JP2020183643A - Reinforcement arrangement structure - Google Patents

Reinforcement arrangement structure Download PDF

Info

Publication number
JP2020183643A
JP2020183643A JP2019087687A JP2019087687A JP2020183643A JP 2020183643 A JP2020183643 A JP 2020183643A JP 2019087687 A JP2019087687 A JP 2019087687A JP 2019087687 A JP2019087687 A JP 2019087687A JP 2020183643 A JP2020183643 A JP 2020183643A
Authority
JP
Japan
Prior art keywords
core
column
arrangement structure
bar
bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019087687A
Other languages
Japanese (ja)
Inventor
弘幸 都祭
Hiroyuki Tosai
弘幸 都祭
真 濱田
Makoto Hamada
真 濱田
前川 利雄
Toshio Maekawa
利雄 前川
亜久里 野田
Aguri Noda
亜久里 野田
石渡 康弘
Yasuhiro Ishiwatari
康弘 石渡
茂雄 野畑
Shigeo Nobata
茂雄 野畑
久保田 雅春
Masaharu Kubota
雅春 久保田
隆英 阿部
Takahide Abe
隆英 阿部
啓太 坂本
Keita Sakamoto
啓太 坂本
延明 平田
Nobuaki Hirata
延明 平田
吉田 敏之
Toshiyuki Yoshida
敏之 吉田
浩二 長山
Koji Nagayama
浩二 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUYAMA UNIV
Tobishima Corp
Kumagai Gumi Co Ltd
Dai Nippon Construction
Haseko Corp
Tekken Corp
Original Assignee
FUKUYAMA UNIV
Tobishima Corp
Kumagai Gumi Co Ltd
Dai Nippon Construction
Haseko Corp
Hasegawa Komuten Co Ltd
Tekken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUYAMA UNIV, Tobishima Corp, Kumagai Gumi Co Ltd, Dai Nippon Construction, Haseko Corp, Hasegawa Komuten Co Ltd, Tekken Corp filed Critical FUKUYAMA UNIV
Priority to JP2019087687A priority Critical patent/JP2020183643A/en
Publication of JP2020183643A publication Critical patent/JP2020183643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

To provide a reinforcement arrangement structure capable of enhancing energy absorbing performance in a column beam connection part while enhancing bending proof stress.SOLUTION: A first reinforcement arrangement structure 100 mainly comprises four core reinforcing steel rods 111-114, four core pipes 121-124, and ten core confining steel 131, and is provided along the insides of a column 10 and a beam 20. The core reinforcing steel rods 111-114 extend in parallel from each other along the inside of the column 10 and the beam 20. Core confining steel 151 is attached so as to wind the core steel rods 111-114 located in the column 10 and restrict them. The core pipes 121-124 comprise four cylindrical steel pipes having an inner diameter which is identical or substantially identical to an outer diameter of the core reinforcing steel rods 111-114, for example, an inner diameter of 13 mm. In the inner circumference of the core pipes 121-124, the core reinforcing steel rods 111-114 are inserted from an opening opposing the column 10 so as to freely reciprocate. By the above, concrete is not adhered to the core reinforcing steel rods 111-114, and the core reinforcing steel rods 111-114 are not restricted by the beam 20 longitudinally.SELECTED DRAWING: Figure 1

Description

本発明は、柱と梁との接合部に設けられる配筋構造に関する。 The present invention relates to a bar arrangement structure provided at a joint between a column and a beam.

従来、梁端部に塑性ヒンジ部を設け、塑性ヒンジ部の主筋の断面積をヒンジが生じない部分と比べ相対的に小さく、また塑性ヒンジ長を部材長に比べかなり短くしている柱梁構造が知られている(特許文献1)。 Conventionally, a column-beam structure in which a plastic hinge portion is provided at the beam end, the cross-sectional area of the main bar of the plastic hinge portion is relatively small compared to the portion where the hinge does not occur, and the plastic hinge length is considerably shorter than the member length. Is known (Patent Document 1).

特開2017−150179号明細書JP-A-2017-150179

しかし、この柱梁構造では、断面積が縮小された部分において主筋が降伏するため、降伏時の曲げ耐力が、塑性ヒンジ部の断面積を相対的に小さくしない場合と比べ小さくなる。 However, in this column-beam structure, since the main bar yields at the portion where the cross-sectional area is reduced, the bending strength at the time of yielding is smaller than that when the cross-sectional area of the plastic hinge portion is not relatively small.

本発明は、曲げ耐力を確保しながら、柱梁接続部におけるエネルギー吸収性能を確保可能な配筋構造を提供することを目的とする。 An object of the present invention is to provide a bar arrangement structure capable of ensuring energy absorption performance at a beam-column connection portion while ensuring bending strength.

本発明による配筋構造は、柱に固定されるコア鉄筋と、梁に固定されるコア管とを備え、コア鉄筋は、コア管の内周に挿入されることを特徴とする。 The reinforcing bar arrangement structure according to the present invention includes a core reinforcing bar fixed to a column and a core pipe fixed to a beam, and the core reinforcing bar is inserted into the inner circumference of the core pipe.

コア管は、柱と梁との接合面から梁側に設けられることが好ましい。 The core pipe is preferably provided on the beam side from the joint surface between the column and the beam.

配筋構造は、柱と梁との接合面から梁側に向けて梁せいと略同じ長さに渡って設けられるヒンジ領域を備え、コア管は、柱と梁との接合面から、ヒンジ領域を超えて梁側に延びることが好ましい。 The bar arrangement structure has a hinge area provided from the joint surface between the column and the beam toward the beam side over approximately the same length as the beam, and the core pipe has a hinge area from the joint surface between the column and the beam. It is preferable to extend beyond the beam side.

梁は、長手方向に延びる複数の梁主筋と、複数の梁主筋に跨がって設けられる梁肋筋とを備え、複数の梁主筋と梁肋筋とは筒状に設けられ、コア鉄筋及びコア管は、筒状の内側に設けられることが好ましい。 The beam includes a plurality of beam main bars extending in the longitudinal direction and a beam rib bar provided straddling the plurality of beam main bars, and the plurality of beam main bars and the beam rib bar are provided in a tubular shape, and the core reinforcing bar and the beam rib are provided. The core tube is preferably provided inside the tubular shape.

重力方向に対する配筋構造の高さは、梁の梁せいの0.6倍以下であることが好ましい。 The height of the bar arrangement structure in the direction of gravity is preferably 0.6 times or less the beam height of the beam.

配筋構造は、複数のコア鉄筋と、複数のコア管と、複数のコア管に跨がって設けられる複数のコア拘束筋とを備えることが好ましい。 The bar arrangement structure preferably includes a plurality of core reinforcing bars, a plurality of core tubes, and a plurality of core restraint bars provided across the plurality of core tubes.

コア管は、柱に向けて開口してコア鉄筋が挿入される第1の開口と、第1の開口とは反対側の端部に開口する第2の開口とを備え、配筋構造は、第2の開口に取り付けられる定着部材をさらに備え、コア管の長手方向に直交する平面において、定着部材の大きさは、コア管の断面よりも大きいことが好ましい。 The core pipe has a first opening that opens toward the column and into which the core reinforcing bar is inserted, and a second opening that opens at the end opposite to the first opening. It is preferable that the size of the fixing member is larger than the cross section of the core tube in a plane orthogonal to the longitudinal direction of the core tube, further including a fixing member attached to the second opening.

本発明によれば、曲げ耐力を確保しながら、柱梁接続部におけるエネルギー吸収性能を確保可能な配筋構造を得る。 According to the present invention, it is possible to obtain a bar arrangement structure capable of ensuring energy absorption performance at a beam-column connection portion while ensuring bending strength.

第1の実施形態による配筋構造を含む柱と梁の接合部を概略的に示す正面図である。It is a front view which shows typically the joint part of the column and the beam including the bar arrangement structure by 1st Embodiment. 配筋構造を含む柱と梁の接合部を概略的に示す平面図である。It is a top view which shows roughly the joint part of a column and a beam including a bar arrangement structure. 図1及び2のIII−III線による配筋構造の断面図である。It is sectional drawing of the bar arrangement structure by line III-III of FIGS. 1 and 2. 第2の実施形態による配筋構造を含む柱と梁の接合部を概略的に示す正面図である。It is a front view which shows typically the joint part of the column and the beam including the bar arrangement structure by 2nd Embodiment. 図4のV−V線による配筋構造の断面図である。It is sectional drawing of the bar arrangement structure by VV line of FIG. 第3の実施形態による配筋構造を含む柱と梁の接合部を概略的に示す正面図である。It is a front view which shows typically the joint part of the column and the beam including the bar arrangement structure by 3rd Embodiment. 図6のVII−VII線による配筋構造の断面図である。It is sectional drawing of the bar arrangement structure by VII-VII line of FIG.

以下、本発明の第1の実施形態による第1の配筋構造100について図1から3を用いて説明する。なお、以下いずれの実施形態においても、各部材の寸法は、構造実験において用いられた1/2縮尺の試験体における値である。 Hereinafter, the first bar arrangement structure 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3. In any of the following embodiments, the dimensions of each member are values in the 1/2 scale test body used in the structural experiment.

まず、第1の配筋構造100が設けられる柱10及び梁20について説明する。柱10は、複数の柱主筋11及び柱帯筋12と、柱主筋11及び柱帯筋12に密着するコンクリートとから主に構成される。柱主筋11は鉛直方向に延びる(図1参照)とともに水平断面において矩形を成す(図2参照)ように並べられる。柱帯筋12は、水平断面において複数の柱主筋11全てを取り囲み、かつ巻回すように設けられ、鉛直方向に対して複数の柱帯筋12が互いに平行に並べられる。これにより、柱主筋11及び柱帯筋12は、鉛直方向に延びる角筒を成す。コンクリートは、柱主筋11及び柱帯筋12を内包しつつ、鉛直方向に延びる直方体を成す。 First, the columns 10 and beams 20 provided with the first bar arrangement structure 100 will be described. The column 10 is mainly composed of a plurality of column main bars 11 and column band bars 12, and concrete that is in close contact with the column main bars 11 and column band bars 12. The column main bars 11 extend in the vertical direction (see FIG. 1) and are arranged so as to form a rectangle in a horizontal cross section (see FIG. 2). The column band bars 12 are provided so as to surround and wind all of the plurality of column main bars 11 in the horizontal cross section, and the plurality of column band bars 12 are arranged parallel to each other in the vertical direction. As a result, the column main bar 11 and the column band bar 12 form a square tube extending in the vertical direction. The concrete forms a rectangular parallelepiped extending in the vertical direction while including the column main bar 11 and the column band bar 12.

梁20は、8本の鉄筋D13(SD490)から成る梁主筋21と、複数の鉄筋D6(SD295A)から成る梁肋筋29と、梁主筋21及び梁肋筋29に密着するコンクリート30とから主に構成される。梁主筋21は水平方向に延びるとともに長手方向に直交する断面において矩形を成すように並べられる。梁肋筋29は、梁主筋21の長手方向に直交する断面において、複数の梁主筋21全てを取り囲み、かつ巻回すように設けられ、かつ梁主筋21の長手方向に沿って複数の梁肋筋29が平行に並べられる。梁主筋21は、柱主筋11及び/又は柱帯筋12に固定される。これにより、梁主筋21及び梁肋筋29は、水平方向に延びる角筒を成す。コンクリート30は、梁主筋21及び梁肋筋29を内包しつつ、水平方向に延びる直方体を成す。なお、図2において、梁主筋21の一部は省略されている。 The beam 20 is mainly composed of a beam main bar 21 composed of eight reinforcing bars D13 (SD490), a beam rib bar 29 composed of a plurality of reinforcing bars D6 (SD295A), and concrete 30 in close contact with the beam main bar 21 and the beam rib bar 29. It is composed of. The beam main bars 21 are arranged so as to form a rectangle in a cross section extending in the horizontal direction and orthogonal to the longitudinal direction. The beam ribs 29 are provided so as to surround and wind all of the plurality of beam main bars 21 in a cross section orthogonal to the longitudinal direction of the beam main bars 21, and the beam ribs 29 are provided along the longitudinal direction of the beam main bars 21. 29s are arranged in parallel. The beam main bar 21 is fixed to the column main bar 11 and / or the column band bar 12. As a result, the beam main bar 21 and the beam rib bar 29 form a square tube extending in the horizontal direction. The concrete 30 forms a rectangular parallelepiped extending in the horizontal direction while including the beam main bar 21 and the beam rib bar 29. In addition, in FIG. 2, a part of the beam main bar 21 is omitted.

第1の配筋構造100は、4本のコア鉄筋111〜114と、4本のコア管121〜124と、10本のコア拘束筋131と、4つの定着部材141と、1本の柱内拘束筋151とを主に備え、柱10内から梁20内に渡って設置される。 The first reinforcing bar structure 100 includes four core reinforcing bars 111 to 114, four core pipes 121 to 124, ten core restraining bars 131, four fixing members 141, and one column. It is mainly provided with a restraint bar 151, and is installed from the inside of the column 10 to the inside of the beam 20.

コア鉄筋111〜114は、4本の鉄筋D13(SD490)から成り、柱10内部から梁20に渡って互いに平行に延びるとともに、コア鉄筋111〜114の長手方向に直交する断面において、長方形の角部分に各々置かれる。柱10内部に位置するコア鉄筋111〜114を巻回すように柱内拘束筋151が取り付けられ、これらを拘束する。また、柱10内部に位置するコア鉄筋111〜114の端部付近は、柱主筋11に板線等で固定されるととともに、コンクリートで柱10内に固定される。コア鉄筋111〜114が柱10の表面から柱10内部に延びる長さは、第1の配筋構造100に必要とされる強度に応じて適宜決定される。コア鉄筋111〜114は、梁主筋21及び梁肋筋29が形成する角筒の内側に設けられる。 The core reinforcing bars 111 to 114 are composed of four reinforcing bars D13 (SD490), extend parallel to each other from the inside of the column 10 to the beam 20, and have rectangular corners in a cross section orthogonal to the longitudinal direction of the core reinforcing bars 111 to 114. Placed in each part. In-column restraint bars 151 are attached so as to wind the core reinforcing bars 111 to 114 located inside the column 10, and restrain them. Further, the vicinity of the ends of the core reinforcing bars 111 to 114 located inside the column 10 is fixed to the column main bar 11 with a plate wire or the like, and is also fixed in the column 10 with concrete. The length of the core reinforcing bars 111 to 114 extending from the surface of the column 10 to the inside of the column 10 is appropriately determined according to the strength required for the first reinforcing bar structure 100. The core reinforcing bars 111 to 114 are provided inside the square cylinder formed by the beam main reinforcing bar 21 and the beam rib bar 29.

コア管121〜124は、コア鉄筋111〜114の外径と同じ又は略同じ内径、例えば13mmの内径を有する円筒型の鋼管4本から成る。コア管121〜124は、柱10と梁20との接合面Sから梁20内部に延びるとともに、コア管121〜124の長手方向に直交する断面において、長方形の角部分に各々置かれる。そして、コア管121〜124の中心軸は、コア鉄筋111〜114の中心軸と各々一致する。コア管121〜124の長さ、すなわち接合面Sから梁20内部に延びる長さMは、梁せいLよりも長く、例えば梁せいの1.2倍である。つまり、コア管121〜124は、柱10と梁20との接合面Sから、ヒンジ領域を超えて梁20側に延びる。ここで、接合面Sから梁せいLと同じ長さまでの領域をヒンジ領域という。また、コア管121〜124の長さは、梁20内部に位置するコア鉄筋111〜114の長さよりも長い。コア管121〜124、梁主筋21及び梁肋筋29が形成する角筒の内側に設けられる。 The core pipes 121 to 124 are composed of four cylindrical steel pipes having the same or substantially the same inner diameter as the outer diameter of the core reinforcing bars 111 to 114, for example, an inner diameter of 13 mm. The core pipes 121 to 124 extend from the joint surface S between the column 10 and the beam 20 to the inside of the beam 20, and are placed at the corners of the rectangle in the cross section orthogonal to the longitudinal direction of the core pipes 121 to 124. The central axes of the core tubes 121 to 124 coincide with the central axes of the core reinforcing bars 111 to 114, respectively. The length of the core pipes 121 to 124, that is, the length M extending from the joint surface S to the inside of the beam 20, is longer than the beam length L, for example, 1.2 times the beam length. That is, the core pipes 121 to 124 extend from the joint surface S between the column 10 and the beam 20 to the beam 20 side beyond the hinge region. Here, the region from the joint surface S to the same length as the beam beam L is referred to as a hinge region. Further, the length of the core pipes 121 to 124 is longer than the length of the core reinforcing bars 111 to 114 located inside the beam 20. It is provided inside the square tube formed by the core pipes 121 to 124, the beam main bar 21, and the beam rib bar 29.

定着部材141は、厚さ3mmを持つ25mm×25mmの矩形の鋼板である。コア管121〜124の梁20側の開口端(第2の開口)には、定着部材141が、例えば溶接等により取り付けられる。コア管121〜124の長手方向に直交する平面において、定着部材141の大きさは、コア管121〜124の断面よりも大きい。これにより、コア管121〜124の梁側開口が塞がれ、コンクリート打設時に、コア管121〜124内にコンクリートが進入しない。 The fixing member 141 is a 25 mm × 25 mm rectangular steel plate having a thickness of 3 mm. A fixing member 141 is attached to the opening end (second opening) of the core pipes 121 to 124 on the beam 20 side, for example, by welding or the like. In the plane orthogonal to the longitudinal direction of the core tubes 121 to 124, the size of the fixing member 141 is larger than the cross section of the core tubes 121 to 124. As a result, the beam-side openings of the core pipes 121 to 124 are closed, and concrete does not enter the core pipes 121 to 124 when the concrete is placed.

コア管121〜124の内周には、柱10に対向する開口(第1の開口)からコア鉄筋111〜114が進退自在に挿入される。これにより、コア鉄筋111〜114にコンクリートが付着せず、コア鉄筋111〜114は梁20の長手方向に拘束されない。柱10に対して梁20が変形すると、コア鉄筋111〜114はコア管121〜124内部で移動する。そのため、コア鉄筋111〜114は、ヒンジ領域における曲げ強度を十分に上昇させない。また、前述のように、コア管121〜124は、柱10と梁20との接合面Sから梁20内部に延び、柱10内に侵入しないため、ヒンジ領域における曲げ強度を十分に上昇させない。なお、コア管121〜124の柱側開口とコア鉄筋111〜114との隙間は、例えばブチルゴムや粘土等によって塞がれ、コンクリート打設時にコア管121〜124内にコンクリートが進入しない。 Core reinforcing bars 111 to 114 are freely inserted into the inner circumferences of the core pipes 121 to 124 from an opening (first opening) facing the column 10. As a result, concrete does not adhere to the core reinforcing bars 111 to 114, and the core reinforcing bars 111 to 114 are not constrained in the longitudinal direction of the beam 20. When the beam 20 is deformed with respect to the column 10, the core reinforcing bars 111 to 114 move inside the core pipes 121 to 124. Therefore, the core reinforcing bars 111 to 114 do not sufficiently increase the bending strength in the hinge region. Further, as described above, since the core pipes 121 to 124 extend from the joint surface S between the column 10 and the beam 20 to the inside of the beam 20 and do not enter the column 10, the bending strength in the hinge region is not sufficiently increased. The gap between the column-side opening of the core pipes 121 to 124 and the core reinforcing bars 111 to 114 is closed by, for example, butyl rubber or clay, and concrete does not enter the core pipes 121 to 124 when the concrete is placed.

4本のコア管121〜124全てに跨がって、かつ外周を巻回すようにして、複数のコア拘束筋131が取り付けられる。複数のコア拘束筋131は、複数の鉄筋D4(SD295A)から成り、コア管121〜124の長手方向に沿って平行に並べられる。ここで、例えばコア幅W1(図3参照)は梁幅W2の0.5倍、コアせいL1(図3参照)は梁せいL2の0.5倍である。なお、梁せいは、重力方向に対する梁20の高さであり、コアせいは、重力方向に対する第1の配筋構造100の高さである。 A plurality of core restraint bars 131 are attached so as to straddle all four core tubes 121 to 124 and wind around the outer circumference. The plurality of core restraint bars 131 are composed of a plurality of reinforcing bars D4 (SD295A) and are arranged in parallel along the longitudinal direction of the core tubes 121 to 124. Here, for example, the core width W1 (see FIG. 3) is 0.5 times the beam width W2, and the core width L1 (see FIG. 3) is 0.5 times the beam width L2. The beam beam is the height of the beam 20 in the direction of gravity, and the core beam is the height of the first bar arrangement structure 100 in the direction of gravity.

次に、第1の配筋構造100の機能について、片持ち梁形式とした梁に対して正負交番の繰り返し載荷を行った事例を用いて説明する。 Next, the function of the first bar arrangement structure 100 will be described with reference to an example in which positive and negative alternating loads are repeatedly loaded on a cantilever-type beam.

第1の配筋構造100を設けない場合、載荷によって柱10及び梁20が曲げ降伏すると、コンクリートが主筋及び肋筋から剥離するとともにひび割れて劣化する。その後に正負交番の載荷を繰り返すと、コンクリートの劣化に伴い、せん断変形やスリップ変形成分が増加する。これらせん断変形やスリップ変形成分の増加により、柱梁部材の強度が低下する。 If the first bar arrangement structure 100 is not provided, when the columns 10 and beams 20 bend and yield due to loading, the concrete is peeled from the main bars and the rib bars and cracked and deteriorated. After that, when the positive and negative alternating loads are repeated, the shear deformation and slip deformation components increase as the concrete deteriorates. Due to the increase in these shear deformation and slip deformation components, the strength of the column-beam member decreases.

他方、載荷によって柱10及び梁20が曲げ降伏し、コンクリートが主筋及び肋筋から剥離するとともにひび割れて劣化するときに、第1の配筋構造100が設けられていれば、コア鉄筋111〜114がせん断力を吸収するとともに、コア管121〜124内部で移動する。これにより、第1の配筋構造100が載荷によるエネルギーを吸収して、せん断ひび割れ強度及び曲げ・せん断剛性を高め、せん断変形やスリップ変形成分を抑制するため、ヒンジ領域の損傷を抑制できる。
また、第1の配筋構造100は、変形の初期段階からヒンジ領域におけるせん断ひび割れ強度及び曲げ・せん断剛性を高め、ヒンジ領域におけるエネルギーを変形の初期段階から吸収し、せん断力が上昇することを防ぐことができる。
On the other hand, when the column 10 and the beam 20 bend and yield due to the loading, and the concrete is peeled from the main bar and the rib bar and cracked and deteriorated, if the first reinforcing bar structure 100 is provided, the core reinforcing bars 111 to 114 Absorbs the shearing force and moves inside the core tubes 121-124. As a result, the first bar arrangement structure 100 absorbs the energy due to the load, increases the shear crack strength and the bending / shear rigidity, and suppresses shear deformation and slip deformation components, so that damage to the hinge region can be suppressed.
Further, the first bar arrangement structure 100 increases the shear crack strength and bending / shear rigidity in the hinge region from the initial stage of deformation, absorbs the energy in the hinge region from the initial stage of deformation, and increases the shear force. It can be prevented.

本実施形態によれば、ヒンジ領域における曲げ耐力を確保しながら、柱梁接続部におけるエネルギー吸収性能を確保できる。 According to this embodiment, it is possible to secure the energy absorption performance at the beam-column connection portion while ensuring the bending strength in the hinge region.

次に、本発明の第2の実施形態による第2の配筋構造200について図4及び5を用いて説明する。第1の実施形態と同様の構成については、同じ符号を付して説明を省略する。第2の配筋構造200は、コア鉄筋211〜214及びコア管221〜224の位置が第1の配筋構造100と異なる。 Next, the second bar arrangement structure 200 according to the second embodiment of the present invention will be described with reference to FIGS. 4 and 5. The same reference numerals are given to the same configurations as those of the first embodiment, and the description thereof will be omitted. In the second reinforcing bar structure 200, the positions of the core reinforcing bars 211 to 214 and the core pipes 221 to 224 are different from those of the first reinforcing bar arrangement structure 100.

第2の配筋構造200は、4本のコア鉄筋211〜214と、4本のコア管221〜224と、10本のコア拘束筋231と、4つの定着部材141と、1本の柱内拘束筋151とを主に備え、柱10内から梁主筋21及び梁肋筋29により形成される角筒内に渡って設置される。 The second reinforcing bar structure 200 includes four core reinforcing bars 211 to 214, four core pipes 221 to 224, ten core restraining bars 231 and four fixing members 141, and one column. It is mainly provided with a restraint bar 151, and is installed from the inside of the column 10 into the square tube formed by the beam main bar 21 and the beam rib bar 29.

コア鉄筋211〜214は、4本の鉄筋D13(SD490)から成り、柱10内部から梁20に渡って互いに平行に延びるとともに、コア鉄筋211〜214の長手方向に直交する断面において、正方形の角部分に各々置かれる。 The core reinforcing bars 211 to 214 are composed of four reinforcing bars D13 (SD490), extend parallel to each other from the inside of the column 10 to the beam 20, and have square corners in a cross section orthogonal to the longitudinal direction of the core reinforcing bars 211 to 214. Placed in each part.

コア管221〜224は、コア鉄筋211〜214の外径と同じ又は略同じ内径、例えば13mmの内径を有する円筒型の鋼管4本から成る。コア管221〜224は、柱10と梁20との接合面Sから梁20内部に延びるとともに、コア管221〜224の長手方向に直交する断面において、正方形の角部分に各々置かれる。そして、コア管221〜224の中心軸は、コア鉄筋211〜214の中心軸と各々一致する。ここで、例えばコア幅W1は梁幅W2の0.5倍、コアせいL1は梁せいL2の0.4倍である(図5参照)。その他の構成及び第2の配筋構造200の機能については、第1の配筋構造100と実質的に同じであるため、説明を省略する。 The core pipes 221 to 224 are composed of four cylindrical steel pipes having the same or substantially the same inner diameter as the outer diameter of the core reinforcing bars 211 to 214, for example, an inner diameter of 13 mm. The core pipes 221 to 224 extend inside the beam 20 from the joint surface S between the column 10 and the beam 20, and are placed at the corners of a square in a cross section orthogonal to the longitudinal direction of the core pipes 221 to 224. The central axes of the core tubes 221 to 224 coincide with the central axes of the core reinforcing bars 211 to 214, respectively. Here, for example, the core width W1 is 0.5 times the beam width W2, and the core width L1 is 0.4 times the beam width L2 (see FIG. 5). Since the other configurations and the functions of the second bar arrangement structure 200 are substantially the same as those of the first bar arrangement structure 100, the description thereof will be omitted.

本実施形態によれば、第1の実施形態と同様の効果を得る。 According to this embodiment, the same effect as that of the first embodiment is obtained.

次に、本発明の第3の実施形態による第3の配筋構造300について図6及び7を用いて説明する。第1の実施形態と同様の構成については、同じ符号を付して説明を省略する。第3の配筋構造300は、コア鉄筋311〜316及びコア管321〜326の構成が第1の配筋構造100と異なる。 Next, the third bar arrangement structure 300 according to the third embodiment of the present invention will be described with reference to FIGS. 6 and 7. The same reference numerals are given to the same configurations as those of the first embodiment, and the description thereof will be omitted. The third reinforcing bar structure 300 differs from the first reinforcing bar structure 100 in the configurations of the core reinforcing bars 31 to 316 and the core pipes 321 to 326.

第3の配筋構造300は、6本のコア鉄筋311〜316と、6本のコア管321〜226と、10本のコア拘束筋331と、4つの定着部材141と、1本の柱内拘束筋151とを主に備え、柱10内から梁主筋21及び梁肋筋29により形成される角筒内に渡って設置される。 The third reinforcing bar structure 300 includes six core reinforcing bars 31 to 316, six core pipes 321 to 226, ten core restraining bars 331, four fixing members 141, and one column. It is mainly provided with a restraint bar 151, and is installed from the inside of the column 10 into the square tube formed by the beam main bar 21 and the beam rib bar 29.

コア鉄筋311〜316は、6本の鉄筋D13(SD490)から成り、柱10内部から梁20に渡って互いに平行に延びるとともに、コア鉄筋311〜314の長手方向に直交する断面において、4本が長方形の角部分に各々置かれ、その他2本が長方形の長辺の中間に置かれる。すなわち、コア鉄筋312が、コア鉄筋311とコア鉄筋313との中間に置かれ、コア鉄筋315が、コア鉄筋314とコア鉄筋316との中間に置かれる。 The core reinforcing bars 31 to 316 are composed of six reinforcing bars D13 (SD490), and extend parallel to each other from the inside of the column 10 to the beam 20 and have four core reinforcing bars in a cross section orthogonal to the longitudinal direction of the core reinforcing bars 31 to 314. Each is placed at the corner of the rectangle, and the other two are placed in the middle of the long sides of the rectangle. That is, the core reinforcing bar 312 is placed between the core reinforcing bar 311 and the core reinforcing bar 313, and the core reinforcing bar 315 is placed between the core reinforcing bar 314 and the core reinforcing bar 316.

コア管321〜326は、コア鉄筋311〜316の外径と同じ又は略同じ内径、例えば13mmの内径を有する円筒型の鋼管4本から成る。コア管321〜326は、柱10と梁20との接合面Sから梁20内部に延びるとともに、コア管321〜326の長手方向に直交する断面において、そのうちの4本が長方形の角部分に各々置かれ、その他2本が長方形の長辺の中間に置かれる。すなわち、コア管322が、コア管321とコア管323との中間に置かれ、コア管325が、コア管324とコア管326との中間に置かれる。そして、コア管321〜326の中心軸は、コア鉄筋311〜316の中心軸と各々一致する。ここで、例えばコア幅W1は梁幅W2の0.5倍、コアせいL1は梁せいL2の0.5倍である(図7参照)。その他の構成及び第3の配筋構造300の機能については、第1の配筋構造100と実質的に同じであるため、説明を省略する。 The core pipes 321 to 326 are composed of four cylindrical steel pipes having the same or substantially the same inner diameter as the outer diameter of the core reinforcing bars 31 to 316, for example, an inner diameter of 13 mm. The core pipes 321 to 326 extend from the joint surface S between the column 10 and the beam 20 to the inside of the beam 20, and four of them are formed in rectangular corners in a cross section orthogonal to the longitudinal direction of the core pipes 321 to 326. Placed, the other two placed in the middle of the long side of the rectangle. That is, the core tube 322 is placed between the core tube 321 and the core tube 323, and the core tube 325 is placed between the core tube 324 and the core tube 326. The central axes of the core tubes 321 to 326 coincide with the central axes of the core reinforcing bars 31 to 316, respectively. Here, for example, the core width W1 is 0.5 times the beam width W2, and the core width L1 is 0.5 times the beam width L2 (see FIG. 7). Since the other configurations and the functions of the third bar arrangement structure 300 are substantially the same as those of the first bar arrangement structure 100, the description thereof will be omitted.

本実施形態によれば、第1及び第2の実施形態と同様の効果を得る。 According to this embodiment, the same effect as that of the first and second embodiments is obtained.

なお、配筋構造の大きさは、前述のものに限定されない。配筋構造の断面積が大きくなるにつれて、吸収エネルギーが大きくなる。また、コア主筋よりもコア拘束筋の鉄筋量が多くなるにつれて、吸収エネルギーが大きくなる。 The size of the bar arrangement structure is not limited to the above. As the cross-sectional area of the bar arrangement structure increases, the absorbed energy increases. In addition, the absorbed energy increases as the amount of reinforcing bars in the core restraining bars increases more than in the core main bars.

また、梁せいに対するコアせいの比は前述の値に限定されないが、約0.4倍から約1/√3倍程度が好ましい。 The ratio of the core to the beam is not limited to the above-mentioned value, but is preferably about 0.4 to about 1 / √3 times.

梁せい及びコアせいは、重力方向に対する高さでなく、柱10が延びる方向に対する長さであってもよい。 The beam and core may be the length in the direction in which the column 10 extends, not the height in the direction of gravity.

なお、柱10、梁20、及び配筋構造100〜300は矩形断面を有するものでなくてもよく、他の多角形形状の断面を有するものであってもよい。これら内部の主筋が角筒でなく、円筒や多角形筒を成すように配置されてもよい。また、柱10は鉛直方向に延びるものでなくてもよく鉛直方向に対して傾いたものであってもよい。梁20及び配筋構造100〜300は水平方向に延びるものでなくてもよく水平方向に対して傾いたものであってもよい。 The columns 10, the beams 20, and the bar arrangement structures 100 to 300 do not have to have a rectangular cross section, and may have other polygonal cross sections. These internal main bars may be arranged so as to form a cylinder or a polygonal cylinder instead of a square cylinder. Further, the pillar 10 does not have to extend in the vertical direction and may be inclined with respect to the vertical direction. The beam 20 and the bar arrangement structure 100 to 300 do not have to extend in the horizontal direction and may be inclined with respect to the horizontal direction.

なお、いずれの実施形態においても、鉄筋の種類及び数は例示であって、前述したものに限定されず、他の種類及び数を採ってもよい。 In any of the embodiments, the type and number of reinforcing bars are examples and are not limited to those described above, and other types and numbers may be adopted.

定着部材141は矩形の鋼板に限定されず、例えばブチルゴムや粘土等であってもよい。また、柱内拘束筋151は設けられなくてもよい。 The fixing member 141 is not limited to a rectangular steel plate, and may be, for example, butyl rubber, clay, or the like. Further, the column restraint bar 151 may not be provided.

なお、本明細書および図中に示した各部材の大きさは例示であって、これらの大きさに限定されない。また、各部材の素材は例示であって、これらの素材に限定されない。 The size of each member shown in the present specification and the drawings is an example, and is not limited to these sizes. Moreover, the material of each member is an example and is not limited to these materials.

ここに付随する図面を参照して本発明の実施形態が説明されたが、記載された発明の範囲と精神から逸脱することなく、変形が各部の構造と関係に施されることは、当業者にとって自明である。 Although embodiments of the present invention have been described with reference to the accompanying drawings, those skilled in the art will appreciate that the modifications are made in relation to the structure of each part without departing from the scope and spirit of the described invention. It is self-evident to.

10 柱
11 柱主筋
12 柱帯筋
20 梁
21 梁主筋
29 梁肋筋
30 コンクリート
100 第1の配筋構造
111 コア鉄筋
112 コア鉄筋
113 コア鉄筋
114 コア鉄筋
121 コア管
122 コア管
123 コア管
124 コア管
131 コア拘束筋
141 定着部材
151 柱内拘束筋
200 第2の配筋構造
300 第3の配筋構造
10 Column 11 Column Main Rebar 12 Column Band Reinforcing Bar 20 Beam 21 Beam Main Reinforcing Bar 29 Beam Reinforcing Bar 30 Concrete 100 First Reinforcing Bar Structure 111 Core Reinforcing Bar 112 Core Reinforcing Bar 113 Core Reinforcing Bar 114 Core Reinforcing Bar 121 Core Pipe 122 Core Pipe 123 Core Pipe 124 Core Tube 131 Core restraint bar 141 Fixing member 151 In-column restraint bar 200 Second bar arrangement structure 300 Third bar arrangement structure

Claims (7)

柱に固定されるコア鉄筋と、
梁に固定されるコア管とを備え、
前記コア鉄筋は、前記コア管の内周に挿入される配筋構造。
Core reinforcing bars fixed to columns and
With a core tube fixed to the beam,
The core reinforcing bar has a reinforcing bar arrangement structure inserted into the inner circumference of the core tube.
前記コア管は、前記柱と前記梁との接合面から前記梁側に設けられる請求項1に記載の配筋構造。 The reinforcing bar arrangement structure according to claim 1, wherein the core pipe is provided on the beam side from a joint surface between the column and the beam. 前記柱と前記梁との接合面から前記梁側に向けて梁せいと略同じ長さに渡って設けられるヒンジ領域を備え、
前記コア管は、前記柱と前記梁との接合面から、前記ヒンジ領域を超えて前記梁側に延びる請求項1又は2に記載の配筋構造。
It is provided with a hinge region provided from the joint surface between the column and the beam toward the beam side in a length substantially equal to that of the beam.
The bar arrangement structure according to claim 1 or 2, wherein the core pipe extends from a joint surface between the column and the beam to the beam side beyond the hinge region.
前記梁は、長手方向に延びる複数の梁主筋と、前記複数の梁主筋に跨がって設けられる梁肋筋とを備え、
前記複数の梁主筋と前記梁肋筋とは筒状に設けられ、
前記コア鉄筋及び前記コア管は、前記筒状の内側に設けられる請求項1から3のいずれかに記載の配筋構造。
The beam includes a plurality of beam main bars extending in the longitudinal direction and a beam rib bar provided straddling the plurality of beam main bars.
The plurality of beam main bars and the beam rib bars are provided in a tubular shape.
The reinforcing bar arrangement structure according to any one of claims 1 to 3, wherein the core reinforcing bar and the core tube are provided inside the tubular shape.
重力方向に対する前記配筋構造の高さは、前記梁の梁せいの0.6倍以下である
請求項1から4のいずれかに記載の配筋構造。
The bar arrangement structure according to any one of claims 1 to 4, wherein the height of the bar arrangement structure with respect to the direction of gravity is 0.6 times or less the beam length of the beam.
前記配筋構造は、複数の前記コア鉄筋と、複数の前記コア管と、前記複数のコア管に跨がって設けられる複数のコア拘束筋とを備える請求項1から5のいずれかに記載の配筋構造。 The method according to any one of claims 1 to 5, wherein the bar arrangement structure includes a plurality of the core reinforcing bars, a plurality of the core tubes, and a plurality of core restraint bars provided across the plurality of core tubes. Reinforcing structure. 前記コア管は、前記柱に向けて開口して前記コア鉄筋が挿入される第1の開口と、前記第1の開口とは反対側の端部に開口する第2の開口とを備え、
前記配筋構造は、前記第2の開口に取り付けられる定着部材をさらに備え、
前記コア管の長手方向に直交する平面において、前記定着部材の大きさは、前記コア管の断面よりも大きい請求項1から6のいずれかに記載の配筋構造。
The core tube includes a first opening that opens toward the column and into which the core reinforcing bar is inserted, and a second opening that opens at an end opposite to the first opening.
The bar arrangement structure further includes a fixing member attached to the second opening.
The bar arrangement structure according to any one of claims 1 to 6, wherein the size of the fixing member is larger than the cross section of the core tube in a plane orthogonal to the longitudinal direction of the core tube.
JP2019087687A 2019-05-07 2019-05-07 Reinforcement arrangement structure Pending JP2020183643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019087687A JP2020183643A (en) 2019-05-07 2019-05-07 Reinforcement arrangement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019087687A JP2020183643A (en) 2019-05-07 2019-05-07 Reinforcement arrangement structure

Publications (1)

Publication Number Publication Date
JP2020183643A true JP2020183643A (en) 2020-11-12

Family

ID=73044358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019087687A Pending JP2020183643A (en) 2019-05-07 2019-05-07 Reinforcement arrangement structure

Country Status (1)

Country Link
JP (1) JP2020183643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445624A (en) * 2021-06-16 2021-09-28 温州神光建设工程有限公司 Assembled frame concrete building connection node structure
CN115288289A (en) * 2022-07-16 2022-11-04 中信建筑设计研究总院有限公司 Large eccentric beam column reinforcing node without armpit and design method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020457A (en) * 1999-07-02 2001-01-23 Kajima Corp End-section anchorage structure of pc steel material and anchorage device
JP2011202471A (en) * 2010-03-26 2011-10-13 Takenaka Komuten Co Ltd Structural member
JP2012207413A (en) * 2011-03-29 2012-10-25 Takenaka Komuten Co Ltd Joint structure for reinforced concrete beam or colum
JP2014015832A (en) * 2013-07-31 2014-01-30 Tomoe Corp End part joint structure of steel pipe member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020457A (en) * 1999-07-02 2001-01-23 Kajima Corp End-section anchorage structure of pc steel material and anchorage device
JP2011202471A (en) * 2010-03-26 2011-10-13 Takenaka Komuten Co Ltd Structural member
JP2012207413A (en) * 2011-03-29 2012-10-25 Takenaka Komuten Co Ltd Joint structure for reinforced concrete beam or colum
JP2014015832A (en) * 2013-07-31 2014-01-30 Tomoe Corp End part joint structure of steel pipe member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445624A (en) * 2021-06-16 2021-09-28 温州神光建设工程有限公司 Assembled frame concrete building connection node structure
CN115288289A (en) * 2022-07-16 2022-11-04 中信建筑设计研究总院有限公司 Large eccentric beam column reinforcing node without armpit and design method

Similar Documents

Publication Publication Date Title
JP2005351078A (en) Construction method of steel frame reinforced concrete column
WO2017037833A1 (en) Buckling-restrained brace and manufacturing method for buckling-restrained braces
JP2020183643A (en) Reinforcement arrangement structure
CN107476459A (en) Buckling restrained brace, building and assemble method containing yi word pattern dissipative cell
JP2006275100A (en) Metallic hollow pipe damper
JP6941467B2 (en) Damper and how to make the damper
JP4819605B2 (en) Precast prestressed concrete beams using tendons with different strength at the end and center
JP5290097B2 (en) Brace type damping damper
JP6204027B2 (en) Reinforced structure
KR101294289B1 (en) Buckling restrained brace of dry type, and manufacturing method for the same
JP6568724B2 (en) Concrete structures
JP5525475B2 (en) Reinforcement structure of existing reinforced concrete wall and reinforcement method of existing reinforced concrete wall
JP6754552B2 (en) Column beam frame
JP6677480B2 (en) Hysteretic damper and vibration control structure of building
JP3745752B2 (en) Steel pipe column structure
JP6936033B2 (en) Floor structure opening width setting method and floor structure
JPH10204994A (en) Steel pipe concrete member
JP6513754B2 (en) Reinforcement structure of reinforced concrete wall column
JP6838877B2 (en) Buckling restraint brace damper
JP6895328B2 (en) Building structure
JP7067870B2 (en) Floor structure
JP3988884B2 (en) Reinforced concrete members
JP7262518B2 (en) Stud type steel damper
GB2269617A (en) Cage for reinforcing a concrete pile
JP6720702B2 (en) Energy absorbing device, earthquake resistant wall and seismic isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230725