JP2020183085A - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
JP2020183085A
JP2020183085A JP2019089122A JP2019089122A JP2020183085A JP 2020183085 A JP2020183085 A JP 2020183085A JP 2019089122 A JP2019089122 A JP 2019089122A JP 2019089122 A JP2019089122 A JP 2019089122A JP 2020183085 A JP2020183085 A JP 2020183085A
Authority
JP
Japan
Prior art keywords
copper
laminate according
laminate
base material
resin base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019089122A
Other languages
Japanese (ja)
Other versions
JP7328671B2 (en
Inventor
直貴 小畠
Naoki Obata
直貴 小畠
牧子 佐藤
Makiko Sato
牧子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2019089122A priority Critical patent/JP7328671B2/en
Priority to TW109109836A priority patent/TW202043034A/en
Priority to KR1020217026954A priority patent/KR20220007038A/en
Priority to PCT/JP2020/018582 priority patent/WO2020226162A1/en
Priority to CN202080027107.9A priority patent/CN113677519A/en
Publication of JP2020183085A publication Critical patent/JP2020183085A/en
Application granted granted Critical
Publication of JP7328671B2 publication Critical patent/JP7328671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • B32B2327/18PTFE, i.e. polytetrafluoroethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2371/00Polyethers, e.g. PEEK, i.e. polyether-etherketone; PEK, i.e. polyetherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

To provide a new laminate of a composite copper member and a resin substrate.MEANS FOR SOLVING THE PROBLEM: In a laminate in which a resin substrate having a dielectric constant of 3.8 or less is layered on a surface of a copper member having a plurality of fine projections on at least a part of the surface, a fractal dimension of the layered surface of the copper member and the resin substrate is 1.25 or more.SELECTED DRAWING: None

Description

本発明は積層体に関する。 The present invention relates to a laminate.

プリント配線板に使用される銅箔は、絶縁性樹脂基材との密着性が要求される。この密着性を向上させるため、エッチングなどで銅箔の表面を粗面化処理し、いわゆるアンカー効果による機械的接着力を上げる方法が用いられてきた。しかし、プリント配線板の高密度化や高周波帯域での伝送損失の観点から、銅箔表面の平坦化が要求されるようになってきた。それらの相反する要求を満たすため、酸化工程と還元工程を行うなどの銅表面処理方法が開発されている(特許文献1)。それによると、銅箔をプリコンディショニングし、酸化剤を含有する薬液に浸漬することで銅箔表面を酸化させて酸化銅の凹凸を形成した後、還元剤を含有する薬液に浸漬し、酸化銅を還元することで表面の凹凸を調整して表面の粗さを整える。さらに、酸化・還元を利用した銅箔の処理における密着性の改善方法として、酸化工程において表面活性分子を添加する方法(特許文献2)や、還元工程の後にアミノチアゾール系化合物等を用いて銅箔の表面に保護皮膜を形成する方法(特許文献3)が開発されている。また、絶縁基板上の銅導体パターンの表面を粗化し、酸化銅層を形成した表面上に、離散的に分布する金属粒子を有するめっき膜を形成する方法(特許文献4)が開発されている。 The copper foil used for the printed wiring board is required to have adhesion to the insulating resin base material. In order to improve this adhesiveness, a method has been used in which the surface of the copper foil is roughened by etching or the like to increase the mechanical adhesive force by the so-called anchor effect. However, from the viewpoint of increasing the density of printed wiring boards and transmission loss in the high frequency band, flattening of the copper foil surface has been required. In order to satisfy these conflicting requirements, copper surface treatment methods such as performing an oxidation step and a reduction step have been developed (Patent Document 1). According to the report, the copper foil is pre-conditioned and immersed in a chemical solution containing an oxidizing agent to oxidize the surface of the copper foil to form irregularities of copper oxide, and then immersed in a chemical solution containing a reducing agent to obtain copper oxide. By reducing the amount of water, the unevenness of the surface is adjusted and the roughness of the surface is adjusted. Further, as a method for improving the adhesion in the treatment of copper foil using oxidation / reduction, a method of adding a surface active molecule in the oxidation step (Patent Document 2) or copper using an aminothiazole compound or the like after the reduction step. A method of forming a protective film on the surface of a foil (Patent Document 3) has been developed. Further, a method has been developed in which the surface of a copper conductor pattern on an insulating substrate is roughened to form a plating film having metal particles dispersedly distributed on the surface on which a copper oxide layer is formed (Patent Document 4). ..

一方、樹脂と金属間の接着には、機械的接着力以外に、1)樹脂と金属との間の分子間力に起因する物理的結合力や2)樹脂の官能基と金属の共有結合などに起因する化学的結合力も関与しているとされている。高周波回路用の絶縁性樹脂は、低誘電率、低誘電正接化のため、OH基(水酸基)の割合が減少しているが、樹脂のOH基は金属との結合に関与するため、銅箔との化学的結合力が弱まってしまう(特許文献5)。従って、高周波回路用の絶縁性樹脂と銅箔の接着には、より強い機械的接着力が求められる。 On the other hand, in the adhesion between resin and metal, in addition to mechanical adhesive force, 1) physical bond force due to intermolecular force between resin and metal, 2) covalent bond between functional group of resin and metal, etc. It is said that the chemical binding force caused by the above is also involved. Insulating resins for high-frequency circuits have a reduced proportion of OH groups (hydroxyl groups) due to their low dielectric constant and low dielectric loss tangent, but the OH groups of the resin are involved in bonding with metals, so copper foil The chemical bonding force with and is weakened (Patent Document 5). Therefore, stronger mechanical adhesive force is required for adhesion between the insulating resin for high frequency circuits and copper foil.

国際公開2014/126193号公報International Publication No. 2014/126193 特表2013−534054号公報Special Table 2013-534054 特開平8−97559号公報Japanese Unexamined Patent Publication No. 8-97559 特開2000−151096号公報Japanese Unexamined Patent Publication No. 2000-151096 国際公開2017/150043号公報International Publication No. 2017/150043

本発明は、複合銅部材と樹脂基材との新規な積層体を提供することを目的とする。 An object of the present invention is to provide a novel laminate of a composite copper member and a resin base material.

本願発明者らは鋭意研究の結果、ピール強度及び耐熱性にすぐれた、複合銅部材と樹脂基材との新規な積層体を作製することに成功した。本発明は以下の実施態様を含む:
[1]少なくとも一部の表面に複数の微細な凸部を有する銅部材の、前記表面上に、誘電率が3.8以下の樹脂基材が積層されている、積層体であって、
前記銅部材と前記樹脂基材との積層面のフラクタル次元が1.25以上である、積層体

[2]前記積層面のフラクタル次元が1.4より大きい、[1]に記載の積層体。
[3]前記銅部材の少なくとも一部の表面が酸化銅層を含む、[1]または[2]に記載
の積層体。
[4]前記銅部材の少なくとも一部の表面に銅以外の金属層が形成されており、前記銅以外の金属が、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、AuおよびPtからなる群から選ばれた少なくとも一種の金属である、[1]または[2]に記載の積層体。
[5]前記銅以外の金属層の垂直方向の平均の厚さが10nm以上150nm以下である、[4]に記載の積層体。
[6]前記積層体の垂直断面において、前記凸部の高さが平均50nm以上500nm以下である、[1]〜[5]のいずれか一項に記載の積層体。
[7]前記積層体の垂直断面において、断面幅3.78μmあたり前記凸部を平均30個以上有する、[6]に記載の積層体。
[8]前記樹脂基材は、ポリフェニレンエーテル、ポリテトラフルオロエチレン、またはパラヒドロキシ安息香酸を含む液晶ポリマーを含有する、[1]〜[7]のいずれか一項に記載の積層体。
[9]前記樹脂基材と前記複合銅部材とを剥離すると、剥離モードが凝集破壊であることを特徴とする[8]に記載の積層体。
[10]耐熱試験において劣化率が50%以下であることを特徴とする、[9]に記載の積層体。
[11]1GHz以上の高周波回路用である、[1]〜[10]のいずれか一項に記載の積層体。
[12][1]〜[11]のいずれか一項に記載の積層体を使用して作製された電子部品。
As a result of diligent research, the inventors of the present application have succeeded in producing a new laminate of a composite copper member and a resin base material, which has excellent peel strength and heat resistance. The present invention includes the following embodiments:
[1] A laminated body of a copper member having a plurality of fine protrusions on at least a part of the surface, wherein a resin base material having a dielectric constant of 3.8 or less is laminated on the surface.
A laminate having a fractal dimension of 1.25 or more on the laminated surface of the copper member and the resin base material.
[2] The laminate according to [1], wherein the fractal dimension of the laminate surface is larger than 1.4.
[3] The laminate according to [1] or [2], wherein at least a part of the surface of the copper member contains a copper oxide layer.
[4] A metal layer other than copper is formed on the surface of at least a part of the copper member, and the metal other than copper is Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni. The laminate according to [1] or [2], which is at least one metal selected from the group consisting of Pd, Au and Pt.
[5] The laminate according to [4], wherein the average thickness of the metal layer other than copper in the vertical direction is 10 nm or more and 150 nm or less.
[6] The laminate according to any one of [1] to [5], wherein the height of the convex portion is 50 nm or more and 500 nm or less on average in the vertical cross section of the laminate.
[7] The laminate according to [6], which has an average of 30 or more convex portions per 3.78 μm cross-sectional width in the vertical cross section of the laminate.
[8] The laminate according to any one of [1] to [7], wherein the resin base material contains a liquid crystal polymer containing polyphenylene ether, polytetrafluoroethylene, or parahydroxybenzoic acid.
[9] The laminate according to [8], wherein when the resin base material and the composite copper member are peeled off, the peeling mode is cohesive failure.
[10] The laminate according to [9], wherein the deterioration rate is 50% or less in a heat resistance test.
[11] The laminate according to any one of [1] to [10], which is for a high frequency circuit of 1 GHz or more.
[12] An electronic component manufactured by using the laminate according to any one of [1] to [11].

本発明の一実施例における、SEM断面解析画像(フラクタル次元)を示す図である。It is a figure which shows the SEM cross-section analysis image (fractal dimension) in one Example of this invention. 本発明において、凸部形状を説明するための模式図である。It is a schematic diagram for demonstrating the convex shape in this invention. 本発明の一実施例における、SEM断面解析画像における積層面の凸部の形状を示す図である。It is a figure which shows the shape of the convex part of the laminated surface in the SEM cross-sectional analysis image in one Example of this invention. 本発明の一実施例における、ピール試験後の試験片の外観を示す図である。It is a figure which shows the appearance of the test piece after a peel test in one Example of this invention. 本発明の一実施例における、伝送損失測定結果を示す図である。It is a figure which shows the transmission loss measurement result in one Example of this invention.

以下、本発明の好ましい実施の形態につき、添付図面を用いて詳細に説明するが、必ずしもこれに限定するわけではない。なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not necessarily limited thereto. The object, feature, advantage, and idea thereof of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. The embodiments and specific examples of the invention described below show preferred embodiments of the present invention and are shown for illustration or explanation purposes, and the present invention is described in them. It is not limited. It will be apparent to those skilled in the art that various modifications and modifications can be made based on the description of this specification within the intent and scope of the present invention disclosed herein.

==積層体==
本発明の一態様は、表面に複数の微細な凸部を有する銅部材上に、誘電率が3.8以下の樹脂基材が積層されている、積層体である。
銅部材と樹脂基材は、密着していることが好ましい。例えば、集束イオンビーム(FIB)によって作成された積層体の断面を観察した、走査型電子顕微鏡(SEM)断面画像(倍率30000倍、解像度1024x768)において、銅部材と樹脂基材の層との間に空隙が検出できない程度であることが好ましい。
== Laminated body ==
One aspect of the present invention is a laminated body in which a resin base material having a dielectric constant of 3.8 or less is laminated on a copper member having a plurality of fine protrusions on the surface.
It is preferable that the copper member and the resin base material are in close contact with each other. For example, in a scanning electron microscope (SEM) cross-sectional image (magnification 30000 times, resolution 1024x768) in which a cross section of a laminate created by a focused ion beam (FIB) is observed, between a copper member and a layer of a resin substrate. It is preferable that no voids can be detected.

銅部材には、電解銅箔や圧延銅箔等の銅箔、銅線、銅板、銅製リードフレームが含まれるが、これに限定されない。銅部材は、Cuが50質量%以上含有している部材、すなわち構造の一部となる材料のことであり、銅合金(すなわち白銅、黄銅、アルミニウム青銅等)や銅で被膜された材料(例えば銅めっきされた鉄)を含んでよいが、Cu純度が99.9質量%以上の純銅からなる材料が好ましく、タフピッチ銅、脱酸銅、無酸素銅で形成されていることがより好ましく、含有酸素量が0.001質量%〜0.0005質量%の無酸素銅で形成されていることがさらに好ましい。 Copper members include, but are not limited to, copper foils such as electrolytic copper foils and rolled copper foils, copper wires, copper plates, and copper lead frames. A copper member is a member containing 50% by mass or more of Cu, that is, a material that becomes a part of a structure, and is a copper alloy (that is, white copper, brass, aluminum bronze, etc.) or a material coated with copper (for example, copper). Copper-plated iron) may be included, but a material made of pure copper having a Cu purity of 99.9% by mass or more is preferable, and it is more preferably formed of tough pitch copper, deoxidized copper, and oxygen-free copper. It is more preferably formed of anoxic copper having an oxygen content of 0.001% by mass to 0.0005% by mass.

樹脂基材としては、特に限定しないが、熱可塑性樹脂を含んでも、熱硬化性樹脂を含んでもよく、具体的には、ポリエチレン(PE)、ポリプロピレン (PP),ポリスチレン (PS),ポリ塩化ビニル (PVC) 、ポリ酢酸ビニル (PVAc)、ポリアミド (PA) 、ポリアセタール (POM)、ポリカーボネート (PC)、変性ポリフェニレンエーテル(m-PPE)、ポリスチレン系重合体を含むポリフェニレンエーテル、トリアリルシアヌレートの重合体や共重合体、フェノール類付加ブタジエン重合体、ジアリルフタレート、ジビニルベンゼン、多官能性メタクリロイル、不飽和ポリエステル、ポリブタジエン、スチレン-ブタジエン、スチレン-ブタジエン・スチレン-ブタジエンの架橋ポリマー、ビスマレイミドトリアジン(BT)、
ポリエチレンテレフタレート (PET)、グラスファイバー強化ポリエチレンテレフタレート
(GF-PET)、ポリブチレンテレフタレート (PBT)、環状ポリオレフィン (COP)、ポリフェ
ニレンスルファイド (PPS)、ポリテトラフルオロエチレン(PTFE)、ポリサルフォン (PSF)、ポリエーテルサルフォン (PES)、非晶ポリアリレート (PAR)、液晶ポリマー (LCP)(例えば、パラヒドロキシ安息香酸とエチレンテレフタレートを含む重縮合体;パラヒドロキシ安息香酸、フェノールおよびフタル酸の重縮合体;パラヒドロキシ安息香酸と2,6-ヒドロキシナフトエ酸の重縮合体等)、ポリエーテルエーテルケトン (PEEK)、熱可塑性ポ
リイミド (PI)、ポリアミドイミド (PAI)及びこれらの混合物を含む基材が挙げられる。
樹脂基材はさらに無機フィラーやガラス繊維を含んでいてもよい。
このような樹脂基材の誘電率は公知の方法で測定することができ、例えば、IPC TM(The Institute for Interconnecting and Packaging Electronic Circuits Test Method)−650 2.5.5.5やIPC TM−650 2.5.5.9といった規格に従って測定することができる。樹脂基材の一例としては、ポリフェニレンエーテル(PPE)20〜70重量%、シリカ0〜20重量%、ガラス繊維30〜70%からなるMEGTRON6(パナソニック社製;誘電率3.71(1GHz))が挙げられる。
The resin base material is not particularly limited, but may contain a thermoplastic resin or a thermosetting resin, and specifically, polyethylene (PE), polypropylene (PP), polystyrene (PS), or polyvinyl chloride. Weight of (PVC), polyvinyl acetate (PVAc), polyamide (PA), polyacetal (POM), polycarbonate (PC), modified polyphenylene ether (m-PPE), polyphenylene ether containing polystyrene polymer, triallyl cyanurate Combined or copolymer, phenol-added butadiene polymer, diallyl phthalate, divinylbenzene, polyfunctional methacryloyl, unsaturated polyester, polypropylene, styrene-butadiene, styrene-butadiene / styrene-butadiene crosslinked polymer, bismaleimide triazine (BT) ),
Polyethylene terephthalate (PET), fiberglass reinforced polyethylene terephthalate
(GF-PET), Polybutylene terephthalate (PBT), Cyclic polyolefin (COP), Polyphenylene sulfide (PPS), Polytetrafluoroethylene (PTFE), Polysulfone (PSF), Polyethersulfone (PES), Acrylic poly Arilate (PAR), liquid crystal polymer (LCP) (eg, polycondensate containing parahydroxybenzoic acid and ethylene terephthalate; polycondensate of parahydroxybenzoic acid, phenol and phthalic acid; parahydroxybenzoic acid and 2,6-hydroxy (Polycondensate of naphthoic acid, etc.), polyetheretherketone (PEEK), thermoplastic polyimide (PI), polyamideimide (PAI) and a substrate containing a mixture thereof can be mentioned.
The resin base material may further contain an inorganic filler or glass fiber.
The permittivity of such a resin base material can be measured by a known method, for example, IPC TM (The Institute for Interconnecting and Packaging Electronic Circuits Test Method) -650 2.5.5.5 or IPC TM-650. It can be measured according to a standard such as 2.5.5.9. As an example of the resin base material, MEGTRON6 (manufactured by Panasonic Corporation; dielectric constant 3.71 (1 GHz)) composed of 20 to 70% by weight of polyphenylene ether (PPE), 0 to 20% by weight of silica, and 30 to 70% of glass fiber is used. Can be mentioned.

樹脂基材と金属層の積層面が複数の微細な凸部を有していることが好ましい。凸部の形状は、フラクタル次元や凸部先端部の内接円半径として規定することができる。フラクタル次元は、走査型電子顕微鏡(SEM)を用い、集束イオンビーム(FIB)によって作成された断面画像において積層面が現れている曲線のフラクタル次元として、算出することができる。例えば、フラクタル次元はボックスカウンティング法を用いて算出することができるが、算出方法はこれに限定されない。凸部先端部の内接円半径は、走査型電子顕微鏡(SEM)を用い、収束イオンビーム(FIB)によって作成された断面画像において、凸部の計測を行うことで算出することができる。 It is preferable that the laminated surface of the resin base material and the metal layer has a plurality of fine convex portions. The shape of the convex portion can be defined as the fractal dimension or the radius of the inscribed circle at the tip of the convex portion. The fractal dimension can be calculated as the fractal dimension of the curve in which the laminated surface appears in the cross-sectional image created by the focused ion beam (FIB) using a scanning electron microscope (SEM). For example, the fractal dimension can be calculated using the box counting method, but the calculation method is not limited to this. The inscribed circle radius of the tip of the convex portion can be calculated by measuring the convex portion in the cross-sectional image created by the focused ion beam (FIB) using a scanning electron microscope (SEM).

フラクタル次元は、形の複雑さ、表面の凹凸の度合いなどを表す指標であって、フラクタル次元の値が大きいほど凹凸が複雑であることを示す。例えば、ボックスカウンティング法によるフラクタル次元は、以下のように定義される:
ある図形Fを、一辺の大きさδの正方形のボックスで覆うために必要なボックスの個数をNδ(F)とすると、フラクタル次元は下記式で定義される。
The fractal dimension is an index showing the complexity of the shape, the degree of unevenness on the surface, and the like, and the larger the value of the fractal dimension, the more complicated the unevenness. For example, the fractal dimension by the box counting method is defined as:
Assuming that the number of boxes required to cover a certain figure F with a square box having a side size of δ is Nδ (F), the fractal dimension is defined by the following equation.

本開示においては、積層体の断面を等間隔δの格子で分割し、複数のδに対して、積層面が現れている曲線を含むボックス(すなわち、格子分割されてできた正方形)の個数をカウントする。次に、δの大きさを横軸とし、各δに対してカウントしたボックスの個数を縦軸として両対数グラフにプロットし、そのグラフの傾きからフラクタル次元を求めることができる。 In the present disclosure, the cross section of the laminated body is divided by a grid of equidistant δs, and the number of boxes (that is, squares formed by the grid division) containing a curve in which the laminated surface appears is calculated for a plurality of δs. Count. Next, the size of δ is plotted on the log-log graph with the number of boxes counted for each δ as the vertical axis, and the fractal dimension can be obtained from the slope of the graph.

より具体的には、SEM断面画像(倍率30000倍、解像度1024x768)から得られる微細凸部の輪郭を、256、128、64、32、16又は8ピクセルの解像度のシートにはりつけ、輪郭を含むセルの数をカウントする。ピクセルサイズの対数値を縦軸とし、セル数の対数を横軸にとり、各ピクセルサイズに対してカウントしたセル数をプロットして、近似直線を作成し、その傾きからフラクタル次元の値を算出する。
積層面が現れている曲線のフラクタル次元の値は1.250以上または1.250より大きい値であり、或いは1.300以上または1.300より大きい値であることが好ましく、1.350以上または1.350より大きい値であることがより好ましく、1.400以上または1.400より大きい値であることがさらに好ましい。
More specifically, the contour of the fine convex portion obtained from the SEM cross-sectional image (magnification 30000 times, resolution 1024x768) is attached to a sheet having a resolution of 256, 128, 64, 32, 16 or 8 pixels, and the cell containing the contour is attached. Count the number of. The logarithm of the pixel size is on the vertical axis, the logarithm of the number of cells is on the horizontal axis, the number of cells counted for each pixel size is plotted, an approximate straight line is created, and the fractal dimension value is calculated from the slope. ..
The value of the fractal dimension of the curve in which the laminated surface appears is 1.250 or more or greater than 1.250, or preferably 1.300 or more or greater than 1.300, and 1.350 or more or 1.350 or more. A value greater than 1.350 is more preferred, and a value greater than or equal to 1.400 or greater than 1.400 is even more preferred.

本発明の一態様において、銅部材の表面には酸化銅(I)及び/又は酸化銅(II)を含む酸化銅層が含まれていてもよい。かかる酸化銅層は酸化処理、酸化溶解処理、酸化還元処理、酸化溶解還元処理によって形成されていてもよい。
酸化処理とは、酸化剤により、純銅を酸化銅(II)に変化させる工程を含む。
溶解処理とは、溶解剤により、酸化処理によって酸化した酸化銅(II)を溶解する工程を含む。
還元処理とは、還元剤により、酸化処理によって酸化した酸化銅(II)を酸化銅(I)又は純銅に還元する工程を含む。
酸化処理、溶解処理、および還元処理は、銅部材表面に微細な凸部(すなわち微細毛)を形成する工程及びその微細な凸部の形状や数を調整する工程を含んでもよい。樹脂基材と金属層の積層面の複数の微細な凸部は、これらの処理により形成された微細な凸部に起因してもよい。
In one aspect of the present invention, the surface of the copper member may contain a copper oxide layer containing copper (I) oxide and / or copper (II) oxide. Such a copper oxide layer may be formed by an oxidation treatment, an oxidation dissolution treatment, an oxidation reduction treatment, or an oxidation dissolution reduction treatment.
The oxidation treatment includes a step of converting pure copper into copper (II) oxide with an oxidizing agent.
The dissolution treatment includes a step of dissolving copper (II) oxide oxidized by the oxidation treatment with a dissolving agent.
The reduction treatment includes a step of reducing copper (II) oxide oxidized by the oxidation treatment to copper (I) oxide or pure copper with a reducing agent.
The oxidation treatment, dissolution treatment, and reduction treatment may include a step of forming fine protrusions (that is, fine hairs) on the surface of the copper member and a step of adjusting the shape and number of the fine protrusions. The plurality of fine protrusions on the laminated surface of the resin base material and the metal layer may be caused by the fine protrusions formed by these treatments.

銅部材の少なくとも一部の表面に銅以外の金属層が形成されていてもよい。上記酸化銅層が形成されている場合、金属層は酸化銅層のすくなくとも一部の表面に形成され、金属層の表面の少なくとも一部に誘電率が3.8以下の樹脂基材が積層されていることが好ましい。金属層を構成する金属の種類は特に限定されないが、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、AuおよびPtからなる群から選ばれた少なくとも一種の金属であることが好ましい。特に耐熱性を有するためには、銅よりも耐熱性の高い金属、例えばNi、Pd、AuおよびPtが好ましい。 A metal layer other than copper may be formed on the surface of at least a part of the copper member. When the copper oxide layer is formed, the metal layer is formed on at least a part of the surface of the copper oxide layer, and a resin base material having a dielectric constant of 3.8 or less is laminated on at least a part of the surface of the metal layer. Is preferable. The type of metal constituting the metal layer is not particularly limited, but at least one metal selected from the group consisting of Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au and Pt. Is preferable. In particular, in order to have heat resistance, metals having higher heat resistance than copper, such as Ni, Pd, Au and Pt, are preferable.

金属層の垂直方向の平均の厚さは特に限定されないが、6nm以上であることが好ましく、10nm以上、14nm以上、18nm以上あるいは20nm以上であることがさらに好ましい。ただし、厚すぎると、レベリングにより複合銅部材の表面の微細な凸部が平滑化してしまい、フラクタル次元の数値が小さくなり密着力が低下するため、150nm以下であることが好ましく、100nm以下、あるいは75nm以下であることがさらに好ましい。
厚さの測定方法としては、例えば、12%硝酸に銅部材を溶解させ、得た液をICP発
光分析装置5100 SVDV ICP−OES(アジレント・テクノロジー社製)を用いて金属成分の濃度を測定し、金属の密度、金属層の表面積を考慮することで層状としての金属層の厚みを算出できる。
The average thickness of the metal layer in the vertical direction is not particularly limited, but is preferably 6 nm or more, and more preferably 10 nm or more, 14 nm or more, 18 nm or more, or 20 nm or more. However, if it is too thick, the fine protrusions on the surface of the composite copper member will be smoothed by leveling, the value of the fractal dimension will be small, and the adhesion will be reduced. Therefore, it is preferably 150 nm or less, preferably 100 nm or less, or It is more preferably 75 nm or less.
As a method for measuring the thickness, for example, a copper member is dissolved in 12% nitrate, and the obtained liquid is measured for the concentration of a metal component using an ICP emission spectrometer 5100 SVDV ICP-OES (manufactured by Azilent Technology). , The thickness of the metal layer as a layer can be calculated by considering the density of the metal and the surface area of the metal layer.

金属層はめっきによって銅部材表面に形成されてもよい。めっき方法は特に限定されず、電解めっき、無電解めっき、真空蒸着、化成処理などが例示できるが、電解めっきが好ましい。 The metal layer may be formed on the surface of the copper member by plating. The plating method is not particularly limited, and examples thereof include electrolytic plating, electroless plating, vacuum vapor deposition, and chemical conversion treatment, but electrolytic plating is preferable.

本発明の一態様において、積層体のSEM断面画像において積層面が現れている曲線の凸部の高さの平均は、10nm以上であることが好ましく、50nm以上であることがより好ましく、100nm以上であることがさらに好ましく、また1000nm以下であることが好ましく、500nm以下であることがより好ましく、200nm以下であることがさらに好ましい。この凸部の高さは、例えば、SEM断面画像において、凸部を挟んで隣り合う凹部の極小点を結んだ線分の中点と、凹部の間にある凸部の極大点との距離とすることができる。
本発明の一態様において、積層体のSEM断面画像において積層面が現れている曲線の、高さ50nm以上の凸部の数は、断面幅3.78μmあたり、平均25、30又は35個以上有してもよい。あるいは、高さ100nm以上の凸部が、断面幅3.78μmあたり平均6、10又は12個以上有してもよい。あるいは、高さ150nm以上の凸部が、断面幅3.78μmあたり2又は3個以上有してもよい。
凸部の高さが大きいほどアンカー効果による機械的接着力が大きくなるため、ピール強度の観点からは好ましいが、表皮効果現象の影響が大きくなってしまう。表皮効果とは、導体を流れる電流が周波数の増加と共に導体表面に集中し、内部の電流密度が減る現象である。電流が流れる表皮部分の厚さ(表皮深さ)は、周波数の平方根に反比例する。この表皮効果現象により、周波数がGHz帯の高周波信号を導体回路に伝送すると、表皮深さは2μm程度あるいはそれ以下となり、電流は導体のごく表層しか流れない。そのため、高周波回路では銅部材表面の凸部が大きいと、この銅部材により形成される導体の伝送経路は表皮効果現象の影響で長くなり、伝送損失が増加する。それ故、高周波回路に用いる銅部材表面の凸部は小さいことが望ましいが、小さすぎると十分なピール強度が得られないため、上記程度の凸部であることが好ましい。
In one aspect of the present invention, the average height of the convex portion of the curve in which the laminated surface appears in the SEM cross-sectional image of the laminated body is preferably 10 nm or more, more preferably 50 nm or more, and more preferably 100 nm or more. It is more preferably 1000 nm or less, more preferably 500 nm or less, and even more preferably 200 nm or less. The height of the convex portion is, for example, the distance between the midpoint of the line segment connecting the minimum points of the concave portions adjacent to each other across the convex portion and the maximum point of the convex portion between the concave portions in the SEM cross-sectional image. can do.
In one aspect of the present invention, the number of convex portions having a height of 50 nm or more on the curve in which the laminated surface appears in the SEM cross-sectional image of the laminated body is 25, 30 or 35 or more on average per 3.78 μm in cross-sectional width. You may. Alternatively, there may be an average of 6, 10 or 12 or more convex portions having a height of 100 nm or more per 3.78 μm cross-sectional width. Alternatively, there may be two or three or more convex portions having a height of 150 nm or more per 3.78 μm cross-sectional width.
The larger the height of the convex portion, the greater the mechanical adhesive force due to the anchor effect, which is preferable from the viewpoint of peel strength, but the influence of the skin effect phenomenon becomes large. The skin effect is a phenomenon in which the current flowing through a conductor concentrates on the surface of the conductor as the frequency increases, and the internal current density decreases. The thickness of the epidermis (epidermis depth) through which current flows is inversely proportional to the square root of frequency. Due to this skin effect phenomenon, when a high-frequency signal having a frequency in the GHz band is transmitted to a conductor circuit, the skin depth becomes about 2 μm or less, and current flows only on the very surface layer of the conductor. Therefore, in a high-frequency circuit, if the convex portion on the surface of the copper member is large, the transmission path of the conductor formed by the copper member becomes long due to the influence of the skin effect phenomenon, and the transmission loss increases. Therefore, it is desirable that the convex portion on the surface of the copper member used in the high frequency circuit is small, but if it is too small, sufficient peel strength cannot be obtained, so that the convex portion having the above degree is preferable.

本明細書では凸部の先端部の内接円半径は、凸部の太さの指標として用いることができる。ここでの微細凸部の先端部の内接円半径とは、SEM断面画像において、上記で高さが10nm以上とされた凸部の極大点aと、凸部の極大点aにおける接線に並行で10nm離れた直線と凸部外周部の交点b、cの3点を外周とする円の半径のことと定義する(図2A)。内接円半径が大きいほど凸部の先端部が太く、内接円半径が小さいほど凸部の先端部が細くなる。 In the present specification, the radius of the inscribed circle at the tip of the convex portion can be used as an index of the thickness of the convex portion. The inscribed circle radius of the tip of the fine convex portion here is parallel to the maximum point a of the convex portion having a height of 10 nm or more and the tangent line at the maximum point a of the convex portion in the SEM cross-sectional image. It is defined as the radius of a circle whose outer circumference is three points b and c, which are the intersections of a straight line 10 nm apart from each other and the outer peripheral portion of the convex portion (FIG. 2A). The larger the inscribed circle radius, the thicker the tip of the convex portion, and the smaller the inscribed circle radius, the thinner the tip of the convex portion.

本発明の一態様において、樹脂基材と複合銅部材を剥離した場合、複合銅部材側の剥離面における破壊モードの少なくとも一部が凝集破壊であることが好ましい。ここで、凝集破壊とは剥離面の銅側を観察した際に、面積のおよそ半分以上に樹脂が付着している状態のことである。 In one aspect of the present invention, when the resin base material and the composite copper member are peeled off, it is preferable that at least a part of the fracture mode on the peeled surface on the composite copper member side is cohesive fracture. Here, the cohesive fracture is a state in which the resin is attached to about half or more of the area when observing the copper side of the peeled surface.

本発明の一態様において、積層体の耐熱試験における劣化率は、50%以下でよいが、40%以下、30%以下又は20%以下が好ましい。耐熱試験における劣化率は公知の方法で測定することが出来る。たとえば、耐熱試験前後のピール強度を測定し、そのピール強度の差を耐熱試験前のピール強度で除した割合として表すことができる。耐熱試験としては、例えば、IPC TM−650 2.4.8といった規格に従って測定することができる。 In one aspect of the present invention, the deterioration rate of the laminate in the heat resistance test may be 50% or less, but preferably 40% or less, 30% or less, or 20% or less. The deterioration rate in the heat resistance test can be measured by a known method. For example, the peel strength before and after the heat resistance test can be measured, and the difference in peel strength can be expressed as a ratio divided by the peel strength before the heat resistance test. As the heat resistance test, for example, it can be measured according to a standard such as IPC TM-650 2.4.8.

==積層体の製造方法==
本発明の一実施態様は、積層体の製造方法であって、
銅部材表面に凸部を形成する第1の工程と、
凸部を形成した銅表面又はめっき処理された表面の上に樹脂基材を加熱密着させる第3の工程を含む、積層体の製造方法である。この製造方法は、第1工程の後で、凸部を形成した銅表面にめっき処理する第2の工程を含んでもよい。
== Manufacturing method of laminated body ==
One embodiment of the present invention is a method for producing a laminate.
The first step of forming a convex portion on the surface of a copper member and
This is a method for producing a laminate, which comprises a third step of heating and adhering a resin base material on a copper surface having a convex portion or a plated surface. This manufacturing method may include a second step of plating the copper surface on which the convex portion is formed after the first step.

まず、第1の工程において、銅表面を酸化剤で酸化して、酸化銅層を形成するとともに、表面に凸部を形成する。この酸化工程以前に、エッチングなどの粗面化処理工程は必要ないが、行ってもよい。脱脂洗浄または酸化工程への酸の持ち込みを防止するためのアルカリ処理は行ってもよい。アルカリ処理の方法は特に限定されないが、好ましくは0.1〜10g/L、より好ましくは1〜2g/Lのアルカリ水溶液、例えば水酸化ナトリウム水溶液で、30〜50℃、0.5〜2分間程度処理すればよい。 First, in the first step, the copper surface is oxidized with an oxidizing agent to form a copper oxide layer and a convex portion on the surface. Prior to this oxidation step, a roughening treatment step such as etching is not necessary, but it may be performed. Alkaline treatment may be performed to prevent acid from being brought into the degreasing cleaning or oxidation process. The method of alkaline treatment is not particularly limited, but is preferably 0.1 to 10 g / L, more preferably 1 to 2 g / L in an alkaline aqueous solution, for example, a sodium hydroxide aqueous solution at 30 to 50 ° C. for 0.5 to 2 minutes. It should be processed to some extent.

酸化剤は特に限定されず、例えば、亜塩素酸ナトリウム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸カリウム等の水溶液を用いることができる。酸化剤には、各種添加剤(たとえば、リン酸三ナトリウム十二水和物のようなリン酸塩)や表面活性分子を添加してもよい。表面活性分子としては、ポルフィリン、ポルフィリン大員環、拡張ポルフィリン、環縮小ポルフィリン、直鎖ポルフィリンポリマー、ポルフィリンサンドイッチ配位錯体、ポルフィリン配列、シラン、テトラオルガノ‐シラン、アミノエチル‐アミノプロピルートリメトキシシラン、(3‐アミノプロピル)トリメトキシシラン、(1‐[3‐(トリメトキシシリル)プロピル]ウレア)((l−[3−(Trimethoxysilyl)propyl]urea))、(3‐アミノプロピル)トリエトキシシラン、((3‐グリシジルオキシプロピル)トリメトキシシラン)、(3‐クロロプロピル)トリメトキシシラン、(3‐グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3‐(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2‐メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン‐トリメトキシシラン、アミン、糖などを例示できる。 The oxidizing agent is not particularly limited, and for example, an aqueous solution of sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate or the like can be used. Various additives (for example, phosphates such as trisodium phosphate dodecahydrate) and surface active molecules may be added to the oxidizing agent. Surface active molecules include porphyrin, porphyrin-membered ring, expanded porphyrin, ring-reduced porphyrin, linear porphyrin polymer, porphyrin sandwich coordination complex, porphyrin sequence, silane, tetraorgano-silane, aminoethyl-aminopropyl-trimethoxysilane. , (3-Aminopropyl) trimethoxysilane, (1- [3- (trimethoxysilyl) propyl] urea) ((l- [3- (Trimethoxysilyl) propyl] urea)), (3-aminopropyl) triethoxy Silane, ((3-glycidyloxypropyl) trimethoxysilane), (3-chloropropyl) trimethoxysilane, (3-glycidyloxypropyl) trimethoxysilane, dimethyldichlorosilane, 3- (trimethoxysilyl) propylmethacrylate, Ethyltriacetoxysilane, triethoxy (isobutyl) silane, triethoxy (octyl) silane, tris (2-methoxyethoxy) (vinyl) silane, chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, Examples thereof include chlorotriethoxysilane, ethylene-trimethoxysilane, amines, and sugars.

酸化反応条件は特に限定されないが、酸化剤の液温は40〜95℃であることが好ましく、45〜80℃であることがより好ましい。反応時間は0.5〜30分であることが好
ましく、1〜10分であることがより好ましい。
The oxidation reaction conditions are not particularly limited, but the liquid temperature of the oxidizing agent is preferably 40 to 95 ° C, more preferably 45 to 80 ° C. The reaction time is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.

第1の工程において、酸化した銅部材表面を溶解剤で溶解して、酸化された銅部材表面の凹凸部を調整してもよい。 In the first step, the surface of the oxidized copper member may be dissolved with a dissolving agent to adjust the uneven portion of the surface of the oxidized copper member.

本工程で用いる溶解剤は特に限定されないが、キレート剤、特に生分解性キレート剤であることが好ましく、エチレンジアミン四酢酸、ジエタノールグリシン、L−グルタミン酸二酢酸・四ナトリウム、エチレンジアミン−N,N’−ジコハク酸、3−ヒドロキシ−2、2’−イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N−(2−ヒドロキシエチル)イミノ二酢酸ジナトリウム、グルコン酸ナトリウムなどが例示できる。 The solubilizer used in this step is not particularly limited, but a chelating agent, particularly a biodegradable chelating agent, is preferable, and ethylenediaminetetraacetic acid, diethanolglycine, L-glutamate diacetic acid / tetrasodium, ethylenediamine-N, N'- Examples thereof include disuccinic acid, 3-hydroxy-2, 2'-sodium iminodiacetic acid, methylglycine diacetate 3 sodium, aspartate diacetate 4 sodium, N- (2-hydroxyethyl) iminodiacetic acid disodium, sodium gluconate and the like. it can.

溶解剤のpHは特に限定されないが、アルカリ性であることが好ましく、pH8〜10.5であることがより好ましく、pH9.0〜10.5であることがさらに好ましく、pH9.8〜10.2であることがさらに好ましい。 The pH of the solubilizer is not particularly limited, but is preferably alkaline, more preferably 8 to 10.5, still more preferably 9.00 to 10.5, and pH 9.8 to 10.2. Is more preferable.

また、第1の工程において、銅部材に形成された酸化銅層を、還元剤を含有する薬液(
還元用薬液)を用いて還元し、凸部の数や高さを調整してもよい。
Further, in the first step, the copper oxide layer formed on the copper member is subjected to a chemical solution containing a reducing agent (
The number and height of the convex portions may be adjusted by reducing with a chemical solution for reduction).

還元剤としては、DMAB(ジメチルアミンボラン)、ジボラン、水素化ホウ素ナトリウム、ヒドラジン等を用いることができる。また、還元用薬液は、還元剤、アルカリ性化合物(水酸化ナトリウム、水酸化カリウム等)、及び溶媒(純水等)を含む液体である。 As the reducing agent, DMAB (dimethylamine borane), diborane, sodium borohydride, hydrazine and the like can be used. The chemical solution for reduction is a liquid containing a reducing agent, an alkaline compound (sodium hydroxide, potassium hydroxide, etc.), and a solvent (pure water, etc.).

第2の工程では、凸部を有する酸化銅層に対し、銅以外の金属でめっき処理をすることで、複合銅部材を製造する。めっき処理方法は、公知の技術を使うことができるが、例えば、銅以外の金属として、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、Au、Pt、あるいは様々な合金を用いることができる。めっき工程も特に限定されず、電解めっき、無電解めっき、真空蒸着、化成処理などによってめっきすることができる。 In the second step, a composite copper member is manufactured by plating a copper oxide layer having a convex portion with a metal other than copper. As a plating treatment method, a known technique can be used. For example, as a metal other than copper, Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au, Pt, or Various alloys can be used. The plating process is not particularly limited, and plating can be performed by electroplating, electroless plating, vacuum deposition, chemical conversion treatment, or the like.

無電解ニッケルめっきの場合は触媒を用いた処理を行うことが好ましい。触媒としては鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウムおよびそれらの塩を用いることが好ましい。触媒を用いた処理を行うことで、一様で粒子が点在しない金属層を得ることができる。それによって、複合銅部材の耐熱性が向上する。無電解ニッケルめっきの場合は、還元剤として、銅、酸化銅(I)および酸化銅(II)が触媒活性を有しない還元剤を用いることが好ましい。銅、酸化銅(I)および酸化銅(II)が触媒活性を有しない還元剤としては、次亜リン酸ナトリウムなどの次亜リン酸塩が挙げられる。 In the case of electroless nickel plating, it is preferable to perform treatment using a catalyst. As the catalyst, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and salts thereof are preferably used. By performing the treatment with a catalyst, a uniform metal layer in which particles are not scattered can be obtained. As a result, the heat resistance of the composite copper member is improved. In the case of electroless nickel plating, it is preferable to use a reducing agent in which copper, copper (I) oxide and copper (II) oxide do not have catalytic activity. Examples of the reducing agent in which copper, copper (I) oxide and copper (II) oxide do not have catalytic activity include hypophosphates such as sodium hypophosphite.

これらの工程で製造した複合銅部材に、シランカップリング剤などを用いたカップリング処理やベンゾトリアゾール類などを用いた防錆処理を任意で行ってもよい。 The composite copper member produced in these steps may be optionally subjected to a coupling treatment using a silane coupling agent or the like or a rust preventive treatment using benzotriazoles or the like.

第3の工程として第1の工程で形成された凸部を有する酸化銅層又は第2の工程でめっきされた銅部材のめっき層の上に、樹脂基材を積層し、積層体を製造する。積層体の製造方法は特に限定されず、例えば真空プレス機を用いて真空加熱圧着させるなど、公知の方法で行うことができる。プレス圧、温度、プレス時間は用いる樹脂基材によって適宜変更する。たとえば、樹脂基材がPPE樹脂を含むMEGTRON6(パナソニック社)の場合、加温しながら110℃になるまで0.49MPaで加熱圧着後、その後210℃下、2.94MPaで120分加熱圧着、PTFE樹脂を含むNX9255(パークエレクトロケミカル社)の場合、加温しながら260℃になるまで0.69MPaで加熱圧着後、その後385℃になるまで加温しながら1.03MPa〜1.72MPaで圧着、385℃下で10分加熱圧着処理することが推奨されているが、これに限定しない。
誘電率3.8以下の高周波回路向けの樹脂基材は誘電率3.8より大きい配線板向け樹脂基材(例えば、FR−4)よりもプレス温度が高温になる傾向にあり、微細凹凸がより変化を受けやすい状態となる。銅は熱による影響を受けるが、凹凸が微細であるほど影響は大きい。同程度の熱による変化が生じた場合でも、影響を受ける対象が小さいほど、その寄与度が大きくなるためである。例えば、微細凹凸の場合、プレス後は凹凸形状が損なわれて十分なピール強度を発揮しないことがある。それ故、凹凸部にはプレス時の温度に耐え、積層後も十分なピール強度を発揮できる凹凸形状が存在することが求められる。
As a third step, a resin base material is laminated on a copper oxide layer having a convex portion formed in the first step or a plating layer of a copper member plated in the second step to produce a laminate. .. The method for producing the laminate is not particularly limited, and a known method can be used, for example, vacuum heating and crimping using a vacuum press. The press pressure, temperature, and press time are appropriately changed depending on the resin base material used. For example, in the case of MEGTRON6 (Panasonic Corporation) containing PPE resin as the resin base material, heat crimping is performed at 0.49 MPa until the temperature reaches 110 ° C. while heating, and then heat crimping is performed at 210 ° C. for 120 minutes at 2.94 MPa, PTFE. In the case of NX9255 (Park Electrochemical Co., Ltd.) containing resin, heat-bonded at 0.69 MPa until it reaches 260 ° C. while heating, and then crimped at 1.03 MPa to 1.72 MPa while heating until it reaches 385 ° C. It is recommended, but not limited to, heat crimping at 385 ° C. for 10 minutes.
A resin base material for a high frequency circuit having a dielectric constant of 3.8 or less tends to have a higher press temperature than a resin base material for a wiring board having a dielectric constant of more than 3.8 (for example, FR-4), and has fine irregularities. It becomes more susceptible to change. Copper is affected by heat, but the finer the unevenness, the greater the effect. This is because even if a change due to heat of the same degree occurs, the smaller the affected object, the greater the contribution. For example, in the case of fine unevenness, the uneven shape may be impaired after pressing and sufficient peel strength may not be exhibited. Therefore, it is required that the uneven portion has an uneven shape that can withstand the temperature at the time of pressing and can exhibit sufficient peel strength even after lamination.

このように、銅部材に対して、第1〜3工程を行うことによって、銅部材と樹脂基材との新規な積層体を作製することができる。また、積層体に使用される銅部材は、公知の方法(例えば、エッチング)により、パターン状に配線形成されてもよい。
本発明に係る積層体は、プリント配線板の製造に用いられてもよく、あるいはプリント配線板と電子部品類を含む電子部品の製造に用いられてもよい。
この積層体を用いて作製されるプリント配線板は、特に信号周波数1GHz以上の高周波帯域用の基板として好適である。
また、この積層体は積層面に凹凸形状が存在するため、密着力に優れており、フレキシブル基板にも好適である。
As described above, by performing the first to third steps on the copper member, a new laminate of the copper member and the resin base material can be produced. Further, the copper member used in the laminated body may be wired in a pattern by a known method (for example, etching).
The laminate according to the present invention may be used in the production of a printed wiring board, or may be used in the production of an electronic component including a printed wiring board and electronic components.
The printed wiring board produced by using this laminated body is particularly suitable as a substrate for a high frequency band having a signal frequency of 1 GHz or more.
Further, since this laminated body has an uneven shape on the laminated surface, it has excellent adhesion and is also suitable for a flexible substrate.

<1.積層体の製造>
実施例1及び2、比較例1及び2では、銅箔としてDR−WS(古河電工株式会社製、厚み:18μm)を用いた。
<1. Manufacture of laminate>
In Examples 1 and 2 and Comparative Examples 1 and 2, DR-WS (manufactured by Furukawa Electric Co., Ltd., thickness: 18 μm) was used as the copper foil.

(1)前処理
[アルカリ脱脂処理]
銅箔を、液温50℃、40g/Lの水酸化ナトリウム水溶液に1分間浸漬した後、水洗を行った。
[酸洗浄処理]
アルカリ脱脂処理を行った銅箔を、液温25℃、10重量%の硫酸水溶液に2分間浸漬した後、水洗を行った。
[プレディップ処理]
1.2g/Lの水酸化ナトリウム水溶液で40℃、1分間、プレコンディショニングを行った。これは、酸化処理のムラを軽減することを目的とした脱脂洗浄のためである。
(1) Pretreatment [Alkaline degreasing treatment]
The copper foil was immersed in a sodium hydroxide aqueous solution at a liquid temperature of 50 ° C. and 40 g / L for 1 minute, and then washed with water.
[Acid cleaning treatment]
The copper foil subjected to the alkaline degreasing treatment was immersed in a sulfuric acid aqueous solution having a liquid temperature of 25 ° C. and 10% by weight for 2 minutes, and then washed with water.
[Pre-dip processing]
Preconditioning was performed at 40 ° C. for 1 minute with a 1.2 g / L aqueous sodium hydroxide solution. This is for degreasing cleaning for the purpose of reducing unevenness in the oxidation treatment.

(2)酸化処理
アルカリ処理を行った銅箔を、酸化処理用水溶液(NaClO 130g/L;NaOH 12g/L)で45℃、1分間、酸化処理を行った。これらの処理後、銅箔を水洗した。比較例1及び2は、酸化処理後、室温で1分間、還元剤(ジメチルアミンボラン 5g/L;水酸化ナトリウム 5g/L)に浸漬し、還元処理を行った。
(2) Oxidation Treatment The alkali-treated copper foil was oxidized with an aqueous solution for oxidation treatment (NaClO 2 130 g / L; NaOH 12 g / L) at 45 ° C. for 1 minute. After these treatments, the copper foil was washed with water. In Comparative Examples 1 and 2, after the oxidation treatment, they were immersed in a reducing agent (dimethylamine borane 5 g / L; sodium hydroxide 5 g / L) for 1 minute at room temperature to perform the reduction treatment.

(3)めっき処理
実施例1及び2については、酸化処理を行った銅箔のシャイニー面にニッケルめっき用電解液(スルファミン酸ニッケル470g/L−ホウ酸40g/L)を用いて電解めっきを施した。条件は、50度で電流密度0.5A/dm × 30秒 (=15C/dm 銅箔面積あたり)とした。
(3) Plating Treatment In Examples 1 and 2, electrolytic plating was performed on the shiny surface of the oxidized copper foil using an electrolytic solution for nickel plating (nickel 470 g / L-boric acid 40 g / L). did. The conditions were 50 degrees and a current density of 0.5 A / dm 2 × 30 seconds (= 15 C / dm 2 per copper foil area).

(4)樹脂基材の加熱圧着
実施例1及び比較例1については、各銅箔に対し、MEGTRON6(プリプレグ R5670KJ、パナソニック社製、誘電率 3.71(1GHz)、厚さ100μm)を積層し、真空高圧プレス機を用いてプレス圧2.9MPa、温度210℃、プレス時間120分の条件で加熱圧着することにより、積層体を得た。
実施例2及び比較例2については、各銅箔に対し、PTFE基材(NX9255、パークエレクトロケミカル社製、誘電率2.55(10GHz)、厚さ0.762mm)を積層し、真空高圧プレス機を用いてプレス圧1.5MPa、温度385℃、プレス時間10分の条件で加熱圧着することにより、積層体を得た。
実施例及び比較例について、各々同じ条件で複数の試験片を作製した。
(4) Heat crimping of resin base material In Example 1 and Comparative Example 1, MEGTRON6 (prepreg R5670KJ, manufactured by Panasonic, dielectric constant 3.71 (1 GHz), thickness 100 μm) was laminated on each copper foil. A laminated body was obtained by heat-pressing under the conditions of a press pressure of 2.9 MPa, a temperature of 210 ° C., and a press time of 120 minutes using a vacuum high-pressure press machine.
In Example 2 and Comparative Example 2, a PTFE base material (NX9255, manufactured by Park Electrochemical Co., Ltd., dielectric constant 2.55 (10 GHz), thickness 0.762 mm) was laminated on each copper foil, and a vacuum high-pressure press was applied. A laminate was obtained by heat-pressing under the conditions of a press pressure of 1.5 MPa, a temperature of 385 ° C., and a press time of 10 minutes using a machine.
For Examples and Comparative Examples, a plurality of test pieces were prepared under the same conditions.

<2.SEM断面画像解析>
1.方法
得られた積層体(実施例1及び2;比較例1及び2)の断面は、加速電圧30kV、プローブ電流4nAの条件でFIB(集束イオンビーム)加工することで得た。集束イオンビーム走査電子顕微鏡(Auriga、Carl Zeiss社製)を用いて倍率30000倍、解像度1024x768の条件で、得られた断面を観察し、SEM断面画像の取得を行った。得られたSEM断面画像を図1に示す。この断面の画像に基づき、フラクタル次元の値、凸部の高さ計測、凸部先端部の内接円半径の計測を行った。凸部の高さ計測、凸部先端部内接
円半径の計測については、画像解析ソフトWinROOF2018(三谷商事株式会社、Ver4.5.5)
を用いて行った。凸部先端部の内接円半径の計測例を図2Bに示す。
<2. SEM cross-section image analysis>
1. 1. Method The cross sections of the obtained laminates (Examples 1 and 2; Comparative Examples 1 and 2) were obtained by FIB (focused ion beam) processing under the conditions of an accelerating voltage of 30 kV and a probe current of 4 nA. Using a focused ion beam scanning electron microscope (Auriga, manufactured by Carl Zeiss), the obtained cross section was observed under the conditions of a magnification of 30,000 times and a resolution of 1024x768, and an SEM cross section image was acquired. The obtained SEM cross-sectional image is shown in FIG. Based on the image of this cross section, the fractal dimension value, the height of the convex portion, and the inscribed circle radius of the tip of the convex portion were measured. Image analysis software WinROOF2018 (Mitani Corporation, Ver4.5.5) for measuring the height of the convex part and the radius of the inscribed circle at the tip of the convex part.
Was performed using. An example of measuring the radius of the inscribed circle at the tip of the convex portion is shown in FIG. 2B.

2.結果
結果を以下の表1〜3に示す。
2. Results The results are shown in Tables 1 to 3 below.

<3.ピール強度の測定>
1.方法
実施例1及び2並びに比較例1及び2の積層体について、90°剥離試験(日本工業規格(JIS)C5016)に準じてピール強度を測定した。
<3. Peel strength measurement>
1. 1. Method The peel strength of the laminates of Examples 1 and 2 and Comparative Examples 1 and 2 was measured according to a 90 ° peeling test (Japanese Industrial Standards (JIS) C5016).

2.結果
結果を表4に示す。
比較例では実施例よりもピール強度が低く、破壊モードも界面剥離または一部界面剥離であるのに対し、実施例では樹脂凝集破壊であった。このように、本発明に係る積層体は、比較例に比べ、ピール強度に優れている。
2. Results The results are shown in Table 4.
In the comparative example, the peel strength was lower than that in the example, and the fracture mode was interfacial peeling or partial interfacial peeling, whereas in the example, resin coagulation fracture was observed. As described above, the laminate according to the present invention is superior in peel strength as compared with the comparative example.

<4.耐熱性の測定>
1.方法
実施例1及び比較例1の積層体について、耐熱試験前後のピール強度を測定した。耐熱試験は、125℃、4時間でベイキングした後、288℃のはんだ浴で10秒フロートをすることによって行った(IPC TM−650 2.4.8準拠)。耐熱試験前後のピール強度の差を耐熱試験前のピール強度で除して、割合を算出した。
<4. Heat resistance measurement>
1. 1. Method The peel strength of the laminates of Example 1 and Comparative Example 1 was measured before and after the heat resistance test. The heat resistance test was carried out by baking at 125 ° C. for 4 hours and then floating in a solder bath at 288 ° C. for 10 seconds (IPC TM-650 2.4.8 compliant). The ratio was calculated by dividing the difference in peel strength before and after the heat resistance test by the peel strength before the heat resistance test.

2.結果
結果を表5及び図3に示す。
常態と耐熱試験後のピール強度を比較した際、比較例1では53%の劣化が生じたが、実施例1では19%しか劣化が生じなかった(表5)。さらに、耐熱試験後、比較例は銅部材に変色が確認された(図3において赤線枠で強調)。これは、銅部材表面の凹凸が耐熱試験によって溶解したためである。このように、本発明に係る積層体は、比較例に比べ、ピール強度及び耐熱性に優れている。
2. Results The results are shown in Table 5 and FIG.
When comparing the peel strength between the normal state and the heat resistance test, 53% deterioration occurred in Comparative Example 1, but only 19% deterioration occurred in Example 1 (Table 5). Further, after the heat resistance test, discoloration was confirmed in the copper member in the comparative example (emphasized by the red line frame in FIG. 3). This is because the unevenness on the surface of the copper member was melted by the heat resistance test. As described above, the laminate according to the present invention is excellent in peel strength and heat resistance as compared with the comparative example.

<4.高周波特性>
1.方法
実施例1及び比較例3として銅箔FV−WS(古河電工株式会社製、厚み:18μm、Rz:1.2μm)に、樹脂基材としてMEGTRON6(プリプレグ R5670KJ、パナソニック社製、厚さ100μm)を熱加圧成形により積層した後に、伝送特性測定用のサンプルを作製して高周波帯域における伝送損失を測定した。伝送特性の評価には、0〜50GHz帯域の測定に適する公知のストリップライン共振器法を用いて、計測した。具体的には、S21パラメータを、以下の条件でカバーレイフィルムなしの状態で測定した。
測定条件:マイクロストリップ構造;基材MEGTRON6;回路長さ150mm;導体幅250μm;導体厚み18μm;基材厚み100μm;特性インピーダンス50Ω
<4. High frequency characteristics>
1. 1. Method As Example 1 and Comparative Example 3, copper foil FV-WS (manufactured by Furukawa Electric Co., Ltd., thickness: 18 μm, Rz: 1.2 μm) and MEGTRON6 (prepreg R5670KJ, manufactured by Panasonic, thickness 100 μm) as a resin base material. Was laminated by thermal pressure molding, and then a sample for measuring transmission characteristics was prepared and the transmission loss in the high frequency band was measured. The transmission characteristics were evaluated using a known stripline resonator method suitable for measurement in the 0 to 50 GHz band. Specifically, the S21 parameter was measured under the following conditions without a coverlay film.
Measurement conditions: Microstrip structure; Base material MEGTRON6; Circuit length 150 mm; Conductor width 250 μm; Conductor thickness 18 μm; Base material thickness 100 μm; Characteristic impedance 50 Ω

2.結果
結果を図4に示す。
比較例3に使用した銅箔FV−WSは低粗度であり、ハイエンドルータ・サーバーなどの情報通信機器や通信基地局用アンテナ用基板向けの低伝送損失が求められる高周波基板用銅箔であるが、実施例1の伝送損失は比較例3よりも小さい。このように、本発明に係る積層体は、高周波特性に優れている。
2. Results The results are shown in FIG.
The copper foil FV-WS used in Comparative Example 3 has low roughness and is a copper foil for high-frequency substrates that requires low transmission loss for information communication equipment such as high-end routers and servers and antenna substrates for communication base stations. However, the transmission loss of Example 1 is smaller than that of Comparative Example 3. As described above, the laminate according to the present invention is excellent in high frequency characteristics.

本発明によって、銅部材と樹脂基材との新規な積層体を提供することができるようになった。
INDUSTRIAL APPLICABILITY According to the present invention, it has become possible to provide a novel laminate of a copper member and a resin base material.

(3)めっき処理
実施例1及び2については、酸化処理を行った銅箔のシャイニー面(光沢面。反対面と比較したときに平坦である面。)にニッケルめっき用電解液(スルファミン酸ニッケル470g/L−ホウ酸40g/L)を用いて電解めっきを施した。条件は、50度で電流密度0.5A/dm2 × 30秒 (=15C/dm2 銅箔面積あたり)とした。
(3) Plating Treatment In Examples 1 and 2, the electrolytic solution for nickel plating (nickel sulfamate ) was formed on the shiny surface (glossy surface, which is flat when compared with the opposite surface ) of the oxidized copper foil . Electroplating was performed using 470 g / L-boric acid 40 g / L). The conditions were 50 degrees and a current density of 0.5 A / dm 2 × 30 seconds (= 15 C / dm 2 per copper foil area).

Claims (12)

少なくとも一部の表面に複数の微細な凸部を有する銅部材の、前記表面上に、誘電率が3.8以下の樹脂基材が積層されている、積層体であって、
前記銅部材と前記樹脂基材との積層面のフラクタル次元が1.25以上である、積層体
A laminated body of a copper member having a plurality of fine protrusions on at least a part of the surface, wherein a resin base material having a dielectric constant of 3.8 or less is laminated on the surface.
A laminate having a fractal dimension of 1.25 or more on the laminated surface of the copper member and the resin base material.
前記積層面のフラクタル次元が1.4より大きい、請求項1に記載の積層体。 The laminate according to claim 1, wherein the fractal dimension of the laminate surface is larger than 1.4. 前記銅部材の少なくとも一部の表面が酸化銅層を含む、請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein at least a part of the surface of the copper member contains a copper oxide layer. 前記銅部材の少なくとも一部の表面が銅以外の金属層で形成されており、前記銅以外の金属が、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、AuおよびPtからなる群から選ばれた少なくとも一種の金属である、請求項1又は2に記載の積層体。 At least a part of the surface of the copper member is formed of a metal layer other than copper, and the metal other than copper is Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, The laminate according to claim 1 or 2, which is at least one metal selected from the group consisting of Au and Pt. 前記銅以外の金属層の垂直方向の平均の厚さが10nm以上150nm以下である、請求項4に記載の積層体。 The laminate according to claim 4, wherein the average thickness of the metal layer other than copper in the vertical direction is 10 nm or more and 150 nm or less. 前記積層体の垂直断面において、前記凸部の高さが平均50nm以上500nm以下である、請求項1〜5のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the height of the convex portion is 50 nm or more and 500 nm or less on average in the vertical cross section of the laminate. 前記積層体の垂直断面において、断面幅3.78μmあたり前記凸部を平均30個以上有する、請求項6に記載の積層体。 The laminate according to claim 6, which has an average of 30 or more convex portions per 3.78 μm cross-sectional width in the vertical cross section of the laminate. 前記樹脂基材は、ポリフェニレンエーテル、ポリテトラフルオロエチレン、またはパラヒドロキシ安息香酸を含む液晶ポリマーを含有する、請求項1〜7のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the resin base material contains a liquid crystal polymer containing polyphenylene ether, polytetrafluoroethylene, or parahydroxybenzoic acid. 前記樹脂基材と前記銅部材とを剥離すると、剥離モードが凝集破壊であることを特徴とする請求項8に記載の積層体。 The laminate according to claim 8, wherein when the resin base material and the copper member are peeled off, the peeling mode is cohesive failure. 耐熱試験において劣化率が50%以下であることを特徴とする、請求項9に記載の積層体。 The laminate according to claim 9, wherein the deterioration rate is 50% or less in the heat resistance test. 1GHz以上の高周波回路用である、請求項1〜10のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 10, which is used for a high frequency circuit of 1 GHz or more. 請求項1〜11のいずれか一項に記載の積層体を使用して作製された電子部品。
An electronic component manufactured by using the laminate according to any one of claims 1 to 11.
JP2019089122A 2019-05-09 2019-05-09 laminate Active JP7328671B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019089122A JP7328671B2 (en) 2019-05-09 2019-05-09 laminate
TW109109836A TW202043034A (en) 2019-05-09 2020-03-24 Laminate
KR1020217026954A KR20220007038A (en) 2019-05-09 2020-05-07 laminate
PCT/JP2020/018582 WO2020226162A1 (en) 2019-05-09 2020-05-07 Laminate
CN202080027107.9A CN113677519A (en) 2019-05-09 2020-05-07 Laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019089122A JP7328671B2 (en) 2019-05-09 2019-05-09 laminate

Publications (2)

Publication Number Publication Date
JP2020183085A true JP2020183085A (en) 2020-11-12
JP7328671B2 JP7328671B2 (en) 2023-08-17

Family

ID=73044462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019089122A Active JP7328671B2 (en) 2019-05-09 2019-05-09 laminate

Country Status (5)

Country Link
JP (1) JP7328671B2 (en)
KR (1) KR20220007038A (en)
CN (1) CN113677519A (en)
TW (1) TW202043034A (en)
WO (1) WO2020226162A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144944A (en) * 1996-09-12 1998-05-29 Canon Inc Photovoltaic device
JP2006339259A (en) * 2005-05-31 2006-12-14 Hitachi Via Mechanics Ltd Manufacturing method of printed-wiring board
JP2008173967A (en) * 2006-12-18 2008-07-31 Taisei Plas Co Ltd Composite of metal and resin, and its manufacturing method
WO2008126812A1 (en) * 2007-04-06 2008-10-23 Taisei Plas Co., Ltd. Copper alloy composite and process for producing the same
JP2009006557A (en) * 2007-06-27 2009-01-15 Fujifilm Corp Metallic layer laminate with roughened metallic surface layer and its manufacturing method
WO2017170781A1 (en) * 2016-03-30 2017-10-05 旭化成株式会社 Resin composite film including cellulose microfiber layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168761A1 (en) * 2012-05-10 2013-11-14 日立化成株式会社 Multilayer wiring board
US8942006B2 (en) * 2013-01-19 2015-01-27 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. PCB stackup having high- and low-frequency conductive layers and having insulating layers of different material types
TWI613940B (en) * 2014-03-31 2018-02-01 Jx Nippon Mining & Metals Corp Copper foil with printed carrier, printed wiring board, laminated body, electronic device, and printed wiring board manufacturing method
KR102490491B1 (en) * 2015-07-29 2023-01-19 나믹스 코포레이션 Roughened copper foil, copper-clad laminate, and printed wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144944A (en) * 1996-09-12 1998-05-29 Canon Inc Photovoltaic device
JP2006339259A (en) * 2005-05-31 2006-12-14 Hitachi Via Mechanics Ltd Manufacturing method of printed-wiring board
JP2008173967A (en) * 2006-12-18 2008-07-31 Taisei Plas Co Ltd Composite of metal and resin, and its manufacturing method
WO2008126812A1 (en) * 2007-04-06 2008-10-23 Taisei Plas Co., Ltd. Copper alloy composite and process for producing the same
JP2009006557A (en) * 2007-06-27 2009-01-15 Fujifilm Corp Metallic layer laminate with roughened metallic surface layer and its manufacturing method
WO2017170781A1 (en) * 2016-03-30 2017-10-05 旭化成株式会社 Resin composite film including cellulose microfiber layer

Also Published As

Publication number Publication date
JP7328671B2 (en) 2023-08-17
KR20220007038A (en) 2022-01-18
WO2020226162A1 (en) 2020-11-12
TW202043034A (en) 2020-12-01
CN113677519A (en) 2021-11-19

Similar Documents

Publication Publication Date Title
JP5634103B2 (en) A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
TWI704048B (en) Surface-treated copper foil and copper clad laminate made of it
US11781236B2 (en) Composite copper foil
JP5885054B2 (en) A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
RU2287618C2 (en) Laminate foil and its production method
JPH07233497A (en) Non-cyan copper-zinc electroplating bath, surface treatment of copper foil for printed circuit board using the bath, and the copper foil for printed circuit board
JP4609850B2 (en) Multilayer circuit board
US7976956B2 (en) Laminated circuit board
KR20230135611A (en) Surface treatment copper foil
KR20220148865A (en) Composite copper member with voids
JP7479617B2 (en) Composite copper components
WO2020226162A1 (en) Laminate
JP4748519B2 (en) Ultra thin copper foil with carrier, manufacturing method thereof, printed wiring board using ultra thin copper foil with carrier
JP4391437B2 (en) Multilayer circuit board, surface-treated copper foil for multilayer circuit board, and surface-treated copper foil
CN111757607B (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP6827083B2 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP7352939B2 (en) composite copper parts
TWI839903B (en) Surface-treated copper foil with heat resistance, and copper clad laminate and printed wiring board including the same
WO2022050001A1 (en) Copper foil and laminate, and manufacturing methods therefor
TWI808700B (en) Coarse treatment of copper foil, copper foil laminates and printed wiring boards
KR102716548B1 (en) Surface-treated copper foil and copper-clad laminates and printed wiring boards using the surface-treated copper foil
JP2023145243A (en) Method for manufacturing printed wiring board
JP2023145211A (en) Method for manufacturing printed wiring board
WO2005039258A1 (en) Polyimide resin base material and wiring board therefrom
JP2003124589A (en) Copper foil for printed circuit board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230628

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230728

R150 Certificate of patent or registration of utility model

Ref document number: 7328671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150