitting unit and light receiving unit as shown in FIG. 5, even if pulse signal light from a light emitting unit that does not correspond to each light receiving unit is input, it can be handled. Only the pulse signal light from the light projecting unit can be identified as the received signal.

図5の設置状態のように本発明の光線式検知装置を直線的に複数台設置することで、長距離の警戒区域を実現することができるとともに、いずれか一段でも遮光されれば検知信号を出力する信頼性の高い検知性能を発揮することができる。 By linearly installing a plurality of light beam type detection devices of the present invention as shown in the installation state of FIG. 5, a long-distance warning area can be realized, and if any one of them is shielded from light, a detection signal is transmitted. It is possible to demonstrate highly reliable detection performance for output.

また、図5ではそれぞれの投光器、受光器にGNSS受信モジュール300を内蔵したが、図6のように1個のGNSS受信モジュール300を複数の投光器、または複数の受光器で共用しても良い。GNSS受信モジュール300を共用することで、使用するGNSSモジュールの数量を減らすことができ、コストおよび消費電力の削減ができる。 Further, although the GNSS receiving module 300 is built in each of the floodlights and receivers in FIG. 5, one GNSS receiving module 300 may be shared by a plurality of floodlights or a plurality of receivers as shown in FIG. By sharing the GNSS receiving module 300, the number of GNSS modules used can be reduced, and the cost and power consumption can be reduced.

また、第一の実施形態では、投光部から発せられるパルス信号光は単変調の信号としていたが、搬送波をパルス信号に基づき振幅変調した二重変調のパルス信号光としてもよい。図7は第二の実施形態として、投光部から発せられるパルス信号光に単変調ではなく、二重変調のパルス信号光を用いた本発明の光線式検知装置のブロック図である。周波数切替スイッチ106により投光する搬送波の周波数を切り替え、周波数切替スイッチ207により受光信号と判断する搬送波の周波数を切り替えることができる。 Further, in the first embodiment, the pulse signal light emitted from the light projecting unit is a single-modulated signal, but a double-modulated pulse signal light in which the carrier wave is amplitude-modulated based on the pulse signal may be used. FIG. 7 is a block diagram of the light beam type detection device of the present invention using double-modulated pulse signal light instead of single-modulated pulse signal light emitted from the light projecting unit as the second embodiment. The frequency changeover switch 106 can be used to switch the frequency of the carrier wave to be projected, and the frequency changeover switch 207 can be used to switch the frequency of the carrier wave determined to be a received signal.

第二の実施形態では、二重変調のパルス信号光を使用することにより、外乱光などによるノイズに対する信号の弁別性が上がる。また、パルス信号の周波数を変更することにより、複数の検知装置間における混信に基づく誤報や失報をより防ぐことができる。また、周波数切替スイッチにより搬送波の周波数だけでなく、同時に信号波の周波数を切り替えられるようにしてもよく、搬送波と信号波の周波数切替スイッチを個別に設けてもよい。 In the second embodiment, by using the double-modulated pulse signal light, the discrimination of the signal from noise due to disturbance light or the like is improved. Further, by changing the frequency of the pulse signal, it is possible to further prevent false alarms and false alarms due to interference between the plurality of detection devices. Further, not only the frequency of the carrier wave but also the frequency of the signal wave may be switched by the frequency changeover switch at the same time, and the frequency changeover switch of the carrier wave and the signal wave may be provided separately.

第一の実施形態、第二の実施形態では、2個の投光部、受光部としたが、1個でも3個以上としてもよく、個数は限定しない。また、タイミングを8種類としたが、種類数は限定しない。 In the first embodiment and the second embodiment, two light emitting parts and two light receiving parts are used, but the number may be one or three or more, and the number is not limited. In addition, although the timing is set to 8 types, the number of types is not limited.

また、本発明の光線式検知装置は、バッテリー駆動とし、光線式検知装置とバッテリーを三脚に取り付け、可搬型としてもよい。可搬型とすることで、イベント会場や自衛隊の移動部隊の野営地などのように一時的に警戒が必要となる場所に設置することが可能となるとともに、投光器と受光器間に同期信号ラインが不要のため、短時間で設置可能となる。また、可搬型とした場合においても、上下に複数の光線式検知装置を設置できるようにしてもよい。 Further, the light ray type detection device of the present invention may be battery-powered, and the light ray type detection device and the battery may be attached to a tripod to be portable. By making it portable, it will be possible to install it in places that require temporary caution, such as event venues and campsites of mobile units of the Self-Defense Forces, and there will be a synchronization signal line between the floodlight and the receiver. Since it is unnecessary, it can be installed in a short time. Further, even when the portable type is used, a plurality of light ray type detection devices may be installed above and below.

前述した第一の実施形態、第二の実施形態において、出力部を1つとしたが、いずれかの受光部に基づいた受光信号が予め設定した第1の設定時間よりも長く途絶えたときと、全ての受光部に基づいた受光信号が予め設定した第2の設定時間よりも長く途絶えたときのそれぞれで出力部を設けてもよく、また、それぞれの出力と併せた出力の3つの出力部としてもよい。 In the first embodiment and the second embodiment described above, one output unit is used, but when the light receiving signal based on one of the light receiving units is interrupted for a longer time than the preset first set time. An output unit may be provided at each time when the light receiving signal based on all the light receiving units is interrupted for a longer time than the preset second set time, and as three output units of the output combined with each output. May be good.

以上、本発明の実施形態を説明したが、前述の実施形態は例として提示したものであり、発明の範囲は、これに限定するものではなく、その他の様々な形態で実施されることが可能であり、特許請求の範囲に記載された発明の範囲とその均等の範囲に含まれるものである。 Although the embodiments of the present invention have been described above, the above-described embodiments are presented as examples, and the scope of the invention is not limited to this, and can be implemented in various other embodiments. It is included in the scope of the invention described in the claims and the equivalent scope thereof.

100・・・投光器
101,102・・・投光部
103・・・同期信号入力部
104・・・投光信号発生部
105・・・投光タイミング設定スイッチ
200・・・受光器
201,202・・・受光部
203・・・同期信号入力部
204・・・信号処理部
205・・・受光タイミング設定スイッチ
206・・・出力部
300・・・GNSS受信モジュール
100 ... Floodlight 101, 102 ... Floodlight 103 ... Synchronous signal input unit 104 ... Floodlight signal generator 105 ... Floodlight timing setting switch 200 ... Receiver 201, 202 ...・ ・ Light receiving unit 203 ・ ・ ・ Synchronous signal input unit 204 ・ ・ ・ Signal processing unit 205 ・ ・ ・ Light receiving timing setting switch 206 ・ ・ ・ Output unit 300 ・ ・ ・ GNSS receiving module

Claims (4)

1個または複数の投光部を備えた投光器と、前記投光部に対応した1個または複数の受光部を備えた受光器とを有する光線式検知装置において、
前記投光器と前記受光器は、同期信号入力部を備え、GNSS(Global Navigation Satellite System)信号により取得した標準時間からPPS(Pulse Per Second)信号を生成するGNSS受信モジュールを外付けまたは内蔵できる構造とし、
前記投光器は、前記GNSS受信モジュールの前記PPS信号を前記同期信号入力部から入力して同期信号とし、各投光部は異なったタイミングでパルス信号を投光し、
前記受光器は、前記GNSS受信モジュールの前記PPS信号を前記同期信号入力部から入力して同期信号として、各受光部が対応した各投光部と同タイミングで受光した信号を受光信号とし、いずれかの受光部に基づいた受光信号が予め設定した第1の設定時間よりも長く途絶えたときに、検知信号を出力する光線式検知装置。
In a light ray type detection device having a floodlight having one or more light projectors and a light receiver having one or more light receivers corresponding to the light projectors.
The floodlight and the receiver are provided with a synchronous signal input unit, and have a structure in which a GNSS receiver module that generates a PPS (Pulse Per Second) signal from a standard time acquired by a GNSS (Global Navigation Satellite System) signal can be externally or built-in. ,
The floodlight inputs the PPS signal of the GNSS receiving module from the synchronization signal input unit to obtain a synchronization signal, and each floodlight unit projects a pulse signal at different timings.
The receiver receives the PPS signal of the GNSS receiving module from the synchronization signal input unit as a synchronization signal, and receives a signal received by each light receiving unit at the same timing as the corresponding light projecting unit as a light receiving signal. A ray-type detection device that outputs a detection signal when a light-receiving signal based on the light-receiving unit is interrupted for a longer time than a preset first set time.
前記投光器と前記受光器は、前記GNSS受信モジュールへの前記GNSS信号が途絶えた場合、自己発振または前記GNSSモジュールの自己発振で同期信号を一定時間保持する請求項1に記載の光線式検知装置。 The light beam type detection device according to claim 1, wherein the floodlight and the receiver hold a synchronization signal for a certain period of time by self-oscillation or self-oscillation of the GNSS module when the GNSS signal to the GNSS receiving module is interrupted. 前記受光器は、全ての受光部に基づいた受光信号が予め設定した第2の設定時間よりも長く途絶えたときも検知信号を出力し、前記第1の設定時間は、前記第2の設定時間以上の長さである請求項1または2に記載の光線式検知装置。 The light receiver outputs a detection signal even when the light receiving signals based on all the light receiving units are interrupted for a longer time than the preset second set time, and the first set time is the second set time. The light beam type detection device according to claim 1 or 2, which has the above length. 三脚に取り付け、バッテリー駆動とし可搬型とした請求項1から3のいずれか一項に記載の光線式検知装置。 The light beam type detection device according to any one of claims 1 to 3, which is attached to a tripod and is battery-powered and portable.
JP2019092368A 2019-05-15 2019-05-15 Ray type detector Active JP7080432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019092368A JP7080432B2 (en) 2019-05-15 2019-05-15 Ray type detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019092368A JP7080432B2 (en) 2019-05-15 2019-05-15 Ray type detector

Publications (2)

Publication Number Publication Date
JP2020187031A true JP2020187031A (en) 2020-11-19
JP7080432B2 JP7080432B2 (en) 2022-06-06

Family

ID=73220897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019092368A Active JP7080432B2 (en) 2019-05-15 2019-05-15 Ray type detector

Country Status (1)

Country Link
JP (1) JP7080432B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263489A (en) * 1986-05-10 1987-11-16 Ootec Denshi Kk Infrared-ray warning apparatus
JPH0292592U (en) * 1989-01-10 1990-07-23
JP2549809Y2 (en) * 1989-02-16 1997-10-08 サンクス 株式会社 Multi-optical axis photoelectric switch device
JPH09297184A (en) * 1996-05-01 1997-11-18 Takenaka Eng Kk Detecting device of infrared system
JPH11310131A (en) * 1998-04-28 1999-11-09 Nippon Signal Co Ltd:The Simple railroad worker detector
JP2000057448A (en) * 1998-08-05 2000-02-25 Nippon Dry Chem Co Ltd Movable plane warning machine
JP2000194971A (en) * 1998-12-28 2000-07-14 Secom Co Ltd Image monitoring system
JP2004186744A (en) * 2002-11-29 2004-07-02 Sunx Ltd Multiple optical axis photoelectric sensor
JP2004355170A (en) * 2003-05-28 2004-12-16 Usk:Kk Monitoring system
JP2005242710A (en) * 2004-02-26 2005-09-08 Otec Denshi Kk Infrared sensor and infrared monitoring system using it
US20060072012A1 (en) * 2004-09-28 2006-04-06 U.S.K. Co., Ltd. Surveillance system using pulse-coded rays
JP2008269373A (en) * 2007-04-23 2008-11-06 Kotobueeru:Kk Portable microwave monitoring device
JP2012048481A (en) * 2010-08-26 2012-03-08 Takenaka Engineering Co Ltd Infrared detection device
JP2020012747A (en) * 2018-07-19 2020-01-23 竹中エンジニアリング株式会社 Infrared detector

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263489A (en) * 1986-05-10 1987-11-16 Ootec Denshi Kk Infrared-ray warning apparatus
JPH0292592U (en) * 1989-01-10 1990-07-23
JP2549809Y2 (en) * 1989-02-16 1997-10-08 サンクス 株式会社 Multi-optical axis photoelectric switch device
JPH09297184A (en) * 1996-05-01 1997-11-18 Takenaka Eng Kk Detecting device of infrared system
JPH11310131A (en) * 1998-04-28 1999-11-09 Nippon Signal Co Ltd:The Simple railroad worker detector
JP2000057448A (en) * 1998-08-05 2000-02-25 Nippon Dry Chem Co Ltd Movable plane warning machine
JP2000194971A (en) * 1998-12-28 2000-07-14 Secom Co Ltd Image monitoring system
JP2004186744A (en) * 2002-11-29 2004-07-02 Sunx Ltd Multiple optical axis photoelectric sensor
JP2004355170A (en) * 2003-05-28 2004-12-16 Usk:Kk Monitoring system
JP2005242710A (en) * 2004-02-26 2005-09-08 Otec Denshi Kk Infrared sensor and infrared monitoring system using it
US20060072012A1 (en) * 2004-09-28 2006-04-06 U.S.K. Co., Ltd. Surveillance system using pulse-coded rays
JP2008269373A (en) * 2007-04-23 2008-11-06 Kotobueeru:Kk Portable microwave monitoring device
JP2012048481A (en) * 2010-08-26 2012-03-08 Takenaka Engineering Co Ltd Infrared detection device
JP2020012747A (en) * 2018-07-19 2020-01-23 竹中エンジニアリング株式会社 Infrared detector

Also Published As

Publication number Publication date
JP7080432B2 (en) 2022-06-06

Similar Documents

Publication Publication Date Title
US10573179B2 (en) Illuminating device, illuminating guidance system and illuminating guidance method
US9390605B2 (en) Auxiliary device for a hazard alarm constructed as a point type detector for function monitoring of the hazard alarm, and an arrangement and method of monitoring using a device of this kind
US20070012901A1 (en) Virtual electronic perimeter fence with solar powered lights
JP4805991B2 (en) Security system using laser distance measuring device and intruder detection method using laser distance measuring device
WO2006097920A2 (en) System for deterring intruders
US10837612B2 (en) Luminaires
US20120218415A1 (en) Imaging intrusion detection system and method using dot lighting
JP7080432B2 (en) Ray type detector
CN102568150A (en) Method and system for monitoring the accessibility of an emergency exit
KR101493810B1 (en) Unmanned Security System prevents false alarms for cameras
KR101256452B1 (en) The forest fire monitoring system and method
JP3673955B2 (en) Infrared detector
US7456860B2 (en) Surveillance system using pulse-coded rays
ES2712910T3 (en) Building supervision system based on light guides
JPS60178377A (en) Infrared invader detector
JPWO2005024746A1 (en) Sensor / camera-linked intrusion detection device
JP2005098874A (en) Infrared detection sensor
JP4467254B2 (en) Monitoring device
JP2010010850A (en) Position estimation system for wireless terminal
EP2881756B1 (en) Active object detection sensor
CN216596463U (en) Film room screen protection system
KR101544966B1 (en) Device for generating signal synchronized with gps satellite signal and system including same
KR102274214B1 (en) Safety line invasion monitoring device and system
KR100895700B1 (en) Sensing module and operating method using thereof
JP2020012747A (en) Infrared detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211227

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7080432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150