WO2018020649A1 - Charged particle radiation device - Google Patents

Charged particle radiation device Download PDF

Info

Publication number
WO2018020649A1
WO2018020649A1 PCT/JP2016/072263 JP2016072263W WO2018020649A1 WO 2018020649 A1 WO2018020649 A1 WO 2018020649A1 JP 2016072263 W JP2016072263 W JP 2016072263W WO 2018020649 A1 WO2018020649 A1 WO 2018020649A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
charged particle
observation
analysis
processing
Prior art date
Application number
PCT/JP2016/072263
Other languages
French (fr)
Japanese (ja)
Inventor
勉 齋藤
宗和 小柳
敦史 上野
秀一 竹内
毅志 砂押
陽一朗 橋本
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to PCT/JP2016/072263 priority Critical patent/WO2018020649A1/en
Priority to JP2018530291A priority patent/JP6807393B2/en
Publication of WO2018020649A1 publication Critical patent/WO2018020649A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support

Definitions

  • the present invention relates to a charged particle beam device.
  • An ion milling apparatus which is one of charged particle beam apparatuses, sputters a desired irradiated area of a sample with an ion beam, removes fine flaws and distortions that can not be removed by mechanical polishing, and can flatten an irradiated surface for observation and analysis. It is a sample pretreatment device.
  • Patent Document 1 discloses a sample preparation apparatus in which a sample preparation unit (FIB) and a wafer inspection unit are connected via a valve.
  • FIB sample preparation unit
  • An object of the present invention is to provide a charged particle beam device that facilitates observation and analysis of a sample.
  • a processing vacuum chamber A processing sample stage disposed inside the processing vacuum chamber and having a processing sample mounted thereon and having a eucentric tilt;
  • An observation / analysis vacuum chamber connected to the processing vacuum chamber;
  • a sample stage for analysis And a charged particle beam device characterized by
  • FIG. 1 is a schematic overall configuration sectional view showing an example of a charged particle beam device according to a first embodiment.
  • FIG. 8 is a schematic overall configuration sectional view showing an example of a charged particle beam device according to a second embodiment.
  • FIG. 8 is a schematic overall configuration sectional view showing an example of a charged particle beam device according to a third embodiment.
  • the bird's-eye view for demonstrating the sample stage for observation and analysis of SEM.
  • the bird's-eye view for demonstrating the processing sample stage of ion milling apparatus.
  • the front view for demonstrating the motion of the sample stage for observation and analysis in case the Eucentric tilt height of the sample stage for observation and analysis and the sample stage for processing corresponds.
  • the front view for demonstrating the motion of the sample stage for observation and analysis when the Eucentric tilt heights of the sample stage for observation and analysis and the sample stage for processing differ.
  • the front view for demonstrating the motion of the sample stage for processing when the Eucentric tilt height of the sample stage for observation and analysis and the sample stage for processing is different.
  • the inventors attach the ion milling apparatus to the load lock chamber of the SEM to form a charged particle beam apparatus combining the SEM and the ion milling apparatus, and take out the sample subjected to the ion milling processing in the load lock chamber into the atmosphere.
  • the sample was transferred to the sample chamber of the SEM, and an attempt was made to observe and analyze the sample.
  • the processed sample was transferred to a sample stage of the SEM and the sample was observed, it was found that the observation target deviates from the visual field when the sample stage of the SEM is finely moved. Therefore, the inventors examined this cause.
  • FIG. 5A shows a bird's-eye view for explaining a sample stage for observation and analysis of the SEM
  • FIG. 5B shows a bird's-eye view for explaining a processing sample stage of the ion milling apparatus.
  • the sample stage 105 for observation and analysis of the SEM is operated in the X direction along the X axis, in the Y direction along the Y axis, in the Z direction along the Z axis, rotated around the R axis, T axis ( It has five axes that enable tilting operation with the tilt axis as the fulcrum. Thereby, the position of the sample can be set arbitrarily.
  • each member moving according to each axis is shown, not each axis itself.
  • the processing sample stage 106 of the ion milling apparatus has two axes capable of rotational operation around at least the R 'axis and tilting operation around the T' axis (tilt axis).
  • tilt axis tilt axis
  • the processing sample stage 106 is centered on the tilt axis 106A. Even if it is tilted, the processing center position of the sample does not change.
  • the sample after processing is moved to the observation / analysis sample stage 105 while holding the sample by the sample holder, and when observing the sample, as shown in FIG. 5C, the observation / analysis is centered on the tilt axis 105A. It was found that when the sample stage 105 was tilted, the sample position moved significantly with respect to the observation / analysis charged particle beam 122, and the sample position was out of the field of view. The present invention was born based on this new finding.
  • the sample position is out of the field of view In order to prevent this, the Eucentric tilt heights of the observation and analysis sample stage 105 and the processing sample stage 106 are made to coincide with each other.
  • Figures 4A and 4B show a bird's eye view showing an example of a sample stage for observation and analysis by SEM and a sample stage for processing of an ion milling apparatus
  • Figures 4C and 4D use a sample stage for observation and analysis and ucentric of the sample stage for processing.
  • the front view for demonstrating the motion of the sample stage for observation * analysis in case the tilt height corresponds, and a sample stage for processing is shown.
  • the Z axis was placed outside the T axis so that the eucentric function of the tilt axis (T axis) was not lost even if the sample was moved in the Z direction (height direction).
  • each member moving according to each axis is shown, not each axis itself.
  • FIG. 4C when the Eucentric tilt heights of the sample stage for observation and analysis and the sample stage for processing coincide with each other, the sample position does not deviate from the field of view even when tilting.
  • the performance of the charged particle beam apparatus to be observed and analyzed is not deteriorated, and the size of the sample to be observed and analyzed is not limited, and the pretreatment environment and the observation and analysis environment have the same vacuum degree.
  • An example of a charged particle beam apparatus provided with a processing and load lock chamber which can be carried out in an environment and in which a sample can easily be transferred will be described.
  • FIG. 1 is a schematic overall configuration sectional view showing an example of a charged particle beam apparatus according to the present embodiment.
  • a unit for imaging, a control unit such as a lens / scan, etc. are required in addition to the configuration in the figure, but they are omitted here.
  • the arc-shaped arrow in the drawing indicates the tilt direction.
  • the charged particle beam apparatus 100 includes a charged particle column 101 for observation and analysis, a charged particle column 102 for processing, a vacuum chamber 103 for observation and analysis, a vacuum chamber 104 for processing, a sample stage 105 for observation and analysis, a sample for processing Stage 106, vacuum pump A 107, vacuum pump B 108, vacuum pump C 109, sample 110, sample holder 111, isolation valve D 112, isolation valve E 113, isolation valve F 114, isolation valve G 115, isolation And the sample transfer unit 118.
  • “observation / analysis” in the charged particle column for observation / analysis means “observation” and / or “analysis”.
  • a high degree of vacuum on the order of 10 -4 to 10 -9 Pa is required around the charged particle source 121. Be done. The required degree of vacuum depends on the type of charged particle source 121 for observation and analysis.
  • the vacuum pump B 108 and the vacuum pump C 109 are used in a tandem structure, so that the ultimate vacuum on the upstream side of the vacuum pump B 108 is on the order of 10 -4 Pa, because the ultimate vacuum is limited in the single-stage vacuum pump.
  • the vacuum pump B 108 is a turbo molecular pump equivalent
  • the vacuum pump C 109 is a rotary pump equivalent.
  • a differential evacuation mechanism is provided inside the charged particle lens barrel 101 for observation and analysis, and one or more vacuum pumps A 107 are additionally installed.
  • the vacuum pump A 107 is an ion pump or a chemical adsorption pump equivalent. It is also possible to use turbo molecular pumps etc.
  • the vacuum pump B 108 may also be used.
  • the charged particle column 101 for observation and analysis is attached to the vacuum chamber 103 for observation and analysis.
  • a degree of vacuum of about 10 ⁇ 2 to 10 ⁇ 4 Pa is required around the charged particle source 123. This degree of vacuum can be reached by vacuum pump B108.
  • the processing charged particle column 102 is attached to the processing vacuum chamber 104.
  • a processing sample stage 106 is installed in the processing vacuum chamber 104, and the degree of vacuum is similarly on the order of 10 -4 Pa by the vacuum pump B 108.
  • the processing sample stage 106 is provided with two axes, a rotation axis for rotating the sample and an inclined axis for tilting the sample. Furthermore, by providing a moving axis that can cause the center of the processing charged particle beam 124 and the target portion to be decentered, the processing range can be expanded, and the degree of freedom can be given.
  • eccentricity since the sample holder 111 is offset from the transport axis of the sample transport unit 118, a safety mechanism for returning the eccentricity before transport of the sample is required.
  • the degree of vacuum of the processing vacuum chamber 104 is freely changed while keeping the observation and analysis vacuum chamber 103 at a high degree of vacuum, and the sample 110 is taken in and out.
  • the ability to evacuate is required.
  • the isolation valve E 113 and the isolation valve G 115 are “open”, and the isolation valve H 116 is “closed”.
  • the isolation valve F 114 and the isolation valve I 117 are closed, and the processing chamber leak valve 131 is opened.
  • the processing vacuum chamber 104 When the processing vacuum chamber 104 is at the same pressure as the atmospheric pressure or more, the processing chamber door 120 is opened, and the sample 110 can be replaced through this door.
  • a gas other than air such as nitrogen, it is desirable for safety to close the processing room leak valve 131 at this time.
  • the processing chamber door 120 is closed, and the processing chamber leak valve 131 is first closed.
  • the isolation valve G 115 is closed to prevent the back pressure deterioration of the vacuum pump B 108.
  • the isolation valve I 117 is opened to start evacuation of the processing vacuum chamber 104. Since the pump which pulls the back pressure of vacuum pump B 108 is lose
  • symbol 134 shows a 3rd vacuum gauge.
  • the isolation valve I 117 is closed, and the isolation valve F 114 and the isolation valve G 115 are opened.
  • the isolation valve E 113 may be closed to wait until the vacuum of the processing vacuum chamber 104 reaches the order of 10 ⁇ 2 Pa. It is desirable that the above sequence automatically operate as a system.
  • the tilt shaft 106A determined by the tilt structure of the processing sample stage 106 and the upper surface of the entire height 111A including the sample holder 111 and the sample 110 are made to coincide (eucentric tilt).
  • the sample holder 111 have a height adjustment mechanism and be adjusted in advance before introducing the sample.
  • the height adjustment mechanism may be provided on the observation / analysis sample stage without using the sample holder, or the height itself of the sample may be scraped or the like.
  • the centric tilt heights on the load lock chamber side may be designed based on the eucentric tilt height determined by the observation and analysis sample stage.
  • the sample 110 processed by the processing charged particle beam 124 can be moved from the processing sample stage 106 to the observation / analysis sample stage 105 via the sample transport unit 118.
  • the vacuums of the observation and analysis vacuum chamber 103 and the processing vacuum chamber 104 are substantially the same, and if there is a difference, the vacuum of the processing vacuum chamber 104 is Combine the vacuum.
  • both the processing sample stage 106 and the observation and analysis sample stage 105 move to the sample transport position.
  • the observation and analysis sample stage 105 can also be moved to the side closest to the processing vacuum chamber 104 within the movable range.
  • the isolation valve D 112 located between the observation and analysis vacuum chamber 103 and the processing vacuum chamber 104 is opened.
  • the sample transport unit 118 receives the sample 110 together with the sample holder 111 from the processing sample stage 106.
  • the sample transport unit 118 Confirming that the sample stage for observation and analysis 105 has been moved to the position for sample transport and confirming that the isolation valve D 112 is “opened”, the sample transport unit 118 together with the sample holder 111 for observation and analysis Deliver to the sample stage 105. After delivery, the sample stage for observation and analysis 105 returns to the observation position, and the sample transport unit 118 returns to the original position, and the isolation valve D 112 is closed.
  • the above is the series operation of sample transport.
  • the observation / analysis vacuum chamber 103 has an observation / analysis sample stage 105, and the degree of vacuum is on the order of 10 ⁇ 4 Pa by a vacuum pump B 108.
  • the degree of vacuum inside the observation and analysis vacuum chamber 103 can be known by the second vacuum gauge 133.
  • the sample 110 (including the sample holder 111) disposed on the observation and analysis sample stage 105 has the sample surface position aligned with the tilt axis 105A of the observation and analysis sample stage, similarly to the processing time. Even if the sample is tilted, the charged particle beam irradiation position can be prevented from shifting.
  • the tilt axis 105A determined by the tilt structure of the sample stage for observation and analysis 105 and the upper surface of the entire height 111A including the sample holder 111 and the sample 110 are placed so as to coincide (eucentric tilt). .
  • the Eucentric tilt heights of the observation and analysis sample stage 105 and the processing sample stage 106 coincide with each other.
  • the arc-shaped arrow indicates the tilt direction.
  • the receiving height of the sample holder 111 of the observation and analysis sample stage 105 is adjusted or the sample holder height on the observation and analysis sample stage 105 A height adjustment mechanism is added so that the sample surface position can be aligned with the tilt axis 105A.
  • the isolation valve F 114 and the isolation valve G 115 are “open”, and the isolation valve I 117 is “closed”.
  • the isolation valve E 113 and the isolation valve H 116 are closed, and the sample chamber (observation and analysis chamber) leak valve 130 is opened. .
  • the observation and analysis vacuum chamber 103 When the observation and analysis vacuum chamber 103 is at the same pressure as the atmospheric pressure or more, the observation and analysis chamber door 119 is opened, and the sample 110 can be replaced through this door.
  • a gas other than air such as nitrogen, it is desirable for safety to close the sample chamber leak valve 130 at this time.
  • the observation and analysis chamber door 119 is closed, and the sample chamber leak valve 130 is closed first.
  • the isolation valve G 115 is closed to prevent the back pressure deterioration of the vacuum pump B 108.
  • the isolation valve H 116 is opened to start evacuation of the observation and analysis vacuum chamber 103. Since the pump which pulls the back pressure of vacuum pump B 108 is lose
  • the back pressure deterioration is constantly monitored by the first vacuum gauge 132, and switching control of the isolation valve G 115 and the isolation valve H 116 is performed so as not to exceed the back pressure tolerance of the pump. It is also possible to reduce the dead time.
  • the isolation valve F 114 is opened, and the vacuum of the processing vacuum chamber 104 is also restored, and then the processing is restarted. It is desirable to automatically adjust the processing waiting time generated here as a system. In addition, it is desirable that the isolation valve D 112 be structured to withstand both positive and negative pressure applied to both sides of the valve.
  • the plurality of samples 110 can be repeated as processing ⁇ observation / analysis, processing ⁇ observation / analysis.
  • the load lock chamber can have a function capable of performing sample processing by charged particle beams including ion milling.
  • the vacuum exhaust port of the load lock chamber is separately provided.
  • the load lock chamber continues to maintain a high vacuum from the beginning of the pretreatment until the pretreatment is finished and the sample is transported to the observation and analysis vacuum chamber.
  • the vacuum degree of the observation and analysis vacuum chamber may be lower than the vacuum degree of the load lock chamber.
  • the sample to be observed / analyzed is an insulator, by setting the degree of vacuum of the observation / analysis vacuum chamber to a vacuum range of several Pa to 1000 Pa or so, charge-up by the charged particle beam of the sample is suppressed. It can be observed and analyzed.
  • the load lock chamber first starts evacuation and performs pretreatment with a sufficiently high degree of vacuum for the charged particle beam to be processed, and then the same degree of vacuum as the vacuum chamber for observation and analysis. Reproduce the area, release the valve and start the transfer. From the above, it is desirable that the load lock chamber have an exhaust configuration that should not depend on the degree of vacuum of the observation and analysis vacuum chamber.
  • It also has a sample holding mechanism with at least two degrees of freedom for the charged particle beam used for processing, with one axis being the direction of rotation around the irradiation axis of the processing charged particle beam and the other axis being the other.
  • the incident angle of the charged particle beam with respect to the sample surface is inclined so as not to shift the center of the rotation axis, and the two axes can be moved during processing.
  • the height of the unit fixed to the sample transferred from the load lock chamber to the vacuum chamber for observation and analysis is the height specified by the sample stage for observation and analysis. It is desirable to match. In the case of independent observation and analysis devices and pretreatment devices, this can be adjusted to the unit height specific to each device in the process of transportation and be incorporated into the device, so there is no problem, but two When combined, this unit height is a common height. By aligning the heights, the sample can be tilted and observed / analyzed while the processing surface is at the center of the field of view. In this method of adjusting the unit height, although the arm length of the sample holding mechanism can be changed, another axis capable of adjusting the height of the eucentric position may be added to the stage of the charged particle beam apparatus.
  • this charged particle beam device separates the observation and analysis function due to processing waste by separating the vacuum chamber for observation and analysis and the vacuum chamber for processing. Eliminate load, flexibly handle sample size to be observed / analyzed, load lock / process room that can reproduce sample processing and observation / analysis environment with minimum number of pumps, and create optimum pre-treated sample It is possible to inexpensively provide a charged particle beam device that can be observed and analyzed immediately.
  • the Eucentric tilt heights of the observation and analysis sample stage 105 and the processing sample stage 106 are made to coincide with each other so as to have the configuration of FIGS. 4C and 4D. As a result of conducting analysis, it was possible to easily obtain good images and analysis results.
  • the degree of vacuum in the chamber can be controlled by providing an evacuation port in each of the observation and analysis vacuum chamber and the processing vacuum chamber.
  • a charged particle beam apparatus according to a second embodiment will be described with reference to FIG.
  • the matters described in the first embodiment but not described in the present embodiment can be applied to the present embodiment as long as there are no special circumstances.
  • FIG. 2 is a schematic overall configuration sectional view showing an example of a charged particle beam apparatus according to a second embodiment.
  • the charged particle beam apparatus according to the present embodiment corresponds to the vacuum chamber 103 for observation and analysis shown in FIG. 1 of the first embodiment.
  • the degree of vacuum of the observation and analysis vacuum chamber 103 is in the order of 10 -4 Pa. This is because it depends on the mean free path of the charged particle beam 122 for observation and analysis.
  • a sample 110 is a light element
  • this is a trade-off with the diameter of the electron beam, it is an effective means when the sample needs to be reduced in charge-up.
  • the isolation valve E 113 between the observation and analysis vacuum chamber 103 and the vacuum pump B 108 is closed, and the isolation valve H between the observation and analysis vacuum chamber 103 and the vacuum pump C 109. Open 116.
  • the vacuum degree of the observation and analysis for the vacuum chamber 103 can be changed to a vacuum of 10 0 order.
  • the amount of gas adjusted via the mass flow meter 201 disposed behind the sample chamber leak valve 130 is introduced into the observation and analysis vacuum chamber 103, whereby the vacuum in the observation and analysis vacuum chamber 103 is established. degree it is possible to adjust from 10 0 to 10 2 Pa order.
  • the vacuum pump B 108 be provided with the ability to withstand a back pressure that is comparable to the degree of vacuum inside the observation and analysis vacuum chamber 103. If it can not withstand, the tip of the isolation valve H 116 can be separated from the pump C 109 and connected to another pump.
  • Reference numeral 202 indicates a fourth vacuum gauge.
  • processing and observation of a sample are performed by matching the Eucentric tilt heights of the observation and analysis sample stage 105 and the processing sample stage 106 as shown in FIGS. 4C and 4D.
  • FIGS. 4C and 4D As a result of conducting analysis, it was possible to easily obtain good images and analysis results.
  • the same effect as that of the first embodiment can be obtained. Also, by setting the degree of vacuum of the observation and analysis vacuum chamber at the time of observation and analysis lower than the degree of vacuum of the processing vacuum chamber at the time of processing, observation and analysis of easily charged samples are performed. be able to.
  • a charged particle beam device will be described with reference to FIG.
  • the matters described in the first embodiment or the second embodiment but not described in the present embodiment can also be applied to the present embodiment unless there are special circumstances.
  • FIG. 3 is a schematic overall configuration sectional view showing an example of a charged particle beam apparatus according to a third embodiment.
  • the charged particle beam apparatus according to the present embodiment is obtained by adding a load lock chamber 301 to the configuration shown in FIG. 1 of the first embodiment.
  • the load lock chamber 301 includes a sample transport unit 302, an isolation valve J 303, an isolation valve K 304, a fifth vacuum gauge 305, and a leak valve 306.
  • the advantage of adding a load lock chamber is that the sample exchange time on the observation / analyzer side can be shortened regardless of the use of the processing machine. In addition, the system can be used as a temporary shelter for samples without much complexity.
  • the vacuum evacuation is similar to the processing vacuum chamber 104.
  • Reference numeral 307 denotes a load lock chamber door.
  • processing and observation of the sample are performed by matching the Eucentric tilt heights of the observation and analysis sample stage 105 and the processing sample stage 106 as shown in FIGS. 4C and 4D.
  • FIGS. 4C and 4D As a result of conducting analysis, it was possible to easily obtain good images and analysis results.
  • the same effect as that of the first embodiment can be obtained.
  • the sample exchange time on the observation / analyzer side can be shortened. It can also be used as a temporary evacuation site for samples.
  • a vacuum chamber for ion milling comprising a first evacuation port; A processing sample stage disposed inside the processing vacuum chamber and on which the processing sample is placed; An observation / analysis vacuum chamber connected to the processing vacuum chamber via an isolation valve and having a second vacuum exhaust port; An observation / analysis sample stage which is disposed inside the observation / analysis vacuum chamber and on which the sample processed by the processing vacuum chamber is placed; A charged particle beam device characterized by having.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Sample transport unit 119 Observation and analysis chamber door 120: processing chamber door 121: charged particle source for observation and analysis 122: charged particle beam for observation and analysis 123: charged particle source for processing 124: charged particle beam for processing , 130: observation and analysis chamber leak valve, 131: processing chamber leak valve, 132: first vacuum gauge, 133: second vacuum gauge, 134: third vacuum gauge, 201: mass flow meter, 202: fourth vacuum gauge, 301 ... load lock chamber, 302 ... sample transport unit for load lock chamber, 303 ... isolation valve J, 304 ... isolation valve K, 305 ... fifth vacuum gauge, 306 ... load lock chamber leak valve, 307 ... load lock chamber door.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

To provide a charged particle radiation device with which a sample can be easily observed and analyzed, a charged particle radiation device has: a processing vacuum chamber (104); a processing sample stage (106) on which a sample (110) to be processed is placed and which has an eucentric tilt; an observation and analysis vacuum chamber (103) connected to the processing vacuum chamber (104); and an observation and analysis sample stage (105) on which the sample (110) machined in the processing vacuum chamber (103) is placed and which has such an eucentric tilt as to coincide with the height of the eucentric tilt of the processing sample stage (105).

Description

荷電粒子線装置Charged particle beam device
 本発明は、荷電粒子線装置に関する。 The present invention relates to a charged particle beam device.
 荷電粒子線装置の一つであるイオンミリング装置は、イオンビームにより試料の所望の照射領域をスパッタし、機械研磨では取り除けない細かい傷や歪みを取り除き、照射面を平坦化可能な観察・分析用試料の前処理装置である。 An ion milling apparatus, which is one of charged particle beam apparatuses, sputters a desired irradiated area of a sample with an ion beam, removes fine flaws and distortions that can not be removed by mechanical polishing, and can flatten an irradiated surface for observation and analysis. It is a sample pretreatment device.
 なお、特許文献1には、試料作製部(FIB)とウエハ検査部とがバルブを介して接続された試料作製装置が開示されている。 Patent Document 1 discloses a sample preparation apparatus in which a sample preparation unit (FIB) and a wafer inspection unit are connected via a valve.
特開2010-204119号公報JP, 2010-204119, A
 イオンミリング装置を用い真空中にて作製した観察・分析用試料を大気中に取り出すと、試料表面状態が変化し、正確な観察・分析ができない恐れがある。一方、観察・分析を行うための走査電子顕微鏡(SEM)には、試料交換室と呼ばれるロードロック室が設けてある。ロードロック室があることにより、試料室を大気解放せずにその観察・分析対象試料をスループット良く交換することができる。しかし、特許文献1では、前処理した試料を煩雑な処理を施すことなく観察・分析することについては考慮されていない。 When an observation and analysis sample prepared in vacuum using an ion milling apparatus is taken out to the atmosphere, the surface condition of the sample may change, and accurate observation and analysis may not be possible. On the other hand, a load lock chamber called a sample exchange chamber is provided in a scanning electron microscope (SEM) for performing observation and analysis. Due to the presence of the load lock chamber, the sample to be observed / analyzed can be exchanged with a high throughput without releasing the sample chamber to the atmosphere. However, Patent Document 1 does not consider observation and analysis of a pretreated sample without performing complicated processing.
 本発明の目的は、試料の観察・分析が容易な荷電粒子線装置を提供することにある。 An object of the present invention is to provide a charged particle beam device that facilitates observation and analysis of a sample.
 上記目的を達成するための一実施形態として、
加工用真空チャンバと、
前記加工用真空チャンバの内部に配置され、加工用の試料が載置されユーセントリックチルトを有する加工用試料ステージと、
前記加工用真空チャンバに接続された観察・分析用真空チャンバと、
前記観察・分析用真空チャンバの内部に配置され、前記加工用真空チャンバで加工された試料が載置され、前記加工用試料ステージのユーセントリックチルトの高さと一致するようなユーセントリックチルトを有する観察・分析用試料ステージと、
を有することを特徴とする荷電粒子線装置とする。
As one embodiment to achieve the above object,
A processing vacuum chamber,
A processing sample stage disposed inside the processing vacuum chamber and having a processing sample mounted thereon and having a eucentric tilt;
An observation / analysis vacuum chamber connected to the processing vacuum chamber;
A sample placed inside the vacuum chamber for observation and analysis, placed on the sample processed in the vacuum chamber for processing, and having a u-centric tilt that matches the height of the ucentric tilt of the sample stage for processing・ A sample stage for analysis,
And a charged particle beam device characterized by
 本発明によれば、試料の観察・分析が容易な荷電粒子線装置を提供することができる。 According to the present invention, it is possible to provide a charged particle beam device that facilitates observation and analysis of a sample.
実施例1に係る荷電粒子線装置の一例を示す概略全体構成断面図。FIG. 1 is a schematic overall configuration sectional view showing an example of a charged particle beam device according to a first embodiment. 実施例2に係る荷電粒子線装置の一例を示す概略全体構成断面図。FIG. 8 is a schematic overall configuration sectional view showing an example of a charged particle beam device according to a second embodiment. 実施例3に係る荷電粒子線装置の一例を示す概略全体構成断面図。FIG. 8 is a schematic overall configuration sectional view showing an example of a charged particle beam device according to a third embodiment. SEMの観察・分析用試料ステージを説明するための鳥瞰図。The bird's-eye view for demonstrating the sample stage for observation and analysis of SEM. イオンミリング装置の加工用試料ステージを説明するための鳥瞰図。The bird's-eye view for demonstrating the processing sample stage of ion milling apparatus. 観察・分析用試料ステージと加工用試料ステージのユーセントリックチルト高さが一致している場合の観察・分析用試料ステージの動きを説明するための正面図。The front view for demonstrating the motion of the sample stage for observation and analysis in case the Eucentric tilt height of the sample stage for observation and analysis and the sample stage for processing corresponds. 観察・分析用試料ステージと加工用試料ステージのユーセントリックチルト高さが一致している場合の加工用試料ステージの動きを説明するための正面図。The front view for demonstrating the movement of the sample stage for processing in case the Eucentric tilt height of the sample stage for observation and analysis and the sample stage for processing corresponds. SEMの観察・分析用試料ステージを説明するための鳥瞰図。The bird's-eye view for demonstrating the sample stage for observation and analysis of SEM. イオンミリング装置の加工用試料ステージを説明するための鳥瞰図。The bird's-eye view for demonstrating the processing sample stage of ion milling apparatus. 観察・分析用試料ステージと加工用試料ステージのユーセントリックチルト高さが異なる場合の観察・分析用試料ステージの動きを説明するための正面図。The front view for demonstrating the motion of the sample stage for observation and analysis when the Eucentric tilt heights of the sample stage for observation and analysis and the sample stage for processing differ. 観察・分析用試料ステージと加工用試料ステージのユーセントリックチルト高さが異なる場合の加工用試料ステージの動きを説明するための正面図。The front view for demonstrating the motion of the sample stage for processing when the Eucentric tilt height of the sample stage for observation and analysis and the sample stage for processing is different.
 発明者等は、イオンミリング装置をSEMのロードロック室に取り付けてSEMとイオンミリング装置とを複合化した荷電粒子線装置とし、ロードロック室でイオンミリング加工を行った試料を大気中に取り出すことなくSEMの試料室へ搬送し、試料の観察・分析を試みた。加工した試料をSEMの試料台へ移して試料の観察を行ったところ、SEMの試料台微動時に観察対象が視野から外れてしまうことが分かった。そこで、発明者等は、この原因について検討した。 The inventors attach the ion milling apparatus to the load lock chamber of the SEM to form a charged particle beam apparatus combining the SEM and the ion milling apparatus, and take out the sample subjected to the ion milling processing in the load lock chamber into the atmosphere. The sample was transferred to the sample chamber of the SEM, and an attempt was made to observe and analyze the sample. When the processed sample was transferred to a sample stage of the SEM and the sample was observed, it was found that the observation target deviates from the visual field when the sample stage of the SEM is finely moved. Therefore, the inventors examined this cause.
 図5AにSEMの観察・分析用試料ステージを説明するための鳥瞰図を、図5Bにイオンミリング装置の加工用試料ステージを説明するための鳥瞰図を示す。SEMの観察・分析用試料ステージ105は、X軸に沿ったX方向動作、Y軸に沿ったY方向動作、Z軸に沿ったZ方向動作、R軸を中心とした回転動作、T軸(チルト軸)を支点とした傾斜動作を可能とする5軸を有する。これにより、試料の位置を任意に設定することができる。なお、図面では各軸そのものではなく各軸に従って移動する各部材を示している。 FIG. 5A shows a bird's-eye view for explaining a sample stage for observation and analysis of the SEM, and FIG. 5B shows a bird's-eye view for explaining a processing sample stage of the ion milling apparatus. The sample stage 105 for observation and analysis of the SEM is operated in the X direction along the X axis, in the Y direction along the Y axis, in the Z direction along the Z axis, rotated around the R axis, T axis ( It has five axes that enable tilting operation with the tilt axis as the fulcrum. Thereby, the position of the sample can be set arbitrarily. In the drawings, each member moving according to each axis is shown, not each axis itself.
 一方、イオンミリング装置の加工用試料ステージ106は、少なくともR’軸を中心とした回転動作と、T’軸(チルト軸)を支点とした傾斜動作を可能とする2軸を有する。なお、加工用試料ステージ106から観察・分析用試料ステージ105へ試料110を移動する場合には試料110が試料ホルダ111で保持された状態で移動する。 On the other hand, the processing sample stage 106 of the ion milling apparatus has two axes capable of rotational operation around at least the R 'axis and tilting operation around the T' axis (tilt axis). When the sample 110 is moved from the processing sample stage 106 to the observation / analysis sample stage 105, the sample 110 is moved while being held by the sample holder 111.
 イオンミリング装置を用いてイオンビーム(加工用荷電粒子線)124により試料ホルダ111の上の試料110を加工する際には、図5Dに示すようにチルト軸106Aを中心に加工用試料ステージ106をチルトしても試料の加工中心位置は変動しない。 When processing the sample 110 on the sample holder 111 with the ion beam (charged particle beam for processing) 124 using an ion milling apparatus, as shown in FIG. 5D, the processing sample stage 106 is centered on the tilt axis 106A. Even if it is tilted, the processing center position of the sample does not change.
 一方、加工が終わった試料を試料ホルダで保持した状態で観察・分析用試料ステージ105へ移動し、試料の観察を行う際には、図5Cに示すようにチルト軸105Aを中心に観察・分析用試料ステージ105をチルトすると、観察・分析用荷電粒子線122に対し試料位置が大幅に移動してしまい、試料位置が視野から外れてしまうことが分かった。本発明はこの新たな知見に基づいて生まれたものである。 On the other hand, the sample after processing is moved to the observation / analysis sample stage 105 while holding the sample by the sample holder, and when observing the sample, as shown in FIG. 5C, the observation / analysis is centered on the tilt axis 105A. It was found that when the sample stage 105 was tilted, the sample position moved significantly with respect to the observation / analysis charged particle beam 122, and the sample position was out of the field of view. The present invention was born based on this new finding.
 観察・分析・加工する試料表面が、ステージ傾斜(チルト)の支点(チルト軸)となるように構成されている状態をユーセントリックチルトと定義した場合、本発明は、試料位置が視野から外れることを防ぐために観察・分析用試料ステージ105と加工用試料ステージ106のユーセントリックチルト高さを一致させるものである。 If the sample surface to be observed / analyzed / processed is defined as the fulcrum (tilt axis) of the stage tilt (tilt) is defined as the eucentric tilt, according to the present invention, the sample position is out of the field of view In order to prevent this, the Eucentric tilt heights of the observation and analysis sample stage 105 and the processing sample stage 106 are made to coincide with each other.
 図4A、図4BにSEMの観察・分析用試料ステージおよびイオンミリング装置の加工用試料ステージの一例を示す鳥瞰図を、図4C、図4Dに観察・分析用試料ステージと加工用試料ステージのユーセントリックチルト高さが一致している場合の観察・分析用試料ステージおよび加工用試料ステージの動きを説明するための正面図を示す。図4Aに示すように、Z軸は試料をZ方向(高さ方向)に移動してもチルト軸(T軸)のユーセントリック機能が失われないようにT軸の外側に配置した。なお、図面では各軸そのものではなく各軸に従って移動する各部材を示している。また、図4Cから分かるように、観察・分析用試料ステージと加工用試料ステージのユーセントリックチルト高さが一致している場合には、チルトしても試料位置が視野から外れることがない。 Figures 4A and 4B show a bird's eye view showing an example of a sample stage for observation and analysis by SEM and a sample stage for processing of an ion milling apparatus, and Figures 4C and 4D use a sample stage for observation and analysis and ucentric of the sample stage for processing. The front view for demonstrating the motion of the sample stage for observation * analysis in case the tilt height corresponds, and a sample stage for processing is shown. As shown in FIG. 4A, the Z axis was placed outside the T axis so that the eucentric function of the tilt axis (T axis) was not lost even if the sample was moved in the Z direction (height direction). In the drawings, each member moving according to each axis is shown, not each axis itself. Further, as can be seen from FIG. 4C, when the Eucentric tilt heights of the sample stage for observation and analysis and the sample stage for processing coincide with each other, the sample position does not deviate from the field of view even when tilting.
 以下、本発明について実施例により説明する。なお、観察・分析を行う装置としては走査電子顕微鏡(SEM)の他、透過電子顕微鏡(TEM)等を用いることもできる。同一符号は同一構成要素を示す。 Hereinafter, the present invention will be described by way of examples. In addition to a scanning electron microscope (SEM), a transmission electron microscope (TEM) or the like can also be used as an apparatus for performing observation and analysis. The same reference numerals indicate the same components.
 本実施例では、観察・分析する荷電粒子線装置の性能を劣化させることなく、かつ、観察・分析する試料の大きさを制限されず、前処理環境と観察・分析環境を同一の真空度の環境で行い、試料の行き来が簡単にできる加工兼ロードロック室を備えた荷電粒子線装置の例を説明する。 In this embodiment, the performance of the charged particle beam apparatus to be observed and analyzed is not deteriorated, and the size of the sample to be observed and analyzed is not limited, and the pretreatment environment and the observation and analysis environment have the same vacuum degree. An example of a charged particle beam apparatus provided with a processing and load lock chamber which can be carried out in an environment and in which a sample can easily be transferred will be described.
 図1は、本実施例に係る荷電粒子線装置の一例を示す概略全体構成断面図である。図中の構成以外に、画像化するユニット、レンズ・スキャン等の制御ユニットなどが必要であるが、ここでは省略する。なお、図中の円弧状の矢印はチルト方向を示す。 FIG. 1 is a schematic overall configuration sectional view showing an example of a charged particle beam apparatus according to the present embodiment. A unit for imaging, a control unit such as a lens / scan, etc. are required in addition to the configuration in the figure, but they are omitted here. The arc-shaped arrow in the drawing indicates the tilt direction.
 荷電粒子線装置100は、観察・分析用荷電粒子鏡筒101、加工用荷電粒子鏡筒102、観察・分析用真空チャンバ103、加工用真空チャンバ104、観察・分析用試料ステージ105、加工用試料ステージ106、真空ポンプA 107、真空ポンプB 108、真空ポンプC 109、試料110、試料ホルダ111、アイソレーションバルブD 112、アイソレーションバルブE 113、アイソレーションバルブF 114、アイソレーションバルブG 115、アイソレーションバルブH 116、アイソレーションバルブI 117、試料搬送ユニット118から構成される。なお、ここでは、例えば観察・分析用荷電粒子鏡筒における「観察・分析」は、「観察」及び/又は「分析」を意味する。 The charged particle beam apparatus 100 includes a charged particle column 101 for observation and analysis, a charged particle column 102 for processing, a vacuum chamber 103 for observation and analysis, a vacuum chamber 104 for processing, a sample stage 105 for observation and analysis, a sample for processing Stage 106, vacuum pump A 107, vacuum pump B 108, vacuum pump C 109, sample 110, sample holder 111, isolation valve D 112, isolation valve E 113, isolation valve F 114, isolation valve G 115, isolation And the sample transfer unit 118. Here, for example, “observation / analysis” in the charged particle column for observation / analysis means “observation” and / or “analysis”.
 観察・分析用荷電粒子源121から観察・分析用荷電粒子線122を安定して発生させるためには、その荷電粒子源121の周りに10-4から10-9Paオーダーの高い真空度が要求される。必要な真空度は観察・分析用荷電粒子源121の種類に依存する。 In order to stably generate the charged particle beam 122 for observation and analysis from the charged particle source 121 for observation and analysis, a high degree of vacuum on the order of 10 -4 to 10 -9 Pa is required around the charged particle source 121. Be done. The required degree of vacuum depends on the type of charged particle source 121 for observation and analysis.
 1段の真空ポンプでは到達真空に限界があるため、真空ポンプB 108と真空ポンプC 109はタンデム構造で使用し、真空ポンプB 108の上流側の到達真空度を10-4Paオーダーになるようにする。真空ポンプB 108はターボ分子ポンプ相当品、真空ポンプC 109はロータリーポンプ相当品である。10-6Pa以下の高い真空度を保つためには、観察・分析用荷電粒子鏡筒101の内部に差動排気機構を設け、1つ以上の真空ポンプA 107を追加設置する。真空ポンプA 107はイオンポンプまたは化学吸着ポンプ相当品である。ターボ分子ポンプ等をタンデムで使用することも可能であるが、製造原価が高くなる可能性が高い。観察・分析用荷電粒子源121の種類によっては、真空ポンプB 108で兼ねられる場合もある。観察・分析用荷電粒子鏡筒101は、観察・分析用真空チャンバ103に取り付けられている。 The vacuum pump B 108 and the vacuum pump C 109 are used in a tandem structure, so that the ultimate vacuum on the upstream side of the vacuum pump B 108 is on the order of 10 -4 Pa, because the ultimate vacuum is limited in the single-stage vacuum pump. Make it The vacuum pump B 108 is a turbo molecular pump equivalent, and the vacuum pump C 109 is a rotary pump equivalent. In order to maintain a high degree of vacuum of 10 -6 Pa or less, a differential evacuation mechanism is provided inside the charged particle lens barrel 101 for observation and analysis, and one or more vacuum pumps A 107 are additionally installed. The vacuum pump A 107 is an ion pump or a chemical adsorption pump equivalent. It is also possible to use turbo molecular pumps etc. in tandem, but there is a high possibility that the manufacturing cost will be high. Depending on the type of charged particle source 121 for observation and analysis, the vacuum pump B 108 may also be used. The charged particle column 101 for observation and analysis is attached to the vacuum chamber 103 for observation and analysis.
 加工用荷電粒子源123から加工用荷電粒子線124を安定して発生させるためには、その荷電粒子源123の周りに10-2から10-4Paオーダーの真空度が要求される。このオーダーの真空度は真空ポンプB 108で到達させることが出来る。加工用荷電粒子鏡筒102は、加工用真空チャンバ104に取り付けられている。 In order to stably generate the processing charged particle beam 124 from the processing charged particle source 123, a degree of vacuum of about 10 −2 to 10 −4 Pa is required around the charged particle source 123. This degree of vacuum can be reached by vacuum pump B108. The processing charged particle column 102 is attached to the processing vacuum chamber 104.
 加工用真空チャンバ104には、加工用試料ステージ106が設置されており、真空度は、真空ポンプB 108で同様に10-4Paオーダーである。加工用試料ステージ106には、試料を回転させる回転軸と試料を傾斜させる傾斜軸の2軸が備えられている。さらに加工用荷電粒子線124の中心と目的箇所を偏芯させられる移動軸を持たせることにより、加工範囲を広げられるなど自由度を持たせることが出来る。偏芯した場合は、試料ホルダ111が試料搬送ユニット118の搬送軸からずれているため、試料搬送前に偏芯を戻させるための安全機構が必要になる。 A processing sample stage 106 is installed in the processing vacuum chamber 104, and the degree of vacuum is similarly on the order of 10 -4 Pa by the vacuum pump B 108. The processing sample stage 106 is provided with two axes, a rotation axis for rotating the sample and an inclined axis for tilting the sample. Furthermore, by providing a moving axis that can cause the center of the processing charged particle beam 124 and the target portion to be decentered, the processing range can be expanded, and the degree of freedom can be given. In the case of eccentricity, since the sample holder 111 is offset from the transport axis of the sample transport unit 118, a safety mechanism for returning the eccentricity before transport of the sample is required.
 加工用真空チャンバ104をロードロック室として機能させるためには、観察・分析用真空チャンバ103を高い真空度に保ったまま、加工用真空チャンバ104の真空度を自由に変化し、試料110の出し入れを可能にする真空排気能力が必要になる。 In order to make the processing vacuum chamber 104 function as a load lock chamber, the degree of vacuum of the processing vacuum chamber 104 is freely changed while keeping the observation and analysis vacuum chamber 103 at a high degree of vacuum, and the sample 110 is taken in and out. The ability to evacuate is required.
 観察・分析用真空チャンバ103を高い真空度に保つためには、アイソレーションバルブE 113、アイソレーションバルブG 115は「開」、アイソレーションバルブH 116は「閉」が必要十分条件になる。高真空状態の加工用真空チャンバ104を大気解放するためには、アイソレーションバルブF 114、アイソレーションバルブI 117を「閉」にして、加工室リークバルブ131を開く。 In order to keep the vacuum chamber 103 for observation and analysis at a high degree of vacuum, the isolation valve E 113 and the isolation valve G 115 are “open”, and the isolation valve H 116 is “closed”. In order to release the processing vacuum chamber 104 in the high vacuum state to the atmosphere, the isolation valve F 114 and the isolation valve I 117 are closed, and the processing chamber leak valve 131 is opened.
 加工用真空チャンバ104が大気圧と同圧以上になると、加工室扉120が開くようになり、この扉を介して、試料110の入れ替えが出来る。窒素など空気以外のガスをリークガスとして使用している場合は、この時点で加工室リークバルブ131を閉じておくことが安全上望ましい。 When the processing vacuum chamber 104 is at the same pressure as the atmospheric pressure or more, the processing chamber door 120 is opened, and the sample 110 can be replaced through this door. When a gas other than air, such as nitrogen, is used as a leak gas, it is desirable for safety to close the processing room leak valve 131 at this time.
 試料110の入れ替え後は、加工室扉120を閉じ、まず加工室リークバルブ131を閉じる。次にアイソレーションバルブG 115を閉じ、真空ポンプB 108の背圧悪化を防ぐ。次にアイソレーションバルブI 117を開き、加工用真空チャンバ104の真空引きを開始する。この間は真空ポンプB 108の背圧を引くポンプが無くなるため、加工用荷電粒子線124の発生を止め、アイソレーションバルブF 114を閉じることで対応する。または、背圧悪化を第1真空計132で常に監視し、ポンプの背圧許容値を超えないように、アイソレーションバルブG 115、アイソレーションバルブI 117の開閉を入替制御することも可能である。符号134は第3真空計を示す。 After replacing the sample 110, the processing chamber door 120 is closed, and the processing chamber leak valve 131 is first closed. Next, the isolation valve G 115 is closed to prevent the back pressure deterioration of the vacuum pump B 108. Next, the isolation valve I 117 is opened to start evacuation of the processing vacuum chamber 104. Since the pump which pulls the back pressure of vacuum pump B 108 is lose | eliminated during this time, generation | occurrence | production of the charged particle beam 124 for processing is stopped, and it respond | corresponds by closing isolation valve F114. Alternatively, it is also possible to constantly monitor the back pressure deterioration with the first vacuum gauge 132, and control the switching of the isolation valve G 115 and the isolation valve I 117 so that the back pressure tolerance of the pump is not exceeded. . The code | symbol 134 shows a 3rd vacuum gauge.
 加工用真空チャンバ104の真空が真空ポンプB 108の負荷許容値よりも低くなるまで待ち、到達後、アイソレーションバルブI 117を閉じ、アイソレーションバルブF 114、アイソレーションバルブG 115を開く。この直後、加工用真空チャンバ104と観察・分析用真空チャンバ103が真空ポンプB 108を介して繋がってしまうため、数十秒程度、観察・分析用真空チャンバ103へのガス分子逆流が発生してしまう。これを防ぐためには、アイソレーションバルブE 113を閉じ、加工用真空チャンバ104の真空が10-2Paオーダーに到達するまで待機してもよい。以上のシーケンスは、システムとして自動動作することが望ましい。 It waits until the vacuum of the processing vacuum chamber 104 becomes lower than the load allowable value of the vacuum pump B 108, and after reaching it, the isolation valve I 117 is closed, and the isolation valve F 114 and the isolation valve G 115 are opened. Immediately after this, since the processing vacuum chamber 104 and the observation and analysis vacuum chamber 103 are connected via the vacuum pump B 108, gas molecule backflow to the observation and analysis vacuum chamber 103 occurs for several tens of seconds. I will. In order to prevent this, the isolation valve E 113 may be closed to wait until the vacuum of the processing vacuum chamber 104 reaches the order of 10 −2 Pa. It is desirable that the above sequence automatically operate as a system.
 ここで、加工用試料ステージ106のチルト構造によって決まるチルト軸106Aと、試料ホルダ111と試料110を含めた全体高さ111Aの上面を一致させる(ユーセントリックチルト)。この高さ調整のために、試料ホルダ111に高さ調整機構をもたせ、試料導入前に事前調整しておくことが望ましい。例えば、試料が変形し易い場合或いは試料の寸法が小さく搬送ユニットで把持し難い場合等には試料ホルダで試料を保持することにより試料の移動を簡便に行うことができる。また、試料ホルダを用いず、観察・分析用試料ステージに高さ調整機構を設けてもよいし、試料の高さ自体を削るなどして対応してもよい。また、観察・分析用試料ステージで決まるユーセントリックチルト高さを基準にロードロック室側のユーセントリックチルト高さを合わせて設計してもよい。これにより、試料110を傾斜させても、荷電粒子線照射124の位置がずれないようにすることができ、ひいては、目的箇所の加工範囲を広げたり、加工レートを早めたりすることができる。 Here, the tilt shaft 106A determined by the tilt structure of the processing sample stage 106 and the upper surface of the entire height 111A including the sample holder 111 and the sample 110 are made to coincide (eucentric tilt). In order to adjust the height, it is desirable that the sample holder 111 have a height adjustment mechanism and be adjusted in advance before introducing the sample. For example, when the sample is easily deformed or when the size of the sample is small and difficult to be gripped by the transport unit, the sample can be moved easily by holding the sample by the sample holder. In addition, the height adjustment mechanism may be provided on the observation / analysis sample stage without using the sample holder, or the height itself of the sample may be scraped or the like. In addition, the centric tilt heights on the load lock chamber side may be designed based on the eucentric tilt height determined by the observation and analysis sample stage. Thereby, even if the sample 110 is inclined, the position of the charged particle beam irradiation 124 can be prevented from shifting, and as a result, the processing range of the target portion can be expanded or the processing rate can be accelerated.
 加工用荷電粒子線124で加工終了した試料110は、試料搬送ユニット118を介して、加工用試料ステージ106から観察・分析用試料ステージ105へ移動できる。まず、観察・分析用真空チャンバ103と加工用真空チャンバ104の真空が同程度であることを確認し、違いがある場合は、観察・分析用真空チャンバ103の真空に、加工用真空チャンバ104の真空を合わせる。 The sample 110 processed by the processing charged particle beam 124 can be moved from the processing sample stage 106 to the observation / analysis sample stage 105 via the sample transport unit 118. First, it is confirmed that the vacuums of the observation and analysis vacuum chamber 103 and the processing vacuum chamber 104 are substantially the same, and if there is a difference, the vacuum of the processing vacuum chamber 104 is Combine the vacuum.
 真空確認と同時に、加工用試料ステージ106、観察・分析用試料ステージ105共に、試料搬送用位置へ移動する。試料搬送ユニット118の搬送ストロークを短くするために、観察・分析用試料ステージ105は可動範囲の中で加工用真空チャンバ104に一番近い側に移動しておくことも可能である。 Simultaneously with the vacuum confirmation, both the processing sample stage 106 and the observation and analysis sample stage 105 move to the sample transport position. In order to shorten the transfer stroke of the sample transfer unit 118, the observation and analysis sample stage 105 can also be moved to the side closest to the processing vacuum chamber 104 within the movable range.
 真空確認・調整後、観察・分析用真空チャンバ103と加工用真空チャンバ104の間にあるアイソレーションバルブD 112を「開」にする。加工用試料ステージ106の移動終了した後、試料搬送ユニット118は、試料110を試料ホルダ111と共に加工用試料ステージ106から受け取る。 After the vacuum confirmation and adjustment, the isolation valve D 112 located between the observation and analysis vacuum chamber 103 and the processing vacuum chamber 104 is opened. After the movement of the processing sample stage 106 is completed, the sample transport unit 118 receives the sample 110 together with the sample holder 111 from the processing sample stage 106.
 観察・分析用試料ステージ105が試料搬送用位置へ移動終了し、アイソレーションバルブD 112が「開」したことを確認して、試料搬送ユニット118は、試料110を試料ホルダ111と共に観察・分析用試料ステージ105へ受け渡す。受け渡し後、観察・分析用試料ステージ105は観察ポジションへ、試料搬送ユニット118はオリジナルポジションへ戻り、アイソレーションバルブD 112を「閉」にする。以上が試料搬送の一連動作となる。 Confirming that the sample stage for observation and analysis 105 has been moved to the position for sample transport and confirming that the isolation valve D 112 is “opened”, the sample transport unit 118 together with the sample holder 111 for observation and analysis Deliver to the sample stage 105. After delivery, the sample stage for observation and analysis 105 returns to the observation position, and the sample transport unit 118 returns to the original position, and the isolation valve D 112 is closed. The above is the series operation of sample transport.
 観察・分析用真空チャンバ103には、観察・分析用試料ステージ105があり、真空度は、真空ポンプB 108で10-4Paオーダーとする。観察・分析用真空チャンバ103の内部の真空度は、第2真空計133で知ることができる。 The observation / analysis vacuum chamber 103 has an observation / analysis sample stage 105, and the degree of vacuum is on the order of 10 −4 Pa by a vacuum pump B 108. The degree of vacuum inside the observation and analysis vacuum chamber 103 can be known by the second vacuum gauge 133.
 観察・分析用試料ステージ105の上に配置される試料110(試料ホルダ111含む)は、試料表面位置を、観察・分析用試料ステージのチルト軸105Aと一致させることによって、加工時と同様に、試料をチルトさせても、荷電粒子線照射位置がずれないようにすることが出来る。このためには、観察・分析用試料ステージ105のチルト構造によって決まるチルト軸105Aと、試料ホルダ111と試料110を含めた全体高さ111Aの上面とが一致(ユーセントリックチルト)するように設置する。これにより、観察・分析用試料ステージ105と加工用試料ステージ106のユーセントリックチルト高さが一致する。なお、円弧状の矢印はチルト方向を示す。 The sample 110 (including the sample holder 111) disposed on the observation and analysis sample stage 105 has the sample surface position aligned with the tilt axis 105A of the observation and analysis sample stage, similarly to the processing time. Even if the sample is tilted, the charged particle beam irradiation position can be prevented from shifting. For this purpose, the tilt axis 105A determined by the tilt structure of the sample stage for observation and analysis 105 and the upper surface of the entire height 111A including the sample holder 111 and the sample 110 are placed so as to coincide (eucentric tilt). . Thereby, the Eucentric tilt heights of the observation and analysis sample stage 105 and the processing sample stage 106 coincide with each other. The arc-shaped arrow indicates the tilt direction.
 この全体高さ111Aは加工用試料ステージ106によって決まっているため、観察・分析用試料ステージ105の試料ホルダ111の受入れ高さを合わせこむか、または観察・分析用試料ステージ105上に試料ホルダ高さ調整機構を追加し、試料表面位置とチルト軸105Aとを一致させることが出来るようにする。 Since the entire height 111A is determined by the processing sample stage 106, the receiving height of the sample holder 111 of the observation and analysis sample stage 105 is adjusted or the sample holder height on the observation and analysis sample stage 105 A height adjustment mechanism is added so that the sample surface position can be aligned with the tilt axis 105A.
 観察・分析装置としてのスループットに対して、機能を最大限に発揮するためには、真空排気系にも工夫が必要になる。加工機の加工時間は、試料の硬さ・許容される荷電粒子線強度・施したい加工によって大きく変わる。断面加工をしたい場合などは数時間のオーダーが必要である。この加工の間も、観察・分析装置として稼働出来なければ、装置としてのデッドタイムは大きくなってしまう。このためには、加工用真空チャンバ104を高い真空度に保ったまま、観察・分析用真空チャンバ103の真空度を自由に変化し、試料110の出し入れを可能にする真空排気能力を備えることが望ましい。 It is also necessary to devise a vacuum exhaust system in order to make the most of the functions with respect to the throughput as an observation / analysis device. The processing time of the processing machine changes greatly depending on the hardness of the sample, the allowable charged particle beam strength, and the processing to be applied. The order of several hours is required when cross-section processing is desired. Even during this processing, if the device can not be operated as an observation and analysis device, the dead time of the device will be large. For this purpose, it is possible to freely change the degree of vacuum of the observation and analysis vacuum chamber 103 while maintaining the processing vacuum chamber 104 at a high degree of vacuum, and provide a vacuum evacuation capability that enables the sample 110 to be taken in and out. desirable.
 加工用真空チャンバ104を高い真空度に保つためには、アイソレーションバルブF 114、アイソレーションバルブG 115は「開」、アイソレーションバルブI 117は「閉」が必要十分条件になる。高真空状態の観察・分析用真空チャンバ103を大気解放するためには、アイソレーションバルブE 113、アイソレーションバルブH 116を「閉」にして、試料室(観察・分析室)リークバルブ130を開く。 In order to keep the processing vacuum chamber 104 at a high degree of vacuum, the isolation valve F 114 and the isolation valve G 115 are “open”, and the isolation valve I 117 is “closed”. In order to open the vacuum chamber 103 for observation and analysis in a high vacuum state, the isolation valve E 113 and the isolation valve H 116 are closed, and the sample chamber (observation and analysis chamber) leak valve 130 is opened. .
 観察・分析用真空チャンバ103が大気圧と同圧以上になると、観察・分析室扉119が開くようになり、この扉を介して、試料110の入れ替えが出来る。窒素など空気以外のガスをリークガスとして使用している場合は、この時点で試料室リークバルブ130を閉じておくことが安全上望ましい。 When the observation and analysis vacuum chamber 103 is at the same pressure as the atmospheric pressure or more, the observation and analysis chamber door 119 is opened, and the sample 110 can be replaced through this door. When a gas other than air, such as nitrogen, is used as a leak gas, it is desirable for safety to close the sample chamber leak valve 130 at this time.
 試料110の入れ替え後は、観察・分析室扉119を閉じ、まず試料室リークバルブ130を閉じる。次にアイソレーションバルブG 115を閉じ、真空ポンプB 108の背圧悪化を防ぐ。次にアイソレーションバルブH 116を開き、観察・分析用真空チャンバ103の真空引きを開始する。この間は真空ポンプB 108の背圧を引くポンプが無くなるため、加工用荷電粒子線124の発生を止め、アイソレーションバルブF 114を閉じることで対応する。または、背圧悪化を第1真空計132で常に監視し、ポンプの背圧許容値を超えないように、アイソレーションバルブG 115、アイソレーションバルブH 116の開閉を入替制御することで加工時間のデッドタイムを減らすことも可能である。 After replacing the sample 110, the observation and analysis chamber door 119 is closed, and the sample chamber leak valve 130 is closed first. Next, the isolation valve G 115 is closed to prevent the back pressure deterioration of the vacuum pump B 108. Next, the isolation valve H 116 is opened to start evacuation of the observation and analysis vacuum chamber 103. Since the pump which pulls the back pressure of vacuum pump B 108 is lose | eliminated during this time, generation | occurrence | production of the charged particle beam 124 for processing is stopped, and it respond | corresponds by closing isolation valve F114. Alternatively, the back pressure deterioration is constantly monitored by the first vacuum gauge 132, and switching control of the isolation valve G 115 and the isolation valve H 116 is performed so as not to exceed the back pressure tolerance of the pump. It is also possible to reduce the dead time.
 観察・分析用真空チャンバ103の真空が真空ポンプB 108の負荷許容値よりも低くなるまで待ち、到達後、アイソレーションバルブH 116を閉じ、アイソレーションバルブE 113、アイソレーションバルブG 115を開く。 Wait until the vacuum of the observation and analysis vacuum chamber 103 becomes lower than the load tolerance of the vacuum pump B 108, and after reaching it, close the isolation valve H 116 and open the isolation valve E 113 and the isolation valve G 115.
 この直後、加工用真空チャンバ104と観察・分析用真空チャンバ103が真空ポンプBを介して繋がってしまうため、数十秒程度、加工用真空チャンバ104へのガス分子逆流が発生してしまう。これを防ぐために、加工用荷電粒子線124の発生を止め、アイソレーションバルブF 114を閉じ、観察・分析用真空チャンバ103の真空が10-2Paオーダーに到達するまで待機する。 Immediately after this, since the processing vacuum chamber 104 and the observation / analysis vacuum chamber 103 are connected via the vacuum pump B, gas molecule backflow to the processing vacuum chamber 104 occurs for about several tens of seconds. In order to prevent this, the generation of the processing charged particle beam 124 is stopped, the isolation valve F 114 is closed, and the process waits for the vacuum of the observation / analysis vacuum chamber 103 to reach the order of 10 −2 Pa.
 観察・分析用真空チャンバ103の真空が10-2Paオーダーに到達後、アイソレーションバルブF 114を開き、加工用真空チャンバ104の真空も復帰した後に加工を再開する。ここで発生した加工待ち時間は、システムとして自動調整することが望ましい。また、アイソレーションバルブD 112は、バルブの両側に正負、両方の圧力がかかることに耐えられる構造であることが望ましい。 After the vacuum of the observation / analysis vacuum chamber 103 reaches the 10 -2 Pa order, the isolation valve F 114 is opened, and the vacuum of the processing vacuum chamber 104 is also restored, and then the processing is restarted. It is desirable to automatically adjust the processing waiting time generated here as a system. In addition, it is desirable that the isolation valve D 112 be structured to withstand both positive and negative pressure applied to both sides of the valve.
 観察・分析用試料ステージ105の上、加工用試料ステージ106の上、または観察・分析用真空チャンバ103の内部、加工用真空チャンバ104の内部に、試料110を一時退避できる機能を持たせることで、複数の試料110を大気解放せずに、加工⇒観察・分析、加工⇒観察・分析・・と繰り返すことが出来る。 By providing the function of temporarily retracting the sample 110 on the observation and analysis sample stage 105, on the processing sample stage 106, or in the inside of the observation and analysis vacuum chamber 103, and in the processing vacuum chamber 104. The plurality of samples 110 can be repeated as processing 、 observation / analysis, processing ・ observation / analysis.
 本実施例において、ロードロック室が、イオンミリングを含む荷電粒子線による試料加工が実施できる機能を持たせることができる。 In this embodiment, the load lock chamber can have a function capable of performing sample processing by charged particle beams including ion milling.
 また、試料を加工するための荷電粒子線を照射するためには、荷電粒子線が効率よく、スパッタする試料表面に届かなければならない。そのため、ロードロック室(加工用真空チャンバ)の真空を荷電粒子線の平均自由行程が、試料表面と荷電粒子線の照射口との距離よりも十分に長くなるよう保つことが望ましい。この真空度は、高ければ高いほど安定した環境であり試料を加工することが出来る。しかしながら、この高い真空度を得るためにロードロック室(加工用真空チャンバ)と観察・分析用真空チャンバとを繋ぐバルブを開いてしまうと観察・分析用真空チャンバの内部を加工くずやイオンビームで汚染・切削したり、イオン源のガスによって、観察・分析の機能を低下したりする可能性が高い。そのため、本実施例ではロードロック室の真空排気口は別途設けた。 In addition, in order to irradiate a charged particle beam for processing a sample, the charged particle beam must efficiently reach the surface of the sample to be sputtered. Therefore, it is desirable to maintain the vacuum of the load lock chamber (processing vacuum chamber) so that the mean free path of the charged particle beam is sufficiently longer than the distance between the sample surface and the irradiation port of the charged particle beam. The higher the degree of vacuum, the more stable the environment and the sample can be processed. However, when the valve connecting the load lock chamber (processing vacuum chamber) and the observation and analysis vacuum chamber is opened to obtain this high degree of vacuum, the inside of the observation and analysis vacuum chamber is processed scraps and ion beams. There is a high possibility that contamination, cutting, or ion source gas may deteriorate the function of observation and analysis. Therefore, in the present embodiment, the vacuum exhaust port of the load lock chamber is separately provided.
 また、ロードロック室は前処理が始まってから、前処理が終わり、試料が観察・分析用真空チャンバに搬送されるまでの間、高真空を維持し続けることが望ましい。ただし、観察・分析用真空チャンバの真空度がロードロック室の真空度よりも低い場合がある。たとえば、観察・分析する試料が絶縁物である場合、観察・分析用真空チャンバの真空度を数Pa~1000Pa程度の真空領域にすることにより、試料の荷電粒子線によるチャージアップを抑制しながら、観察・分析を行うことが出来る。 In addition, it is desirable that the load lock chamber continues to maintain a high vacuum from the beginning of the pretreatment until the pretreatment is finished and the sample is transported to the observation and analysis vacuum chamber. However, the vacuum degree of the observation and analysis vacuum chamber may be lower than the vacuum degree of the load lock chamber. For example, when the sample to be observed / analyzed is an insulator, by setting the degree of vacuum of the observation / analysis vacuum chamber to a vacuum range of several Pa to 1000 Pa or so, charge-up by the charged particle beam of the sample is suppressed. It can be observed and analyzed.
 このような場合には、ロードロック室は、まず真空排気を開始して、加工する荷電粒子線に十分高い真空度にして前処理を行い、その後、観察・分析用真空チャンバと同じ真空度の領域を再現して、バルブを空け、搬送を開始する。以上により、ロードロック室は観察・分析用真空チャンバの真空度に依存してはならない排気構成をもつことが望ましい。 In such a case, the load lock chamber first starts evacuation and performs pretreatment with a sufficiently high degree of vacuum for the charged particle beam to be processed, and then the same degree of vacuum as the vacuum chamber for observation and analysis. Reproduce the area, release the valve and start the transfer. From the above, it is desirable that the load lock chamber have an exhaust configuration that should not depend on the degree of vacuum of the observation and analysis vacuum chamber.
 また、加工に使う荷電粒子線に対して、少なくとも2軸の自由度を持った試料保持機構を持ち、その1軸は、加工の荷電粒子線の照射軸周りに回転する方向、もう1軸は、上記回転軸の中心をずらさないように試料表面に対する荷電粒子線の入射角を傾斜する方向であり、この2つの軸は、加工中にそれぞれ動かせることが望ましい。 It also has a sample holding mechanism with at least two degrees of freedom for the charged particle beam used for processing, with one axis being the direction of rotation around the irradiation axis of the processing charged particle beam and the other axis being the other. Preferably, the incident angle of the charged particle beam with respect to the sample surface is inclined so as not to shift the center of the rotation axis, and the two axes can be moved during processing.
 さらに、観察・分析用試料ステージ性能を劣化させないために、ロードロック室から観察・分析用真空チャンバへ受け渡される試料を固定したユニットの高さは、観察・分析用試料ステージで規定された高さに合わせることが望ましい。それぞれ独立した観察・分析装置と前処理装置である場合は、搬送の過程で、それぞれの装置固有のユニット高さに調整して装置に組み込むことが出来るため、問題にはならないが、2つを組み合わせた場合、このユニット高さは共通の高さとなる。この高さを合わせておくことで、加工面を視野中心にしたまま、試料を傾斜させて観察・分析することが出来る。このユニット高さを合わせる方法は、試料保持機構のアーム長さを変更できても、荷電粒子線装置のステージに、ユーセントリックポジション高さを調整できるもう1軸を追加しても良い。 Furthermore, in order not to degrade the performance of the sample stage for observation and analysis, the height of the unit fixed to the sample transferred from the load lock chamber to the vacuum chamber for observation and analysis is the height specified by the sample stage for observation and analysis. It is desirable to match. In the case of independent observation and analysis devices and pretreatment devices, this can be adjusted to the unit height specific to each device in the process of transportation and be incorporated into the device, so there is no problem, but two When combined, this unit height is a common height. By aligning the heights, the sample can be tilted and observed / analyzed while the processing surface is at the center of the field of view. In this method of adjusting the unit height, although the arm length of the sample holding mechanism can be changed, another axis capable of adjusting the height of the eucentric position may be added to the stage of the charged particle beam apparatus.
 本荷電粒子線装置は、観察・分析する荷電粒子線装置の機能を最大に発揮するために、観察・分析用真空チャンバと加工用真空チャンバを分けることで加工かすによる観察・分析機能の低下を無くし、観察・分析する試料サイズに柔軟に対応し、試料の加工と観察・分析の環境を最小限のポンプ数で再現できるロードロック兼加工室を備え、最適な前処理を施した試料を作成でき、それをただちに観察・分析することのできる荷電粒子線装置を安価に提供することが出来る。 In order to maximize the function of the charged particle beam device to be observed and analyzed, this charged particle beam device separates the observation and analysis function due to processing waste by separating the vacuum chamber for observation and analysis and the vacuum chamber for processing. Eliminate load, flexibly handle sample size to be observed / analyzed, load lock / process room that can reproduce sample processing and observation / analysis environment with minimum number of pumps, and create optimum pre-treated sample It is possible to inexpensively provide a charged particle beam device that can be observed and analyzed immediately.
 図1に示す荷電粒子線装置において、図4C及び図4Dの構成となるように観察・分析用試料ステージ105と加工用試料ステージ106のユーセントリックチルト高さを一致させて試料の加工、及び観察や分析を行った結果、容易に良好な画像や分析結果を得ることができた。 In the charged particle beam apparatus shown in FIG. 1, the Eucentric tilt heights of the observation and analysis sample stage 105 and the processing sample stage 106 are made to coincide with each other so as to have the configuration of FIGS. 4C and 4D. As a result of conducting analysis, it was possible to easily obtain good images and analysis results.
 以上、本実施例によれば、試料の観察・分析が容易な荷電粒子線装置を提供することができる。また、観察・分析用真空チャンバと加工用真空チャンバとを分けることによって、加工時の試料くずにより観察・分析用真空チャンバが汚染されることがない。また、観察・分析用真空チャンバと加工用真空チャンバとにそれぞれ真空排気口を設けることにより、チャンバ内の真空度をそれぞれ制御することができる。これにより、例えば、長時間の試料の加工を行う場合であっても、加工中に他の試料(1個又は複数)の観察や分析を行うことができる。 As described above, according to this embodiment, it is possible to provide a charged particle beam device that facilitates observation and analysis of a sample. Further, by separating the observation and analysis vacuum chamber from the processing vacuum chamber, the observation and analysis vacuum chamber is not contaminated by sample debris during processing. In addition, the degree of vacuum in the chamber can be controlled by providing an evacuation port in each of the observation and analysis vacuum chamber and the processing vacuum chamber. Thereby, for example, even when processing a sample for a long time, observation or analysis of another sample (one or more) can be performed during processing.
 実施例2に係る荷電粒子線装置について、図2を用いて説明する。なお、実施例1に記載され本実施例に未記載の事項は特段の事情がない限り本実施例にも適用することができる。 A charged particle beam apparatus according to a second embodiment will be described with reference to FIG. The matters described in the first embodiment but not described in the present embodiment can be applied to the present embodiment as long as there are no special circumstances.
 図2は実施例2に係る荷電粒子線装置の一例を示す概略全体構成断面図である。本実施例に係る荷電粒子線装置は、実施例1の図1に示す観察・分析用真空チャンバ103を低真空に対応させたものである。 FIG. 2 is a schematic overall configuration sectional view showing an example of a charged particle beam apparatus according to a second embodiment. The charged particle beam apparatus according to the present embodiment corresponds to the vacuum chamber 103 for observation and analysis shown in FIG. 1 of the first embodiment.
 通常、観察・分析用真空チャンバ103の真空度は、10-4Paオーダーが用いられる。これは、観察・分析用荷電粒子線122の平均自由行程に依存しているためである。観察・分析用真空チャンバ103内の散乱分子が少ないほうが、観察・分析用荷電粒子線122を散乱させずに、試料110上に小さな直径の電子線を照射することが出来る。 Usually, the degree of vacuum of the observation and analysis vacuum chamber 103 is in the order of 10 -4 Pa. This is because it depends on the mean free path of the charged particle beam 122 for observation and analysis. The smaller the number of scattering molecules in the observation / analysis vacuum chamber 103, the smaller the diameter of the electron beam can be irradiated onto the sample 110 without scattering the observation / analysis charged particle beam 122.
 一方、試料110が軽元素など、観察・分析用荷電粒子線122によってチャージアップしやすい試料の場合は、観察・分析用真空チャンバ103の真空度を10から10Paオーダーの低い真空度に変更し、試料表面のチャージアップを低減させることが出来る。これは電子線の直径とはトレードオフになるが、試料にチャージアップの低減が必要な場合、有効な手段である。 On the other hand, such as a sample 110 is a light element, when the observation and analysis for the charged particle beam 122 of charge-up tends to sample, the degree of vacuum of the observation and analysis vacuum chamber 103 to 10 0 to 10 2 Pa order low vacuum It can be modified to reduce the charge up of the sample surface. Although this is a trade-off with the diameter of the electron beam, it is an effective means when the sample needs to be reduced in charge-up.
 この時には、観察・分析用真空チャンバ103と真空ポンプB 108の間にあるアイソレーションバルブE 113を「閉」にし、観察・分析用真空チャンバ103と真空ポンプC 109の間にあるアイソレーションバルブH 116を「開」にする。これにより、真空ポンプB 108の上部の真空度は保ったまま、観察・分析用真空チャンバ103の真空度を10オーダーの真空に変更することが出来る。 At this time, the isolation valve E 113 between the observation and analysis vacuum chamber 103 and the vacuum pump B 108 is closed, and the isolation valve H between the observation and analysis vacuum chamber 103 and the vacuum pump C 109. Open 116. Thus, while keeping the upper part of the vacuum degree of the vacuum pump B 108, the vacuum degree of the observation and analysis for the vacuum chamber 103 can be changed to a vacuum of 10 0 order.
 この後、試料室リークバルブ130の後方に配置した、マスフローメーター201を介して調整された気体量を観察・分析用真空チャンバ103内に導入することにより、観察・分析用真空チャンバ103内の真空度を10から10Paオーダーに調整することが出来る。 Thereafter, the amount of gas adjusted via the mass flow meter 201 disposed behind the sample chamber leak valve 130 is introduced into the observation and analysis vacuum chamber 103, whereby the vacuum in the observation and analysis vacuum chamber 103 is established. degree it is possible to adjust from 10 0 to 10 2 Pa order.
 この場合、真空ポンプB 108は、観察・分析用真空チャンバ 103の内部の真空度と同程度になる背圧に耐えられる能力を備えることが望ましい。耐えられない場合はアイソレーションバルブH 116の先をポンプC 109から分けて、別ポンプへ接続する構成とすることができる。 In this case, it is desirable that the vacuum pump B 108 be provided with the ability to withstand a back pressure that is comparable to the degree of vacuum inside the observation and analysis vacuum chamber 103. If it can not withstand, the tip of the isolation valve H 116 can be separated from the pump C 109 and connected to another pump.
 符号202は第4真空計を示す。アイソレーションバルブFが「開」の時に、加工用真空チャンバの真空度の低下がこの真空計202により検出された場合にはアイソレーションバルブFが「閉」とされる。 Reference numeral 202 indicates a fourth vacuum gauge. When the isolation valve F is "open", if the vacuum gauge 202 detects a decrease in the degree of vacuum of the processing vacuum chamber, the isolation valve F is "closed".
 図2に示す荷電粒子線装置において、図4C及び図4Dの構成となるように観察・分析用試料ステージ105と加工用試料ステージ106のユーセントリックチルト高さを一致させて試料の加工、及び観察や分析を行った結果、容易に良好な画像や分析結果を得ることができた。 In the charged particle beam apparatus shown in FIG. 2, processing and observation of a sample are performed by matching the Eucentric tilt heights of the observation and analysis sample stage 105 and the processing sample stage 106 as shown in FIGS. 4C and 4D. As a result of conducting analysis, it was possible to easily obtain good images and analysis results.
 以上、本実施例によれば、実施例1と同様の効果を得ることができる。また、観察・分析を行う際の観察・分析用真空チャンバの真空度を、加工を行う時の加工用真空チャンバの真空度よりも低く設定することにより、帯電し易い試料の観察・分析を行うことができる。 As described above, according to this embodiment, the same effect as that of the first embodiment can be obtained. Also, by setting the degree of vacuum of the observation and analysis vacuum chamber at the time of observation and analysis lower than the degree of vacuum of the processing vacuum chamber at the time of processing, observation and analysis of easily charged samples are performed. be able to.
 実施例3に係る荷電粒子線装置について、図3を用いて説明する。なお、実施例1又は実施例2に記載され本実施例に未記載の事項は特段の事情がない限り本実施例にも適用することができる。 A charged particle beam device according to a third embodiment will be described with reference to FIG. The matters described in the first embodiment or the second embodiment but not described in the present embodiment can also be applied to the present embodiment unless there are special circumstances.
 図3は、実施例3に係る荷電粒子線装置の一例を示す概略全体構成断面図である。本実施例に係る荷電粒子線装置は、実施例1の図1に示す構成に、ロードロック室301を追加したものである。 FIG. 3 is a schematic overall configuration sectional view showing an example of a charged particle beam apparatus according to a third embodiment. The charged particle beam apparatus according to the present embodiment is obtained by adding a load lock chamber 301 to the configuration shown in FIG. 1 of the first embodiment.
 ロードロック室301は、試料搬送ユニット302、アイソレーションバルブJ 303、アイソレーションバルブK 304、第5真空計305、リークバルブ306から構成される。ロードロック室を追加するメリットは、加工機の使用に関わらず、観察・分析装置側の試料交換時間を短縮できることである。このほかに、システムをあまり複雑にせずに、試料の一時退避場所として使用することが出来る。真空排気は、加工用真空チャンバ104と同様である。符号307は、ロードロック室扉を示す。 The load lock chamber 301 includes a sample transport unit 302, an isolation valve J 303, an isolation valve K 304, a fifth vacuum gauge 305, and a leak valve 306. The advantage of adding a load lock chamber is that the sample exchange time on the observation / analyzer side can be shortened regardless of the use of the processing machine. In addition, the system can be used as a temporary shelter for samples without much complexity. The vacuum evacuation is similar to the processing vacuum chamber 104. Reference numeral 307 denotes a load lock chamber door.
 図3に示す荷電粒子線装置において、図4C及び図4Dの構成となるように観察・分析用試料ステージ105と加工用試料ステージ106のユーセントリックチルト高さを一致させて試料の加工、及び観察や分析を行った結果、容易に良好な画像や分析結果を得ることができた。 In the charged particle beam apparatus shown in FIG. 3, processing and observation of the sample are performed by matching the Eucentric tilt heights of the observation and analysis sample stage 105 and the processing sample stage 106 as shown in FIGS. 4C and 4D. As a result of conducting analysis, it was possible to easily obtain good images and analysis results.
 以上、本実施例によれば、実施例1と同様の効果を得ることができる。また、ロードロック室を追加することにより、観察・分析装置側の試料交換時間を短縮できる。また、試料の一時退避場所として使用することが出来る。 As described above, according to this embodiment, the same effect as that of the first embodiment can be obtained. In addition, by adding a load lock chamber, the sample exchange time on the observation / analyzer side can be shortened. It can also be used as a temporary evacuation site for samples.
 なお、本発明は以下の実施形態を含む。
第1真空排気口を備えたイオンミリング加工用真空チャンバと、
前記加工用真空チャンバの内部に配置され、加工用試料が載置される加工用試料ステージと、
前記加工用真空チャンバにアイソレーションバルブを介して接続され、第2真空排気口を備えた観察・分析用真空チャンバと、
前記観察・分析用真空チャンバの内部に配置され、前記加工用真空チャンバで加工された試料が載置される観察・分析用試料ステージと、
を有することを特徴とする荷電粒子線装置。
The present invention includes the following embodiments.
A vacuum chamber for ion milling comprising a first evacuation port;
A processing sample stage disposed inside the processing vacuum chamber and on which the processing sample is placed;
An observation / analysis vacuum chamber connected to the processing vacuum chamber via an isolation valve and having a second vacuum exhaust port;
An observation / analysis sample stage which is disposed inside the observation / analysis vacuum chamber and on which the sample processed by the processing vacuum chamber is placed;
A charged particle beam device characterized by having.
 また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Further, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. In addition, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.
100…荷電粒子線装置、101…観察・分析用荷電粒子鏡筒、102…加工用荷電粒子鏡筒、103…観察・分析用真空チャンバ、104…加工用真空チャンバ、105…観察・分析用試料ステージ、105A…観察・分析用試料ステージのチルト軸、106…加工用試料ステージ、106A…加工用試料ステージのチルト軸、107…真空ポンプA、108…真空ポンプB、109…真空ポンプC、110…試料、111…試料ホルダ、111A…試料ホルダと試料を含めた全体高さ、112…アイソレーションバルブD、113…アイソレーションバルブE、114…アイソレーションバルブF、115…アイソレーションバルブG、116…アイソレーションバルブH、117…アイソレーションバルブI、118…試料搬送ユニット、119…観察・分析室扉、120…加工室扉、121…観察・分析用荷電粒子源、122…観察・分析用荷電粒子線、123…加工用荷電粒子源、124…加工用荷電粒子線、130…観察・分析室リークバルブ、131…加工室リークバルブ、132…第1真空計、133…第2真空計、134…第3真空計、201…マスフローメーター、202…第4真空計、301…ロードロック室、302…ロードロック室用試料搬送ユニット、303…アイソレーションバルブJ、304…アイソレーションバルブK、305…第5真空計、306…ロードロック室リークバルブ、307…ロードロック室扉。 100: charged particle beam apparatus, 101: charged particle column for observation and analysis, 102: charged particle column for processing, 103: vacuum chamber for observation and analysis, 104: vacuum chamber for processing, 105: sample for observation and analysis Stage 105A: tilt axis of sample stage for observation and analysis 106: sample stage for processing 106A: tilt axis of sample stage for processing 107: vacuum pump A, 108: vacuum pump B, 109: vacuum pump C, 110 ... sample, 111 ... sample holder, 111 A ... whole height including sample holder and sample 112 ... isolation valve D, 113 ... isolation valve E, 114 ... isolation valve F, 115 ... isolation valve G, 116 ... Isolation valve H, 117 ... Isolation valve I, 118 ... Sample transport unit 119: Observation and analysis chamber door 120: processing chamber door 121: charged particle source for observation and analysis 122: charged particle beam for observation and analysis 123: charged particle source for processing 124: charged particle beam for processing , 130: observation and analysis chamber leak valve, 131: processing chamber leak valve, 132: first vacuum gauge, 133: second vacuum gauge, 134: third vacuum gauge, 201: mass flow meter, 202: fourth vacuum gauge, 301 ... load lock chamber, 302 ... sample transport unit for load lock chamber, 303 ... isolation valve J, 304 ... isolation valve K, 305 ... fifth vacuum gauge, 306 ... load lock chamber leak valve, 307 ... load lock chamber door.

Claims (20)

  1. 加工用真空チャンバと、
    前記加工用真空チャンバの内部に配置され、加工用の試料が載置されユーセントリックチルトを有する加工用試料ステージと、
    前記加工用真空チャンバに接続された観察・分析用真空チャンバと、
    前記観察・分析用真空チャンバの内部に配置され、前記加工用真空チャンバで加工された試料が載置され、前記加工用試料ステージのユーセントリックチルトの高さと一致するようなユーセントリックチルトを有する観察・分析用試料ステージと、
    を有することを特徴とする荷電粒子線装置。
    A processing vacuum chamber,
    A processing sample stage disposed inside the processing vacuum chamber and having a processing sample mounted thereon and having a eucentric tilt;
    An observation / analysis vacuum chamber connected to the processing vacuum chamber;
    A sample placed inside the vacuum chamber for observation and analysis, placed on the sample processed in the vacuum chamber for processing, and having a u-centric tilt that matches the height of the ucentric tilt of the sample stage for processing・ A sample stage for analysis,
    A charged particle beam device characterized by having.
  2. 請求項1記載の荷電粒子線装置において、
    前記加工用真空チャンバでは、イオンミリングが行われることを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 1,
    A charged particle beam device characterized in that ion milling is performed in the processing vacuum chamber.
  3. 請求項1記載の荷電粒子線装置において、
    前記試料は、前記試料を保持する試料ホルダに載置されていることを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 1,
    The charged particle beam device, wherein the sample is placed on a sample holder for holding the sample.
  4. 請求項1記載の荷電粒子線装置において、
    前記観察・分析用試料ステージは、前記観察・分析用試料ステージのチルト軸に対する前記試料の高さ調整機能を備えていることを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 1,
    The charged particle beam device, wherein the observation and analysis sample stage has a function of adjusting the height of the sample with respect to a tilt axis of the observation and analysis sample stage.
  5. 請求項1記載の荷電粒子線装置において、
    前記加工用真空チャンバと前記観察・分析用真空チャンバとは、アイソレーションバルブを介して接続されていることを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 1,
    A charged particle beam device characterized in that the processing vacuum chamber and the observation / analysis vacuum chamber are connected via an isolation valve.
  6. 請求項5記載の荷電粒子線装置において、
    前記加工用真空チャンバ及び前記観察・分析用真空チャンバは、それぞれ真空排気口を有することを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 5,
    A charged particle beam apparatus, wherein the processing vacuum chamber and the observation / analysis vacuum chamber each have a vacuum exhaust port.
  7. 請求項1記載の荷電粒子線装置において、
    前記加工用真空チャンバは、試料の搬入や搬出を行うための第1扉を、
    前記観察・分析用真空チャンバは、試料の搬入や搬出を行うための第2扉を有することを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 1,
    The processing vacuum chamber has a first door for carrying in and out a sample,
    The charged particle beam device, wherein the vacuum chamber for observation and analysis has a second door for carrying in and out of a sample.
  8. 請求項1記載の荷電粒子線装置において、
    前記観察・分析用真空チャンバには、気体を前記観察・分析用真空チャンバの内部に導入するためのマスフローメーターが接続されていることを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 1,
    A charged particle beam device characterized in that a mass flow meter for introducing a gas into the inside of the vacuum chamber for observation and analysis is connected to the vacuum chamber for observation and analysis.
  9. 請求項8記載の荷電粒子線装置において、
    前記マスフローメーターは、前記観察・分析用真空チャンバの真空度を、加工中における前記加工用真空チャンバの真空度よりも低くするために用いられることを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 8,
    The charged particle beam device, wherein the mass flow meter is used to make the degree of vacuum of the vacuum chamber for observation and analysis lower than the degree of vacuum of the processing vacuum chamber during processing.
  10. 請求項1記載の荷電粒子線装置において、
    前記加工用真空チャンバは、試料を加工しない場合にはロードロック室として機能することを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 1,
    The charged particle beam apparatus, wherein the processing vacuum chamber functions as a load lock chamber when the sample is not processed.
  11. 請求項1記載の荷電粒子線装置において、
    前記観察・分析用真空チャンバには、前記加工用真空チャンバの他にロードロック室が接続されていることを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 1,
    In addition to the processing vacuum chamber, a load lock chamber is connected to the observation and analysis vacuum chamber.
  12. 第1真空排気口を備えたイオンミリング加工用真空チャンバと、
    前記加工用真空チャンバの内部に配置され、加工用試料が載置される加工用試料ステージと、
    前記加工用真空チャンバにアイソレーションバルブを介して接続され、第2真空排気口を備えた観察・分析用真空チャンバと、
    前記観察・分析用真空チャンバの内部に配置され、前記加工用真空チャンバで加工された試料が載置される観察・分析用試料ステージと、
    を有することを特徴とする荷電粒子線装置。
    A vacuum chamber for ion milling comprising a first evacuation port;
    A processing sample stage disposed inside the processing vacuum chamber and on which the processing sample is placed;
    An observation / analysis vacuum chamber connected to the processing vacuum chamber via an isolation valve and having a second vacuum exhaust port;
    An observation / analysis sample stage which is disposed inside the observation / analysis vacuum chamber and on which the sample processed by the processing vacuum chamber is placed;
    A charged particle beam device characterized by having.
  13. 請求項12記載の荷電粒子線装置において、
    前記加工用試料ステージは、ユーセントリックチルトを有し、
    前記観察・分析用試料ステージは、前記加工用試料ステージのユーセントリックチルトの高さと一致するようなユーセントリックチルトを有することを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 12,
    The processing sample stage has a eucentric tilt,
    The charged particle beam device according to claim 1, wherein the observation and analysis sample stage has a eucentric tilt that matches the height of the eucentric tilt of the processing sample stage.
  14. 請求項12記載の荷電粒子線装置において、
    前記試料は、前記試料を保持する試料ホルダに載置されていることを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 12,
    The charged particle beam device, wherein the sample is placed on a sample holder for holding the sample.
  15. 請求項12記載の荷電粒子線装置において、
    前記観察・分析用試料ステージは、前記観察・分析用試料ステージのチルト軸に対する前記試料の高さ調整機能を備えていることを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 12,
    The charged particle beam device, wherein the observation and analysis sample stage has a function of adjusting the height of the sample with respect to a tilt axis of the observation and analysis sample stage.
  16. 請求項12記載の荷電粒子線装置において、
    前記加工用真空チャンバは、試料の搬入や搬出を行うための第1扉を、
    前記観察・分析用真空チャンバは、試料の搬入や搬出を行うための第2扉を有することを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 12,
    The processing vacuum chamber has a first door for carrying in and out a sample,
    The charged particle beam device, wherein the vacuum chamber for observation and analysis has a second door for carrying in and out of a sample.
  17. 請求項12記載の荷電粒子線装置において、
    前記観察・分析用真空チャンバには、気体を前記観察・分析用真空チャンバの内部に導入するためのマスフローメーターが接続されていることを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 12,
    A charged particle beam device characterized in that a mass flow meter for introducing a gas into the inside of the vacuum chamber for observation and analysis is connected to the vacuum chamber for observation and analysis.
  18. 請求項17記載の荷電粒子線装置において、
    前記マスフローメーターは、前記観察・分析用真空チャンバの真空度を、加工中における前記加工用真空チャンバの真空度よりも低くするために用いられることを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 17,
    The charged particle beam device, wherein the mass flow meter is used to make the degree of vacuum of the vacuum chamber for observation and analysis lower than the degree of vacuum of the processing vacuum chamber during processing.
  19. 請求項12記載の荷電粒子線装置において、
    前記加工用真空チャンバは、試料を加工しない場合にはロードロック室として機能することを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 12,
    The charged particle beam apparatus, wherein the processing vacuum chamber functions as a load lock chamber when the sample is not processed.
  20. 請求項12記載の荷電粒子線装置において、
    前記観察・分析用真空チャンバには、前記加工用真空チャンバの他にロードロック室が接続されていることを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 12,
    In addition to the processing vacuum chamber, a load lock chamber is connected to the observation and analysis vacuum chamber.
PCT/JP2016/072263 2016-07-29 2016-07-29 Charged particle radiation device WO2018020649A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/072263 WO2018020649A1 (en) 2016-07-29 2016-07-29 Charged particle radiation device
JP2018530291A JP6807393B2 (en) 2016-07-29 2016-07-29 Charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072263 WO2018020649A1 (en) 2016-07-29 2016-07-29 Charged particle radiation device

Publications (1)

Publication Number Publication Date
WO2018020649A1 true WO2018020649A1 (en) 2018-02-01

Family

ID=61016501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072263 WO2018020649A1 (en) 2016-07-29 2016-07-29 Charged particle radiation device

Country Status (2)

Country Link
JP (1) JP6807393B2 (en)
WO (1) WO2018020649A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200815A (en) * 2017-05-26 2018-12-20 日本電子株式会社 Ion milling device and specimen holder
WO2022215212A1 (en) * 2021-04-07 2022-10-13 株式会社日立ハイテク Charged particle beam device, and sample analysis method
TWI800078B (en) * 2020-12-16 2023-04-21 日商日立全球先端科技股份有限公司 Vacuum treatment device and vacuum treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384866U (en) * 1986-11-21 1988-06-03
JPS6423864U (en) * 1987-07-31 1989-02-08
JPS6459750A (en) * 1987-08-28 1989-03-07 Mitsubishi Electric Corp Defect inspection and correction device for electron beam pattern
JP2011203266A (en) * 2011-05-27 2011-10-13 Sii Nanotechnology Inc Thin sample preparing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384866U (en) * 1986-11-21 1988-06-03
JPS6423864U (en) * 1987-07-31 1989-02-08
JPS6459750A (en) * 1987-08-28 1989-03-07 Mitsubishi Electric Corp Defect inspection and correction device for electron beam pattern
JP2011203266A (en) * 2011-05-27 2011-10-13 Sii Nanotechnology Inc Thin sample preparing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200815A (en) * 2017-05-26 2018-12-20 日本電子株式会社 Ion milling device and specimen holder
TWI800078B (en) * 2020-12-16 2023-04-21 日商日立全球先端科技股份有限公司 Vacuum treatment device and vacuum treatment method
WO2022215212A1 (en) * 2021-04-07 2022-10-13 株式会社日立ハイテク Charged particle beam device, and sample analysis method
KR20230150849A (en) 2021-04-07 2023-10-31 주식회사 히타치하이테크 Charged particle beam device and sample analysis method

Also Published As

Publication number Publication date
JPWO2018020649A1 (en) 2019-06-06
JP6807393B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
US6486478B1 (en) Gas cluster ion beam smoother apparatus
JP6329523B2 (en) Environmental cell for charged particle beam systems
US8610060B2 (en) Charged particle beam device
WO2018020649A1 (en) Charged particle radiation device
EP3432338B1 (en) Specimen preparation and inspection in a dual-beam charged particle microscope
US20120212583A1 (en) Charged Particle Radiation Apparatus, and Method for Displaying Three-Dimensional Information in Charged Particle Radiation Apparatus
US20130180843A1 (en) Directed multi-deflected ion beam milling of a work piece and determining and controlling extent thereof
WO2007066544A1 (en) Composite charged particle beam system
US20120071003A1 (en) Vacuum Processing Apparatus, Vacuum Processing Method, and Micro-Machining Apparatus
JP6400283B2 (en) Configurable charged particle device
US20230343546A1 (en) Device and method for preparing microscopic samples
CN107204268A (en) Focused Ion Beam Apparatus
JP2017037811A (en) Charged particle beam device
US8604445B2 (en) Method of evacuating sample holder, pumping system, and electron microscope
US8008635B2 (en) Method for sample preparation
US20170229284A1 (en) Ion beam device and sample observation method
EP2784797B1 (en) Sample introduction device and charged particle beam instrument
Marshall et al. A new surface science in situ transmission and reflection electron microscope
US10741360B2 (en) Method for producing a TEM sample
JP2014089936A (en) Electron beam microscopic device
Gnauck et al. New crossbeam inspection tool combining an ultrahigh-resolution field emission SEM and a high-resolution FIB
US20240161999A1 (en) Laser Thermal Epitaxy in a Charged Particle Microscope
WO2022215212A1 (en) Charged particle beam device, and sample analysis method
JP2017182923A (en) Specimen holder and focused ion beam device
JP2000340153A (en) Charged particle beam device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018530291

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910552

Country of ref document: EP

Kind code of ref document: A1