JP2020182137A - Acoustic wave device - Google Patents

Acoustic wave device Download PDF

Info

Publication number
JP2020182137A
JP2020182137A JP2019085000A JP2019085000A JP2020182137A JP 2020182137 A JP2020182137 A JP 2020182137A JP 2019085000 A JP2019085000 A JP 2019085000A JP 2019085000 A JP2019085000 A JP 2019085000A JP 2020182137 A JP2020182137 A JP 2020182137A
Authority
JP
Japan
Prior art keywords
thickness
piezoelectric film
idt electrode
spurious
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019085000A
Other languages
Japanese (ja)
Inventor
哲也 岸野
Tetsuya Kishino
哲也 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2019085000A priority Critical patent/JP2020182137A/en
Publication of JP2020182137A publication Critical patent/JP2020182137A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an acoustic wave device with excellent electrical characteristics.SOLUTION: An acoustic wave device comprises: an IDT electrode that includes a plurality of electrode fingers and excites a surface acoustic wave; and a piezoelectric film that is composed of a piezoelectric crystal having the IDT electrode located on its top face, has a thickness of more than 1.0 λ and 1.6 λ or less with respect to a waveform λ that is defined by twice p that is defined by a repeating interval of the plurality of electrode fingers, and is formed of a rotated Y-cut X-propagating lithium tantalate single crystal substrate. The thickness of the IDT electrode is 9% or more and 12% or less, and the cut angle of the piezoelectric film is 46° or less.SELECTED DRAWING: Figure 2

Description

本発明は、弾性波装置に関する。 The present invention relates to an elastic wave device.

支持基板上に、高音速膜、低音速膜、LiTaO膜、IDT電極をこの順に積層してなる弾性波装置が開示されている(特許文献1参照)。LiTaO膜の膜厚としては、IDT電極の電極指の周期で決まる波長をλとしたときに、0.25λ等が開示されている。このような弾性波装置によれば、弾性波をLiTaO膜に閉じ込めることができるので高いQ値を得ることができる。 An elastic wave device in which a hypersonic film, a low sound velocity film, a LiTaO 3 film, and an IDT electrode are laminated in this order on a support substrate is disclosed (see Patent Document 1). As the film thickness of the LiTaO 3 film, 0.25λ or the like is disclosed when the wavelength determined by the period of the electrode finger of the IDT electrode is λ. According to such an elastic wave device, the elastic wave can be confined in the LiTaO 3 film, so that a high Q value can be obtained.

国際公開2012/086639号International Publication No. 2012/0866639

近年、移動体通信に用いられる携帯端末装置は高い通信品質を安定して実現するために、高い電気特性を備える弾性波装置を安定して供給することが求められている。 In recent years, mobile terminal devices used for mobile communication are required to stably supply elastic wave devices having high electrical characteristics in order to stably realize high communication quality.

本発明は、このような課題に鑑みなされたものであり、その目的は、生産性が高く、かつ電気特性の優れた弾性波装置を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to provide an elastic wave device having high productivity and excellent electrical characteristics.

本開示の弾性波装置は、複数の電極指を備え、弾性表面波を励振するIDT電極と、上面に前記IDT電極が位置している圧電結晶からなり、前記複数の電極指の繰り返し間隔で定義されるpの2倍で定義される波長λに対して1.0λを超え、1.6λ以下の厚みである、X伝搬回転Yカットのタンタル酸リチウム単結晶基板からなる圧電膜と、を備える。そして、前記IDT電極の厚みは9%以上12%以下であり、前記圧電膜のカット角は46°以下である。 The surface acoustic wave device of the present disclosure comprises an IDT electrode having a plurality of electrode fingers and exciting an elastic surface wave, and a piezoelectric crystal in which the IDT electrode is located on an upper surface, and is defined by a repeating interval of the plurality of electrode fingers. A piezoelectric film made of an X-propagation-rotating Y-cut lithium tantalate single crystal substrate having a thickness of more than 1.0 λ and less than 1.6 λ with respect to a wavelength λ defined by twice p is provided. .. The thickness of the IDT electrode is 9% or more and 12% or less, and the cut angle of the piezoelectric film is 46 ° or less.

上記構成によれば、生産性が高く、かつ、電気特性の優れた弾性波装置を提供することができる。 According to the above configuration, it is possible to provide an elastic wave device having high productivity and excellent electrical characteristics.

本開示にかかる弾性波装置の模式的な断面図である。It is a schematic sectional view of the elastic wave apparatus which concerns on this disclosure. 図1の弾性波装置の上面図である。It is a top view of the elastic wave device of FIG. バルク波スプリアスの発生周波数と圧電膜の厚みとの関係を示す線図である。It is a diagram which shows the relationship between the generation frequency of bulk wave spurious and the thickness of a piezoelectric film. Δfと圧電膜のカット角との関係を示す線図である。It is a diagram which shows the relationship between Δf and the cut angle of a piezoelectric film. 図5(a)〜図5(c)は比較例および実施例に係る弾性波装置の周波数特性を示す線図である。5 (a) to 5 (c) are diagrams showing the frequency characteristics of the elastic wave apparatus according to the comparative example and the embodiment. 図5(a),図5(b)はそれぞれ図1に係る弾性波装置の変形例を示す断面図である。5 (a) and 5 (b) are cross-sectional views showing modified examples of the elastic wave device according to FIG. 1, respectively. モード1−1のスプリアス強度が0となる条件を示す図である。It is a figure which shows the condition which the spurious intensity of mode 1-1 becomes 0.

以下、図面を参照しつつ、本開示の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by explaining specific embodiments of the present disclosure with reference to the drawings.

図1は、本開示の実施形態に係る弾性波装置(以下、SAW装置という)1の模式的な断面図である。 FIG. 1 is a schematic cross-sectional view of an elastic wave device (hereinafter referred to as a SAW device) 1 according to the embodiment of the present disclosure.

SAW装置1は、支持基板3と圧電膜7とIDT電極9とを備える。支持基板3と圧電膜7とIDT電極9と、はこの順に積層されている。 The SAW device 1 includes a support substrate 3, a piezoelectric film 7, and an IDT electrode 9. The support substrate 3, the piezoelectric film 7, and the IDT electrode 9 are laminated in this order.

支持基板3は、この例では、その上に積層される圧電膜7を支持するものであり、一定の強度を備えれば特に限定されない。例えば、圧電膜7に比べて線膨張係数の小さい材料で構成する場合には、温度変化による圧電膜7の変形を低減することで、温度変化による特性変化を低減することができる。また、圧電膜7中を伝搬する弾性波の横波音速に比べて支持基板3中を伝搬する弾性波の横波音速が早くなるように材料を選定した場合には、弾性波を圧電膜7に閉じ込めることができ、周波数特性の優れたSAW装置1を提供することができる。 In this example, the support substrate 3 supports the piezoelectric film 7 laminated on the support substrate 3, and is not particularly limited as long as it has a certain strength. For example, when the material is made of a material having a coefficient of linear expansion smaller than that of the piezoelectric film 7, it is possible to reduce the characteristic change due to the temperature change by reducing the deformation of the piezoelectric film 7 due to the temperature change. Further, when the material is selected so that the transverse wave sound velocity of the elastic wave propagating in the support substrate 3 is faster than the transverse wave sound velocity of the elastic wave propagating in the piezoelectric film 7, the elastic wave is confined in the piezoelectric film 7. It is possible to provide the SAW device 1 having excellent frequency characteristics.

このような材料として、例えば、サファイア基板やSi基板等を例示できる。本実施形態においては支持基板3としてSi基板を用いた場合を例に説明する。 Examples of such a material include a sapphire substrate and a Si substrate. In this embodiment, a case where a Si substrate is used as the support substrate 3 will be described as an example.

圧電膜7は、第1面7aとこれに対向する第2面7bとを備える。便宜上、第2面7bから第1面7aに向かう方向を上方ということがある。このため、第1面7aを上面,第2面7bを下面と呼ぶこともある。 The piezoelectric film 7 includes a first surface 7a and a second surface 7b facing the first surface 7a. For convenience, the direction from the second surface 7b to the first surface 7a may be referred to as upward. Therefore, the first surface 7a may be referred to as an upper surface, and the second surface 7b may be referred to as a lower surface.

支持基板3は圧電膜7の第2面7bに接合されている。圧電膜7と支持基板3とは、直接接合されていてもよいし、間に接着層,中間層等を介在させて接続してもよい。中間層としては、酸化ケイ素や酸化アルミニウム、窒化ケイ素、窒化アルミニウム等の絶縁材料を例示することができる。 The support substrate 3 is joined to the second surface 7b of the piezoelectric film 7. The piezoelectric film 7 and the support substrate 3 may be directly bonded to each other, or may be connected with an adhesive layer, an intermediate layer, or the like interposed between them. As the intermediate layer, an insulating material such as silicon oxide, aluminum oxide, silicon nitride, or aluminum nitride can be exemplified.

圧電膜7は、タンタル酸リチウム(LiTaO;以下LTという)結晶からなる圧電性を有する単結晶の基板を用いることができる。LT結晶のカット角は46°以下としているが、詳しくは後述する。 As the piezoelectric film 7, a single crystal substrate having piezoelectricity made of lithium tantalate (LiTaO 3 ; hereinafter referred to as LT) crystal can be used. The cut angle of the LT crystal is 46 ° or less, which will be described in detail later.

圧電膜7は、その厚みを後述のIDT電極9により規定される弾性波の波長λに対して1λを超え、かつ1.6λ以下としている。圧電膜7の厚みについては後述する。 The thickness of the piezoelectric film 7 is more than 1λ and 1.6λ or less with respect to the wavelength λ of the elastic wave defined by the IDT electrode 9 described later. The thickness of the piezoelectric film 7 will be described later.

IDT電極9は、圧電膜7の第1面7aに位置する。IDT電極9は、導電性を有する材料を用いて形成されており、この例ではAlにCuを添加したAl−Cu合金で形成されている。IDT電極9は、他にもAl,Cu,Pt,Mo,Au等やその合金等種々の導電性材料を採用することができる。また、これら導電性材料からなる複数の層を積層させて構成してもよい。また。複数層の積層体からなる場合には、積層界面に例えばTi等からなる下地層を介在させてもよい。 The IDT electrode 9 is located on the first surface 7a of the piezoelectric film 7. The IDT electrode 9 is formed by using a conductive material, and in this example, it is formed of an Al—Cu alloy in which Cu is added to Al. For the IDT electrode 9, various conductive materials such as Al, Cu, Pt, Mo, Au and the like and alloys thereof can be adopted. Further, a plurality of layers made of these conductive materials may be laminated to form a structure. Also. When it is composed of a laminated body of a plurality of layers, a base layer made of, for example, Ti or the like may be interposed at the laminated interface.

IDT電極9の膜厚は、詳しくは後述するが、波長λに対して8%を超え、かつ12%以下の厚みとしている。 The film thickness of the IDT electrode 9 will be described in detail later, but is set to a thickness of more than 8% and 12% or less with respect to the wavelength λ.

図2に、IDT電極9の形状を示す。図2は、SAW装置1の上面図である。図2に示すように、IDT電極9は、2つのバスバー91と、バスバー91のいずれかに接続される複数の長尺状の電極指92が複数一方向に配列されている。そして一方のバスバー91に接続される電極指92と他方のバスバー91に接続される電極指92とが交互に配置さ
れている。また、一方のバスバー91に接続される電極指92の先端に対向し、他方のバスバー91に接続されるダミー電極93を備えている。なお、図中において、一方のバスバー91に接続される構成と他方のバスバー91に接続される構成を区別するために、一方に斜線を付している。
FIG. 2 shows the shape of the IDT electrode 9. FIG. 2 is a top view of the SAW device 1. As shown in FIG. 2, in the IDT electrode 9, a plurality of two bus bars 91 and a plurality of elongated electrode fingers 92 connected to any of the bus bars 91 are arranged in one direction. The electrode fingers 92 connected to one bus bar 91 and the electrode fingers 92 connected to the other bus bar 91 are alternately arranged. Further, a dummy electrode 93 facing the tip of the electrode finger 92 connected to one bus bar 91 and connected to the other bus bar 91 is provided. In the figure, one is shaded in order to distinguish between the configuration connected to one bus bar 91 and the configuration connected to the other bus bar 91.

このようなIDT電極9に高周波信号が印加されると、電極指92の中心間間隔pを半波長とする定在波が励振される。言い換えると、2pで表わされる波長λの弾性波が励振される。 When a high-frequency signal is applied to such an IDT electrode 9, a standing wave having a half-wavelength between the centers of the electrode fingers 92 is excited. In other words, an elastic wave of wavelength λ represented by 2p is excited.

なお、IDT電極9の電極指92の配列方向の両側には反射器11が位置している。これにより、IDT電極9と反射器11とで1ポート型の共振子として機能する。なお、本開示のSAW素子1はこのようなIDT電極9を含めばよく、その数、配置等については特に限定されない。例えば、このような共振子を複数含むラダー型フィルタや、縦結合型フィルタ等を構成することもできる。 Reflectors 11 are located on both sides of the IDT electrode 9 in the arrangement direction of the electrode fingers 92. As a result, the IDT electrode 9 and the reflector 11 function as a 1-port type resonator. The SAW element 1 of the present disclosure may include such an IDT electrode 9, and the number, arrangement, and the like thereof are not particularly limited. For example, a ladder type filter including a plurality of such resonators, a vertically coupled type filter, and the like can be configured.

本開示のSAW装置1によれば、上述の構成において、圧電膜7の厚み、カット角、およびIDT電極9の膜厚と、を特定の関係とすることで、生産性が高く、かつ電気特性の優れたものとなる。以下、そのメカ二ズムについて詳述する。 According to the SAW apparatus 1 of the present disclosure, in the above configuration, the thickness of the piezoelectric film 7, the cut angle, and the film thickness of the IDT electrode 9 have a specific relationship, so that the productivity is high and the electrical characteristics are high. Will be excellent. The mechanics will be described in detail below.

特許文献1に記載された弾性波装置は、厚みがλ未満(0.25λ)等の極めて薄い圧電膜を用いている。これにより、弾性波を圧電膜の内部に閉じ込めることができるとともに、バルク波によるスプリアスが共振周波数近傍に現れることもないため、高い電気特性を実現できる。 The elastic wave device described in Patent Document 1 uses an extremely thin piezoelectric film having a thickness of less than λ (0.25λ). As a result, elastic waves can be confined inside the piezoelectric film, and spurious emissions due to bulk waves do not appear in the vicinity of the resonance frequency, so that high electrical characteristics can be realized.

その一方で、圧電膜の厚みが極めて薄いことから、精密な加工が要求され生産性が低下する虞があった。さらに、圧電膜の厚みが薄いほどに、圧電膜の厚み変動に伴う周波数特性変動が大きくなり、安定した特性を維持することが困難だった。また、IDT電極9で励振された弾性波が支持基板3側にも分布するようになり、支持基板そのものや圧電膜と支持基板の界面の影響を受け、損失が大きくなったり、共振子としての特性が劣化したりする恐れがあった。 On the other hand, since the thickness of the piezoelectric film is extremely thin, precise processing is required and there is a risk that productivity may decrease. Further, as the thickness of the piezoelectric film becomes thinner, the frequency characteristic fluctuation accompanying the thickness fluctuation of the piezoelectric film becomes large, and it is difficult to maintain stable characteristics. In addition, elastic waves excited by the IDT electrode 9 are also distributed on the support substrate 3 side, and are affected by the support substrate itself and the interface between the piezoelectric film and the support substrate, resulting in a large loss or as a resonator. There was a risk that the characteristics would deteriorate.

これに対して、本開示のSAW装置1によれば、圧電膜7の厚みを、弾性波の閉じ込め効果が期待できる2λ未満とし、かつ、波長λを超える値とすることで、加工性を向上させるとともに、厚み変動に伴う特性変動の感度を下げることができる。すなわち、弾性波の閉じ込め効果に起因する高い電気特性と、圧電膜7の厚みを厚くすることによる高い生産性とを両立させることができる。 On the other hand, according to the SAW apparatus 1 of the present disclosure, the workability is improved by setting the thickness of the piezoelectric film 7 to less than 2λ, which can be expected to confine elastic waves, and to exceed the wavelength λ. At the same time, the sensitivity of characteristic fluctuations due to thickness fluctuations can be reduced. That is, it is possible to achieve both high electrical characteristics due to the confinement effect of elastic waves and high productivity by increasing the thickness of the piezoelectric film 7.

ただし、圧電膜7の厚みが1λを超える場合には、バルク波に起因するスプリアスの影響が大きくなる。図3に圧電膜の厚みを変えたときのバルク波スプリアスの周波数の変化の様子を示す。図3において横軸はλで規格化した圧電膜の厚みを示し、縦軸は周波数を示している。図3から、バルク波スプリアスのモード,次数が異なる種々のスプリアスが生じており、各スプリアスは圧電膜の厚みが薄くなるに従い高周波数側にシフトする様子が確認できる。そして、これら無数のスプリアスのうち、最も低い周波数に発生するバルク波スプリアスは、モード1の1次のものであり、以下モード1−1ということがある。なお、他のモード,次数のスプリアスについても同様の法則で表示する。そして、モード1−1の次に低い周波数に位置するバルク波スプリアスはモード2−1である。 However, when the thickness of the piezoelectric film 7 exceeds 1λ, the influence of spurious caused by bulk waves becomes large. FIG. 3 shows how the frequency of the bulk wave spurious changes when the thickness of the piezoelectric film is changed. In FIG. 3, the horizontal axis represents the thickness of the piezoelectric film standardized by λ, and the vertical axis represents the frequency. From FIG. 3, it can be confirmed that various spurs having different bulk wave spurious modes and orders are generated, and each spurious shifts to the higher frequency side as the thickness of the piezoelectric film becomes thinner. The bulk wave spurious generated at the lowest frequency among these innumerable spurious is the primary of mode 1, and may be referred to as mode 1-1 below. The same rule is used for other modes and spurs of order. The bulk wave spurious located at the next lowest frequency after mode 1-1 is mode 2-1.

ここで、圧電膜の厚みがが1λ以下の場合には、共振周波数、反共振周波数近傍にバルク波スプリアスは発生しないが、厚みが1λを超えるとモード1−1,2−1のバルク波スプリアスが共振特性に影響を与える虞があることが分かる。 Here, when the thickness of the piezoelectric film is 1λ or less, bulk wave spurious is not generated near the resonance frequency and the antiresonance frequency, but when the thickness exceeds 1λ, the bulk wave spurious of modes 1-1, 2-1 is generated. It can be seen that may affect the resonance characteristics.

そこで、本開示のSAW装置1によれば、モード1−1とモード2−1とのスプリアスの影響をなくすために以下の通りとした。なお、圧電膜7の厚みが1.6λを超える場合にはモード1−2のスプリアスが発生する。このため、圧電膜7の厚みを1.6λ以下とした。 Therefore, according to the SAW device 1 of the present disclosure, in order to eliminate the influence of spurious between modes 1-1 and mode 2-1 as follows. When the thickness of the piezoelectric film 7 exceeds 1.6λ, spurious of mode 1-2 is generated. Therefore, the thickness of the piezoelectric film 7 is set to 1.6λ or less.

まず、スプリアスの発生周波数はピッチp(もしくは波長λ)によって決まるため、IDT電極9の膜厚を厚くすることで、スプリアスの周波数は維持しつつ、共振周波数を低周波数側にシフトさせることができる。これにより、共振周波数に対するモード2−1のスプリアス周波数を(モード2−1の相対周波数)を高めて、モード2−1の影響を低減させる。言い換えると、モード2−1のスプリアスの周波数を共振周波数から離れる側にシフトさせることができる。 First, since the spurious generation frequency is determined by the pitch p (or wavelength λ), the resonance frequency can be shifted to the low frequency side while maintaining the spurious frequency by increasing the film thickness of the IDT electrode 9. .. As a result, the spurious frequency of mode 2-1 with respect to the resonance frequency (relative frequency of mode 2-1) is increased, and the influence of mode 2-1 is reduced. In other words, the spurious frequency of mode 2-1 can be shifted away from the resonance frequency.

次に、モード1−1について検討する。SV波であるモード1のスプリアスの強度は、IDT電極9からのバルク波放射と相関がある。すなわち、圧電膜7を構成するLT結晶のカット角や、圧電膜7の厚み、IDT電極9の厚み等により、スプリアスの強度を変化させることができる。ここで、IDT電極9の厚みを厚くすることで、モード2−1を共振周波数から離すことはできたが、同時にモード1−1の相対周波数も変化し、スプリアス強度が大きくなることが推定される。そこで、モード1−1に対しては、バルク波が放射されないように(スプリアスの強度を低くするように)、圧電膜7の厚みとカット角とを調整する。 Next, the mode 1-1 will be examined. The intensity of mode 1 spurious, which is an SV wave, correlates with the bulk wave radiation from the IDT electrode 9. That is, the strength of spurious can be changed by the cut angle of the LT crystal constituting the piezoelectric film 7, the thickness of the piezoelectric film 7, the thickness of the IDT electrode 9, and the like. Here, it was possible to separate the mode 2-1 from the resonance frequency by increasing the thickness of the IDT electrode 9, but it is estimated that the relative frequency of the mode 1-1 also changes at the same time and the spurious intensity increases. To. Therefore, for mode 1-1, the thickness and cut angle of the piezoelectric film 7 are adjusted so that the bulk wave is not radiated (so as to lower the spurious intensity).

具体的には、圧電膜7の厚みを調整して共振周波数とモード1−1の周波数を決定し、その周波数におけるスプリアス強度が小さくなるような圧電膜7のカット角とIDT電極9の膜厚との組み合わせを設定する。 Specifically, the thickness of the piezoelectric film 7 is adjusted to determine the resonance frequency and the frequency of mode 1-1, and the cut angle of the piezoelectric film 7 and the thickness of the IDT electrode 9 so that the spurious intensity at that frequency becomes small. Set the combination with.

以上より、周波数特性に大きく影響するバルク波スプリアスをモード1−1のみとするとともに、そのモード1−1のバルク波スプリアスの強度を小さくすることで、圧電膜7の厚みが1λを超えている場合であっても、バルク波スプリアスの影響を抑制することができるものとなる。 From the above, the thickness of the piezoelectric film 7 exceeds 1λ by limiting the bulk wave spurious that greatly affects the frequency characteristics to mode 1-1 and reducing the intensity of the bulk wave spurious in that mode 1-1. Even in this case, the influence of bulk wave spurious can be suppressed.

表1に、圧電膜7の厚みが1λ〜1.6λのときのモード1−1のスプリアス発生周波数と、このスプリアス発生周波数におけるモード1−1のスプリアス強度が0となるIDT電極9の厚みおよびLT結晶のカット角との組み合わせをシミュレーションした結果を図7に示す。図中において「無放射」とは、スプリアス強度が0となること示すものとする。 Table 1 shows the spurious generation frequency of mode 1-1 when the thickness of the piezoelectric film 7 is 1λ to 1.6λ, and the thickness of the IDT electrode 9 at which the spurious intensity of mode 1-1 at this spurious generation frequency becomes 0. The result of simulating the combination with the cut angle of the LT crystal is shown in FIG. In the figure, "non-radiation" means that the spurious intensity becomes 0.

図7からも明らかなように、モード1−1のスプリアス強度を0とするには、圧電膜5の厚みが一定の場合にはIDT電極9の膜厚が大きくなるほどLT結晶のカット角を大きくする必要がある。また、IDT電極9の厚みが一定の場合には圧電膜7の厚みが厚くなるほどLT結晶のカット角を小さくする必要があった。 As is clear from FIG. 7, in order to make the spurious intensity of mode 1-1 0, when the thickness of the piezoelectric film 5 is constant, the larger the film thickness of the IDT electrode 9, the larger the cut angle of the LT crystal. There is a need to. Further, when the thickness of the IDT electrode 9 is constant, it is necessary to reduce the cut angle of the LT crystal as the thickness of the piezoelectric film 7 becomes thicker.

ここで、図4に、IDT電極9の膜厚を4%(λ比)〜12%まで変更させたときの、LT結晶のカット角と、共振周波数と反共振周波数との差分(以下、Δfという)との関係を示す。図4において、横軸はLT結晶のカット角を示し、縦軸はΔfを示す。 Here, FIG. 4 shows the difference between the cut angle of the LT crystal and the resonance frequency and the antiresonance frequency when the film thickness of the IDT electrode 9 is changed from 4% (λ ratio) to 12% (hereinafter, Δf). The relationship with) is shown. In FIG. 4, the horizontal axis represents the cut angle of the LT crystal, and the vertical axis represents Δf.

図4からも明らかなように、カット角が大きくなるに従い、Δfは小さくなる。さらに、IDT電極9の膜厚が8%〜10%のときにΔfが最も大きくなり、膜厚がそれより小さくなる、もしくは大きくなるとΔfが小さくなることが分かる。 As is clear from FIG. 4, Δf decreases as the cut angle increases. Further, it can be seen that when the film thickness of the IDT electrode 9 is 8% to 10%, Δf becomes the largest, and when the film thickness becomes smaller or larger, Δf becomes smaller.

圧電膜7としてLT結晶を用いることから、Δfは75MHz以上確保してもよい。この場合には、IDT電極9の膜厚としては8%以上12%とし、LT結晶のカット角としては46°以下としてもよい。ただし、IDT電極9の厚みは、モード2−1の相対周波数調整のため厚くしていることから、9%以上、より好ましくは10%以上としてもよい。 Since the LT crystal is used as the piezoelectric film 7, Δf may be secured at 75 MHz or more. In this case, the film thickness of the IDT electrode 9 may be 8% or more and 12%, and the cut angle of the LT crystal may be 46 ° or less. However, the thickness of the IDT electrode 9 may be 9% or more, more preferably 10% or more, because it is thickened for adjusting the relative frequency of the mode 2-1.

なお、通常のIDT電極9の厚みは、その弾性波発生効率等を考慮して約8%とすることが多い。このことは、図4において、IDT電極9の厚みを8%としたときに最もΔf等の電気特性が優れていることからも明らかである。 The thickness of the normal IDT electrode 9 is often set to about 8% in consideration of its elastic wave generation efficiency and the like. This is clear from the fact that in FIG. 4, when the thickness of the IDT electrode 9 is 8%, the electrical characteristics such as Δf are most excellent.

このような、Δfを維持するための制限を考慮にいれると、モード1−1のスプリアス強度を0に近付けるには、圧電膜7の厚みは1.2λ〜1.6λ、カット角は46°以下、IDT電極9の厚みは9%以上12%以下を同時に満たすことが必要である。 Taking into consideration such a limitation for maintaining Δf, in order to bring the spurious intensity of mode 1-1 close to 0, the thickness of the piezoelectric film 7 is 1.2λ to 1.6λ and the cut angle is 46 °. Hereinafter, it is necessary that the thickness of the IDT electrode 9 simultaneously satisfies 9% or more and 12% or less.

なお、図7に示すモード1−1のスプリアス強度を0とするためのLT結晶のカット角Yは、圧電膜7の厚みをX,IDT電極9の膜厚をZとしたときに、以下の式で表される。
Y=AX+BX+C
ただし、A=−4017.9Z+1142.9Z−45.893、B=8625.0Z−3065.0Z+116.75、C=5021.4Z+503.57Z+27.891である。
The cut angle Y of the LT crystal for setting the spurious intensity of mode 1-1 shown in FIG. 7 to 0 is as follows when the thickness of the piezoelectric film 7 is X and the thickness of the IDT electrode 9 is Z. It is represented by an expression.
Y = AX 2 + BX + C
However, A = -4017.9Z 2 + 1142.9Z- 45.893, B = 8625.0Z 2 -3065.0Z + 116.75, is a C = 5021.4Z 2 + 503.57Z + 27.891 .

以上より、カット角はY±1°,IDT電極9の膜厚はZ±0.01(すなわち±1%)とすることで、モード1−1のスプリアス強度を0に近付けることができる。 From the above, by setting the cut angle to Y ± 1 ° and the film thickness of the IDT electrode 9 to Z ± 0.01 (that is, ± 1%), the spurious intensity of mode 1-1 can be brought close to 0.

以下、実施例として、実際の共振子の周波数特性をシミュレーションした結果を図5に示す。図5(a)は比較例に係るSAW装置の共振子特性を示し、図5(b)は実施例1に係るSAW装置の共振子特性を示し、図5(c)は実施例2に係るSAW装置の共振子特性を示す。 Hereinafter, as an example, the result of simulating the frequency characteristics of an actual resonator is shown in FIG. FIG. 5A shows the resonator characteristics of the SAW apparatus according to the comparative example, FIG. 5B shows the resonator characteristics of the SAW apparatus according to the first embodiment, and FIG. 5C shows the resonator characteristics of the SAW apparatus according to the second embodiment. The resonator characteristics of the SAW device are shown.

比較例,実施例1、実施例2の圧電膜7のカット角、厚み、IDT電極9の厚みは順に以下の通りである。
比較例1:42°,1.5λ,8%
実施例1:46°,1.2λ,10%
実施例2:46°,1.5λ,12%
図5において、横軸は周波数,縦軸はインピーダンスの絶対値を示す。図5から明らかなように、モード1−1のスプリアスは共振周波数に近付けることでスプリアスの強度を小さくしており、モード2−1のスプリアスは高周波数側にシフトさせることで、反共振周波数近傍およびその高周波数側においても広い周波数範囲でスプリアスが存在しない領域を確保できていることが分かる。なお、共振子にはIDT電極の反射帯域の高周波側の端部(バンドエッジ)ではSH波のスプリアスが発生する(図5では「バンドエッジ」と記載)。電極厚みが厚い場合、このバンドエッジの周波数が共振周波数に対して高周波側にシフトする。そのため、SAWとSH波の結合が弱くなり、スプリアスが小さくなる。本開示のSAW装置では電極厚みが一般よりも厚めに設定されるため、バンドエッジのスプリアスが小さくなるという効果もある。
The cut angle and thickness of the piezoelectric film 7 of Comparative Example, Example 1 and Example 2, and the thickness of the IDT electrode 9 are as follows in order.
Comparative Example 1: 42 °, 1.5λ, 8%
Example 1: 46 °, 1.2λ, 10%
Example 2: 46 °, 1.5λ, 12%
In FIG. 5, the horizontal axis represents the frequency and the vertical axis represents the absolute value of the impedance. As is clear from FIG. 5, the spurious of mode 1-1 reduces the spurious intensity by approaching the resonance frequency, and the spurious of mode 2-1 is shifted to the high frequency side to be near the anti-resonance frequency. It can be seen that a region in which spurious does not exist can be secured in a wide frequency range even on the high frequency side. In the resonator, SH wave spurious is generated at the high frequency side end (band edge) of the reflection band of the IDT electrode (described as "band edge" in FIG. 5). When the electrode thickness is thick, the frequency of this band edge shifts to the high frequency side with respect to the resonance frequency. Therefore, the coupling between the SAW and the SH wave becomes weak, and the spurious becomes small. In the SAW apparatus of the present disclosure, since the electrode thickness is set to be thicker than the general one, there is also an effect that the spurious of the band edge becomes small.

なお、実施例1に係るSAW装置において、IDT電極9の厚みを固定し、圧電膜7の厚みを1.2λ〜1.6λに、カット角を37°〜46°まで変化させた結果、いずれの場合も比較例に比べモード1−1の影響を抑制し、モード2−1のスプリアスを高周波数側にシフトさせることができることを確認した。中でも、LT結晶のカット角を38°、
圧電膜7の厚みを1.6λ,IDT電極9の厚みを10%としたときに、帯域内の位相特性を安定させることができることを確認した。
As a result of fixing the thickness of the IDT electrode 9, changing the thickness of the piezoelectric film 7 to 1.2λ to 1.6λ, and changing the cut angle from 37 ° to 46 ° in the SAW apparatus according to the first embodiment. In this case as well, it was confirmed that the influence of mode 1-1 can be suppressed and the spurious of mode 2-1 can be shifted to the high frequency side as compared with the comparative example. Above all, the cut angle of the LT crystal is 38 °,
It was confirmed that the phase characteristics in the band can be stabilized when the thickness of the piezoelectric film 7 is 1.6λ and the thickness of the IDT electrode 9 is 10%.

同様に、実施例2に係るSAW装置において、IDT電極9の厚みを固定し、圧電膜7の厚みを1.5λ,1.6λに、カット角を44°〜46°まで変化させた結果、いずれの場合も比較例に比べモード1−1の影響を抑制し、モード2−1のスプリアスを高周波数側にシフトさせることができることを確認した。中でも、LT結晶のカット角を44°、圧電膜7の厚みを1.6λ,IDT電極9の厚みを12%としたときに、帯域内の位相特性を安定させることができることを確認した。 Similarly, in the SAW apparatus according to the second embodiment, the thickness of the IDT electrode 9 is fixed, the thickness of the piezoelectric film 7 is changed to 1.5λ and 1.6λ, and the cut angle is changed from 44 ° to 46 °. In each case, it was confirmed that the influence of mode 1-1 can be suppressed and the spurious of mode 2-1 can be shifted to the high frequency side as compared with the comparative example. Above all, it was confirmed that the phase characteristics in the band can be stabilized when the cut angle of the LT crystal is 44 °, the thickness of the piezoelectric film 7 is 1.6λ, and the thickness of the IDT electrode 9 is 12%.

(他の例)
上述の例では、支持基板3と圧電膜7とが積層された構成としたがその構成に限定されない。例えば、図6(a)に示すように両者の間に絶縁部5を備えた構成であってもよい。
(Other examples)
In the above example, the support substrate 3 and the piezoelectric film 7 are laminated, but the configuration is not limited to that. For example, as shown in FIG. 6A, an insulating portion 5 may be provided between the two.

この場合には、絶縁部5は、例えば、酸化ケイ素、窒素ケイ素、酸化アルミニウム等の絶縁性を有する材料からなり、その結晶性は特に限定されない。絶縁部5を設けることにより、不要の電位が形成されたり不要の容量が形成されたりすることを低減することができるので、SAW装置1の電気特性を向上させることができる。 In this case, the insulating portion 5 is made of a material having insulating properties such as silicon oxide, silicon nitrogen nitrogen, and aluminum oxide, and its crystallinity is not particularly limited. By providing the insulating portion 5, it is possible to reduce the formation of unnecessary potentials and unnecessary capacitances, so that the electrical characteristics of the SAW device 1 can be improved.

特に、本例のように、支持基板3として半導体材料であるSi基板を用いる場合には、圧電膜7と支持基板3との間に絶縁部5を設けることにより、支持基板3の影響を低減すことができる。なお、絶縁性を確保しつつ、かつ、支持基板3の高音速材料の特性を活かすためには、絶縁部3の厚みは、0.01p以上2p以下としてもよい。特に0.1p〜0.4pとした場合には支持基板3(この場合はSi)の導電率の影響を避けることができる。 In particular, when a Si substrate, which is a semiconductor material, is used as the support substrate 3 as in this example, the influence of the support substrate 3 is reduced by providing an insulating portion 5 between the piezoelectric film 7 and the support substrate 3. Can be done. The thickness of the insulating portion 3 may be 0.01p or more and 2p or less in order to ensure the insulating property and to utilize the characteristics of the high sound velocity material of the supporting substrate 3. In particular, when the value is 0.1p to 0.4p, the influence of the conductivity of the support substrate 3 (Si in this case) can be avoided.

また、図6(b)に示ように、圧電膜7の直下に支持基板3が存在しない構成であってもよい。図6(b)において、支持基板3には凹部が形成されており、その凹部をふさぐように圧電膜7が配置されている。 Further, as shown in FIG. 6B, the support substrate 3 may not exist directly under the piezoelectric film 7. In FIG. 6B, a recess is formed in the support substrate 3, and the piezoelectric film 7 is arranged so as to close the recess.

特に図示しないが、図6(a)において、絶縁部5が複数の異なる層を積層した構成としてもよい。 Although not particularly shown, in FIG. 6A, the insulating portion 5 may be configured by laminating a plurality of different layers.

1:SAW装置
3:支持基板
7:圧電膜
9:IDT電極
1: SAW device 3: Support substrate 7: Piezoelectric film 9: IDT electrode

Claims (5)

複数の電極指を備え、弾性表面波を励振するIDT電極と、
上面に前記IDT電極が位置している圧電結晶からなり、前記複数の電極指の繰り返し間隔で定義されるpの2倍で定義される波長λに対して1.0λを超え、1.6λ以下の厚みである、X伝搬回転Yカットのタンタル酸リチウム単結晶基板からなる圧電膜と、を備え、
前記IDT電極の厚みは9%以上12%以下であり、
前記圧電膜のカット角は46°以下である、弾性波装置。
An IDT electrode that has multiple electrode fingers and excites surface acoustic waves,
It consists of a piezoelectric crystal in which the IDT electrode is located on the upper surface, and exceeds 1.0λ and 1.6λ or less with respect to the wavelength λ defined by twice p defined by the repetition interval of the plurality of electrode fingers. A piezoelectric film made of a lithium tantalate single crystal substrate of X propagation rotation Y cut, which has a thickness of
The thickness of the IDT electrode is 9% or more and 12% or less.
An elastic wave device having a cut angle of 46 ° or less of the piezoelectric film.
前記IDT電極の厚みは10%以上12%以下である、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, wherein the thickness of the IDT electrode is 10% or more and 12% or less. 前記圧電膜のカット角がY,前記圧電膜の厚みをX,前記IDT電極の厚みをZとしたときに、以下の式を満たす請求項1または2に記載の弾性波装置。
Y=AX+BX+C±1
A=−4017.9Z+1142.9Z−45.893
B=8625.0Z−3065.0Z+116.75
C=5021.4Z+503.57Z+27.891
The elastic wave device according to claim 1 or 2, wherein when the cut angle of the piezoelectric film is Y, the thickness of the piezoelectric film is X, and the thickness of the IDT electrode is Z, the following equation is satisfied.
Y = AX 2 + BX + C ± 1
A = -4017.9Z 2 + 142.9Z-45.893
B = 8625.0Z 2 -3065.0Z + 116.75
C = 5021.4Z 2 +503.57Z + 27.891
前記圧電膜の下面の側に直接または間接的に接続された、横波音速が、前記圧電膜中を伝搬する横波音速よりも速い支持基板をさらに備える、請求項1〜3のいずれかに記載の弾性波装置。 The one according to any one of claims 1 to 3, further comprising a support substrate which is directly or indirectly connected to the lower surface side of the piezoelectric film and whose transverse wave sound velocity is faster than the transverse wave sound velocity propagating in the piezoelectric film. Elastic wave device. 前記支持基板はSi基板である、請求項4に記載の弾性波装置。 The elastic wave device according to claim 4, wherein the support substrate is a Si substrate.
JP2019085000A 2019-04-26 2019-04-26 Acoustic wave device Pending JP2020182137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019085000A JP2020182137A (en) 2019-04-26 2019-04-26 Acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019085000A JP2020182137A (en) 2019-04-26 2019-04-26 Acoustic wave device

Publications (1)

Publication Number Publication Date
JP2020182137A true JP2020182137A (en) 2020-11-05

Family

ID=73023487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019085000A Pending JP2020182137A (en) 2019-04-26 2019-04-26 Acoustic wave device

Country Status (1)

Country Link
JP (1) JP2020182137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048191A1 (en) * 2021-09-24 2023-03-30 株式会社村田製作所 Filter device
WO2023188514A1 (en) * 2022-03-30 2023-10-05 日本碍子株式会社 Joint body and elastic wave element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070369A1 (en) * 2016-10-11 2018-04-19 京セラ株式会社 Acoustic wave device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070369A1 (en) * 2016-10-11 2018-04-19 京セラ株式会社 Acoustic wave device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048191A1 (en) * 2021-09-24 2023-03-30 株式会社村田製作所 Filter device
WO2023188514A1 (en) * 2022-03-30 2023-10-05 日本碍子株式会社 Joint body and elastic wave element

Similar Documents

Publication Publication Date Title
JP5163746B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP5177230B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP5488825B2 (en) Surface acoustic wave resonator and surface acoustic wave oscillator
US8305162B2 (en) Surface acoustic wave resonator and surface acoustic wave oscillator
US8928432B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
JP3301399B2 (en) Surface acoustic wave device
JP4645957B2 (en) Surface acoustic wave element and surface acoustic wave device
JP2006295311A (en) Surface acoustic wave element chip and surface acoustic wave device
JP2023060058A (en) Acoustic wave resonator, filter and multiplexer
JP2020182137A (en) Acoustic wave device
US8471434B2 (en) Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
JP2020102662A (en) Elastic wave element
JP5158104B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP4582150B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
WO2021006056A1 (en) Elastic wave device, high-frequency front-end circuit, and communication device
JP4148216B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2007221840A (en) Surface acoustic device and module device or oscillation circuit using the same
JP5488680B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
WO2021006055A1 (en) Acoustic wave device, radio-frequency front end circuit, and communication device
JP5737491B2 (en) Surface acoustic wave filters, electronic equipment
JP5737490B2 (en) Transversal surface acoustic wave device, surface acoustic wave oscillator and electronic equipment
JP5750683B2 (en) Two-terminal-pair surface acoustic wave resonator, surface acoustic wave oscillator and electronic device
JP2020141382A (en) Surface acoustic wave resonator
JP2005348269A (en) Surface acoustic wave device
JP2015084535A (en) Transversal type surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230606