JP2020185604A - Double pipe welding method and double pipe welding device - Google Patents

Double pipe welding method and double pipe welding device Download PDF

Info

Publication number
JP2020185604A
JP2020185604A JP2019093129A JP2019093129A JP2020185604A JP 2020185604 A JP2020185604 A JP 2020185604A JP 2019093129 A JP2019093129 A JP 2019093129A JP 2019093129 A JP2019093129 A JP 2019093129A JP 2020185604 A JP2020185604 A JP 2020185604A
Authority
JP
Japan
Prior art keywords
cylinders
electron beam
welding
outer cylinders
facing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019093129A
Other languages
Japanese (ja)
Other versions
JP7316837B2 (en
Inventor
宮本 明啓
Akihiro Miyamoto
明啓 宮本
博史 原
Hiroshi Hara
博史 原
優志 木村
Masashi Kimura
優志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Original Assignee
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Machinery Systems Co Ltd filed Critical Mitsubishi Heavy Industries Machinery Systems Co Ltd
Priority to JP2019093129A priority Critical patent/JP7316837B2/en
Publication of JP2020185604A publication Critical patent/JP2020185604A/en
Application granted granted Critical
Publication of JP7316837B2 publication Critical patent/JP7316837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To make it possible to easily perform a double pipe welding work.SOLUTION: According to this double pipe welding method, a structure, which has an outer cylinder and an inner cylinder with a prescribed central axis as a center and in which the outer cylinder and the inner cylinder are integrally fixed at one end in an axial direction of the central axis, is provided, the other ends in each axial direction of two double pipe structures, of which the other end in the axial direction is opened, are welded, thereby forming a double pipe. The double pipe welding method includes: a step at which the other end of a first structure and the other end of a second structure of two double pipe structures are so made as to be opposite to each other so that at least the inner cylinders contact or are proximate to each other; a step at which electron beam is so radiated as to penetrate or pass between the outer cylinders from the lateral side of the outer cylinder and arrive at the opposite parts of the inner cylinders with respect to the first structure and the second structure which are so located as to be opposite to each other, thereby welding the inner cylinders; and a step at which electron beam is radiated to the opposite parts of the outer cylinders with respect to the first structure and the second structure, which are so located as to be opposite to each other, from the lateral side of the outer cylinder, thereby welding the outer cylinders.SELECTED DRAWING: Figure 4

Description

本発明は、二重管の溶接方法及び二重管の溶接装置に関する。 The present invention relates to a method for welding a double pipe and a device for welding a double pipe.

電子や陽子などの荷電粒子を超伝導加速空洞により加速する超伝導加速器が知られている(例えば、特許文献1参照)。このような超伝導加速器は、超伝導材料で形成された超伝導加速空洞を冷媒で冷却することで超伝導化する。これにより超伝導加速空洞の電気抵抗がほぼゼロになり、電力損失なく荷電粒子の加速を効率良く行うことができる。この超伝導加速器で用いられる超伝導加速空洞は、ニオブなどの超伝導材料を板金加工し、電子ビームにより溶接することにより製造される。 A superconducting accelerator that accelerates charged particles such as electrons and protons by a superconducting accelerating cavity is known (see, for example, Patent Document 1). Such a superconducting accelerator becomes superconducting by cooling a superconducting accelerating cavity formed of a superconducting material with a refrigerant. As a result, the electrical resistance of the superconducting acceleration cavity becomes almost zero, and the charged particles can be efficiently accelerated without power loss. The superconducting accelerating cavity used in this superconducting accelerator is manufactured by sheet metal processing of a superconducting material such as niobium and welding with an electron beam.

特許第3746611号公報Japanese Patent No. 3746611

超伝導加速器のような二重管構造同士を溶接する際、例えば接合する端部とは異なる端部に構造物等が設けられる場合には、当該構造物を避ける方向から電子ビームを照射する必要があり、溶接作業の困難性が高くなる。このため、溶接作業を容易に行うことが求められている。 When welding double-tube structures such as a superconducting accelerator, for example, if a structure or the like is provided at an end different from the end to be joined, it is necessary to irradiate an electron beam from a direction avoiding the structure. This increases the difficulty of welding work. Therefore, it is required to easily perform the welding work.

本発明は、上記に鑑みてなされたものであり、溶接作業を容易に行うことが可能な二重管の溶接方法及び二重管の溶接装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a double pipe welding method and a double pipe welding device capable of easily performing a welding operation.

本開示に係る二重管の溶接方法は、所定の中心軸を中心とした外筒及び内筒を有し、前記中心軸の軸線方向の一方の端部において前記外筒及び前記内筒を一体で固定する構造物が設けられ、前記軸線方向の他方の端部が開放された2つの二重管構造物のそれぞれの前記軸線方向の他方の端部同士を溶接して二重管を形成する二重管の溶接方法であって、少なくとも前記内筒同士が接触又は近接するように、2つの二重管構造物のうち第1構造物の前記他方の端部と第2構造物の前記他方の端部とを対向させることと、対向配置された前記第1構造物及び前記第2構造物に対して前記外筒の側方から前記外筒同士の間を貫通又は通過して前記内筒同士の対向部分に到達するように電子ビームを照射して前記内筒同士を溶接することと、対向配置された前記第1構造物及び前記第2構造物に対して前記外筒の側方から前記外筒同士の対向部分に前記電子ビームを照射して前記外筒同士を溶接することとを含む。 The method for welding a double pipe according to the present disclosure has an outer cylinder and an inner cylinder centered on a predetermined central axis, and the outer cylinder and the inner cylinder are integrated at one end in the axial direction of the central axis. A structure to be fixed with is provided, and the other end in the axial direction of each of the two double pipe structures in which the other end in the axial direction is open is welded to each other to form a double pipe. A method of welding a double pipe, wherein the other end of the first structure and the other of the second structure of the two double pipe structures are in contact with each other or close to each other. The inner cylinder penetrates or passes between the outer cylinders from the side of the outer cylinder with respect to the first structure and the second structure arranged to face each other. Welding the inner cylinders by irradiating electron beams so as to reach the opposing portions, and from the side of the outer cylinder with respect to the first structure and the second structure arranged to face each other. This includes irradiating the facing portions of the outer cylinders with the electron beam to weld the outer cylinders to each other.

本開示に係る二重管の溶接装置は、所定の中心軸を中心とした外筒及び内筒を有し、前記中心軸の軸線方向の一方の端部において前記外筒及び前記内筒が一体で固定され、前記軸線方向の他方の端部が開放された2つの二重管構造物のそれぞれの前記軸線方向の他方の端部同士を溶接して二重管を形成する二重管の溶接装置であって、少なくとも前記内筒同士が接触又は近接するように、2つの二重管構造物のうち第1構造物の前記他方の端部と第2構造物の前記他方の端部とを対向させる構造物保持部と、対向配置された前記第1構造物及び前記第2構造物に対して前記外筒の側方から電子ビームを照射する電子ビーム照射部と、前記構造物保持部及び前記電子ビーム照射部を制御することにより、対向配置された前記第1構造物及び前記第2構造物に対して前記外筒の側方から前記外筒同士の間を貫通又は通過して前記内筒同士の対向部分に到達するように電子ビームを照射して前記内筒同士を溶接させ、対向配置された前記第1構造物及び前記第2構造物に対して前記外筒の側方から前記外筒同士の対向部分に前記電子ビームを照射して前記外筒同士を溶接させる制御部とを備える。 The double pipe welding apparatus according to the present disclosure has an outer cylinder and an inner cylinder centered on a predetermined central axis, and the outer cylinder and the inner cylinder are integrated at one end in the axial direction of the central axis. Welding of double pipes to form a double pipe by welding the other ends of each of the two double pipe structures fixed with and open at the other end in the axial direction. In the device, the other end of the first structure and the other end of the second structure of the two double pipe structures are arranged so that at least the inner cylinders are in contact with each other or close to each other. A structure holding portion to be opposed to each other, an electron beam irradiating portion for irradiating an electron beam to the first structure and the second structure arranged to face each other from the side of the outer cylinder, the structure holding portion, and the structure holding portion. By controlling the electron beam irradiation unit, the first structure and the second structure arranged to face each other are penetrated or passed between the outer cylinders from the side of the outer cylinders and inside the inner cylinder. The inner cylinders are welded to each other by irradiating an electron beam so as to reach the facing portions of the cylinders, and the first structure and the second structure arranged to face each other are described from the side of the outer cylinder. A control unit for irradiating the facing portions of the outer cylinders with the electron beam to weld the outer cylinders to each other is provided.

本開示によれば、溶接作業を容易に行うことが可能な二重管の溶接方法及び二重管の溶接装置を提供することができる。 According to the present disclosure, it is possible to provide a double pipe welding method and a double pipe welding device capable of easily performing a welding operation.

図1は、本実施形態に係る溶接装置の一例を模式的に示す図である。FIG. 1 is a diagram schematically showing an example of a welding apparatus according to the present embodiment. 図2は、本実施形態において製造される超伝導加速器の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of the superconducting accelerator manufactured in the present embodiment. 図3は、本実施形態において製造される超伝導加速器の一例を示す平面図である。FIG. 3 is a plan view showing an example of the superconducting accelerator manufactured in the present embodiment. 図4は、本実施形態に係る二重管の溶接方法の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of a welding method for a double pipe according to the present embodiment. 図5は、溶接工程の一例を示す図である。FIG. 5 is a diagram showing an example of a welding process. 図6は、溶接工程の一例を示す図である。FIG. 6 is a diagram showing an example of a welding process. 図7は、溶接工程の他の例を示す図である。FIG. 7 is a diagram showing another example of the welding process. 図8は、溶接工程の他の例を示す図である。FIG. 8 is a diagram showing another example of the welding process. 図9は、溶接工程の他の例を示す図である。FIG. 9 is a diagram showing another example of the welding process. 図10は、溶接工程の他の例を示す図である。FIG. 10 is a diagram showing another example of the welding process. 図11は、溶接工程の他の例を示す図である。FIG. 11 is a diagram showing another example of the welding process. 図12は、溶接工程の他の例を示す図である。FIG. 12 is a diagram showing another example of the welding process. 図13は、溶接工程の他の例を示す図である。FIG. 13 is a diagram showing another example of the welding process. 図14は、溶接により形成された超伝導加速器の一部の構成を示す図である。FIG. 14 is a diagram showing a partial configuration of a superconducting accelerator formed by welding. 図15は、溶接工程の他の例を示す図である。FIG. 15 is a diagram showing another example of the welding process.

以下、本発明に係る二重管の溶接方法及び二重管の溶接装置の実施形態を図面に基づいて説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Hereinafter, an embodiment of a double pipe welding method and a double pipe welding apparatus according to the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment. In addition, the components in the following embodiments include those that can be easily replaced by those skilled in the art, or those that are substantially the same.

図1は、本実施形態に係る溶接装置100の一例を模式的に示す図である。図1に示すように、溶接装置100は、チャンバ10と、電子ビーム照射部20と、制御部30とを備える。本実施形態において、溶接装置100は、対象物に電子ビームを照射する電子ビーム照射装置である。 FIG. 1 is a diagram schematically showing an example of a welding apparatus 100 according to the present embodiment. As shown in FIG. 1, the welding apparatus 100 includes a chamber 10, an electron beam irradiation unit 20, and a control unit 30. In the present embodiment, the welding device 100 is an electron beam irradiating device that irradiates an object with an electron beam.

チャンバ10は、電子ビームの照射対象となる二重管構造物を収容する。チャンバ10は、ステージ11と、構造物保持部12とを有する。ステージ11は、構造物保持部12を支持する。ステージ11は、構造物保持部12を支持した状態で、例えば所定の回転軸を中心として回転可能である。 The chamber 10 houses a double-tube structure to be irradiated with an electron beam. The chamber 10 has a stage 11 and a structure holding portion 12. The stage 11 supports the structure holding portion 12. The stage 11 can rotate around a predetermined rotation axis while supporting the structure holding portion 12.

構造物保持部12は、電子ビームの照射対象を保持する。構造物保持部12は、対象物(後述する、第1構造物51及び第2構造物52)のうち例えばステージ11側(上下方向の下側)の端部を保持する構造のみが図示されているが、これに限定されず、ステージ11とは反対側(上下方向の上側)の端部を保持する構造が設けられてもよい。構造物保持部12は、ステージ11が回転することにより、ステージ11と一体で回転可能である。 The structure holding unit 12 holds the irradiation target of the electron beam. As the structure holding portion 12, only the structure that holds the end portion of, for example, the stage 11 side (lower side in the vertical direction) of the objects (the first structure 51 and the second structure 52, which will be described later) is shown. However, the present invention is not limited to this, and a structure for holding the end portion on the side opposite to the stage 11 (upper side in the vertical direction) may be provided. The structure holding portion 12 can rotate integrally with the stage 11 by rotating the stage 11.

電子ビーム照射部20は、照射部21と、撮像部22とを有する。照射部21は、不図示のカソード電極、グリッド電極、アノード電極、電磁コイル等、電子ビームを照射するための構成が設けられる。照射部21は、電子ビームの径を調整可能である。撮像部22は、電子ビームの照射位置の画像を撮像する。撮像された画像は、不図示の表示部により表示可能である。溶接装置100を操作するオペレータは、撮像された画像を見ることにより、電子ビームが照射される部分の状態を容易に視認することができる。また、オペレータは、撮像された画像を見ながら操作する場合、電子ビームを高精度に照射することが可能となる。 The electron beam irradiation unit 20 includes an irradiation unit 21 and an imaging unit 22. The irradiation unit 21 is provided with a configuration for irradiating an electron beam, such as a cathode electrode (not shown), a grid electrode, an anode electrode, and an electromagnetic coil. The irradiation unit 21 can adjust the diameter of the electron beam. The imaging unit 22 captures an image of the irradiation position of the electron beam. The captured image can be displayed by a display unit (not shown). The operator who operates the welding apparatus 100 can easily visually recognize the state of the portion irradiated with the electron beam by looking at the captured image. Further, when the operator operates while viewing the captured image, the operator can irradiate the electron beam with high accuracy.

制御部30は、チャンバ10及び電子ビーム照射部20の動作を制御する。制御部30は、チャンバ10において、例えばステージ11及び構造物保持部12の各動作を制御する。制御部30は、例えば電子ビーム照射部20の照射部21及び撮像部22の動作を制御する。 The control unit 30 controls the operations of the chamber 10 and the electron beam irradiation unit 20. The control unit 30 controls each operation of, for example, the stage 11 and the structure holding unit 12 in the chamber 10. The control unit 30 controls the operations of the irradiation unit 21 and the imaging unit 22 of the electron beam irradiation unit 20, for example.

図2及び図3は、本実施形態において製造される超伝導加速器40の一例を示す図である。図2は中心軸を通る平面による断面視、図3は上面視における図をそれぞれ示している。図2及び図3に示す超伝導加速器40は、例えば同軸1/2波長型超伝導加速器(HWR:Half Wave Resonator)である。超伝導加速器40は、加速空洞41と、ステム42と、ビーム管43と、洗浄ポート44、45とを有する。 2 and 3 are views showing an example of the superconducting accelerator 40 manufactured in the present embodiment. FIG. 2 shows a cross-sectional view in a plane passing through the central axis, and FIG. 3 shows a top view. The superconducting accelerator 40 shown in FIGS. 2 and 3 is, for example, a coaxial 1/2 wavelength type superconducting accelerator (HWR: Half Wave Resonator). The superconducting accelerator 40 has an acceleration cavity 41, a stem 42, a beam tube 43, and cleaning ports 44 and 45.

加速空洞41は、電子や陽子などの荷電粒子からなる荷電粒子ビームBを加速するものである。加速空洞41は、ニオブなどの超伝導材料により例えば円筒状に形成され、中心軸の軸線方向に連続する中空チャンバ形状をなしている。加速空洞41は、溶接部分46を介して洗浄ポート44と接合される。また、加速空洞41は、溶接部分48を介して洗浄ポート45と接合される。 The acceleration cavity 41 accelerates a charged particle beam B composed of charged particles such as electrons and protons. The acceleration cavity 41 is formed of, for example, a cylindrical shape by a superconducting material such as niobium, and has a hollow chamber shape continuous in the axial direction of the central axis. The acceleration cavity 41 is joined to the cleaning port 44 via a welded portion 46. Further, the acceleration cavity 41 is joined to the cleaning port 45 via the welded portion 48.

加速空洞41は、不図示の真空ポンプに接続される接続口を有する。加速空洞41は、真空ポンプにより真空引きすることで内部を真空状態とすることができる。また、加速空洞41は、不図示の電力入力部が設けられる。加速空洞41は、電力入力部により高周波の電力が入力されることにより、荷電粒子ビームBを加速するための電界を発生させる。 The acceleration cavity 41 has a connection port connected to a vacuum pump (not shown). The inside of the acceleration cavity 41 can be evacuated by evacuating with a vacuum pump. Further, the acceleration cavity 41 is provided with a power input unit (not shown). The acceleration cavity 41 generates an electric field for accelerating the charged particle beam B by inputting high-frequency power from the power input unit.

ステム42は、加速空洞41の内側に配置され、ニオブなどの超伝導材料により例えば加速空洞41と同軸の円筒状に形成される。ステム42は、中心軸の軸線方向に連続する中空チャンバ形状をなしている。つまり、超伝導加速器40は、加速空洞41及びステム42による二重管構造となっている。ステム42は、溶接部分47を介して洗浄ポート44と接合される。また、ステム42は、溶接部分49を介して洗浄ポート45と接合される。 The stem 42 is arranged inside the acceleration cavity 41 and is formed of a superconducting material such as niobium into a cylindrical shape coaxial with the acceleration cavity 41, for example. The stem 42 has a hollow chamber shape that is continuous in the axial direction of the central axis. That is, the superconducting accelerator 40 has a double tube structure with an acceleration cavity 41 and a stem 42. The stem 42 is joined to the cleaning port 44 via a welded portion 47. Further, the stem 42 is joined to the cleaning port 45 via the welded portion 49.

ビーム管43は、加速空洞41及びステム42の中心軸に対して直交する方向に延びている。ビーム管43は、加速空洞41及びステム42を貫通して設けられる。ビーム管43は、荷電粒子ビームBを通過させる。 The beam tube 43 extends in a direction orthogonal to the central axis of the acceleration cavity 41 and the stem 42. The beam tube 43 is provided so as to penetrate the acceleration cavity 41 and the stem 42. The beam tube 43 allows the charged particle beam B to pass through.

洗浄ポート44、45は、加速空洞41の内部を洗浄するための洗浄水を導入する導入口である。洗浄ポート44、45は、超伝導加速器40において中心軸の軸線方向の両端に配置される。 The cleaning ports 44 and 45 are introduction ports for introducing cleaning water for cleaning the inside of the acceleration cavity 41. The cleaning ports 44 and 45 are arranged at both ends in the axial direction of the central axis in the superconducting accelerator 40.

このように構成された超伝導加速器40は、加速空洞41が冷却されることで超伝導状態とされる。荷電粒子ビームBは、ビーム管43から加速空洞41内に入り、ステム42を経て加速空洞41の外部に送り出される。超伝導加速器40は、荷電粒子ビームBの粒子流路に沿って複数連接される。隣接する超伝導加速器40同士は、一方の超伝導加速器40のビーム管43と他方の超伝導加速器40のビーム管43が不図示の接続管を介し接続される。 The superconducting accelerator 40 configured in this way is put into a superconducting state by cooling the acceleration cavity 41. The charged particle beam B enters the acceleration cavity 41 from the beam tube 43, and is sent out of the acceleration cavity 41 via the stem 42. A plurality of superconducting accelerators 40 are connected along the particle flow path of the charged particle beam B. In the adjacent superconducting accelerators 40, the beam tube 43 of one superconducting accelerator 40 and the beam tube 43 of the other superconducting accelerator 40 are connected via a connecting tube (not shown).

上記のように構成される超伝導加速器40は、ニオブなどの超伝導材料を板金加工し、溶接することにより製造される。例えば、加速空洞41、ステム42及びビーム管43を組み立てる。また、洗浄ポート44及び洗浄ポート45をそれぞれ形成する。その後、加速空洞41、ステム42及びビーム管43の組み立て構造物に対して、まず、電子ビームを用いて洗浄ポート44を溶接する。これにより、図2に示す第1構造物51が形成される。第1構造物51は、二重管状の加速空洞41及びステム42を有する二重管構造物である。以下、第1構造物51のうち加速空洞41を外筒51aと表記し、ステム42を内筒51bと表記する。第1構造物51は、一方の端部においては外筒51a及び内筒51bが洗浄ポート44によって一体で固定され、他方の端部においては外筒51a及び内筒51bが開放され、断面が露出した状態となっている。 The superconducting accelerator 40 configured as described above is manufactured by sheet metal processing and welding of a superconducting material such as niobium. For example, the acceleration cavity 41, the stem 42 and the beam tube 43 are assembled. Further, a cleaning port 44 and a cleaning port 45 are formed, respectively. Then, the cleaning port 44 is first welded to the assembled structure of the acceleration cavity 41, the stem 42, and the beam tube 43 by using an electron beam. As a result, the first structure 51 shown in FIG. 2 is formed. The first structure 51 is a double-tube structure having a double-tubular acceleration cavity 41 and a stem 42. Hereinafter, the acceleration cavity 41 of the first structure 51 will be referred to as an outer cylinder 51a, and the stem 42 will be referred to as an inner cylinder 51b. In the first structure 51, the outer cylinder 51a and the inner cylinder 51b are integrally fixed by the cleaning port 44 at one end, and the outer cylinder 51a and the inner cylinder 51b are opened at the other end to expose the cross section. It is in a state of being.

次に、第1構造物51に対して、電子ビームを用いて洗浄ポート45を溶接する。洗浄ポート45は、洗浄水を導入する開口部分に対して、加速空洞41に接合させる部分と、ステム42に接合させる部分とが接続された構成である。洗浄ポート45は、この加速空洞41に接合させる部分と、ステム42に接合させる部分とが二重管状に形成された二重管構造物である。以下、洗浄ポート45を第2構造物52と表記し、加速空洞41に接合させる部分を外筒52aと表記し、ステム42に接合させる部分を内筒52bと表記する。第2構造物52は、一方の端部(開口部分側の端部)において外筒52a及び内筒52bが一体で固定され、他方の端部においては外筒52a及び内筒52bが開放され、断面が露出した状態となっている。 Next, the cleaning port 45 is welded to the first structure 51 using an electron beam. The cleaning port 45 has a configuration in which a portion to be joined to the acceleration cavity 41 and a portion to be joined to the stem 42 are connected to the opening portion into which the washing water is introduced. The cleaning port 45 is a double-tube structure in which a portion to be joined to the acceleration cavity 41 and a portion to be joined to the stem 42 are formed in a double tubular shape. Hereinafter, the cleaning port 45 will be referred to as a second structure 52, the portion to be joined to the acceleration cavity 41 will be referred to as an outer cylinder 52a, and the portion to be joined to the stem 42 will be referred to as an inner cylinder 52b. In the second structure 52, the outer cylinder 52a and the inner cylinder 52b are integrally fixed at one end (the end on the opening side), and the outer cylinder 52a and the inner cylinder 52b are opened at the other end. The cross section is exposed.

図4は、本実施形態に係る二重管の溶接方法の一例を示すフローチャートである。図4に示すように、二重管の溶接方法は、第1構造物51の他方の端部と第2構造物52の他方の端部とを対向配置する工程(ステップS10)と、対向配置された第1構造物51及び第2構造物52に対して外筒51a、52aの側方から外筒51a、52aの間を貫通又は通過して内筒51b、52bの対向部分5454に到達するように電子ビームを照射して内筒51b、52bを溶接する工程(ステップS20)と、対向配置された第1構造物51及び第2構造物52に対して外筒51a、52aの側方から外筒51a、52aの対向部分53に電子ビームを照射して外筒51a、52aを溶接する工程(ステップS30)と、を含む。本実施形態に係る二重管の溶接方法は、例えば溶接装置100を用いて行われる。この場合、制御部30が溶接装置100の各部の動作を制御することにより、各ステップS10、S20、S30が行われる。なお、各動作については、オペレータが手動で行ってもよい。 FIG. 4 is a flowchart showing an example of a welding method for a double pipe according to the present embodiment. As shown in FIG. 4, the method of welding the double pipe includes a step of arranging the other end of the first structure 51 and the other end of the second structure 52 so as to face each other (step S10). It penetrates or passes between the outer cylinders 51a and 52a from the side of the outer cylinders 51a and 52a with respect to the first structure 51 and the second structure 52, and reaches the facing portion 5454 of the inner cylinders 51b and 52b. The step of irradiating the electron beam to weld the inner cylinders 51b and 52b (step S20) and the side of the outer cylinders 51a and 52a with respect to the first structure 51 and the second structure 52 arranged to face each other. The step (step S30) of irradiating the facing portions 53 of the outer cylinders 51a and 52a with an electron beam to weld the outer cylinders 51a and 52a is included. The method of welding a double pipe according to the present embodiment is performed using, for example, a welding device 100. In this case, each step S10, S20, S30 is performed by the control unit 30 controlling the operation of each part of the welding device 100. The operator may manually perform each operation.

ステップS10では、外筒51aの端部と外筒52aの端部とが対向し、内筒51bの端部と内筒52bの端部とが対向するように、第1構造物51と第2構造物52とを構造物保持部12によって保持する。 In step S10, the first structure 51 and the second structure 51 and the second structure 51 face each other so that the end portion of the outer cylinder 51a and the end portion of the outer cylinder 52a face each other and the end portion of the inner cylinder 51b and the end portion of the inner cylinder 52b face each other. The structure 52 and the structure 52 are held by the structure holding portion 12.

ステップS20及びステップS30(以下、溶接工程と表記する場合がある)では、以下の各手法により、外筒51a、52a同士の溶接及び内筒51b、52b同士の溶接を行う。 In steps S20 and S30 (hereinafter, may be referred to as a welding process), the outer cylinders 51a and 52a are welded to each other and the inner cylinders 51b and 52b are welded to each other by the following methods.

図5及び図6は、溶接工程の一例を示す図である。図5及び図6に示すように、内筒51b、52b同士を溶接する際、照射部21から外筒51a、52aの対向部分53に電子ビームEBを照射する。このとき、照射部21は、当該電子ビームEBの一部が、外筒51a、52aの対向部分53を貫通して内筒51b、52bの対向部分54に到達するように照射する。 5 and 6 are views showing an example of a welding process. As shown in FIGS. 5 and 6, when the inner cylinders 51b and 52b are welded to each other, the electron beam EB is irradiated from the irradiation unit 21 to the facing portions 53 of the outer cylinders 51a and 52a. At this time, the irradiation unit 21 irradiates the electron beam EB so that a part of the electron beam EB penetrates the facing portions 53 of the outer cylinders 51a and 52a and reaches the facing portions 54 of the inner cylinders 51b and 52b.

これにより、まず、外筒51a、52aの対向部分53に照射される電子ビームEBによって外筒51a、52a同士が溶接される。また、外筒51a、52aの間を貫通した電子ビームEBaは、内筒51b、52bの対向部分54に照射される。この電子ビームEBaによって、内筒51b、52bが溶接される。つまり、1回の電子ビームEBの照射により、外筒51a、52a同士及び内筒51b、52b同士が同時に溶接される。 As a result, first, the outer cylinders 51a and 52a are welded to each other by the electron beam EB that irradiates the facing portions 53 of the outer cylinders 51a and 52a. Further, the electron beam EBa penetrating between the outer cylinders 51a and 52a irradiates the facing portions 54 of the inner cylinders 51b and 52b. The inner cylinders 51b and 52b are welded by the electron beam EBa. That is, by irradiating the electron beam EB once, the outer cylinders 51a and 52a and the inner cylinders 51b and 52b are welded to each other at the same time.

外筒51a、52aの対向部分53を貫通した電子ビームEBaは、外筒51a、52aの対向部分53に照射される電子ビームEBに比べて強度が低下する。このため、照射部21は、貫通した電子ビームEBaの強度が内筒51b、52b同士が溶接可能となるように、電子ビームEBの照射強度を調整する。 The intensity of the electron beam EB that penetrates the facing portions 53 of the outer cylinders 51a and 52a is lower than that of the electron beam EB that irradiates the facing portions 53 of the outer cylinders 51a and 52a. Therefore, the irradiation unit 21 adjusts the irradiation intensity of the electron beam EB so that the intensity of the penetrating electron beam EBa can be welded to the inner cylinders 51b and 52b.

図6に示すように、第1構造物51及び第2構造物52を中心軸AXの軸回りに1回転させることで、外筒51a、52a同士及び内筒51b、52b同士を同時に溶接することができる。 As shown in FIG. 6, the outer cylinders 51a and 52a and the inner cylinders 51b and 52b are welded to each other at the same time by rotating the first structure 51 and the second structure 52 once around the central axis AX. Can be done.

図7から図9は、溶接工程の他の例を示す図である。図7に示すように、外筒51aと外筒52aとが対向し、内筒51bと内筒52bとが対向した場合に、外筒51a、52aの対向部分53の距離d1が内筒51b、52bの対向部分54の距離よりも大きくなるように第1構造物51及び第2構造物52を形成しておく。 7 to 9 are views showing another example of the welding process. As shown in FIG. 7, when the outer cylinder 51a and the outer cylinder 52a face each other and the inner cylinder 51b and the inner cylinder 52b face each other, the distance d1 of the facing portions 53 of the outer cylinders 51a and 52a is the inner cylinder 51b, The first structure 51 and the second structure 52 are formed so as to be larger than the distance between the facing portions 54 of 52b.

この状態で、内筒51b、52b同士を溶接する際、図8に示すように、外筒51a、52aの間を通過させて電子ビームEBを内筒51b、52bの対向部分54に到達させる。この内筒51b、52bの対向部分54に照射される電子ビームEBにより、内筒51b、52b同士が溶接される。内筒51b、52b同士が溶接された場合、第1構造物51と第2構造物52とが互いに近づく方向に収縮する、いわゆる溶接縮みが生じる。この溶接縮みにより、外筒51a、52aの対向部分53の距離が距離d1から距離d2(d1>d2)に短縮される。その後、図9に示すように、照射部21から外筒51a、52aの対向部分53に電子ビームEBを照射する。これにより、外筒51a、52a同士が溶接される。溶接縮みによって短縮された後の距離d2が、電子ビームEBの径よりも小さくなるように距離d1を調整することにより、電子ビームの径を変更することなく、外筒51a、52a及び内筒51b、52bを溶接することができる。 In this state, when the inner cylinders 51b and 52b are welded to each other, as shown in FIG. 8, the electron beam EB is passed between the outer cylinders 51a and 52a to reach the facing portion 54 of the inner cylinders 51b and 52b. The inner cylinders 51b and 52b are welded to each other by the electron beam EB that irradiates the facing portions 54 of the inner cylinders 51b and 52b. When the inner cylinders 51b and 52b are welded to each other, so-called welding shrinkage occurs in which the first structure 51 and the second structure 52 shrink in a direction approaching each other. Due to this welding shrinkage, the distance between the facing portions 53 of the outer cylinders 51a and 52a is shortened from the distance d1 to the distance d2 (d1> d2). After that, as shown in FIG. 9, the electron beam EB is irradiated from the irradiation unit 21 to the facing portions 53 of the outer cylinders 51a and 52a. As a result, the outer cylinders 51a and 52a are welded to each other. By adjusting the distance d1 so that the distance d2 after being shortened by welding shrinkage is smaller than the diameter of the electron beam EB, the outer cylinders 51a, 52a and the inner cylinder 51b are not changed in diameter of the electron beam. , 52b can be welded.

図10及び図11は、溶接工程の他の例を示す図である。なお、図10及び図11に示す例においては、図7に示す例と同様に、外筒51aと外筒52aとが対向し、内筒51bと内筒52bとが対向した場合に、外筒51a、52aの対向部分53の距離が内筒51b、52bの対向部分54の距離よりも大きくなるように第1構造物51及び第2構造物52を形成しておく。 10 and 11 are diagrams showing other examples of the welding process. In the examples shown in FIGS. 10 and 11, similarly to the example shown in FIG. 7, when the outer cylinder 51a and the outer cylinder 52a face each other and the inner cylinder 51b and the inner cylinder 52b face each other, the outer cylinder The first structure 51 and the second structure 52 are formed so that the distance between the facing portions 53 of the 51a and 52a is larger than the distance between the facing portions 54 of the inner cylinders 51b and 52b.

この状態で、内筒51b、52b同士を溶接する際、図10に示すように、スリットSLによって電子ビームEBの径を縮小し、スリットSLから電子ビームEBbを出射する。スリットSLの開口部の寸法は、電子ビームEBbが外筒51a、52aの間を通過するように設定される。スリットSLを通過した電子ビームEBbは、外筒51a、52aの間を通過し、内筒51b、52bの対向部分54に到達する。この電子ビームEBbが内筒51b、52bの対向部分54を照射することにより、内筒51b、52b同士が溶接される。 In this state, when the inner cylinders 51b and 52b are welded to each other, as shown in FIG. 10, the diameter of the electron beam EB is reduced by the slit SL, and the electron beam EBb is emitted from the slit SL. The size of the opening of the slit SL is set so that the electron beam EBb passes between the outer cylinders 51a and 52a. The electron beam EBb that has passed through the slit SL passes between the outer cylinders 51a and 52a and reaches the opposite portion 54 of the inner cylinders 51b and 52b. When the electron beam EBb irradiates the facing portions 54 of the inner cylinders 51b and 52b, the inner cylinders 51b and 52b are welded to each other.

その後、図11に示すように、照射部21と外筒51a、52aとの間からスリットSLを取り除き、照射部21から外筒51a、52aの対向部分53に電子ビームEBを照射する。これにより、外筒51a、52a同士が溶接される。 After that, as shown in FIG. 11, the slit SL is removed from between the irradiation unit 21 and the outer cylinders 51a and 52a, and the electron beam EB is irradiated from the irradiation unit 21 to the facing portions 53 of the outer cylinders 51a and 52a. As a result, the outer cylinders 51a and 52a are welded to each other.

図12及び図13は、溶接工程の他の例を示す図である。図12に示すように、外筒51aと外筒52aとが対向し、内筒51bと内筒52bとが対向した場合に、外筒51a、52aの対向部分53の位置と内筒51b、52bの対向部分54の位置とが中心軸AXの軸線方向においてずれるように、かつ、外筒51a、52aの対向部分53側の端部51c、52cが内筒51b、52bの対向部分54に向けて傾くように、第1構造物51及び第2構造物52を形成しておく。 12 and 13 are diagrams showing other examples of the welding process. As shown in FIG. 12, when the outer cylinder 51a and the outer cylinder 52a face each other and the inner cylinder 51b and the inner cylinder 52b face each other, the positions of the facing portions 53 of the outer cylinders 51a and 52a and the inner cylinders 51b and 52b The positions of the facing portions 54 are displaced in the axial direction of the central axis AX, and the ends 51c and 52c of the outer cylinders 51a and 52a on the facing portion 53 side are directed toward the facing portions 54 of the inner cylinders 51b and 52b. The first structure 51 and the second structure 52 are formed so as to be tilted.

この状態で、内筒51b、52b同士を溶接する際、図13に示すように、外筒51a、52aの対向部分53の傾き方向に沿って電子ビームEBが外筒51a、52aの間を通過するように、当該電子ビームEBを照射する。これにより、電子ビームEBは、外筒51a、52aの間を通過して、内筒51b、52bの対向部分54に到達する。この電子ビームEBは、内筒51b、52bの対向部分54を照射する。これにより、内筒51b、52b同士が溶接される。その後、図13に示すように、外筒51a、52aの端部51c、52cに電子ビームEBを照射する。これにより、外筒51a、52a同士が溶接される。 In this state, when welding the inner cylinders 51b and 52b to each other, as shown in FIG. 13, the electron beam EB passes between the outer cylinders 51a and 52a along the inclination direction of the facing portions 53 of the outer cylinders 51a and 52a. The electron beam EB is irradiated so as to be performed. As a result, the electron beam EB passes between the outer cylinders 51a and 52a and reaches the facing portion 54 of the inner cylinders 51b and 52b. The electron beam EB irradiates the facing portions 54 of the inner cylinders 51b and 52b. As a result, the inner cylinders 51b and 52b are welded to each other. After that, as shown in FIG. 13, the ends 51c and 52c of the outer cylinders 51a and 52a are irradiated with the electron beam EB. As a result, the outer cylinders 51a and 52a are welded to each other.

図14は、溶接により形成された超伝導加速器40の一部の構成を示す図である。図14に示すように、加速空洞41の内面41aにおいては、溶接部分48によって内側に突出する突出部41bが形成される。また、ステム42の外面42aにおいて、溶接部分49によって外側に突出する突出部42bが形成される。 FIG. 14 is a diagram showing a partial configuration of the superconducting accelerator 40 formed by welding. As shown in FIG. 14, on the inner surface 41a of the acceleration cavity 41, a protruding portion 41b protruding inward is formed by the welded portion 48. Further, on the outer surface 42a of the stem 42, a protruding portion 42b that protrudes outward is formed by the welded portion 49.

例えば、溶接部分49が溶接部分48に対して中心軸AXの軸線方向において同じ位置に配置される場合(図中破線で示す仮想の溶接部分49a)、溶接部分48と仮想の溶接部分49aとの間では、電界が集中しやすくなる。このため、予期しない放電等が生じやすくなる。一方、図14に示す例では、溶接部分48と溶接部分49とが中心軸AXの軸線方向にずれている、つまり、突出部41bと突出部42bとが中心軸AXの軸線方向にずれている。この場合、突出部41bと突出部42bとの間の距離d4は、仮想の溶接部分49aが設けられる場合の突出部41bと突出部49bとの距離d3に比べて大きくなるため、電界の集中が抑制される。 For example, when the welded portion 49 is arranged at the same position with respect to the welded portion 48 in the axial direction of the central axis AX (virtual welded portion 49a shown by a broken line in the figure), the welded portion 48 and the virtual welded portion 49a The electric field tends to concentrate between them. Therefore, an unexpected discharge or the like is likely to occur. On the other hand, in the example shown in FIG. 14, the welded portion 48 and the welded portion 49 are displaced in the axial direction of the central axis AX, that is, the protruding portion 41b and the protruding portion 42b are displaced in the axial direction of the central axis AX. .. In this case, the distance d4 between the protrusion 41b and the protrusion 42b is larger than the distance d3 between the protrusion 41b and the protrusion 49b when the virtual welded portion 49a is provided, so that the concentration of the electric field is concentrated. It is suppressed.

図15は、溶接工程の他の例を示す図である。例えば、図7から図13に示す例のように内筒51b、52bを溶接した後、外筒51a、52aを溶接する場合には、図15に示すように、外筒51a、52aを構成する材料と同一材料(例えば、ニオブ等)の溶接材55を外筒51a、52aの対向部分53に配置して電子ビームEBを照射してもよい。 FIG. 15 is a diagram showing another example of the welding process. For example, when the inner cylinders 51b and 52b are welded and then the outer cylinders 51a and 52a are welded as in the examples shown in FIGS. 7 to 13, the outer cylinders 51a and 52a are configured as shown in FIG. A welding material 55 made of the same material as the material (for example, niobium) may be arranged on the facing portions 53 of the outer cylinders 51a and 52a to irradiate the electron beam EB.

以上のように、本実施形態に係る二重管の溶接方法は、所定の中心軸AXを中心とした外筒51a、52a及び内筒51b、52bを有し、中心軸AXの軸線方向の一方の端部において外筒51a、52a及び内筒51b、52bを一体で固定する洗浄ポート44、45が設けられ、軸線方向の他方の端部が開放された第1構造物51及び第2構造物52のそれぞれの軸線方向の他方の端部同士を溶接して二重管を形成する二重管の溶接方法であって、少なくとも内筒51b、52b同士が接触又は近接するように、第1構造物51の他方の端部と第2構造物52の他方の端部とを対向させることと、対向配置された第1構造物51及び第2構造物52に対して外筒51a、52aの側方から外筒51a、52a同士の間を貫通又は通過して内筒51b、52b同士の対向部分に到達するように電子ビームを照射して内筒51b、52b同士を溶接することと、対向配置された第1構造物51及び第2構造物52に対して外筒51a、52aの側方から外筒51a、52a同士の対向部分に電子ビームを照射して外筒51a、52a同士を溶接することとを含む。 As described above, the method of welding the double pipe according to the present embodiment has outer cylinders 51a and 52a and inner cylinders 51b and 52b centered on a predetermined central axis AX, and is one of the axial directions of the central axis AX. First structure 51 and second structure in which cleaning ports 44 and 45 for integrally fixing the outer cylinders 51a and 52a and the inner cylinders 51b and 52b are provided at the ends of the first structure and the other end in the axial direction is open. A method of welding a double pipe in which the other ends of the 52 in the axial direction are welded to each other to form a double pipe, and the first structure is such that at least the inner cylinders 51b and 52b are in contact with or close to each other. The other end of the object 51 and the other end of the second structure 52 are opposed to each other, and the outer cylinders 51a and 52a are side with respect to the first structure 51 and the second structure 52 arranged to face each other. Welding the inner cylinders 51b and 52b by irradiating an electron beam so as to penetrate or pass between the outer cylinders 51a and 52a and reach the facing portions of the inner cylinders 51b and 52b, and the facing arrangement. The outer cylinders 51a and 52a are welded to each other by irradiating the opposite portions of the outer cylinders 51a and 52a with an electron beam from the side of the outer cylinders 51a and 52a to the first structure 51 and the second structure 52. Including that.

また、本実施形態に係る二重管の溶接装置100は、所定の中心軸AXを中心とした外筒51a、52a及び内筒51b、52bを有し、中心軸AXの軸線方向の一方の端部において外筒51a、52a及び内筒51b、52bを一体で固定する洗浄ポート44、45が設けられ、軸線方向の他方の端部が開放された第1構造物51及び第2構造物52のそれぞれの軸線方向の他方の端部同士を溶接して二重管を形成する二重管の溶接装置100であって、少なくとも内筒51b、52b同士が接触又は近接するように、第1構造物51の他方の端部と第2構造物52の他方の端部とを対向させた状態で第1構造物51と第2構造物52とを保持可能な構造物保持部12と、対向配置された第1構造物51及び第2構造物52に対して外筒51a、52aの側方から電子ビームを照射する電子ビーム照射部20と、構造物保持部12及び電子ビーム照射部20を制御することにより、対向配置された第1構造物51及び第2構造物52に対して外筒51a、52aの側方から外筒51a、52aの間を貫通又は通過して内筒51b、52bの対向部分54に到達するように電子ビームを照射して内筒51b、52bを溶接させ、対向配置された第1構造物51及び第2構造物52に対して外筒51a、52aの側方から外筒51a、52aの対向部分53に電子ビームを照射して外筒51a、52aを溶接させる制御部30とを備える。 Further, the double pipe welding device 100 according to the present embodiment has outer cylinders 51a and 52a and inner cylinders 51b and 52b centered on a predetermined central axis AX, and has one end in the axial direction of the central axis AX. The first structure 51 and the second structure 52 are provided with cleaning ports 44 and 45 for integrally fixing the outer cylinders 51a and 52a and the inner cylinders 51b and 52b, and the other end in the axial direction is open. A double-tube welding device 100 for forming a double-tube by welding the other ends in the respective axial directions to each other, and the first structure so that at least the inner cylinders 51b and 52b are in contact with each other or close to each other. It is arranged to face the structure holding portion 12 capable of holding the first structure 51 and the second structure 52 in a state where the other end of the 51 and the other end of the second structure 52 face each other. The electron beam irradiation unit 20 that irradiates the first structure 51 and the second structure 52 with an electron beam from the side of the outer cylinders 51a and 52a, and the structure holding unit 12 and the electron beam irradiation unit 20 are controlled. As a result, the inner cylinders 51b and 52b face each other through or pass between the outer cylinders 51a and 52a from the side of the outer cylinders 51a and 52a with respect to the first structure 51 and the second structure 52 arranged to face each other. The inner cylinders 51b and 52b are welded by irradiating an electron beam so as to reach the portion 54, and the outer cylinders 51a and 52a are outside the outer cylinders 51a and 52a with respect to the first structure 51 and the second structure 52 arranged to face each other. A control unit 30 is provided which irradiates the facing portions 53 of the cylinders 51a and 52a with an electron beam to weld the outer cylinders 51a and 52a.

本実施形態によれば、対向配置された第1構造物51及び第2構造物52に対して外筒51a、52aの側方から外筒51a、52a同士の間を貫通又は通過して内筒51b、52b同士の対向部分に到達するように電子ビームを照射して内筒51b、52b同士を溶接するため、外筒51a、52a及び内筒51b、52bを固定する洗浄ポート44、45が配置される場合においても、洗浄ポート44、45を迂回するように電子ビームを照射する必要が無く、外筒51a、52aの側方から電子ビームを照射することで、外筒51a、52a及び内筒51b、52bの溶接を行うことができる。これにより、溶接作業を容易に行うことが可能となる。 According to the present embodiment, the inner cylinder penetrates or passes between the outer cylinders 51a and 52a from the side of the outer cylinders 51a and 52a with respect to the first structure 51 and the second structure 52 arranged to face each other. Cleaning ports 44 and 45 for fixing the outer cylinders 51a and 52a and the inner cylinders 51b and 52b are arranged to weld the inner cylinders 51b and 52b by irradiating the electron beam so as to reach the facing portions of the 51b and 52b. Even in this case, it is not necessary to irradiate the electron beam so as to bypass the cleaning ports 44 and 45, and by irradiating the electron beam from the side of the outer cylinders 51a and 52a, the outer cylinders 51a and 52a and the inner cylinder are irradiated. Welding of 51b and 52b can be performed. This makes it possible to easily perform the welding work.

本実施形態に係る二重管の溶接方法において、二重管は、1/2波長型共振器である。1/2波長型共振器は、中心軸AXの軸線方向の両端に洗浄ポート44、45が設けられる。この洗浄ポート44、45を迂回するように電子ビームを照射して溶接することが困難であるが、本実施形態では、このような照射を行わなくても、外筒51a、52aの側方から電子ビームを照射することで、外筒51a、52aと内筒51b、52bとの溶接を行うことができる。 In the method of welding a double tube according to the present embodiment, the double tube is a 1/2 wavelength resonator. The 1/2 wavelength resonator is provided with cleaning ports 44 and 45 at both ends in the axial direction of the central axis AX. It is difficult to irradiate and weld an electron beam so as to bypass the cleaning ports 44 and 45, but in the present embodiment, even if such irradiation is not performed, from the side of the outer cylinders 51a and 52a. By irradiating the electron beam, the outer cylinders 51a and 52a and the inner cylinders 51b and 52b can be welded.

本実施形態に係る二重管の溶接方法において、内筒51b、52b同士を溶接する際、外筒51a、52a同士の対向部分に照射する電子ビームの一部を貫通させて内筒51b、52b同士の対向部分に到達させる。これにより、1回の電子ビームの照射により外筒51a、52aと内筒51b、52bとを同時に溶接することができる。 In the method of welding the double pipes according to the present embodiment, when the inner cylinders 51b and 52b are welded to each other, the inner cylinders 51b and 52b are made to penetrate a part of the electron beam irradiating the facing portions of the outer cylinders 51a and 52a. Reach the opposite parts of each other. As a result, the outer cylinders 51a and 52a and the inner cylinders 51b and 52b can be welded at the same time by irradiating the electron beam once.

本実施形態に係る二重管の溶接方法において、他方の端部同士を対向させた場合に外筒51a、52a同士の対向部分の距離が内筒51b、52b同士の対向部分の距離よりも大きくなるように二重管構造物が形成され、内筒51b、52b同士を溶接する際、外筒51a、52a同士の間を通過させて電子ビームを内筒51b、52b同士の対向部分に到達させる。これにより、外筒51a、52aの側方から電子ビームを照射することで、内筒51b、52bの溶接を容易に行うことができる。 In the double pipe welding method according to the present embodiment, when the other ends are opposed to each other, the distance between the outer cylinders 51a and 52a facing each other is larger than the distance between the inner cylinders 51b and 52b facing each other. When the inner cylinders 51b and 52b are welded to each other, the double-tube structure is formed so as to pass between the outer cylinders 51a and 52a so that the electron beam reaches the facing portion between the inner cylinders 51b and 52b. .. As a result, the inner cylinders 51b and 52b can be easily welded by irradiating the electron beam from the side of the outer cylinders 51a and 52a.

本実施形態に係る二重管の溶接方法において、内筒51b、52b同士を溶接する場合、溶接縮みにより外筒51a、52a同士の対向部分の距離が電子ビームの径よりも小さくなるように電子ビームを内筒51b、52bに照射する。この構成では、内筒51b、52b同士を溶接する際の溶接縮みを利用して、外筒51a、52a同士の距離を短縮させることにより、電子ビームの径を変更することなく、外筒51a、52a及び内筒51b、52bを溶接することができる。 In the double tube welding method according to the present embodiment, when the inner cylinders 51b and 52b are welded to each other, the electrons are set so that the distance between the outer cylinders 51a and 52a facing each other becomes smaller than the diameter of the electron beam due to welding shrinkage. The beam is applied to the inner cylinders 51b and 52b. In this configuration, by utilizing the welding shrinkage when welding the inner cylinders 51b and 52b to each other and shortening the distance between the outer cylinders 51a and 52a, the outer cylinders 51a and 52a do not change the diameter of the electron beam. The 52a and the inner cylinders 51b and 52b can be welded.

本実施形態に係る二重管の溶接方法において、他方の端部同士を対向させた場合に外筒51a、52a同士の対向部分の距離が内筒51b、52b同士の対向部分の距離よりも大きくなるように二重管構造物が形成され、内筒51b、52b同士を溶接する場合、外筒51a、52a同士の対向部分の距離よりも電子ビームの径を小さく絞った状態として外筒51a、52a同士の間を通過させて内筒51b、52bに電子ビームを照射し、外筒51a、52a同士を溶接する場合、内筒51b、52bに照射する場合よりも電子ビームの径を大きくした状態で外筒51a、52aに電子ビームを照射する。これにより、外筒51a、52aの側方から電子ビームを照射することで、内筒51b、52bの溶接を容易に行うことができる。また、内筒51b、52bの溶接後、外筒51a、52aを同一方向から溶接することができる。 In the double pipe welding method according to the present embodiment, when the other ends are opposed to each other, the distance between the outer cylinders 51a and 52a facing each other is larger than the distance between the inner cylinders 51b and 52b facing each other. When the inner cylinders 51b and 52b are welded to each other, the outer cylinders 51a and 52a are formed so that the diameter of the electron beam is smaller than the distance between the outer cylinders 51a and 52a and the outer cylinders 51a and 52a. When the inner cylinders 51b and 52b are irradiated with an electron beam by passing between 52a and the outer cylinders 51a and 52a are welded to each other, the diameter of the electron beam is larger than that when the inner cylinders 51b and 52b are irradiated. The outer cylinders 51a and 52a are irradiated with an electron beam. As a result, the inner cylinders 51b and 52b can be easily welded by irradiating the electron beam from the side of the outer cylinders 51a and 52a. Further, after welding the inner cylinders 51b and 52b, the outer cylinders 51a and 52a can be welded from the same direction.

本実施形態に係る二重管の溶接方法において、他方の端部同士を対向させた場合に外筒51a、52a同士の対向部分の位置と内筒51b、52b同士の対向部分の位置とが中心軸AXの軸線方向においてずれるように二重管構造物が形成され、かつ、外筒51a、52a同士の対向部分が内筒51b、52b同士の対向部分に向けて傾くように形成され、内筒51b、52b同士を溶接する場合、外筒51a、52a同士の間を対向部分の傾き方向に電子ビームを通過させることで電子ビームを内筒51b、52b同士の対向部分に到達させる。これにより、外筒51a、52aの側方から電子ビームを照射することで、内筒51b、52bの溶接を容易に行うことができる。また、溶接後に形成される超伝導加速器40において、溶接部分による突出部41bと突出部42bとが中心軸AXの軸線方向にずれている。この場合、突出部41bと突出部42bとの間の距離d4が、仮想の溶接部分49aが設けられる場合の突出部41bと突出部49bとの距離d3に比べて大きくなるため、電界の集中が抑制される。 In the method of welding a double pipe according to the present embodiment, when the other ends are opposed to each other, the position of the facing portion between the outer cylinders 51a and 52a and the position of the facing portion between the inner cylinders 51b and 52b are the centers. A double-tube structure is formed so as to be displaced in the axial direction of the axis AX, and the facing portion between the outer cylinders 51a and 52a is formed so as to be inclined toward the facing portion between the inner cylinders 51b and 52b. When the 51b and 52b are welded to each other, the electron beam is passed between the outer cylinders 51a and 52a in the inclination direction of the facing portion so that the electron beam reaches the facing portion between the inner cylinders 51b and 52b. As a result, the inner cylinders 51b and 52b can be easily welded by irradiating the electron beam from the side of the outer cylinders 51a and 52a. Further, in the superconducting accelerator 40 formed after welding, the protruding portion 41b and the protruding portion 42b due to the welded portion are displaced in the axial direction of the central axis AX. In this case, the distance d4 between the protrusion 41b and the protrusion 42b is larger than the distance d3 between the protrusion 41b and the protrusion 49b when the virtual welded portion 49a is provided, so that the electric field is concentrated. It is suppressed.

本実施形態に係る二重管の溶接方法において、外筒51a、52a同士を溶接する場合、外筒51a、52aを構成する材料と同一材料の溶接材55を外筒51a、52a同士の対向部分に配置して電子ビームを照射する。これにより、外筒51a、52aを容易かつ確実に溶接することができる。 In the method of welding the double pipes according to the present embodiment, when the outer cylinders 51a and 52a are welded to each other, the welding material 55 made of the same material as the outer cylinders 51a and 52a is applied to the facing portions of the outer cylinders 51a and 52a. It is placed in and irradiates an electron beam. As a result, the outer cylinders 51a and 52a can be easily and surely welded.

本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。例えば、上記実施形態において、電子ビームEBの径を縮小する際、スリットSLを用いる構成を説明したが、これに限定されない。例えば、照射部21を制御することにより、内筒51b、52bに照射する場合と外筒51a、52aに照射する場合とで、電子ビームEBの径を変化させてもよい。 The technical scope of the present invention is not limited to the above-described embodiment, and modifications can be made as appropriate without departing from the spirit of the present invention. For example, in the above embodiment, the configuration in which the slit SL is used when reducing the diameter of the electron beam EB has been described, but the present invention is not limited to this. For example, by controlling the irradiation unit 21, the diameter of the electron beam EB may be changed depending on whether the inner cylinders 51b and 52b are irradiated and the outer cylinders 51a and 52a are irradiated.

また、上記実施形態においては、二重管が1/2波長型共振器である場合を例に挙げて説明したが、これに限定されない。二重管は、中心軸の軸線方向の一方の端部において外筒及び内筒を一体で固定する構造物が設けられ、軸線方向の他方の端部が開放された構成であれば、他の構造物であってもよい。 Further, in the above embodiment, the case where the double tube is a 1/2 wavelength type resonator has been described as an example, but the present invention is not limited to this. The double pipe is provided with a structure for integrally fixing the outer cylinder and the inner cylinder at one end in the axial direction of the central axis, and the other is provided as long as the other end in the axial direction is open. It may be a structure.

10 チャンバ
11 ステージ
12 構造物保持部
20 電子ビーム照射部
21 照射部
22 撮像部
30 制御部
40 超伝導加速器
41 加速空洞
41a 内面
41b,42b,49b 突出部
42 ステム
42a 外面
43 ビーム管
44,45 洗浄ポート
46,47,48,49 溶接部分
49a 仮想の溶接部分
51 第1構造物
51a,52a 外筒
51b,52b 内筒
51c,52c 対向部分
52 第2構造物
53,54 対向部分
55 溶接材
100 溶接装置
B 荷電粒子ビーム
EB,EBa,EBb 電子ビーム
d1,d2,d3,d4 距離
AX 中心軸
SL スリット
10 Chamber 11 Stage 12 Structure holding unit 20 Electron beam irradiation unit 21 Irradiation unit 22 Imaging unit 30 Control unit 40 Superconducting accelerator 41 Acceleration cavity 41a Inner surface 41b, 42b, 49b Protruding part 42 Stem 42a Outer surface 43 Beam tube 44, 45 Cleaning Ports 46, 47, 48, 49 Welded part 49a Virtual welded part 51 First structure 51a, 52a Outer cylinder 51b, 52b Inner cylinder 51c, 52c Opposing part 52 Second structure 53, 54 Opposing part 55 Welding material 100 Welding Device B Charged particle beam EB, EBa, EBb Electron beam d1, d2, d3, d4 Distance AX Central axis SL Weld

Claims (9)

所定の中心軸を中心とした外筒及び内筒を有し、前記中心軸の軸線方向の一方の端部において前記外筒及び前記内筒を一体で固定する構造物が設けられ、前記軸線方向の他方の端部が開放された2つの二重管構造物のそれぞれの前記軸線方向の他方の端部同士を溶接して二重管を形成する二重管の溶接方法であって、
少なくとも前記内筒同士が接触又は近接するように、2つの二重管構造物のうち第1構造物の前記他方の端部と第2構造物の前記他方の端部とを対向させることと、
対向配置された前記第1構造物及び前記第2構造物に対して前記外筒の側方から前記外筒同士の間を貫通又は通過して前記内筒同士の対向部分に到達するように電子ビームを照射して前記内筒同士を溶接することと、
対向配置された前記第1構造物及び前記第2構造物に対して前記外筒の側方から前記外筒同士の対向部分に前記電子ビームを照射して前記外筒同士を溶接することと
を含む二重管の溶接方法。
A structure having an outer cylinder and an inner cylinder centered on a predetermined central axis and integrally fixing the outer cylinder and the inner cylinder at one end in the axial direction of the central axis is provided, and the axial direction is provided. It is a method of welding a double pipe to form a double pipe by welding the other ends in the axial direction of each of the two double pipe structures having the other end open.
Of the two double-tube structures, the other end of the first structure and the other end of the second structure are opposed to each other so that at least the inner cylinders are in contact with each other or close to each other.
Electrons so as to penetrate or pass between the outer cylinders from the side of the outer cylinders and reach the facing portions of the inner cylinders with respect to the first structure and the second structure arranged to face each other. By irradiating the beam and welding the inner cylinders together,
To weld the outer cylinders to each other by irradiating the facing portions of the outer cylinders with the electron beam from the side of the outer cylinders to the first structure and the second structure arranged to face each other. Double pipe welding method including.
前記二重管は、1/2波長型共振器である
請求項1に記載の二重管の溶接方法。
The method for welding a double tube according to claim 1, wherein the double tube is a 1/2 wavelength resonator.
前記内筒同士を溶接する際、前記外筒同士の対向部分に照射する前記電子ビームの一部を貫通させて前記内筒同士の対向部分に到達させる
請求項1又は請求項2に記載の二重管の溶接方法。
2. The second aspect of claim 1 or 2, wherein when the inner cylinders are welded to each other, a part of the electron beam that irradiates the facing portions of the outer cylinders is penetrated to reach the facing portions of the inner cylinders. Welding method for heavy pipes.
前記他方の端部同士を対向させた場合に前記外筒同士の対向部分の距離が前記内筒同士の対向部分の距離よりも大きくなるように前記二重管構造物が形成され、
前記内筒同士を溶接する際、前記外筒同士の間を通過させて前記電子ビームを前記内筒同士の対向部分に到達させる
請求項1又は請求項2に記載の二重管の溶接方法。
The double pipe structure is formed so that the distance between the outer cylinders facing each other is larger than the distance between the inner cylinders facing each other when the other ends are opposed to each other.
The method for welding a double tube according to claim 1 or 2, wherein when the inner cylinders are welded to each other, the electron beam is passed between the outer cylinders to reach the facing portion of the inner cylinders.
前記内筒同士を溶接する場合、溶接縮みにより前記外筒同士の対向部分の距離が前記電子ビームの径よりも小さくなるように前記電子ビームを前記内筒に照射する
請求項4に記載の二重管の溶接方法。
2. According to claim 4, when the inner cylinders are welded to each other, the inner cylinder is irradiated with the electron beam so that the distance between the outer cylinders facing each other becomes smaller than the diameter of the electron beam due to welding shrinkage. Welding method for heavy pipes.
前記他方の端部同士を対向させた場合に前記外筒同士の対向部分の距離が前記内筒同士の対向部分の距離よりも大きくなるように前記二重管構造物が形成され、
前記内筒同士を溶接する場合、前記外筒同士の対向部分の距離よりも前記電子ビームの径を小さく絞った状態として前記外筒同士の間を通過させて前記内筒に前記電子ビームを照射し、
前記外筒同士を溶接する場合、前記内筒に照射する場合よりも前記電子ビームの径を大きくした状態で前記外筒に前記電子ビームを照射する
請求項1又は請求項2に記載の二重管の溶接方法。
The double pipe structure is formed so that the distance between the outer cylinders facing each other is larger than the distance between the inner cylinders facing each other when the other ends are opposed to each other.
When welding the inner cylinders to each other, the inner cylinders are irradiated with the electron beam by passing between the outer cylinders in a state where the diameter of the electron beam is narrowed down to be smaller than the distance between the facing portions of the outer cylinders. And
The double according to claim 1 or 2, wherein when the outer cylinders are welded to each other, the outer cylinder is irradiated with the electron beam in a state where the diameter of the electron beam is larger than that when the inner cylinder is irradiated. Welding method of pipe.
前記他方の端部同士を対向させた場合に前記外筒同士の対向部分の位置と前記内筒同士の対向部分の位置とが前記中心軸の軸線方向においてずれるように前記二重管構造物が形成され、かつ、前記外筒同士の対向部分が前記内筒同士の対向部分に向けて傾くように形成され、
前記内筒同士を溶接する場合、前記外筒同士の間を前記対向部分の傾き方向に前記電子ビームを通過させることで前記電子ビームを前記内筒同士の対向部分に到達させる
請求項4から請求項6のいずれか一項に記載の二重管の溶接方法。
When the other ends are opposed to each other, the double pipe structure is arranged so that the position of the facing portion between the outer cylinders and the position of the facing portion between the inner cylinders are displaced in the axial direction of the central axis. It is formed so that the facing portions of the outer cylinders are inclined toward the facing portions of the inner cylinders.
According to claim 4, when the inner cylinders are welded to each other, the electron beam is passed between the outer cylinders in the inclination direction of the facing portion so that the electron beam reaches the facing portion between the inner cylinders. Item 6. The method for welding a double pipe according to any one of items 6.
前記外筒同士を溶接する場合、前記外筒を構成する材料と同一材料の溶接材を前記外筒同士の対向部分に配置して前記電子ビームを照射する
請求項4から請求項7のいずれか一項に記載の二重管の溶接方法。
When welding the outer cylinders to each other, any one of claims 4 to 7 in which a welding material of the same material as the material constituting the outer cylinders is arranged at a portion facing the outer cylinders and the electron beam is irradiated. The method for welding a double pipe according to item 1.
所定の中心軸を中心とした外筒及び内筒を有し、前記中心軸の軸線方向の一方の端部において前記外筒及び前記内筒を一体で固定する構造物が設けられ、前記軸線方向の他方の端部が開放された2つの二重管構造物のそれぞれの前記軸線方向の他方の端部同士を溶接して二重管を形成する二重管の溶接装置であって、
少なくとも前記内筒同士が接触又は近接するように、2つの二重管構造物のうち第1構造物の前記他方の端部と第2構造物の前記他方の端部とを対向させた状態で前記第1構造物及び前記第2構造物を保持可能な構造物保持部と、
対向配置された前記第1構造物及び前記第2構造物に対して前記外筒の側方から電子ビームを照射する電子ビーム照射部と、
前記構造物保持部及び前記電子ビーム照射部を制御することにより、対向配置された前記第1構造物及び前記第2構造物に対して前記外筒の側方から前記外筒同士の間を貫通又は通過して前記内筒同士の対向部分に到達するように電子ビームを照射して前記内筒同士を溶接させ、対向配置された前記第1構造物及び前記第2構造物に対して前記外筒の側方から前記外筒同士の対向部分に前記電子ビームを照射して前記外筒同士を溶接させる制御部と
を備える二重管の溶接装置。
A structure having an outer cylinder and an inner cylinder centered on a predetermined central axis and integrally fixing the outer cylinder and the inner cylinder at one end in the axial direction of the central axis is provided, and the axial direction is provided. A double-tube welding device for forming a double-tube by welding the other ends of the two double-tube structures with their other ends open in the axial direction.
In a state where the other end of the first structure and the other end of the second structure of the two double-tube structures face each other so that at least the inner cylinders are in contact with each other or close to each other. A structure holding portion capable of holding the first structure and the second structure, and
An electron beam irradiating unit that irradiates an electron beam from the side of the outer cylinder to the first structure and the second structure arranged to face each other.
By controlling the structure holding portion and the electron beam irradiation portion, the first structure and the second structure arranged to face each other penetrate between the outer cylinders from the side of the outer cylinders. Alternatively, the inner cylinders are welded by irradiating an electron beam so as to pass through and reach the facing portions of the inner cylinders, and the outer cylinders are formed with respect to the first structure and the second structure arranged to face each other. A double-tube welding device including a control unit that irradiates an electron beam on a portion facing each other from the side of the cylinder to weld the outer cylinders to each other.
JP2019093129A 2019-05-16 2019-05-16 Double tube welding method Active JP7316837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019093129A JP7316837B2 (en) 2019-05-16 2019-05-16 Double tube welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019093129A JP7316837B2 (en) 2019-05-16 2019-05-16 Double tube welding method

Publications (2)

Publication Number Publication Date
JP2020185604A true JP2020185604A (en) 2020-11-19
JP7316837B2 JP7316837B2 (en) 2023-07-28

Family

ID=73220747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019093129A Active JP7316837B2 (en) 2019-05-16 2019-05-16 Double tube welding method

Country Status (1)

Country Link
JP (1) JP7316837B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641085A (en) * 1979-09-13 1981-04-17 Mitsubishi Heavy Ind Ltd Welding method of steel pipes
JPS5671588A (en) * 1979-11-14 1981-06-15 Hitachi Ltd Electron gun for electron beam welding
JPS63106583U (en) * 1986-12-26 1988-07-09
JPS63116702U (en) * 1987-01-21 1988-07-28
JP2014161907A (en) * 2013-02-28 2014-09-08 Mitsubishi Heavy Ind Ltd Joint structure and method for double pipe
JP2015227812A (en) * 2014-05-30 2015-12-17 株式会社東芝 Repair method of differential pressure detection/boric acid solution injection system pipe and reactor provided with differential pressure detection/boric acid solution injection system pipe repaired by the same
JP2017201602A (en) * 2016-05-06 2017-11-09 三菱重工メカトロシステムズ株式会社 Acceleration cavity, and method for adjusting resonance frequency of accelerator and acceleration cavity

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641085A (en) * 1979-09-13 1981-04-17 Mitsubishi Heavy Ind Ltd Welding method of steel pipes
JPS5671588A (en) * 1979-11-14 1981-06-15 Hitachi Ltd Electron gun for electron beam welding
JPS63106583U (en) * 1986-12-26 1988-07-09
JPS63116702U (en) * 1987-01-21 1988-07-28
JP2014161907A (en) * 2013-02-28 2014-09-08 Mitsubishi Heavy Ind Ltd Joint structure and method for double pipe
JP2015227812A (en) * 2014-05-30 2015-12-17 株式会社東芝 Repair method of differential pressure detection/boric acid solution injection system pipe and reactor provided with differential pressure detection/boric acid solution injection system pipe repaired by the same
JP2017201602A (en) * 2016-05-06 2017-11-09 三菱重工メカトロシステムズ株式会社 Acceleration cavity, and method for adjusting resonance frequency of accelerator and acceleration cavity

Also Published As

Publication number Publication date
JP7316837B2 (en) 2023-07-28

Similar Documents

Publication Publication Date Title
US20130180843A1 (en) Directed multi-deflected ion beam milling of a work piece and determining and controlling extent thereof
US7544952B2 (en) Multivalent ion generating source and charged particle beam apparatus using such ion generating source
US10636615B2 (en) Composite beam apparatus
US8933415B2 (en) Laser ion source and heavy particle beam therapy equipment
JP7316837B2 (en) Double tube welding method
JP2011054426A (en) Charged particle beam irradiation device and axis alignment adjustment method of the device
JP7293042B2 (en) Charged particle beam irradiation device and charged particle beam irradiation method
RU2658298C2 (en) Device and method for generating flattened x-ray radiation field
WO2018020649A1 (en) Charged particle radiation device
JP2014207131A (en) Laser ion source, ion accelerator, and heavy particle beam medical treatment device
WO2018138801A1 (en) Particle acceleration system and particle acceleration system adjustment method
WO2021076934A1 (en) Electron beam welding systems employing a plasma cathode
Saha et al. Fabrication of niobium superconducting accelerator cavity by electron beam welded joints
JP6637146B2 (en) Ion beam apparatus and method for analyzing three-dimensional structure of sample
KR102498696B1 (en) plasma processing unit
JP6441702B2 (en) Ion source, ion beam apparatus, and sample processing method
JP2017103247A (en) Laser ion source, ion accelerator, and heavy particle beam medical treatment device
Aksenov et al. Non-vacuum electron beam apparatus based on plasma emitter.
JP2016127025A (en) Charged particle beam device
Masood et al. Emission characteristics of the thermionic electron beam sources developed at EBSDL
JPS59151428A (en) Reactive ion beam etching device
JP3962965B2 (en) Neutral beam injection device and ion beam process device for ion source and fusion reactor
JPS5840297B2 (en) Denshibe Muhatsu Seiki
JP2011124035A (en) Ion beam irradiation device
JP2015109247A (en) Laser ion source, ion accelerator, and heavy particle beam therapy device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20220427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230718

R150 Certificate of patent or registration of utility model

Ref document number: 7316837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150