JP2020181354A - Tunnel disaster prevention system - Google Patents

Tunnel disaster prevention system Download PDF

Info

Publication number
JP2020181354A
JP2020181354A JP2019083630A JP2019083630A JP2020181354A JP 2020181354 A JP2020181354 A JP 2020181354A JP 2019083630 A JP2019083630 A JP 2019083630A JP 2019083630 A JP2019083630 A JP 2019083630A JP 2020181354 A JP2020181354 A JP 2020181354A
Authority
JP
Japan
Prior art keywords
fire
reliability
fire detector
failure
failure sign
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019083630A
Other languages
Japanese (ja)
Other versions
JP7336252B2 (en
Inventor
秀成 松熊
Hidenari Matsukuma
秀成 松熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2019083630A priority Critical patent/JP7336252B2/en
Publication of JP2020181354A publication Critical patent/JP2020181354A/en
Priority to JP2023133777A priority patent/JP2023156478A/en
Application granted granted Critical
Publication of JP7336252B2 publication Critical patent/JP7336252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Landscapes

  • Fire Alarms (AREA)

Abstract

To provide a tunnel disaster prevention system capable of efficiently and appropriately grasping deterioration and suppressing non-fire alarms as a result by determining reliability of fire sensors while dividing the inside of a tunnel into a plurality of zones in an active state.SOLUTION: A disaster prevention receiving board 10 collects the number of times of occurrence of a failure sign from fire sensors 12 in predetermined timings, generates zone reliability information including the zone average number of times of occurrence of the failure sign obtained by averaging the number of times of occurrence of the failure sign of the fire detectors 12 provided in each zone in a case where the inside of a tunnel is divided into a plurality of zones, and also generates total failure sign information including the total number of times of occurrence of the failure sign as the entire tunnel obtained by averaging the zone average number of times of occurrence of the failure sign of each zone in the plurality of zones. A specific zone which satisfies a predetermined condition in a case where the zone average number of times of occurrence of the failure sign is compared with the total average number of times of occurrence of the failure sign, is determined as reliability reduction and notified.SELECTED DRAWING: Figure 8

Description

本発明は、防災受信盤から引き出された信号線に接続された火災検知器によりトンネル内の火災を監視するトンネル防災システム及び火災検知器に関する。 The present invention relates to a tunnel disaster prevention system and a fire detector that monitor a fire in a tunnel by a fire detector connected to a signal line drawn from a disaster prevention receiver.

従来、自動車専用道路等のトンネルには、トンネル内で発生する火災事故から人身及び車両等を守るため、火災を監視する火災検知器が設置され、防災受信盤から引き出された信号線に接続されて火災を監視している。 Conventionally, in tunnels such as motorways, fire detectors that monitor fires have been installed to protect people and vehicles from fire accidents that occur in the tunnels, and are connected to signal lines drawn from disaster prevention receivers. I am monitoring the fire.

火災検知器は左右の両方向に検知エリアを持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器との検知エリアが相互補完的に重なるように、例えば、25m間隔、或いは50m間隔で連続的に配置されている。 The fire detector has detection areas in both the left and right directions, and the detection areas with the adjacent fire detectors overlap each other along the longitudinal direction of the tunnel, for example, at intervals of 25 m or 50 m. They are arranged continuously at intervals.

また、火災検知器は透光性窓を介してトンネル内で発生する火災炎からの放射線、たとえば赤外線を監視しており、炎の監視機能を維持するために、受光素子の感度を点検するための感度試験や透光性窓の汚れを監視するための汚れ試験を行っている。 In addition, the fire detector monitors the radiation from the fire flame generated in the tunnel through the translucent window, for example, infrared rays, and in order to check the sensitivity of the light receiving element in order to maintain the flame monitoring function. Sensitivity test and dirt test to monitor dirt on transparent windows are conducted.

しかしながら、このような従来の火災検知器にあっては、運用期間が長くなって火災検知器の劣化が進んだ場合、感度試験によるセンサ故障や汚れ試験による汚れ異常が検出されることなく正常に運用されていると思われる状態でも、火災検知器が火災検知信号を出力して防災受信盤から非火災報が出される事態が発生する可能性があり、このような場合、それが非火災報であることを確認するまでは、警報表示板設備などにより進入禁止警報を行って車両のトンネル通行を禁止し、管理担当者が現場に出向いて確認する必要があり、トンネル通行を再開するまでに手間と時間がかかり、交通渋滞を招くなどの影響が小さくない。 However, in such a conventional fire detector, when the operation period becomes long and the fire detector deteriorates, the sensor failure by the sensitivity test and the dirt abnormality by the dirt test are not detected normally. Even in a state where it seems to be in operation, there is a possibility that the fire detector outputs a fire detection signal and a non-fire report is issued from the disaster prevention receiver. In such a case, it is a non-fire report. Until it is confirmed that it is, it is necessary to issue an entry prohibition warning by using an alarm display board facility etc. to prohibit the vehicle from passing through the tunnel, and the person in charge of management must go to the site to check it, and by the time the tunnel passage is resumed. It takes time and effort, and the impact of causing traffic congestion is not small.

このため、防災受信盤で火災検知器の温度、湿度、衝撃振動及び電気的ノイズ等の環境ストレスに基づいて劣化の度合いを判定して報知するようにしたトンネル防災システムが提案されており、火災検知器の劣化の進み具合が把握できることで、非火災報が出されてしまう前に、火災検知器を予備の火災検知器に交換する等の対応を可能としている。 For this reason, a tunnel disaster prevention system has been proposed in which the degree of deterioration is determined and notified based on environmental stress such as temperature, humidity, shock vibration, and electrical noise of the fire detector on the disaster prevention receiver. By grasping the progress of deterioration of the detector, it is possible to take measures such as replacing the fire detector with a spare fire detector before a non-fire report is issued.

また、従来のトンネル防災システムは、防災受信盤が火災検知器からの火災信号を受信したときに、非火災報を防止するために、所定時間後に火災検知器を一旦復旧し、再度、所定時間以内に火災信号を受信したときに火災と判断して警報表示板設備などにより進入禁止警報を行っている。 Further, in the conventional tunnel disaster prevention system, when the disaster prevention receiver receives a fire signal from the fire detector, the fire detector is temporarily restored after a predetermined time in order to prevent a non-fire alarm, and then again for a predetermined time. When a fire signal is received within the time, it is judged as a fire and an entry prohibition warning is issued by the alarm display board equipment.

特開2002−246962号公報JP-A-2002-246962 特開2016−128796号公報JP-A-2016-1287796 特開2018−169893号公報JP-A-2018-169893

ところで、従来のトンネル防災システムは、火災検知器の試験異常に基づいて劣化の度合いを判定しているものがあるが、この場合、例えば場所によって常時、また所定期間にわたり外乱源が存在するような状況、例えば照明類の常設場所や車両の通行状況、周辺の所定場所での工事等に伴う一時的な工事照明設置や溶接光、塵埃の発生、作業員の往来等によっても、試験中に外乱源が作用して試験異常となることがあり(例えば試験光に外乱光が作用して適切な試験結果が得られないなど)、このような場合、火災検知器は劣化していないにもかかわらず劣化と判断してしまう可能性がある。このため、時期的、局所的及び全体的な環境要因を考慮した火災検知器の劣化度合等の判定が求められる。 By the way, in some conventional tunnel disaster prevention systems, the degree of deterioration is determined based on a test abnormality of a fire detector. In this case, for example, a disturbance source exists at all times or for a predetermined period depending on the location. Disturbance during the test due to conditions such as permanent lighting and vehicle traffic, temporary construction due to construction work in the surrounding area, lighting installation, welding light, dust generation, and traffic of workers. The source may act and cause test abnormalities (for example, ambient light acts on the test light and appropriate test results cannot be obtained). In such cases, the fire detector is not deteriorated. There is a possibility that it will be judged as deterioration. Therefore, it is required to judge the degree of deterioration of the fire detector in consideration of the timing, local and overall environmental factors.

本発明は、運用状態でトンネル内を複数の区間に分けて火災検知器の信頼性を判断することにより効率的且つ適切に劣化を捉え、ひいては非火災報を抑制可能とするトンネル防災システムを提供することを目的とする。 The present invention provides a tunnel disaster prevention system that can efficiently and appropriately detect deterioration by dividing the inside of a tunnel into a plurality of sections in an operating state and judging the reliability of a fire detector, and thus can suppress non-fire alarms. The purpose is to do.

(トンネル防災システム)
本発明は、トンネル内を複数の区間に分けて、区間の各々に火災検知器を設けたトンネル防災システムに於いて、
区間内に設けた火災検知器の所定の故障予兆の発生回数を平均した故障予兆の区間平均発生回数を含む区間信頼性情報を生成する区間信頼性情報生成部と、
複数の区間における各区間の故障予兆の区間平均発生回数を平均した故障予兆の総合平均発生回数を含む総合故障予兆情報を生成する総合信頼性情報生成部と、
故障予兆の区間平均発生回数と故障予兆の総合平均発生回数とを比較した場合に所定の条件を充足する特定の区間を、信頼性低下と判断して報知する区間信頼性判断部と、
が設けられたことを特徴とする。
(Tunnel disaster prevention system)
The present invention is a tunnel disaster prevention system in which a tunnel is divided into a plurality of sections and fire detectors are provided in each section.
A section reliability information generator that generates section reliability information including the section average number of failure signs that averages the number of occurrences of a predetermined failure sign of a fire detector provided in the section.
A comprehensive reliability information generator that generates comprehensive failure sign information including the total average number of failure signs that averages the average number of failure signs in each section in multiple sections.
When comparing the average number of occurrences of failure signs and the total average number of occurrences of failure signs, a section reliability judgment unit that determines and notifies a specific section that satisfies a predetermined condition as a decrease in reliability,
Is characterized by being provided.

(検知器信頼性判断)
トンネル防災システムは、更に、
故障予兆の区間平均発生回数に対し、故障予兆の発生回数が所定値以上又は所定値を超えている火災検知器を、信頼性低下と判断して報知する火災検知器信頼性判断部が設けられる。
(Detector reliability judgment)
The tunnel disaster prevention system is further
A fire detector reliability judgment unit is provided to notify a fire detector whose failure sign occurrence number is equal to or more than a predetermined value or exceeds a predetermined value with respect to the section average number of failure signs as a decrease in reliability. ..

(信頼性低下の区間で火災検知器の信頼性低下を判断しなかった場合の対処)
区間信頼性判断部は、火災検知器信頼性判断部で火災検知器の信頼性低下が判断されなかった場合、信頼性低下が判断された区間に信頼性を阻害する要因が存在する旨と所定の対処を報知する。
(What to do if the reliability of the fire detector is not judged to be reduced in the section of reduced reliability)
The section reliability judgment unit prescribes that if the fire detector reliability judgment unit does not determine a decrease in the reliability of the fire detector, there is a factor that impedes the reliability of the section in which the decrease in reliability is determined. Notify the countermeasures of.

(火災検知器の信頼性低下を判断した場合の対処)
火災検知器信頼性判断部は、火災検出器の信頼性低下を判断した場合、当該火災検知器の周辺環境に信頼性を阻害する要因が存在する旨と当該火災検知器の交換を含む所定の対処を報知する。
(What to do if it is judged that the reliability of the fire detector has decreased)
When the fire detector reliability judgment unit determines that the reliability of the fire detector has deteriorated, it is determined that there is a factor that impedes the reliability of the surrounding environment of the fire detector and that the fire detector is replaced. Notify the action.

(火災検知器の信頼性低下を判断した場合の火災処理1)
火災検知器信頼性判断部は、火災検知器の信頼性低下を判断した場合、当該火災検知器の所定の第1の火災判断蓄積条件を第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行う。
(Fire treatment when it is judged that the reliability of the fire detector is reduced 1)
When the fire detector reliability judgment unit determines that the reliability of the fire detector has deteriorated, the fire detector reliability determination unit sets the predetermined first fire judgment accumulation condition of the fire detector to a stricter predetermined first fire judgment accumulation condition than the first fire judgment accumulation condition. A fire signal is sent from at least one of the fire detector that changed the fire judgment accumulation condition of 2 and restored, and the adjacent fire detector that duplicately monitors the detection area of the fire detector. When it is received, the prescribed fire treatment is performed.

(火災検知器の信頼性低下を判断した場合の火災処理2)
火災検知器信頼性判断部は、火災検知器の信頼性低下を判断した場合、当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台の火災判断蓄積条件を第1の火災判断蓄積条件を緩和した所定の第3の火災判断条件蓄積条件に変更する。
(Fire treatment when it is judged that the reliability of the fire detector is reduced 2)
When the fire detector reliability judgment unit judges that the reliability of the fire detector has deteriorated, at least one fire judgment of the fire detector and the adjacent fire detector that duplicately monitors the detection area of the fire detector. The accumulation condition is changed to a predetermined third fire judgment condition accumulation condition in which the first fire judgment accumulation condition is relaxed.

(故障劣化の判定1)
火災検知器は、複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災が判定されずに火災と判断するに至らなかった場合に故障予兆と判定して当該故障予兆の発生回数を求める。
(Judgment of failure deterioration 1)
The fire detector judges a fire by a plurality of fire judgment stages, and fails when a fire is not judged and a fire is not judged in at least one of the multiple fire judgment stages. It is judged as a sign and the number of occurrences of the failure sign is calculated.

(故障劣化の判定2)
火災検知器は、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判定して当該故障予兆の発生回数を求める。
(Judgment of failure deterioration 2)
The fire detector conducts a test to judge the failure of the fire detection unit based on the received signal when the test light source is driven, and the level of the received signal by the test is out of the predetermined normal range, but the predetermined failure is judged. When the condition is not satisfied, it is determined as a failure sign and the number of occurrences of the failure sign is calculated.

(故障劣化の判定3)
火災検知器は、
複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災が判定されずに火災と判断するに至らなかった場合に第1の故障予兆と判定すると共に当該第1の故障予兆の発生回数を求め、且つ、
試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に第2の故障予兆と判定すると共に当該第2の故障予兆の発生回数を求め、
区間信頼性情報性正部は、区間内に設けた火災検知器の第1の故障予兆の発生回数と第2の故障予兆の発生回数の何れか一方又は両方を平均した故障予兆の区間平均発生回数を含む区間信頼性情報を生成する。
(Judgment of failure deterioration 3)
Fire detector
A fire is judged by a plurality of fire judgment stages, and if a fire is not judged and a fire is not judged in at least one of the fire judgment stages, it is regarded as a first failure sign. Along with the determination, the number of occurrences of the first failure sign is obtained, and
We are conducting a test to judge the failure of the fire detection unit based on the received signal when driving the test light source, and the level of the received signal in the test is out of the specified normal range but does not satisfy the specified failure judgment condition. In that case, it is determined that it is a second failure sign, and the number of occurrences of the second failure sign is calculated.
The section reliability information positive part is the section average occurrence of the failure sign, which is the average of either or both of the number of occurrences of the first failure sign and the number of occurrences of the second failure sign of the fire detector provided in the section. Generate interval reliability information including the number of times.

(基本的な効果)
本発明は、トンネル内を複数の区間に分けて、区間の各々に火災検知器を設けたトンネル防災システムに於いて、区間内に設けた火災検知器の所定の故障予兆の発生回数を平均した故障予兆の区間平均発生回数を含む区間信頼性情報を生成する区間信頼性情報生成部と、複数の区間における各区間の故障予兆の区間平均発生回数を平均した故障予兆の総合平均発生回数を含む総合故障予兆情報を生成する総合信頼性情報生成部と、故障予兆の区間平均発生回数と故障予兆の総合平均発生回数とを比較した場合に所定の条件を充足する特定の区間を、信頼性低下と判断して報知する区間信頼性判断部と、が設けられたため、火災検知器おける故障予兆の発生回数に基づき、各区間の故障予兆の区間平均発生回数をトンネル全体となる故障予兆の総合平均発生回数と比較することで、故障予兆の総合平均発生回数に対し故障予兆の区間平均発生回数が所定値を超えて多い場合は、その区間が信頼性低下と判断して報知され、火災検知器の劣化等が進んで信頼性低下となった区間がわかることで、運用管理者は、信頼性低下と判断された区間に設置されている火災検知器を重点的に点検することで、必要があれば火災検知器を新品に交換することとなり、劣化等が進んで非火災報となる火災信号を出す可能性の高い区間の火災検知器に対し適切な対処を行い、非火災報に対しトンネルの進入禁止警報を伴う火災処理によりトンネル通行を止めてしまうことを未然に防止可能とする。
(Basic effect)
In the present invention, in a tunnel disaster prevention system in which a tunnel is divided into a plurality of sections and fire detectors are provided in each section, the number of occurrences of a predetermined failure sign of the fire detectors provided in the sections is averaged. Includes the section reliability information generator that generates section reliability information including the average number of occurrences of failure signs, and the total average number of occurrences of failure signs that averages the average number of occurrences of failure signs in each section in multiple sections. The reliability of a specific section that satisfies a predetermined condition when comparing the total average number of occurrences of a failure sign and the total average number of occurrences of a failure sign with the comprehensive reliability information generation unit that generates comprehensive failure sign information is reduced. Since a section reliability judgment unit is provided to determine and notify, the average number of occurrences of failure signs in each section is the total average of failure signs for the entire tunnel, based on the number of occurrences of failure signs in the fire detector. By comparing with the number of occurrences, if the average number of occurrences of the failure sign in the section exceeds the predetermined value with respect to the total average number of occurrences of the failure sign, the section is judged to be unreliable and notified, and the fire detector is notified. It is necessary for the operation manager to focus on inspecting the fire detectors installed in the section where the reliability is judged to be deteriorated by knowing the section where the reliability has deteriorated due to the deterioration of the fire. If there is, the fire detector will be replaced with a new one, and appropriate measures will be taken for the fire detector in the section where there is a high possibility that a fire signal will be issued as a non-fire report due to deterioration etc. It is possible to prevent the passage of tunnels from being stopped due to fire treatment accompanied by an entry prohibition warning.

また、信頼性低下と判断された区間について、例えば火災検知器の劣化要因となる温度、湿度、塵埃、電気的ノイズ、外乱光等の環境的要因を調べ、劣化等により信頼性を低下させる原因となる環境的要因を抑制又は除去するといった対処を行うことができる。 In addition, for the section judged to have reduced reliability, for example, environmental factors such as temperature, humidity, dust, electrical noise, and ambient light, which are factors that cause deterioration of the fire detector, are investigated, and the cause of the deterioration of reliability is reduced. It is possible to take measures such as suppressing or eliminating such environmental factors.

(検知器信頼性判断の効果)
また、トンネル防災システムは、更に、故障予兆の区間平均発生回数に対し、故障予兆の発生回数が所定値以上又は所定値を超えている火災検知器を、信頼性低下と判断して報知する火災検知器信頼性判断部が設けられたため、信頼性低下と判断された区間に設置している複数の火災感知器の中で、信頼性低下と判断された火災検知器を特定することで、その火災検知器を重点的に点検し、また必要があれば火災検知器を新品に交換し、更に、設置場所の環境的要因を調べて信頼性を低下させる原因となる環境的要因を抑制又は除去するといった対処を行うことができる。
(Effect of detector reliability judgment)
In addition, the tunnel disaster prevention system further determines that the reliability of the fire detector is lower than the predetermined value or exceeds the predetermined value with respect to the average number of occurrences of the failure sign in the section, and notifies the fire. Since the detector reliability judgment unit is provided, by identifying the fire detector that is judged to be unreliable among the multiple fire detectors installed in the section that is judged to be unreliable, the fire detector can be identified. Focus on inspecting fire detectors, replace fire detectors with new ones if necessary, and investigate environmental factors at the installation site to control or eliminate environmental factors that reduce reliability. You can take measures such as

(信頼性低下の区間で火災検知器の信頼性低下を判断しなかった場合の対処の効果)
また、区間信頼性判断部は、火災検知器信頼性判断部で火災検知器の信頼性低下が判断されなかった場合、信頼性低下が判断された区間に信頼性を阻害する要因が存在する旨と所定の対処を報知するようにしたため、区間の信頼性低下が判断されても、当該区間に設置されている特定の火災検知器につき信頼性低下が判断されない場合には、当該区間に設置されている火災検知器の故障劣化の発生回数が全体的に多くなっており、これは当該区間の環境的要因による故障予兆の発生回数が他の区間に比べ多くなっていることが想定されることから、火災検知器の劣化要因となる温度、湿度、塵埃、電気的ノイズ、外乱光等の環境的要因を調べ、劣化等により信頼性を低下させる原因となる環境的要因を抑制又は除去するといった対処を報知することで、信頼性を損なっている環境的要因を除去又は抑制し、故障劣化の発生数を低減可能とする。
(Effect of measures when the reliability of the fire detector is not judged in the section of reliability deterioration)
In addition, the section reliability judgment unit indicates that if the fire detector reliability judgment unit does not determine a decrease in the reliability of the fire detector, there is a factor that impedes the reliability of the section in which the decrease in reliability is determined. Therefore, even if it is judged that the reliability of the section is reduced, if the reliability of the specific fire detector installed in the section is not judged to be reduced, it is installed in the section. The number of occurrences of failure deterioration of the fire detector is increasing overall, and it is assumed that the number of occurrences of failure signs due to environmental factors in the section is higher than in other sections. Therefore, environmental factors such as temperature, humidity, dust, electrical noise, and ambient light that cause deterioration of the fire detector are investigated, and environmental factors that cause deterioration of reliability due to deterioration etc. are suppressed or removed. By notifying the countermeasures, it is possible to remove or suppress environmental factors that impair reliability and reduce the number of failures and deteriorations.

(火災検知器の信頼性低下を判断した場合の対処1の効果)
また、火災検知器信頼性判断部は、火災検出器の信頼性低下を判断した場合、当該火災検知器の周辺環境に信頼性を阻害する要因が存在する旨と当該火災検知器の交換を含む所定の対処を報知するようにしたため、信頼性低下と判断された区間に設置している複数の火災検知器の中から信頼性低下と判断された1又は複数の火災検知器が分かることで、運用管理者は、信頼性低下と判断された火災検知器を重点的に点検することで、必要があれば火災検知器を新品に交換することで、信頼性のそれ以上の低下を抑制したり、信頼性を回復させることができる。
(Effect of Action 1 when it is judged that the reliability of the fire detector is reduced)
In addition, when the fire detector reliability judgment unit determines that the reliability of the fire detector has deteriorated, it includes the fact that there is a factor that hinders the reliability of the surrounding environment of the fire detector and the replacement of the fire detector. Since the prescribed countermeasures are notified, one or more fire detectors judged to be unreliable can be identified from among the plurality of fire detectors installed in the section judged to be unreliable. The operation manager can suppress further deterioration of reliability by focusing on inspection of fire detectors that are judged to have decreased reliability and replacing the fire detectors with new ones if necessary. , The reliability can be restored.

(火災検知器の信頼性低下と判断した場合の火災判断1の効果)
また、火災検知器信頼性判断部は、火災検知器の信頼性低下を判断した場合、当該火災検知器の所定の第1の火災判断蓄積条件を第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行うようにしたため、信頼性低下と判断することで非火災報と見做しても、非火災報となった火災検知器の第1の火災判断蓄積条件を厳格な第2の火災判断蓄積条件に変更して非火災報を出しにくくして復旧し、火災判断蓄積条件を変更した火災検知器と同じ警戒エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、間違いなく火災と判断してトンネルの進入禁止警報を含む火災処理を行うことで、確実に火災を検知して対処することができる。
(Effect of Fire Judgment 1 when it is judged that the reliability of the fire detector is reduced)
Further, when the fire detector reliability judgment unit judges that the reliability of the fire detector is lowered, the predetermined first fire judgment accumulation condition of the fire detector is set to be stricter than the first fire judgment accumulation condition. The fire was restored by changing to the second fire judgment storage condition, and the fire detector that changed the fire judgment storage condition and the adjacent fire detector that duplicately monitors the detection area of the fire detector fired. When a signal is received, the prescribed fire treatment is performed, so even if it is considered as a non-fire report by judging that the reliability is low, the first fire judgment of the fire detector that became a non-fire report Adjacent fire detection that duplicately monitors the same warning area as the fire detector that changed the fire judgment storage condition by changing the storage condition to the strict second fire judgment storage condition to make it difficult to issue non-fire reports and recovering. When a fire signal is received from at least one of the vessels, it is definitely judged as a fire and fire processing including a tunnel entry prohibition warning is performed, so that the fire can be reliably detected and dealt with.

(火災検知器の信頼性低下と判断した場合の火災判断2の効果)
また、火災検知器信頼性判断部は、火災検知器の信頼性低下を判断した場合、当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台の火災判断蓄積条件を第1の火災判断蓄積条件を緩和した所定の第3の火災判断条件蓄積条件に変更するようにしたため、火災信号を出して火災検知器が信頼性低下と判断されたときに、実火災による火災信号であった場合、隣接した火災検知器が火災判断蓄積条件の緩和により高感度に変更されて迅速に火災信号を送信し、第1報目の火災信号を送信して信頼性低下と判断された火災検知器の復旧後の火災信号の受信を待って火災処理を行うことができる。
(Effect of Fire Judgment 2 when it is judged that the reliability of the fire detector is reduced)
In addition, when the fire detector reliability judgment unit determines that the reliability of the fire detector has deteriorated, at least one of the fire detector and the adjacent fire detector that duplicately monitors the detection area of the fire detector. When the fire judgment storage condition is changed to the predetermined third fire judgment condition storage condition that relaxes the first fire judgment storage condition, a fire signal is issued and the fire detector is judged to have reduced reliability. , If it is a fire signal due to an actual fire, the adjacent fire detector will be changed to high sensitivity due to the relaxation of the fire judgment accumulation conditions, and the fire signal will be transmitted promptly, and the first fire signal will be transmitted for reliability. The fire can be dealt with by waiting for the reception of the fire signal after the restoration of the fire detector judged to be deteriorated.

(故障劣化の判定1による効果)
また、火災検知器は、複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判断されたが残りの火災判定段階で火災と判断されるに至らなかった場合に故障予兆と判定して当該故障予兆の発生回数を求めるようにしたため、火災検知器が故障や非火災要因等により複数の火災判定段階を経た火災判断により火災信号を出力するには、それまでの間に、複数の火災判定段階の途中で火災と判断するに至らなかった故障予兆が何回か生じており、この故障予兆の発生回数を求めて信頼性を判断するための根拠とすることで、火災検知器が火災を判断したとしても、故障予兆の発生回数が多い場合には、非火災報の可能性が高いことから、信頼性低下と判断し、非火災報による火災処理を確実に防止することを可能とする。
(Effect of judgment 1 of failure deterioration)
In addition, the fire detector judges a fire by a plurality of fire judgment stages, and a fire is judged in at least one of the multiple fire judgment stages, but a fire is judged in the remaining fire judgment stages. If the fire is not detected, it is judged as a failure sign and the number of occurrences of the failure sign is calculated. Therefore, the fire detector issues a fire signal based on the fire judgment through multiple fire judgment stages due to a failure or non-fire factor. In order to output, there have been several failure signs that could not be judged as a fire in the middle of multiple fire judgment stages, and the reliability is judged by calculating the number of occurrences of these failure signs. Even if the fire detector determines that there is a fire, if the number of occurrences of failure signs is high, there is a high possibility of a non-fire report, so it is judged that the reliability has deteriorated and it is not. It is possible to reliably prevent fire treatment by fire information.

(故障劣化の判定2による効果)
また、火災検知器は、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判定して当該故障予兆の発生回数を求めるようにしたため、火災検知器が試験光源を駆動した際の受光信号に基づき例えばセンサ部と増幅処理部を備えた火災検知部の故障が判断されるには、それまでの間に、受光素子の劣化等により受光信号のレベルが正常範囲を外れたが例えば故障閾値には達せずに故障判断条件を充足しない故障予兆を何回か発生じており、この火災検知器の試験における故障予兆の発生回数を、信頼性を判断するための根拠とすることで、火災検知器が火災検知部の故障を判断しなくとも、故障予兆の発生回数が多い場合には、非火災報の可能性が高いことから、信頼性低下と判断し、非火災報による火災処理を確実に防止することを可能とする。
(Effect of judgment 2 of failure deterioration)
In addition, the fire detector is conducting a test to determine the failure of the fire detection unit based on the received signal when the test light source is driven, and the level of the received signal in the test is out of the predetermined normal range, but it is predetermined. When the failure judgment condition is not satisfied, it is judged as a failure sign and the number of occurrences of the failure sign is calculated. Therefore, for example, the sensor unit and the amplification processing unit are based on the received signal when the fire detector drives the test light source. In order to determine the failure of the fire detection unit equipped with, for example, the level of the light receiving signal is out of the normal range due to deterioration of the light receiving element, but the failure judgment condition is determined without reaching the failure threshold, for example. Unsatisfied failure signs have occurred several times, and by using the number of failure signs in the fire detector test as the basis for determining reliability, the fire detector can detect a failure in the fire detector. Even if it is not judged, if the number of occurrences of failure signs is large, there is a high possibility of non-fire alarm, so it is judged that the reliability is low, and it is possible to reliably prevent fire treatment by non-fire alarm. ..

(故障劣化の判定3による効果)
また、火災検知器は、複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災が判定されずに火災と判断するに至らなかった場合に第1の故障予兆と判定すると共に当該第1の故障予兆の発生回数を求め、且つ、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に第2の故障予兆と判定すると共に当該第2の故障予兆の発生回数を求め、区間信頼性情報性正部は、区間内に設けた火災検知器の第1の故障予兆の発生回数と第2の故障予兆の発生回数の何れか一方又は両方を平均した故障予兆の区間平均発生回数を含む区間信頼性情報を生成するようにしたため、前述した故障劣化の判定1の効果と故障劣化の判定2の効果を併せた効果が得られる。
(Effect of judgment 3 of failure deterioration)
In addition, the fire detector judges a fire by a plurality of fire judgment stages, and when the fire is not judged in at least one of the plurality of fire judgment stages and the fire is not judged as a fire. In addition to determining the first failure sign, the number of occurrences of the first failure sign is determined, and a test is conducted to determine the failure of the fire detection unit based on the received signal when the test light source is driven. When the level of the received signal due to is out of the predetermined normal range but does not satisfy the predetermined failure judgment condition, it is determined as a second failure sign, and the number of occurrences of the second failure sign is obtained, and the section reliability is obtained. The sexual information positive part calculates the average number of occurrences of the first failure sign and the number of occurrences of the second failure sign of the fire detector provided in the section, or the average number of occurrences of the failure sign in the section. Since the section reliability information including the section is generated, the effect of the above-mentioned failure deterioration determination 1 and the effect of the failure deterioration determination 2 can be combined.

トンネル防災システムの概要を示した説明図Explanatory diagram showing the outline of the tunnel disaster prevention system 火災検知器の区間と検知エリアを示した説明図Explanatory drawing showing the section and detection area of the fire detector 火災検知器の外観を示した説明図Explanatory drawing showing the appearance of the fire detector 火災検知器の機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the fire detector 火災検知器の制御動作を示したフローチャートFlow chart showing the control operation of the fire detector 火災検知器の感度試験により内部試験光源を駆動した際の受光信号のピークレベルと故障予兆の発生回数を示した説明図Explanatory drawing showing the peak level of the received signal and the number of occurrences of failure signs when the internal test light source is driven by the sensitivity test of the fire detector. 故障予兆の判断を伴う火災検知器の感度試験を示したフローチャートFlowchart showing sensitivity test of fire detector with judgment of failure sign 防災受信盤の機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the disaster prevention receiver 防災受信盤による信頼性判断制御を示したフローチャートFlowchart showing reliability judgment control by disaster prevention receiver

[トンネル防災システム]
[実施形態の基本的な概念]
図1はトンネル防災システムの概要を示した説明図である。本実施形態によるトンネル防災システムの基本的な概念は、トンネル内に、防災受信盤10から信号系統ごとに配線された信号線14a,14bに火災検知器12が接続されており、火災検知器12は劣化等に伴う所定の故障予兆の発生回数を示す故障予兆情報を保持しており、防災受信盤10は、所定の信頼性判断制御のタイミングで火災検知器12から故障予兆情報を取得して、故障予兆の発生回数を抽出収集し、トンネル内を複数区間に分けた場合の各区間内に設けた火災検知器の所定の故障予兆の発生回数を平均した故障予兆の区間平均発生回数を含む区間信頼性情報を生成し、併せて、複数の区間における各区間の故障予兆の区間平均発生回数を平均したトンネル全体としての故障予兆の総合平均発生回数を含む総合故障予兆情報を生成し、故障予兆の区間平均発生回数と故障予兆の総合平均発生回数とを比較した場合に所定の条件を充足する特定の区間を、信頼性低下区間と判断して報知する、というものである。
[Tunnel disaster prevention system]
[Basic concept of the embodiment]
FIG. 1 is an explanatory diagram showing an outline of a tunnel disaster prevention system. The basic concept of the tunnel disaster prevention system according to the present embodiment is that the fire detector 12 is connected to the signal lines 14a and 14b wired from the disaster prevention receiver 10 for each signal system in the tunnel, and the fire detector 12 is connected. Holds failure sign information indicating the number of occurrences of a predetermined failure sign due to deterioration or the like, and the disaster prevention receiver 10 acquires failure sign information from the fire detector 12 at a predetermined reliability determination control timing. , The number of occurrences of failure signs is extracted and collected, and the average number of occurrences of failure signs is included, which is the average number of occurrences of predetermined failure signs of the fire detectors provided in each section when the tunnel is divided into multiple sections. The section reliability information is generated, and in addition, the total failure sign information including the total average number of failure signs of the entire tunnel, which is the average number of failure signs of each section in multiple sections, is generated to generate the failure. When the average number of occurrences of the sign section and the total average number of occurrences of the failure sign are compared, a specific section satisfying a predetermined condition is determined to be a reliability deterioration section and notified.

このため、トンネル全体の火災検知器12を対象とした故障予兆の総合平均発生回数に対し、区間に設けられた火災検知器12を対象とした故障予兆の区間平均発生回数が所定値を超えて多い場合は、その区間が信頼性低下と判断して報知され、火災検知器12の劣化等が進んで信頼性低下となったトンネル内の区間が特定されることで、運用管理者は、信頼性低下と判断された区間に設置されている火災検知器12を重点的に点検し、必要があれば火災検知器12を新品に交換する等によって、劣化等が進んで、誤った火災信号(非火災の火災信号)を出力する可能性の高い区間の火災検知器12に対し適切な対処を行い、非火災報によってトンネルの進入禁止警報を伴う火災処理によりトンネル通行を止めてしまうといったことを未然に防止可能とする。 Therefore, the average number of occurrences of failure signs for the fire detector 12 provided in the section exceeds a predetermined value with respect to the total average number of occurrences of failure signs for the fire detector 12 of the entire tunnel. If there are many, the section is judged to be unreliable and notified, and the section in the tunnel where the fire detector 12 has deteriorated and the reliability has deteriorated is identified, so that the operation manager can trust the section. By focusing on inspecting the fire detector 12 installed in the section judged to be deteriorated and replacing the fire detector 12 with a new one if necessary, deterioration etc. progresses and an erroneous fire signal ( Take appropriate measures for the fire detector 12 in the section that is likely to output a non-fire fire signal), and stop the passage of the tunnel by fire treatment accompanied by a tunnel entry prohibition warning by a non-fire report. It can be prevented in advance.

また、信頼性低下と判断された区間の火災検知器12について、例えば火災検知器12の劣化要因となる温度、湿度、塵埃、電気的ノイズ、外乱光等の環境的要因を調べ、劣化等により故障が見込まれる火災検知器を修理又は交換し、或いは、信頼性を低下させる原因となる区間の環境的要因を抑制又は除去するといった対処を行うことができる。具体的には、例えば、外乱光源を撤去又は移設する、換気流を調整して温湿度を調節する、工事や周辺設備点検等に係る作業員等の通行を規制するといったことが考えられる。 Further, regarding the fire detector 12 in the section where the reliability is determined to be deteriorated, for example, environmental factors such as temperature, humidity, dust, electrical noise, and ambient light, which are factors of deterioration of the fire detector 12, are investigated, and due to deterioration or the like. It is possible to repair or replace a fire detector that is expected to fail, or to suppress or eliminate environmental factors in the section that cause a decrease in reliability. Specifically, for example, it is conceivable to remove or relocate the disturbance light source, adjust the ventilation flow to adjust the temperature and humidity, and regulate the passage of workers and the like involved in construction work and peripheral equipment inspection.

防災受信盤10には、更に、故障予兆の区間平均発生回数に対し、故障予兆の発生回数が所定値以上又は所定値を超えている火災検知器12を、信頼性低下検知器と判断して報知するものであり、信頼性低下と判断された区間に設置している複数の火災感知器12の中で、信頼性低下と判断された火災検知器12が特定されることで、その火災検知器12を重点的に点検し、また必要があれば火災検知器を修理又は交換し、更に、設置場所の環境的要因を調べて信頼性を低下させる原因となる環境的要因を抑制又は除去するといった対処を行うことができる。 Further, the disaster prevention receiver 10 determines that the fire detector 12 in which the number of occurrences of the failure sign is equal to or greater than the predetermined value or exceeds the predetermined value with respect to the average number of occurrences of the failure sign in the section is determined as the reliability deterioration detector. The fire is detected by identifying the fire detector 12 that is determined to be unreliable among the plurality of fire detectors 12 that are installed in the section that is determined to be unreliable. Focus on inspecting the vessel 12, repairing or replacing the fire detector if necessary, and investigating the environmental factors at the installation site to suppress or eliminate the environmental factors that reduce reliability. It is possible to take measures such as.

なお、本実施形態における故障予兆とは、将来に起こるべき故障を予測させる状態を意味し、故障のきざし、故障の前兆、故障の前ぶれ等ということもできる。 The failure sign in the present embodiment means a state in which a failure that should occur in the future is predicted, and can also be said to be a failure sign, a failure precursor, a failure precursor, or the like.

また、図1の例では信号系統とトンネルは一対一に対応しているが、例えば1つのトンネルに複数の信号系統を設けることができる。或いは、複数のトンネルを1つの信号系統とすることもでき、信号系統とトンネルとの関係は任意である。 Further, in the example of FIG. 1, the signal system and the tunnel have a one-to-one correspondence, but for example, a plurality of signal systems can be provided in one tunnel. Alternatively, a plurality of tunnels can be combined into one signal system, and the relationship between the signal system and the tunnel is arbitrary.

[トンネル防災システムの概要]
図1に示すように、自動車専用道路のトンネルとして、上り線トンネル1aと下り線トンネル1bが構築されている。上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の壁面に沿って例えば25メートル又は50メートル間隔で火災検知器12が設置されている。なお、本発明は自動車専用道路以外のトンネルにおける防災システムにも適用できる。
[Overview of tunnel disaster prevention system]
As shown in FIG. 1, an up line tunnel 1a and a down line tunnel 1b are constructed as tunnels for a motorway. Inside the up line tunnel 1a and the down line tunnel 1b, fire detectors 12 are installed at intervals of, for example, 25 meters or 50 meters along the wall surface in the longitudinal direction of the tunnel. The present invention can also be applied to a disaster prevention system in a tunnel other than a motorway.

本実施形態にあっては、図2(A)に示すように、例えば上り線トンネル1aを複数の区間A1〜Anに分けており、この例では1区間に3台の火災検知器12が含まれている。なお、区間A1〜Anの分割は任意であり、少なくとも1台の火災検知器12が含まれればよく、区間A1〜Anの長さは同じであっても良いし、異なっていてもよく、任意で良い。各区間の火災検知器12の設置台数についても同様である。 In the present embodiment, as shown in FIG. 2A, for example, the up line tunnel 1a is divided into a plurality of sections A1 to An, and in this example, three fire detectors 12 are included in one section. It has been. It should be noted that the division of the sections A1 to An is arbitrary, and it is sufficient that at least one fire detector 12 is included, and the lengths of the sections A1 to An may be the same or different. Is fine. The same applies to the number of fire detectors 12 installed in each section.

火災検知器12は右眼、左眼の2組の火災検知部を備えることで、図2に示すように、トンネル長手方向上り側および下り側の両方向に検知エリア15を持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器12と検知エリア15が例えば右眼13Rと左眼13Lで相互補完的に重複するように連続的に配置され、検知エリア15内で起きた火災による炎からの赤外線を観測して火災を監視して検知する。 The fire detector 12 includes two sets of fire detection units, a right eye and a left eye, and as shown in FIG. 2, has detection areas 15 in both the ascending side and the descending side in the longitudinal direction of the tunnel, and the longitudinal direction of the tunnel. A fire detector 12 and a detection area 15 arranged adjacent to each other are continuously arranged so as to complement each other in, for example, the right eye 13R and the left eye 13L, and a fire occurs in the detection area 15. The fire is monitored and detected by observing the infrared rays from the flame.

また、上り線トンネル1aと下り線トンネル1bには、非常用施設として、火災通報のために手動通報装置や非常電話が設けられ、火災の消火や延焼防止のために消火栓装置が設けられ、更にトンネル躯体やダクト内を火災から防護するために水噴霧ヘッドから消火用水を散水させる水噴霧設備などが設置されるが、図示を省略している。 In addition, the up line tunnel 1a and the down line tunnel 1b are provided with a manual notification device and an emergency telephone for fire notification as emergency facilities, and a fire hydrant device for extinguishing a fire and preventing the spread of fire. Water spraying equipment that sprinkles fire extinguishing water from the water spray head is installed to protect the tunnel frame and the inside of the duct from fire, but the illustration is omitted.

防災受信盤10からは上り線トンネル1aと下り線トンネル1bに対し電源信号線および信号線14a,14bを引き出してそれぞれに対し複数の火災検知器12が接続されており、火災検知器12には固有のアドレスが設定されている。以下の説明では、信号線14a,14bについて、区別する必要がない場合は信号線14という場合がある。 From the disaster prevention receiver panel 10, power supply signal lines and signal lines 14a and 14b are pulled out from the up line tunnel 1a and the down line tunnel 1b, and a plurality of fire detectors 12 are connected to each of them, and the fire detector 12 is connected to the fire detector 12. A unique address is set. In the following description, the signal lines 14a and 14b may be referred to as signal lines 14 when it is not necessary to distinguish them.

また、防災受信盤10に対しては、消火ポンプ設備16、ダクト用の冷却ポンプ設備18、IG子局設備20、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30等が設けられており、火災検知器12と防災受信盤10は信号線14を介して所謂R型伝送方式で通信する。 For the disaster prevention receiver 10, the fire extinguishing pump equipment 16, the cooling pump equipment 18 for ducts, the IG slave station equipment 20, the ventilation equipment 22, the alarm display board equipment 24, the radio rebroadcasting equipment 26, and the television monitoring equipment 28 The fire detector 12 and the disaster prevention receiver 10 communicate with each other via the signal line 14 in a so-called R-type transmission system.

ここで、IG子局設備20は、防災受信盤10と外部に設けた上位設備である遠方監視制御設備32とをネットワークを経由して結ぶ通信設備である。 Here, the IG slave station equipment 20 is a communication equipment that connects the disaster prevention receiving panel 10 and the remote monitoring and control equipment 32, which is a higher-level equipment provided outside, via a network.

換気設備22は、トンネル内の天井側に設置されているジェットファンの運転によってトンネル長手方向に換気流を発生する設備である。 The ventilation equipment 22 is equipment that generates a ventilation flow in the longitudinal direction of the tunnel by operating a jet fan installed on the ceiling side in the tunnel.

警報表示板設備24は、利用者に対して、火災に伴う進入禁止警報等の情報を電光表示板に表示して知らせる設備である。ラジオ再放送設備26は、トンネル内で運転者等が道路管理者からの情報を受信できるようにするための設備である。テレビ監視設備28は、火災の規模や位置を確認したり、水噴霧設備の作動、避難誘導を行う場合のトンネル内の状況を把握したりするための設備である。照明設備30はトンネル内の照明機器を駆動して管理する設備である。 The alarm display board equipment 24 is equipment that displays information such as an entry prohibition warning due to a fire on an electric display board to notify the user. The radio rebroadcasting facility 26 is a facility for allowing a driver or the like to receive information from a road administrator in a tunnel. The TV monitoring facility 28 is a device for confirming the scale and position of a fire, operating a water spray facility, and grasping the situation in a tunnel when evacuation guidance is performed. The lighting equipment 30 is equipment that drives and manages the lighting equipment in the tunnel.

[火災検知器]
(火災検知器の外観)
図3は火災検知器の外観を示した説明図、図4は火災検知器の機能構成の概略を示したブロック図である。
[Fire detector]
(Appearance of fire detector)
FIG. 3 is an explanatory diagram showing the appearance of the fire detector, and FIG. 4 is a block diagram showing an outline of the functional configuration of the fire detector.

図3に示すように、火災検知器12は、筐体44の上部に設けられたセンサ収納部46に左右に分けて2組の透光性窓50R,50Lが設けられ、透光性窓50R,50L内の各々に対応して、センサ部が内蔵されている。また、透光性窓50R,50Lの近傍の、センサ部を見通せる位置に、透光性窓50R,50Lの汚れ試験に使用される外部試験光源を収納した2組の試験光源用透光窓52R,52Lが設けられている。 As shown in FIG. 3, in the fire detector 12, two sets of translucent windows 50R and 50L are provided on the left and right in the sensor storage portion 46 provided in the upper part of the housing 44, and the translucent windows 50R are provided. , A sensor unit is built in corresponding to each of 50L. Further, two sets of translucent windows for test light sources 52R in which an external test light source used for a stain test of the translucent windows 50R and 50L are housed in a position near the translucent windows 50R and 50L where the sensor unit can be seen. , 52L is provided.

以下の説明では、透光性窓50Rを右眼透光性窓50Rといい、透光性窓50Lを左眼透光性窓50Lという場合がある。 In the following description, the translucent window 50R may be referred to as a right-eye translucent window 50R, and the translucent window 50L may be referred to as a left-eye translucent window 50L.

(火災検知器の概略構成)
図4に示すように、火災検知器12には、検知器制御部54、伝送部56、電源部58、左右2組の火災検知部60R,60L、試験発光駆動部76、感度試験に用いられる内部試験光源78R,80R,82Rと内部試験光源78L,80L,82L、汚れ試験に用いられる外部試験光源84R,84Lが設けられている。以下の説明では、火災検知部60Rを右眼火災検知部60Rといい、火災検知部60Lを左眼火災検知部60Lという場合がある。
(Outline configuration of fire detector)
As shown in FIG. 4, the fire detector 12 includes a detector control unit 54, a transmission unit 56, a power supply unit 58, two sets of left and right fire detection units 60R and 60L, a test light emission drive unit 76, and a sensitivity test. Internal test light sources 78R, 80R, 82R, internal test light sources 78L, 80L, 82L, and external test light sources 84R, 84L used for a stain test are provided. In the following description, the fire detection unit 60R may be referred to as a right eye fire detection unit 60R, and the fire detection unit 60L may be referred to as a left eye fire detection unit 60L.

検知器制御部54は、例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等が使用される。 The detector control unit 54 is, for example, a function realized by executing a program, and as hardware, a computer circuit having a CPU, a memory, various input / output ports, and the like is used.

伝送部56は信号線14の伝送線Sと伝送コモン線SCにより図1に示した防災受信盤10に接続され、各種信号がR型伝送により送受信される。 The transmission unit 56 is connected to the disaster prevention receiving panel 10 shown in FIG. 1 by the transmission line S of the signal line 14 and the transmission common line SC, and various signals are transmitted and received by R-type transmission.

電源部58は信号線14に含まれる電源線Bと電源コモン線BCにより図1に示した防災受信盤10から電源供給を受け、例えば検知器制御部54、伝送部56、左右2組の火災検知部60R,60L、試験発光駆動部76に対し所定の電源電圧が供給されている。 The power supply unit 58 receives power from the disaster prevention receiving panel 10 shown in FIG. 1 by the power supply line B and the power supply common line BC included in the signal line 14, for example, the detector control unit 54, the transmission unit 56, and two sets of fires on the left and right. A predetermined power supply voltage is supplied to the detection units 60R and 60L and the test light emission drive unit 76.

試験発光駆動部76には、感度試験に使用する内部試験光源78R,80R,82R78L,80L,82Lが接続され、また、汚れ試験に使用する外部試験光源84R,84Lが接続され、それぞれ発光素子としてクリプトンランプが設けられている。 Internal test light sources 78R, 80R, 82R78L, 80L, 82L used for the sensitivity test are connected to the test light emitting drive unit 76, and external test light sources 84R, 84L used for the dirt test are connected to each of them as light emitting elements. A krypton lamp is provided.

(火災検知部)
火災検知部60R,60Lは、センサ部64,68,72と増幅処理部66,70,74を備える。例えば右眼火災検知部60Rを例にとると、センサ部64,68,72の前面にはセンサ収納部46に設けた右眼透光性窓50Rが配置されており、右眼透光性窓50Rを介して外部の検知エリアからの赤外線エネルギーがセンサ部64,68,72に入射される。
(Fire detection unit)
The fire detection units 60R and 60L include sensor units 64, 68 and 72 and amplification processing units 66, 70 and 74. For example, taking the right eye fire detection unit 60R as an example, the right eye translucent window 50R provided in the sensor storage unit 46 is arranged in front of the sensor units 64, 68, 72, and the right eye translucent window. Infrared energy from the external detection area is incident on the sensor units 64, 68, 72 via the 50R.

右眼火災検知部60Rは、例えば3波長式の炎検知により火災を監視している。センサ部64は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、炎に特有なCOの共鳴放射帯である4.5μm帯の赤外線を光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該赤外線を受光して光電変換したうえで、増幅処理部66により増幅等所定の処理を施して受光エネルギー量に対応する炎受光信号E1Rとして検知器制御部54へ出力する。 The right eye fire detection unit 60R monitors a fire by, for example, a three-wavelength flame detection. The sensor unit 64 selectively transmits infrared rays in the 4.5 μm band, which is the resonance radiation band of CO 2 peculiar to flames, from the infrared energy incident through the right eye translucent window 50R by an optical wavelength band path filter. After (passing), the infrared ray is received by the light receiving sensor and photoelectrically converted, and then a predetermined process such as amplification is performed by the amplification processing unit 66 to generate a flame light receiving signal E1R corresponding to the amount of light receiving energy. Output to.

センサ部68は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、第1の非炎波長帯域となる、例えば5.0μm帯の赤外線エネルギーを光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより受光して光電変換したうえで、増幅処理部70により増幅等所定の処理を施して受光エネルギー量に対応する第1の非炎受光信号E2Rとして検知器制御部54へ出力する。 The sensor unit 68 selectively transmits infrared energy in the first non-flame wavelength band, for example, 5.0 μm band, from the infrared energy incident through the right eye translucent window 50R by an optical wavelength band path filter. After (passing), the light is received by the light receiving sensor, photoelectric conversion is performed, and then a predetermined process such as amplification is performed by the amplification processing unit 70, and the detector control unit is used as the first non-flame light receiving signal E2R corresponding to the amount of light receiving energy. Output to 54.

センサ部72は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、第2の非炎波長帯域となる、例えば2.3μmの赤外線エネルギーを光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより受光して光電変換したうえで、増幅処理部74により増幅等所定の処理を施して受光エネルギー量に対応する第2の非炎受光信号E3Rとして検知器制御部54へ出力する。 The sensor unit 72 selectively transmits infrared energy of, for example, 2.3 μm, which is the second non-flame wavelength band, from the infrared energy incident through the right eye translucent window 50R by an optical wavelength band path filter. The detector control unit 54 serves as a second non-flame light receiving signal E3R corresponding to the amount of light received energy by performing predetermined processing such as amplification by the amplification processing unit 74 after receiving the light by the light receiving sensor and performing photoelectric conversion. Output to.

増幅処理部66,70,74には、プリアンプ、炎のゆらぎ周波数を含む所定の周波数帯域を選択通過させる周波数フィルタ及びメインアンプ等が設けられている。 The amplification processing units 66, 70, 74 are provided with a preamplifier, a frequency filter that selectively passes a predetermined frequency band including the fluctuation frequency of the flame, a main amplifier, and the like.

(火災判断)
検知器制御部54には、プログラムの実行により実現される機能として、火災判断部86の機能が設けられている。火災判断部86は、炎受光信号E1R、第1の非炎受光信号E2R及び第2の非炎受光信号E3Rに基づき、複数の火災判定段階により火災を判断している。火災判断部86は例えば次の3段階の火災判定を行う。
(Fire judgment)
The detector control unit 54 is provided with the function of the fire determination unit 86 as a function realized by executing the program. The fire determination unit 86 determines a fire in a plurality of fire determination stages based on the flame light receiving signal E1R, the first non-flame light receiving signal E2R, and the second non-flame light receiving signal E3R. The fire determination unit 86 makes the following three stages of fire determination, for example.

火災判断部86は、炎受光信号E1が所定の閾値以上又はこれを上回った場合、第1の非炎受光信号E2との相対比(E1R/E2R)を算出し、相対比(E1R/E2R)が所定の閾値を超えた場合に、第1段階の火災判定条件を充足したとして、火災(火災候補)と判定し、次の第2段階の火災判定を行う。 When the flame light receiving signal E1 exceeds or exceeds a predetermined threshold value, the fire determination unit 86 calculates the relative ratio (E1R / E2R) with the first non-flame light receiving signal E2, and calculates the relative ratio (E1R / E2R). When exceeds a predetermined threshold value, it is determined that a fire (fire candidate) is satisfied, assuming that the fire determination condition of the first stage is satisfied, and the next second stage fire determination is performed.

火災判断部86による第2段階の火災判定は、炎受光信号E1Rについて、第2の非炎受光信号E3Rとの相対比(E1R/E3R)を算出し、相対比(E1R/E3R)が所定の閾値を超えた場合に、第2段階の火災判定条件を充足したとして火災と判定する。 In the second stage fire determination by the fire determination unit 86, the relative ratio (E1R / E3R) of the flame light receiving signal E1R to the second non-flame light receiving signal E3R is calculated, and the relative ratio (E1R / E3R) is predetermined. When the threshold value is exceeded, it is determined that the fire is satisfied as the fire determination condition of the second stage is satisfied.

続いて、火災判断部86は、次の第3段階の火災判定を行う。火災判断部86による第3段階の火災判定条件は、炎受光信号E1Rを高速フーリエ変換(FFT)して結果を分析し,例えば4Hz以下の低周波側成分の相対強度と4Hz超8Hz以下の高周波側成分の相対強度の相対比を算出し、この相対化が所定の閾値以上又はこれを上回った場合に、第3段階の火災判定条件を充足したとして火災と判定し、これにより第1〜第3の火災判定段階の全てにおいて火災と判定されたことになり、全体として一旦火災と判断する。 Subsequently, the fire determination unit 86 performs the next third stage fire determination. The fire judgment condition of the third stage by the fire judgment unit 86 is that the flame light receiving signal E1R is fast Fourier transformed (FFT) and the result is analyzed. For example, the relative intensity of the low frequency side component of 4 Hz or less and the high frequency of more than 4 Hz and 8 Hz or less. The relative ratio of the relative strengths of the side components is calculated, and when this relativization exceeds or exceeds a predetermined threshold value, it is determined that the fire judgment condition of the third stage is satisfied, and thereby the first to first fires are determined. It means that it was judged as a fire in all of the fire judgment stages of 3, and it is judged as a fire as a whole.

更に、第1乃至第3段階の火災判定条件が所定回数連続して充足された場合に、所定の火災判断蓄積条件を満足したとして火災を断定し、火災信号を防災受信盤10に送信する制御を行う。左眼火災検知部60Lにおいても同様に行う。 Further, when the fire judgment conditions of the first to third stages are continuously satisfied a predetermined number of times, the fire is determined as satisfying the predetermined fire judgment accumulation conditions, and the fire signal is transmitted to the disaster prevention receiving panel 10. I do. The same applies to the left eye fire detection unit 60L.

なお、火災判断部86による複数の火災判定段階による火災判断は、上記の火災判断に限定されず、更に、1又は複数の火災判定段階を加えても良いし、例えば上記3段階のうち何れかを省略して2段階としても良い。或いは例えば蓄積判定段階までを含む4段階としても良い。 The fire judgment by the fire judgment unit 86 by the plurality of fire judgment stages is not limited to the above fire judgment, and one or a plurality of fire judgment stages may be added, for example, any one of the above three stages. May be omitted and two steps may be taken. Alternatively, for example, there may be four stages including the accumulation determination stage.

(故障予兆の判定)
火災判断部86は、前述した3段階の火災判定段階の途中で火災が判定されずに火災と判断するに至らなかった場合に故障予兆の発生と判断し、故障予兆の発生回数Nをカウンタにより計数する制御を行う。
(Judgment of failure sign)
The fire judgment unit 86 determines that a failure sign has occurred when the fire is not judged and the fire is not judged in the middle of the above-mentioned three-step fire judgment stage, and the number of occurrences N of the failure sign is determined by the counter. Control to count.

また、火災判断部86は、故障予兆の発生回数Nが所定の故障予兆判断蓄積条件を充足したとき、例えば、故障予兆の発生回数Nが所定閾値Nthに達したときに故障予兆と判定(確定)し、防災受信盤10に故障予兆信号を送信し、続いて、所定の故障予兆処理を行う。なお、火災判断部86は、更に、故障予兆の確定回数が所定数に達したときに所定の故障予兆処理を行うようにしても良い。 Further, the fire determination unit 86 determines (determines) a failure sign when the number of occurrences of failure signs N satisfies a predetermined failure sign determination accumulation condition, for example, when the number of occurrences of failure signs N reaches a predetermined threshold value Nth. ), A failure sign signal is transmitted to the disaster prevention receiver 10, and then a predetermined failure sign process is performed. The fire determination unit 86 may further perform a predetermined failure sign processing when the number of times the failure sign is confirmed reaches a predetermined number.

火災判断部86による所定の故障予兆処理は、例えば火災信号の送信を停止する処理、火災判断の蓄積回数閾値を増加させて火災判断蓄積条件を厳格にする等の処理とする。火災信号の送信を停止する故障予兆処理は、故障予兆を判定した後に火災を判断しても故障による誤った火災判断である可能性が高いことから、火災信号の送信を停止して、非火災報の発生を抑止させる、というものである。なお、火災信号の送信を停止する処理は行わないようにすることもできる。 The predetermined failure sign processing by the fire judgment unit 86 is, for example, a process of stopping the transmission of a fire signal, a process of increasing the threshold value of the number of times the fire judgment is accumulated, and a process of tightening the fire judgment accumulation condition. In the failure sign processing that stops the transmission of the fire signal, even if the fire is judged after the failure sign is judged, there is a high possibility that the fire is judged incorrectly due to the failure. Therefore, the transmission of the fire signal is stopped and the fire is not fired. It is to suppress the generation of information. It is also possible not to perform the process of stopping the transmission of the fire signal.

また、火災判断部86は、防災受信盤10から内部状態要求コマンド信号を受信した場合、そのとき得られている故障予兆の発生回数Nを示す故障予兆情報を生成して送信する制御を行い、防災受信盤10は取得した故障予兆情報から抽出された故障予兆の発生回数Nに基づいて火災検知器12の信頼性を評価し、信頼性有り、信頼性低下を判断するために用いられる。なお、信頼性低下については、その度合により複数段階に分け、例えば信頼性低下状態と信頼性が無い状態を区別できるようにしても良い。 Further, when the fire determination unit 86 receives the internal state request command signal from the disaster prevention receiving panel 10, it controls to generate and transmit the failure sign information indicating the number of occurrences N of the failure sign obtained at that time. The disaster prevention receiver 10 is used to evaluate the reliability of the fire detector 12 based on the number of occurrences N of the failure sign extracted from the acquired failure sign information, and to determine whether the fire detector 12 has reliability or a decrease in reliability. It should be noted that the reliability deterioration may be divided into a plurality of stages according to the degree thereof, and for example, the reliability reduction state and the unreliability state may be distinguished.

なお、カウンタにより計数している故障予兆の発生回数Nは、所定の期間毎にリセットされるか、又は、故障予兆をカウントしてから所定の期間が経過したときにリセットされる。ただし、リセット前の故障予兆の発生回数Nは、故障予兆情報として記憶するようにしても良い。 The number of occurrences of failure signs N counted by the counter is reset every predetermined period, or is reset when a predetermined period has elapsed after counting the failure signs. However, the number of occurrences N of failure signs before reset may be stored as failure sign information.

(感度試験)
検知器制御部54には、プログラムの実行により実現される機能として、感度試験部88の機能が設けられている。感度試験部88は、伝送部56を介して防災受信盤10から自身のアドレスを指定した試験指示信号を受信した場合に動作し、試験発光駆動部76に指示して、内部試験光源78R,80R,82R,78L,80L,82Lを順番に発光駆動して火災検知部60R,60Lの感度試験を行わせる。なお、内部試験光源78R,80R,82Rと内部試験光源78L,80L,82Lは、それぞれ1つの光源で共用しても良い。
(Sensitivity test)
The detector control unit 54 is provided with the function of the sensitivity test unit 88 as a function realized by executing the program. The sensitivity test unit 88 operates when it receives a test instruction signal with its own address specified from the disaster prevention receiver 10 via the transmission unit 56, and instructs the test light emission drive unit 76 to instruct the internal test light sources 78R and 80R. , 82R, 78L, 80L, 82L are driven to emit light in order to perform a sensitivity test of the fire detection units 60R, 60L. The internal test light sources 78R, 80R, 82R and the internal test light sources 78L, 80L, 82L may be shared by one light source, respectively.

例えば右眼火災検知部60Rにおけるセンサ部64と増幅処理部66の回路系統を例にとると、試験発光駆動部76は内部試験光源78Rを発光駆動することにより、火災炎に相当する炎疑似光(炎を模擬した赤外線光)をセンサ部64に入射させる。 For example, taking the circuit system of the sensor unit 64 and the amplification processing unit 66 in the right eye fire detection unit 60R as an example, the test light emission driving unit 76 emits light by driving the internal test light source 78R to emit a simulated flame light corresponding to a fire flame. (Infrared light simulating a flame) is incident on the sensor unit 64.

センサ部64と増幅処理部66の回路ブロックについては、工場出荷時の初期感度試験時の基準受光値がメモリに記憶されており、システム立上げ時の感度試験で得られる検出受光値は基準受光値に略一致しており、検出受光値を基準受光値で割った検出感度係数は1となっている。運用期間が経過していくと、検出受光値は徐々に低下し、検出感度係数は0.9,0.8,0.7・・・というように低下していく。 For the circuit blocks of the sensor unit 64 and the amplification processing unit 66, the reference light receiving value at the time of the initial sensitivity test at the time of shipment from the factory is stored in the memory, and the detected light receiving value obtained at the sensitivity test at the time of system startup is the reference light receiving value. The values are substantially the same, and the detection sensitivity coefficient obtained by dividing the detected light receiving value by the reference light receiving value is 1. As the operation period elapses, the detected light receiving value gradually decreases, and the detection sensitivity coefficient decreases to 0.9, 0.8, 0.7, and so on.

このように検出感度係数が1以下に低下した場合、感度試験部88は検出感度係数の逆数となる補正係数を求めてメモリに記憶させ、その後の運用状態で検出される受光値に補正係数を乗算して感度補正を行い、火災判断部86は感度補正された受光値により火災を判断する。 When the detection sensitivity coefficient is reduced to 1 or less in this way, the sensitivity test unit 88 obtains a correction coefficient that is the reciprocal of the detection sensitivity coefficient and stores it in the memory, and stores the correction coefficient in the light receiving value detected in the subsequent operating state. The sensitivity is corrected by multiplication, and the fire determination unit 86 determines the fire based on the sensitivity-corrected light receiving value.

また、感度試験部88には、感度補正の限界となる補正係数に対応した感度補正限界閾値、例えば感度補正限界閾値0.5が予め設定されており、感度試験で求められた感度係数が感度補正限界閾値以下又は感度補正限界閾値を下回った場合にセンサ部64の感度異常と判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に感度異常を示す情報を設定して防災受信盤10へ感度異常信号を送信させる制御を行う。 Further, the sensitivity test unit 88 is preset with a sensitivity correction limit threshold value corresponding to a correction coefficient that is the limit of the sensitivity correction, for example, a sensitivity correction limit threshold value of 0.5, and the sensitivity coefficient obtained in the sensitivity test is the sensitivity. When it is below the correction limit threshold value or below the sensitivity correction limit threshold value, it is determined that the sensitivity of the sensor unit 64 is abnormal, and the transmission unit 56 is instructed to set information indicating the sensitivity abnormality in the response signal to the ringing signal matching the self-address. Then, control is performed so that the sensitivity abnormality signal is transmitted to the disaster prevention receiving panel 10.

また、感度試験部88には、感度補正限界に達する前の感度異常の予兆を示す感度係数に対応して、例えば感度異常の予兆閾値0.6が予め設定されており、感度試験で求められた検出感度係数が感度異常の予兆閾値以下又は予兆閾値を下回った場合に、近い将来、感度補正ができなくなる可能性が高い感度異常状態の予兆と判定し、伝送部56に指示して感度異常の予兆を示す感度異常予兆信号を防災受信盤10へ送信して報知させる制御を行う。 Further, in the sensitivity test unit 88, for example, a sign threshold of 0.6 for sensitivity abnormality is set in advance corresponding to a sensitivity coefficient indicating a sign of sensitivity abnormality before reaching the sensitivity correction limit, and is obtained by a sensitivity test. When the detected sensitivity coefficient is below or below the sign threshold of sensitivity abnormality, it is determined that it is a sign of a sensitivity abnormality state that is likely to be unable to correct the sensitivity in the near future, and the transmission unit 56 is instructed to perform the sensitivity abnormality. Control is performed to transmit a sensitivity abnormality sign signal indicating a sign of the above to the disaster prevention receiving panel 10 to notify the user.

なお、感度試験部88で感度異常の予兆が判定された場合、これを故障予兆の1つと見做し、火災判断部86のカウンタによる計数動作を行って故障予兆の発生回数Nを増加させるようにしても良い。 When the sensitivity test unit 88 determines a sign of a sensitivity abnormality, it is regarded as one of the failure signs, and the counter of the fire judgment unit 86 performs a counting operation to increase the number of occurrences of the failure sign N. You can do it.

また、運用期間の経過に伴い検出感度が1.1,1.2,1.3…と増加する場合も同様にして補正し、限界に達すると異常とする。 Also, if the detection sensitivity increases to 1.1, 1.2, 1.3 ... With the passage of the operation period, it is corrected in the same way, and when the limit is reached, it becomes abnormal.

センサ部68と増幅処理部70及びセンサ部72と増幅処理部74の回路系統も同様に感度試験が行われる。また、左眼火災検知部60Lについても、試験発光駆動部76により内部試験光源78L,80L,82Lを発光駆動することにより、同様にして感度試験が行われる。 The sensitivity test is similarly performed on the circuit systems of the sensor unit 68 and the amplification processing unit 70 and the sensor unit 72 and the amplification processing unit 74. Further, the sensitivity test of the left eye fire detection unit 60L is also performed in the same manner by driving the internal test light sources 78L, 80L, 82L by the test light emission driving unit 76.

(汚れ試験)
検知器制御部54には、プログラムの実行により実現される機能として、汚れ試験部90の機能が設けられている。汚れ試験部90は、感度試験と同様に、伝送部56を介して防災受信盤10から自身のアドレスを指定した試験指示信号を受信した場合に動作し、試験発光駆動部76に指示して、外部試験光源84R,84Lを順番に発光駆動して透光性窓50R,50Lの汚れ試験を行わせる。
(Dirt test)
The detector control unit 54 is provided with the function of the dirt test unit 90 as a function realized by executing the program. Similar to the sensitivity test, the dirt test unit 90 operates when a test instruction signal specifying its own address is received from the disaster prevention receiving panel 10 via the transmission unit 56, and instructs the test light emission driving unit 76. The external test light sources 84R and 84L are sequentially driven to emit light to perform a stain test on the translucent windows 50R and 50L.

例えば透光性窓50Rの汚れ試験を例にとると、試験発光駆動部76は外部試験光源84Rを発光駆動することにより、火災炎に相当する炎疑似光を、試験光源用透光性窓52R及び透光性窓50Rを介してセンサ部64に入射させる。試験光源用透光性窓52R及び透光性窓50Rは工場出荷時に汚れはなく、その際に汚れ試験で得られた受光値が基準受光値としてメモリに記憶されており、減光率の演算に利用される。 For example, taking a stain test of the translucent window 50R as an example, the test light emitting drive unit 76 emits and drives an external test light source 84R to emit a flame pseudo light corresponding to a flame, and the translucent window 52R for the test light source. And the light is incident on the sensor unit 64 through the translucent window 50R. The translucent window 52R and the translucent window 50R for the test light source are not contaminated at the time of shipment from the factory, and the light receiving value obtained in the fouling test at that time is stored in the memory as a reference light receiving value, and the dimming rate is calculated. Used for.

システム立上げ時の汚れ試験で得られる検出受光値は基準受光値に略一致しており、基準受光値から検出受光値を減算した値を基準受光値で割った減光率は0となっている。運用期間が経過していくと、透光性窓50Rに汚れが付着し、減光率は、0.1,0.2,0.3・・・いうように徐々に増加していく。 The detected light receiving value obtained in the dirt test at the time of system startup is substantially the same as the reference light receiving value, and the dimming rate obtained by subtracting the detected light receiving value from the reference light receiving value and dividing by the reference light receiving value is 0. There is. As the operation period elapses, dirt adheres to the translucent window 50R, and the dimming rate gradually increases as 0.1, 0.2, 0.3, and so on.

このように減光率が増加した場合、汚れ試験部90は汚れ試験により減光率を求めると共に、(1−減光率)の逆数となる補正値を求めてメモリに記憶させ、その後の運用状態で検出される受光値(感度試験の補正値により補正された受光値)を補正値により除算して汚れ補正を行い、火災判断部86は汚れ補正された受光値により火災を判断する。 When the dimming rate increases in this way, the dirt test unit 90 obtains the dimming rate by the dirt test, finds the correction value which is the reciprocal of (1-dimming rate), stores it in the memory, and then operates it. The light receiving value detected in the state (the light receiving value corrected by the correction value of the sensitivity test) is divided by the correction value to correct the dirt, and the fire determination unit 86 judges the fire by the light receiving value corrected by the dirt.

また、汚れ試験部90には、汚れ補正の限界に対応した減光率となる汚れ閾値、例えば汚れ閾値0.5が予め設定されており、感度試験で求められた減光率が汚れ閾値以上又は汚れ閾値を上回った場合に透光性窓50Rの汚れ補正が不可能となる汚損異常と判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に汚損異常情報を設定して防災受信盤10へ汚損信号を送信して報知させる制御を行う。 Further, the stain test unit 90 is preset with a stain threshold value, for example, a stain threshold value of 0.5, which is a dimming rate corresponding to the limit of stain correction, and the dimming rate obtained in the sensitivity test is equal to or higher than the stain threshold value. Alternatively, it is determined that the fouling abnormality makes it impossible to correct the fouling of the translucent window 50R when the fouling threshold is exceeded, and the transmission unit 56 is instructed to add the fouling abnormality information to the response signal to the call signal matching the self-address. It is set and controlled to transmit a pollution signal to the disaster prevention receiving panel 10 to notify the user.

また、汚れ試験部90には、汚れ補正が限界に達する予兆段階に対応した減光率となる汚れ予兆閾値、例えば汚れ予兆閾値0.6が予め設定されており、汚れ試験で求められた減光率が汚れ予兆閾値以上又は汚れ予兆閾値を上回った場合に、近い将来、透光性窓50Rの汚れ補正が不可能となる可能性が高い汚損予兆状態と判断し、伝送部56に指示して汚損予兆信号を防災受信盤10へ送信して報知させる制御を行う。 Further, the dirt test unit 90 is preset with a dirt sign threshold value, for example, a dirt sign threshold value of 0.6, which is a dimming rate corresponding to a sign stage at which the dirt correction reaches the limit, and the reduction required in the dirt test. When the light rate is equal to or higher than the dirt sign threshold value or exceeds the dirt sign threshold value, it is determined that the dirt correction of the translucent window 50R is likely to be impossible in the near future, and the transmission unit 56 is instructed. The pollution sign signal is transmitted to the disaster prevention receiving panel 10 to notify the user.

なお、汚れ試験部90で汚損予兆が判断された場合、これを故障予兆の1つと見做し、火災判断部86のカウンタによる計数動作を行って故障予兆の発生回数Nを増加させるようにしても良い。 When the stain test unit 90 determines a stain sign, it is regarded as one of the failure signs, and the counter of the fire determination unit 86 performs a counting operation to increase the number of occurrences of the failure sign N. Is also good.

(火災検知器の制御動作)
図5は火災検知器の制御動作を示したフローチャートであり、図4に示した火災判断部86による制御動作となる。
(Control operation of fire detector)
FIG. 5 is a flowchart showing the control operation of the fire detector, which is the control operation by the fire determination unit 86 shown in FIG.

図5に示すように、火災判断部86は、例えば、図4の火災検知部60Rを例にとると、ステップS1で増幅処理部66,70,74から出力された炎受光信号E1R、第1の非炎受光信号E2R及び第2の非炎受光信号E3RをAD変換により取込み、ステップS2で炎受光信号E1Rが所定値以上であればステップS3に進み、炎受光信号E1Rと第1の非炎受光信号E2Rの比(E1R/E2R)を算出し、所定値以上の場合は第1段階の火災判定条件を充足したとしてステップS4に進み、ステップS4で炎受光信号E1Rと第2の非炎受光信号E3Rの比(E1R/E3R)を算出し、所定値以上の場合は第2段階の火災判定条件を充足したとしてステップS5に進む。 As shown in FIG. 5, the fire determination unit 86 takes the fire detection unit 60R of FIG. 4 as an example, and the flame light receiving signals E1R, first, output from the amplification processing units 66, 70, 74 in step S1. The non-flame receiving signal E2R and the second non-flame receiving signal E3R are taken in by AD conversion, and if the flame receiving signal E1R is equal to or more than a predetermined value in step S2, the process proceeds to step S3, and the flame receiving signal E1R and the first non-flame are received. The ratio of the received light signal E2R (E1R / E2R) is calculated, and if it is equal to or more than a predetermined value, the process proceeds to step S4 assuming that the fire determination condition of the first stage is satisfied, and in step S4, the flame received signal E1R and the second non-flame received light are received. The ratio of the signal E3R (E1R / E3R) is calculated, and if it is equal to or more than a predetermined value, it is assumed that the fire determination condition of the second stage is satisfied, and the process proceeds to step S5.

続いて、火災判断部86はステップS5で炎受光信号E1Rの高速フーリエ変換(FFT演算)を行い、ステップS6で例えば4Hz以下の低周波数側と4Hz超8Hz以下の高周波側の成分の相対強度比が所定値以上であれば第3の火災判定条件を充足したとしてステップS7に進み、ステップS1〜S6による第1段階から第3段階の火災判定条件を所定の蓄積回数閾値だけ連続して成立したか否か判定する。 Subsequently, the fire determination unit 86 performs a fast Fourier transform (FFT calculation) of the flame light receiving signal E1R in step S5, and in step S6, for example, the relative intensity ratio of the components on the low frequency side of 4 Hz or less and the high frequency side of 4 Hz or more and 8 Hz or less. If is equal to or greater than a predetermined value, the process proceeds to step S7 assuming that the third fire determination condition is satisfied, and the fire determination conditions of the first to third stages according to steps S1 to S6 are continuously satisfied by a predetermined accumulation number threshold. Judge whether or not.

続いて、火災判断部86は、ステップS7で所定の火災判断蓄積条件としての蓄積回数閾値を充足するとステップS8に進んで火災と判断し、火災信号を防災受信盤10に送信して火災処理を行わせる。続いて、ステップS9で防災受信盤10からの火災復旧信号(復旧指示信号)の受信を判別するとステップS10で火災検知を初期状態に復旧してステップS1に戻る。 Subsequently, when the fire judgment unit 86 satisfies the accumulation number threshold value as the predetermined fire judgment accumulation condition in step S7, the fire determination unit 86 proceeds to step S8 to determine that the fire has occurred, transmits a fire signal to the disaster prevention receiving panel 10, and performs fire processing. Let me do it. Subsequently, when the reception of the fire recovery signal (recovery instruction signal) from the disaster prevention receiving panel 10 is determined in step S9, the fire detection is restored to the initial state in step S10 and the process returns to step S1.

一方、火災判断部86は、ステップS3で第1段階の火災判定条件が充足されなかったときは、故障予兆が発生したと判定し、ステップS11に進んで故障予兆の発生回数を計数するカウンタNを+1とし(インクリメントし)、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth未満の場合は、ステップS1からの処理を繰り返す。 On the other hand, when the fire determination condition of the first stage is not satisfied in step S3, the fire determination unit 86 determines that a failure sign has occurred, and proceeds to step S11 to count the number of occurrences of the failure sign. Is +1 (incremented), and if the number of occurrences of failure signs N is less than the predetermined threshold number Nth in step S12, the process from step S1 is repeated.

また、火災判断部86は、ステップS3の第1段階の火災判定条件は充足したが、ステップS4の第2段階の火災判定条件が充足されなかったときは、ステップS11に進んで故障予兆の発生回数を計数するカウンタNを+1とし、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth未満の場合は、ステップS1からの処理を繰り返す。 Further, the fire determination unit 86 proceeds to step S11 to generate a failure sign when the fire determination condition of the first stage of step S3 is satisfied but the fire determination condition of the second stage of step S4 is not satisfied. When the counter N for counting the number of times is set to +1 and the number of occurrences of failure signs N is less than the predetermined threshold number Nth in step S12, the process from step S1 is repeated.

更に、火災判断部86は、ステップS3の第1段階及びステップS4の第2段階の火災判定条件は充足したが、ステップS6の第3段階の火災判定条件が充足されなかったときは、ステップS11に進んで故障予兆の発生回数を計数するカウンタNを+1とし、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth未満の場合は、ステップS1からの処理を繰り返す。 Further, the fire determination unit 86 satisfies the fire determination conditions of the first stage of step S3 and the second stage of step S4, but does not satisfy the fire determination conditions of the third stage of step S6, step S11. The counter N for counting the number of occurrences of the failure sign is set to +1. If the number of occurrences of the failure sign N is less than the predetermined threshold number Nth in step S12, the process from step S1 is repeated.

このような故障予兆の発生回数のカウントの繰り返しにより、火災判断部86は、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth以上となる故障予兆判定蓄積条件を満たした場合に故障予兆と判定(確定)し、ステップS13に進んで故障予兆信号を防災受信盤10に送信して報知させ、続いてステップS14で所定の故障予兆処理を行う。 By repeating the counting of the number of occurrences of the failure sign, the fire determination unit 86 satisfies the failure sign determination accumulation condition in which the failure sign occurrence number N becomes the predetermined threshold number Nth or more in step S12. Is determined (confirmed), the process proceeds to step S13, a failure sign signal is transmitted to the disaster prevention receiver 10 to notify the user, and then a predetermined failure sign process is performed in step S14.

なお、ステップS13において、ステップS12の故障予兆判定蓄積条件に、更に、ステップS12による故障予兆の判断回数が所定の閾値回数に達しか否かの故障予兆判定蓄積条件の充足判定を追加しても良い。 In step S13, even if the failure sign determination accumulation condition of step S12 is further satisfied with the failure sign determination accumulation condition of whether or not the number of failure sign determinations in step S12 reaches a predetermined threshold value. good.

また、故障予兆処理は、例えば、ステップS7の蓄積回数閾値を増加させて火災判断蓄積条件を厳格にする。また、火災検知器12は、ステップS1〜S7の監視動作とステップS8の火災信号の送信のうち、少なくとも後者を停止する。 Further, in the failure sign processing, for example, the accumulation number threshold value in step S7 is increased to make the fire judgment accumulation condition strict. Further, the fire detector 12 stops at least the latter of the monitoring operation in steps S1 to S7 and the transmission of the fire signal in step S8.

なお、ステップS3で相対比が所定値未満のときはステップS1に戻り、また、ステップS7で火災判断蓄積条件を充足しないと判別したときはステップS11に進むようにしても良い。 If the relative ratio is less than a predetermined value in step S3, the process may return to step S1, and if it is determined in step S7 that the fire judgment accumulation condition is not satisfied, the process may proceed to step S11.

また、火災判断部86は、制御動作中に、防災受信盤10から内部状態要求コマンドを受信すると、そのときカウンタで計数している故障予兆の発生回数Nに関する(Nを示す)情報を故障予兆情報として応答送信し、防災受信盤10で火災検知器12の信頼性判断に利用させる。 Further, when the fire judgment unit 86 receives the internal state request command from the disaster prevention receiving panel 10 during the control operation, the fire judgment unit 86 outputs the information (indicating N) regarding the number of occurrences of the failure sign N counted by the counter at that time. The response is transmitted as information, and the disaster prevention receiver 10 is used to judge the reliability of the fire detector 12.

(感度試験に伴う故障予兆の判定)
図6は火災検知器の感度試験により内部試験光源を駆動した際の受光信号のピークレベルと故障予兆の発生回数を示した説明図である。
(Judgment of failure sign associated with sensitivity test)
FIG. 6 is an explanatory diagram showing the peak level of the received light signal and the number of occurrences of failure signs when the internal test light source is driven by the sensitivity test of the fire detector.

図4に示した火災検知器12の検知器制御部54に設けられた感度試験部88は、防災受信盤10から定期的(例えば1日に1回)に送信される試験指示信号を受信した場合に動作し、試験発光駆動部76に指示して、内部試験光源78R,80R,82R,78L,80L,82Lを順番に例えば2Hzで所定期間(例えば1秒間)点滅させる発光駆動を行って火災検知部60R,60Lに火災炎に相当する炎疑似光(試験光)を入射して感度試験を行わせる。 The sensitivity test unit 88 provided in the detector control unit 54 of the fire detector 12 shown in FIG. 4 received a test instruction signal periodically (for example, once a day) transmitted from the disaster prevention receiver panel 10. In the case of fire, the test light emitting drive unit 76 is instructed to perform a light emitting drive in which the internal test light sources 78R, 80R, 82R, 78L, 80L, 82L are blinked in order at, for example, 2 Hz for a predetermined period (for example, 1 second). A flame pseudo light (test light) corresponding to a fire flame is incident on the detection units 60R and 60L to perform a sensitivity test.

感度試験部88による感度試験は、図4について既に説明したと同じ内容となる。これに加え、本実施形態の感度試験部88は、感度試験に伴い火災検知部60Rから出力される炎受光信号E1R、第1の非炎受光信号E2RL及び第2の非炎受光信号E3R,E3L、及び、火災検知部60Lから出力される感度試験時の炎受光信号E1L、第1の非炎受光信号E2L及び第2の非炎受光信号E3Lの各々について、各受光信号のピークレベルを検出し、図6(A)に黒丸で示すように、例えば1日に1回検出したピークレベルが、工場出荷時の劣化無しの状態で検出されたピークレベルの初期値92に基づく所定の正常範囲94を外れたが、所定の故障閾値96以下又は故障閾値96を下回らず故障判断条件を充足しなかった場合、即ち故障予兆範囲98にある場合は故障予兆と判断し、図6(B)に示すように、故障予兆の発生回数Nをカウンタにより計数する制御を行う。 The sensitivity test by the sensitivity test unit 88 has the same contents as those already described with respect to FIG. In addition to this, the sensitivity test unit 88 of the present embodiment has a flame light receiving signal E1R, a first non-flame light receiving signal E2RL, and a second non-flame light receiving signal E3R, E3L output from the fire detection unit 60R in association with the sensitivity test. , And, for each of the flame light receiving signal E1L, the first non-flame light receiving signal E2L, and the second non-flame light receiving signal E3L at the time of the sensitivity test output from the fire detection unit 60L, the peak level of each light receiving signal is detected. , As shown by black circles in FIG. 6 (A), for example, the peak level detected once a day is a predetermined normal range 94 based on the initial value 92 of the peak level detected without deterioration at the time of shipment from the factory. However, if the failure judgment condition is not satisfied without falling below the predetermined failure threshold 96 or below the failure threshold 96, that is, if it is within the failure sign range 98, it is judged as a failure sign and is shown in FIG. 6 (B). As described above, the control is performed to count the number of occurrences N of the failure sign by the counter.

ここで、受光信号の正常範囲94は初期値92を中心に例えば正常上限値94aと正常下限値94bで挟まれた範囲とし、例えば初期値92に対し±10パーセントとしている。また、故障閾値96は例えば初期値92の50パーセント程度の値とする。 Here, the normal range 94 of the received signal is set to a range sandwiched between, for example, the normal upper limit value 94a and the normal lower limit value 94b around the initial value 92, and is, for example, ± 10% with respect to the initial value 92. Further, the failure threshold value 96 is set to, for example, a value of about 50% of the initial value 92.

なお、故障予兆範囲として、例えば正常範囲94の上限値94aから初期値92の50パーセントを初期値92に加えたまでの範囲、即ち
(上限値94a)を超え{(初期値92)+(初期値92の50パーセント)}以下
の範囲を追加して故障予兆と判断しても良い。
The failure sign range exceeds, for example, the range from the upper limit value 94a of the normal range 94 to the addition of 50% of the initial value 92 to the initial value 92, that is, (upper limit value 94a) {(initial value 92) + (initial value 92) + (initial value 92). A range of 50% of the value 92)} may be added to determine a failure sign.

一方、火災判断部86は、感度試験部88のカウンタで係数された故障予兆の発生回数Nを故障予兆判定蓄積条件として設定した所定の閾値回数Nthと比較しており、故障予兆の発生回数Nが所定閾値Nth以上又は所定閾値Nthを超えて故障予兆判定蓄積条件を充足したときに故障予兆と判定(確定)し、防災受信盤10に故障予兆信号を送信し、続いて、所定の故障予兆処理を行う。火災判断部86による故障予兆処理は、例えば、火災信号の送信を停止する処理とする。 On the other hand, the fire judgment unit 86 compares the number of occurrences of failure signs N calculated by the counter of the sensitivity test unit 88 with the predetermined threshold number Nth set as the failure sign determination accumulation condition, and the number of occurrences of failure signs N. Is determined (confirmed) as a failure sign when the failure sign determination accumulation condition is satisfied at or above the predetermined threshold Nth or exceeds the predetermined threshold Nth, a failure sign signal is transmitted to the disaster prevention receiver 10, and subsequently, a predetermined failure sign is transmitted. Perform processing. The failure sign processing by the fire determination unit 86 is, for example, a process of stopping the transmission of a fire signal.

また、火災判断部86は、防災受信盤10から内部状態要求コマンド信号を受信した場合、そのとき得られている故障予兆の発生回数Nを示す情報を含む予兆故障情報を送信する制御を行い、防災受信盤10において故障予兆の発生回数Nを抽出し、これに基づいて火災信号を送信した火災検知器12の信頼性を評価して信頼性有り、信頼性低下を判断するために用いられる。 Further, when the fire determination unit 86 receives the internal state request command signal from the disaster prevention receiving panel 10, it controls to transmit the predictive failure information including the information indicating the number of occurrences N of the failure signs obtained at that time. The disaster prevention receiver panel 10 extracts the number of occurrences N of failure signs, and based on this, evaluates the reliability of the fire detector 12 that transmits a fire signal, and is used to determine whether the fire detector is reliable or has a decrease in reliability.

なお、カウンタにより計数している故障予兆の発生回数Nは、例えば所定の期間毎にリセットされるか、又は、故障予兆をカウントしてから所定の期間が経過したときにリセットされる。リセット前の故障予兆の発生回数Nは、故障予兆情報履歴として記憶するようにしても良い。 The number of occurrences of failure signs N counted by the counter is reset, for example, every predetermined period, or when a predetermined period elapses after counting the failure signs. The number of occurrences N of failure signs before reset may be stored as a failure sign information history.

(火災検知器の感度試験動作)
図7は故障予兆の判定を伴う火災検知器の感度試験を示したフローチャートであり、図4に示した火災検知器12の感度試験部88及び火災判断部86による制御動作となる。
(Sensitivity test operation of fire detector)
FIG. 7 is a flowchart showing a sensitivity test of the fire detector accompanied by determination of a failure sign, and the control operation is performed by the sensitivity test unit 88 and the fire determination unit 86 of the fire detector 12 shown in FIG.

図7に示すように、感度試験部88は、例えば、図4の火災検知部60Rを例にとると、ステップS21で防災受信盤10から順番にアドレスを指定して1日1回、送信される試験指示信号の受信(自己アドレスを示すもの)を判別してステップS22に進み、試験発光駆動部76に指示して内部試験光源78Rを2Hzで所定期間(例えば1秒間)点滅駆動してセンサ部64に火災炎に相当する炎疑似光(試験光)を入射する。 As shown in FIG. 7, for example, taking the fire detection unit 60R of FIG. 4 as an example, the sensitivity test unit 88 is transmitted once a day by designating addresses in order from the disaster prevention receiving panel 10 in step S21. The reception of the test instruction signal (indicating the self-address) is determined, the process proceeds to step S22, and the test light emitting drive unit 76 is instructed to blink the internal test light source 78R at 2 Hz for a predetermined period (for example, 1 second) to drive the sensor. A flame pseudo light (test light) corresponding to a fire flame is incident on the part 64.

続いて、感度試験部88はステップS23に進み、増幅処理部66より出力される試験光による炎受光信号(受光信号)E1Rのピークレベルを検出し、ステップS24で図5(A)に示した正常範囲94内か否か判別し、正常範囲94内にある場合はステップS25に進み、工場出荷時の初期感度試験時に記憶された初期値(基準受光値)92により受光信号の例えばピークレベルを割って検出感度係数を算出し、ステップS27で検出感度係数の逆数として受光信号の補正係数を算出して記憶し、受光信号レベルの補正に用いる。 Subsequently, the sensitivity test unit 88 proceeds to step S23, detects the peak level of the flame light receiving signal (light receiving signal) E1R by the test light output from the amplification processing unit 66, and is shown in FIG. 5 (A) in step S24. It is determined whether or not it is within the normal range 94, and if it is within the normal range 94, the process proceeds to step S25, and for example, the peak level of the received signal is determined by the initial value (reference received value) 92 stored at the time of the initial sensitivity test at the time of shipment from the factory. The detection sensitivity coefficient is calculated by dividing, and the correction coefficient of the received light signal is calculated and stored as the reciprocal of the detection sensitivity coefficient in step S27, and used for the correction of the received light signal level.

続いて、感度試験部88はステップS27に進み、ステップS25で算出した検出感度係数が予め定めた所定の感度補正限界閾値(例えば0.5)に達するまで、ステップS21からの処理を繰り返す。なお、ステップS25における補正限界は、ステップS31と同様に、ピークレベルが故障閾値以下又はそれを下回った場合としても良い。 Subsequently, the sensitivity test unit 88 proceeds to step S27, and repeats the process from step S21 until the detection sensitivity coefficient calculated in step S25 reaches a predetermined sensitivity correction limit threshold value (for example, 0.5). The correction limit in step S25 may be the case where the peak level is equal to or lower than the failure threshold value or lower than the failure threshold value, as in step S31.

感度試験部88は、ステップS27で検出感度係数の感度補正限界閾値への到達を判別した場合は、ステップS28で所定の感度異常判定蓄積条件、例えば所定の蓄積回数閾値に達するまでステップS21からの処理を繰り返し、ステップS28の感度異常判定蓄積条件を充足するとステップS29で感度異常信号を防災受信盤10に送信する。 When the sensitivity test unit 88 determines in step S27 that the detection sensitivity coefficient has reached the sensitivity correction limit threshold value, the sensitivity test unit 88 starts from step S21 until a predetermined sensitivity abnormality determination accumulation condition, for example, a predetermined accumulation number threshold value is reached in step S28. When the process is repeated and the sensitivity abnormality determination accumulation condition in step S28 is satisfied, the sensitivity abnormality signal is transmitted to the disaster prevention receiver 10 in step S29.

続いて、火災判断部86は感度試験部88における感度異常の判定を受けてステップS30で所定の感度異常処理を行う。この感度異常処理は、感度異常を判定した後は感度異常(例えば感度異常を伴う受光素子故障や電気回路故障等)による誤った火災判断がなされる可能性が高いことから、例えば火災判断部86における火災判断蓄積条件を設定する蓄積回数閾値を増加して実質的に火災感度を下げるか、或いは、火災信号の送信を停止する等の処理とする。 Subsequently, the fire determination unit 86 receives the determination of the sensitivity abnormality in the sensitivity test unit 88 and performs a predetermined sensitivity abnormality process in step S30. In this sensitivity abnormality processing, after determining the sensitivity abnormality, there is a high possibility that an erroneous fire judgment is made due to the sensitivity abnormality (for example, a light receiving element failure accompanied by the sensitivity abnormality, an electric circuit failure, etc.). Therefore, for example, the fire judgment unit 86 The fire judgment accumulation condition in the above is set. The accumulation frequency threshold is increased to substantially reduce the fire sensitivity, or the transmission of the fire signal is stopped.

一方、感度試験部88は、ステップS24で試験時の受光信号E1Rのピークレベルが正常範囲94を外れたことを判別するとステップS31に進み、ピークレベルが故障閾値96以下又は故障閾値を下回らない場合、即ち、図5(A)に示した、故障予兆範囲98にある場合は、故障予兆が発生したと判定して火災判断部86に通知する。なお、ステップS31の故障予兆の判定は、受光信号のピークレベルに限らず、例えば積分値や平均レベルに基づいて行っても良い。 On the other hand, when the sensitivity test unit 88 determines in step S24 that the peak level of the received light signal E1R at the time of the test is out of the normal range 94, the process proceeds to step S31, and the peak level is 96 or less of the failure threshold value or does not fall below the failure threshold value. That is, when it is within the failure sign range 98 shown in FIG. 5 (A), it is determined that the failure sign has occurred and the fire determination unit 86 is notified. The failure sign determination in step S31 is not limited to the peak level of the received signal, and may be determined based on, for example, an integrated value or an average level.

続いて、感度試験部88から故障予兆の判定結果の通知を受けた火災判断部86は、ステップS32で故障予兆の発生回数を計数するカウンタNを+1し(インクリメントし)、ステップS33で故障予兆の発生回数Nが所定の故障予兆判定蓄積条件として設定した閾値回数Nth以下又はそれを下回った場合は、ステップS21からの処理を繰り返す。 Subsequently, the fire judgment unit 86, which receives the notification of the failure sign determination result from the sensitivity test unit 88, increments (increments) the counter N that counts the number of occurrences of the failure sign in step S32, and causes the failure sign in step S33. When the number of occurrences N of is less than or equal to the threshold number Nth set as the predetermined failure sign determination accumulation condition or less than that, the process from step S21 is repeated.

このような故障予兆の発生回数Nのカウントの繰り返しにより、火災判断部86は、ステップS33で故障予兆の発生回数Nが所定の閾値回数Nth以上となって故障予兆判定蓄積条件を充足した場合に故障予兆と判定(確定)し、ステップS35に進んで故障予兆信号を防災受信盤10に送信して報知させ、続いてステップS36で所定の故障予兆処理を行う。 By repeating such counting of the number of occurrences of failure signs N, the fire determination unit 86 finds that the number of occurrences of failure signs N becomes equal to or greater than the predetermined threshold number Nth in step S33 and satisfies the failure sign determination accumulation condition. It is determined (determined) as a failure sign, the process proceeds to step S35, a failure sign signal is transmitted to the disaster prevention receiving panel 10 to notify the user, and then a predetermined failure sign process is performed in step S36.

この故障予兆処理は、例えば、火災判断部86による火災判断蓄積条件として設定する蓄積回数閾値を増加させて火災判断蓄積条件を厳格にして実質的に火災感度を下げる。また、その後に火災判断部86で火災が判断されても、故障による誤った火災判断の可能性が高いことから火災信号の送信を停止して、非火災報の発生を抑止させる処理を行うようにしても良い。 In this failure sign processing, for example, the accumulation number threshold value set as the fire determination accumulation condition by the fire determination unit 86 is increased to make the fire determination accumulation condition strict and substantially reduce the fire sensitivity. In addition, even if a fire is judged by the fire judgment unit 86 after that, since there is a high possibility of an erroneous fire judgment due to a failure, the transmission of the fire signal should be stopped to suppress the occurrence of non-fire alarms. You can do it.

また、火災判断部86は、防災受信盤10から内部状態要求コマンドを受信すると、そのときカウンタで計数している故障予兆の発生回数Nを示す情報を含む故障予兆情報を応答送信し、防災受信盤10は取得した火災検知器12の故障予兆情報から故障予兆の発生回数を抽出して信頼性を評価し、信頼性有り又は信頼性低下を判断する。 Further, when the fire determination unit 86 receives the internal state request command from the disaster prevention receiving panel 10, it responds and transmits the failure sign information including the information indicating the number of occurrences N of the failure sign counted by the counter at that time, and receives the disaster prevention. The board 10 extracts the number of occurrences of the failure sign from the acquired failure sign information of the fire detector 12 to evaluate the reliability, and determines whether the reliability is present or the reliability is lowered.

一方、感度試験部88は、ステップS11で受光信号のピークレベルが故障閾値96以下に低下したことを判別した場合にはステップS28に進み、感度異常判定蓄積条件として設定した所定の蓄積回数閾値に達するまでステップS21からの処理を繰り返し、ステップS28の感度異常判定蓄積条件を充足するとステップS29で感度異常信号を防災受信盤10に送信し、続いてステップS30で所定の感度異常処理を行う。 On the other hand, when the sensitivity test unit 88 determines in step S11 that the peak level of the received light signal has dropped to the failure threshold value of 96 or less, the sensitivity test unit 88 proceeds to step S28 to reach a predetermined accumulation number threshold value set as the sensitivity abnormality determination accumulation condition. The process from step S21 is repeated until the value is reached, and when the sensitivity abnormality determination accumulation condition in step S28 is satisfied, the sensitivity abnormality signal is transmitted to the disaster prevention receiver 10 in step S29, and then a predetermined sensitivity abnormality process is performed in step S30.

また、本実施形態は火災検知器で定期的に行う感度試験により故障予兆の発生回数を求める場合を例にとっているが、これに限定されず、防災受信盤10からの試験指示操作により任意のタイミングで行われる試験を含み、また、感度試験以外の内部試験光源を駆動する適宜の試験も含む。左眼60Lについても同様に行うことが出来る。また、試験時の非炎受光信号E2R,E2L、第2の比炎受光信号E3R,E3Lについても同様に行うことができる。 Further, the present embodiment takes as an example a case where the number of occurrences of failure signs is obtained by a sensitivity test periodically performed by a fire detector, but the present invention is not limited to this, and an arbitrary timing is obtained by a test instruction operation from the disaster prevention receiving panel 10. Also includes appropriate tests that drive an internal test light source other than the sensitivity test. The same can be done for the left eye 60L. Further, the non-flame light receiving signals E2R and E2L and the second specific flame light receiving signals E3R and E3L at the time of the test can be similarly performed.

[火災判断部と感度試験部による故障予兆の判定]
本発明による火災検知器12の他の実施形態として、図5のフローチャートに示した火災判断部86による故障予兆の判定と、図7のフローチャートに示した感度試験部88による故障予兆の判定を組み合わせ、それぞれで判断された故障予兆の発生回数Nを累積してカウントするように構成し、火災信号を送信した火災検知器12から故障予兆の累積発生回数を示す情報を含む故障予兆情報を防災受信盤10で取得し、抽出した故障予兆の累積発生回数から信頼性を評価して信頼性有り、信頼性低下を判断する。
[Judgment of failure sign by fire judgment unit and sensitivity test unit]
As another embodiment of the fire detector 12 according to the present invention, the determination of the failure sign by the fire judgment unit 86 shown in the flowchart of FIG. 5 and the determination of the failure sign by the sensitivity test unit 88 shown in the flowchart of FIG. 7 are combined. , The failure sign information including the information indicating the cumulative number of failure signs is received from the fire detector 12 that has transmitted the fire signal by accumulating and counting the number of occurrences N of the failure signs determined by each. The reliability is evaluated from the cumulative number of occurrences of failure signs acquired and extracted on the board 10, and it is judged that the reliability is high and the reliability is low.

また、故障予兆の判定も、故障予兆の累積発生回数が所定の閾値回数Nth以上となって故障予兆判定蓄積条件を充足した場合に、故障予兆と判定して故障予兆信号を防災受信盤10に送信して報知させ、続いて所定の故障予兆処理を行うようにする。 Further, in the determination of the failure sign, when the cumulative number of occurrences of the failure sign becomes Nth or more of the predetermined threshold number and the failure sign determination accumulation condition is satisfied, it is determined as the failure sign and the failure sign signal is sent to the disaster prevention receiving panel 10. It is transmitted to notify the user, and then a predetermined failure sign processing is performed.

[防災受信盤]
(防災受信盤の概略)
図8は防災受信盤の機能構成の概略を示したブロック図である。図8に示すように、防災受信盤10は火災監視制御部42を備え、火災監視制御部42は例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。
[Disaster prevention receiver]
(Outline of disaster prevention receiver)
FIG. 8 is a block diagram showing an outline of the functional configuration of the disaster prevention receiver. As shown in FIG. 8, the disaster prevention receiving panel 10 includes a fire monitoring control unit 42, and the fire monitoring control unit 42 is a function realized by, for example, executing a program. Hardware includes a CPU, memory, and various input / output. Use a computer circuit or the like equipped with a port or the like.

火災監視制御部42に対しては伝送部35a,35bが設けられ、伝送部35a,35bから引き出した信号線14a,14bに上り線トンネル1aと下り線トンネル1bに設置した火災検知器12がそれぞれ複数台接続されている。 Transmission units 35a and 35b are provided for the fire monitoring and control unit 42, and fire detectors 12 installed in the up line tunnel 1a and the down line tunnel 1b are provided on the signal lines 14a and 14b drawn from the transmission units 35a and 35b, respectively. Multiple units are connected.

また、火災監視制御部42に対しスピーカ、警報表示灯等を備えた警報部36、液晶ディスプレイ、プリンタ等を備えた表示部37、各種スイッチ等を備えた操作部38、IG子局設備20を接続するモデム39が設けられ、更に、図1に示した消火ポンプ設備16、冷却ポンプ設備18、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30が接続されたI/O部40が設けられている。 Further, the fire monitoring control unit 42 is provided with an alarm unit 36 equipped with a speaker, an alarm indicator light, etc., a display unit 37 equipped with a liquid crystal display, a printer, etc., an operation unit 38 equipped with various switches, and an IG slave station facility 20. A modem 39 to be connected is provided, and further, the fire extinguishing pump equipment 16, the cooling pump equipment 18, the ventilation equipment 22, the alarm display board equipment 24, the radio rebroadcasting equipment 26, the television monitoring equipment 28, and the lighting equipment 30 shown in FIG. 1 are provided. A connected I / O unit 40 is provided.

火災監視制御部42は、伝送部35a,35bに指示して信号線14a,14bを介して火災検知器12のアドレスを順次指定したポーリングコマンドを含む呼出信号を繰り返し送信しており、火災検知器12は自己アドレスに一致する呼出信号を受信すると、火災信号、感度異常予兆信号、感度異常信号、汚損予兆信号、汚損信号等の応答信号を返信する。 The fire monitoring control unit 42 repeatedly transmits a call signal including a poll command instructing the transmission units 35a and 35b to sequentially specify the addresses of the fire detector 12 via the signal lines 14a and 14b, and the fire detector 42. When the 12 receives the call signal corresponding to the self-address, it returns a response signal such as a fire signal, a sensitivity abnormality sign signal, a sensitivity abnormality signal, a stain sign signal, and a stain signal.

また、火災監視制御部42は、火災検知器12からの火災信号の受信に基づき火災と判断した場合は、警報部36による火災警報の出力、I/O部40を介して他設備の連動制御例えば警報表示板設備24による進入禁止警報の表示、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 Further, when the fire monitoring control unit 42 determines that a fire has occurred based on the reception of the fire signal from the fire detector 12, the fire alarm output by the alarm unit 36 and the interlocking control of other equipment via the I / O unit 40. For example, predetermined fire processing including display of an entry prohibition alarm by the alarm display board equipment 24 and transmission of a fire transfer signal to the remote monitoring control equipment 32 is performed.

また、火災監視制御部42は、システムの立上げ時あるいは運用中の所定の周期毎(例えば1日1回となる24時間周期)に、火災検知器12のアドレスを順次指定した試験指示信号を送信し、火災検知器12に感度試験及び汚れ試験を行わせ、それぞれの試験結果を応答させ、例えばセンサ故障の応答信号を受信した場合、火災検知器12のアドレスを特定したセンサ故障警報を警報部36の警報音、表示部37のディスプレイ表示、印刷により報知させる制御を行う。 In addition, the fire monitoring and control unit 42 sequentially specifies a test instruction signal that specifies the address of the fire detector 12 at a predetermined cycle (for example, a 24-hour cycle that is once a day) at the time of system startup or during operation. It is transmitted, the fire detector 12 is subjected to a sensitivity test and a dirt test, and each test result is made to respond. For example, when a sensor failure response signal is received, a sensor failure alarm that specifies the address of the fire detector 12 is issued. Control is performed by the alarm sound of the unit 36, the display display of the display unit 37, and printing.

また、火災監視制御部42は火災検知器12の汚れ試験により得られた汚損異常の応答信号を受信した場合、火災検知器のアドレスを特定した汚れ警報を警報部36の警報音、表示部37のディスプレイ表示、印刷により報知させる制御を行う。 Further, when the fire monitoring control unit 42 receives the response signal of the stain abnormality obtained by the dirt test of the fire detector 12, the fire monitoring and control unit 42 issues a dirt alarm specifying the address of the fire detector to the alarm sound of the alarm unit 36 and the display unit 37. Controls to notify by display and printing of.

また、火災監視制御部42は、火災検知器12の感度試験及び汚れ試験により得られたセンサ故障又は汚損異常の応答信号を受信した場合、モデム39から図1に示したIG子局設備20を介して遠方監視制御設備32に移報信号を送信し、故障警報又は異常警報を報知させる制御を行う。 Further, when the fire monitoring control unit 42 receives the response signal of the sensor failure or the stain abnormality obtained by the sensitivity test and the dirt test of the fire detector 12, the IG slave station equipment 20 shown in FIG. 1 is used from the modem 39. A transfer signal is transmitted to the remote monitoring and control equipment 32 via the control to notify a failure alarm or an abnormality alarm.

(信頼性判断制御)
防災受信盤10における制御部34には、トンネルに設置された火災検知器12の信頼性判断制御を行うため、区間信頼性情報生成部44、総合信頼性情報生成部46、区間信頼性判断部48及び火災検知器信頼性判断部50の機能が設けられる。
(Reliability judgment control)
In order to control the reliability of the fire detector 12 installed in the tunnel, the control unit 34 of the disaster prevention receiver 10 has a section reliability information generation unit 44, a comprehensive reliability information generation unit 46, and a section reliability judgment unit. The functions of 48 and the fire detector reliability determination unit 50 are provided.

区間信頼性情報生成部44は、所定期間毎の信頼性判断タイミング、例えば1週間に1回の信頼性判断タイミングへの到達を判断すると、火災検知器12のアドレスを順次指定した内部状態要求コマンド信号を送信し、火災検知器12がそのとき保持している故障予兆の発生回数Nを示す情報を含む故障予兆情報を収集し、図2(A)に示した区間A1〜Anごとに、区間A1〜Anの各々に設けた例えば3台の火災検知器12の故障予兆の発生回数を平均した故障予兆の区間平均発生回数を示す区間信頼性情報を生成する制御を行う。 When the section reliability information generation unit 44 determines that the reliability determination timing for each predetermined period, for example, the reliability determination timing once a week has been reached, the internal state request command for sequentially designating the addresses of the fire detector 12 A signal is transmitted, failure sign information including information indicating the number of occurrences N of the failure sign held by the fire detector 12 at that time is collected, and each section A1 to An shown in FIG. 2 (A) is divided into sections. Control is performed to generate section reliability information indicating the section average number of occurrences of failure signs, which is the average number of occurrences of failure signs of, for example, three fire detectors 12 provided in each of A1 to An.

総合信頼性情報生成部46は、区間信頼性情報生成部44により生成された区間A1〜Anの区間信頼性情報から取得した各区間A1〜Anの故障予兆の区間平均発生回数を平均したトンネル全体(例えば信号線14単位)としての故障予兆の総合平均発生回数を示す総合故障予兆情報を生成する制御を行う。なお、総合信頼性情報生成部46は、所定の信号系統について収集された全ての火災検知器12の故障予兆の発生回数を平均して総合平均発生回数を求めても良い。 The total reliability information generation unit 46 is the entire tunnel obtained by averaging the average number of occurrences of failure signs of each section A1 to An acquired from the section reliability information of the sections A1 to An generated by the section reliability information generation unit 44. Control is performed to generate total failure sign information indicating the total average number of occurrences of failure signs as (for example, 14 units of signal lines). The total reliability information generation unit 46 may obtain the total average number of occurrences by averaging the number of occurrences of failure signs of all the fire detectors 12 collected for the predetermined signal system.

また、区間信頼性判断部48は、区間信頼性情報生成部44で生成された故障予兆の区間平均発生回数と総合信頼性情報生成部46で生成された故障予兆の総合平均発生回数とを比較し、所定の条件を充足する特定の区間、例えば、故障予兆の総合平均発生回数より所定値以上又は所定値を超えて多い故障予兆の区間平均発生回数を持つ区間を、信頼性低下区間と判断してその旨を報知する制御を行う。 Further, the section reliability determination unit 48 compares the average number of occurrences of failure signs generated by the section reliability information generation unit 44 with the total average number of occurrences of failure signs generated by the total reliability information generation unit 46. However, a specific section that satisfies a predetermined condition, for example, a section having an average number of occurrences of a failure sign that is equal to or greater than a predetermined value or exceeds a predetermined value from the total average number of occurrences of a failure sign is determined to be a reliability deterioration section. Then, control is performed to notify the fact.

更に、火災検知器信頼性判断部50は、区間信頼性盤段部48により信頼性低下と判断された区間の火災検知器12を対象に、故障予兆の区間平均発生回数に対し、故障予兆の発生回数が所定値以上又は所定値を超えている火災検知器12を、信頼性低下検知器と判断してその旨を報知する制御を行う。 Further, the fire detector reliability determination unit 50 targets the fire detector 12 in the section determined by the section reliability board stage section 48 to have a decrease in reliability, and measures the failure sign with respect to the average number of occurrences of the failure sign in the section. The fire detector 12 whose number of occurrences exceeds or exceeds a predetermined value is determined to be a reliability deterioration detector, and control is performed to notify the fact.

ここで、火災検知器信頼性判断部50で火災検知器12の信頼性低下が判断されなかった場合(信頼性低下と判断された火災検知器12が無かった場合)、区間信頼性判断部48は、例えば警報部36を介して、信頼性低下が判断された区間に信頼性を阻害する要因が存在する旨と所定の対処を報知する。 Here, when the fire detector reliability determination unit 50 does not determine the decrease in reliability of the fire detector 12 (when there is no fire detector 12 determined to decrease in reliability), the section reliability determination unit 48 For example, via the alarm unit 36, notifies that there is a factor that impedes reliability in the section where the decrease in reliability is determined and a predetermined countermeasure.

例えば、区間信頼性判断部48は、例えば警報部36を介して、区間の信頼性を阻害する要因として、温度、湿度、塵埃、電気的ノイズ、外乱光等の環境要因の確認を促す報知をし、また、例えば表示部37を介して、これに対する対処として、区間環境の調査による原因の究明、当該区間に設置している火災検知器12の外観確認や動作試験等の点検の必要性を示すガイダンス表示等を行う。 For example, the section reliability determination unit 48 notifies, for example, via the alarm unit 36, that prompts confirmation of environmental factors such as temperature, humidity, dust, electrical noise, and ambient light as factors that impede the reliability of the section. In addition, as a countermeasure against this, for example, through the display unit 37, it is necessary to investigate the cause by investigating the section environment, check the appearance of the fire detector 12 installed in the section, and inspect the operation test. Display guidance to show.

また、火災検知器信頼性判断部50は、信頼性低下と判断された区間の中の特定の火災検出器12の信頼性低下を判断した場合、例えば警報部36を介して、当該火災検知器12の周辺環境に信頼性を阻害する要因が存在する可能性がある旨と当該火災検知器の交換を含む所定の対処を促す報知をする。例えば、火災検知器信頼性判断部50は、警報部36を介して、火災感知器12の信頼性を阻害する設置環境要因として、温度、湿度、塵埃、電気的ノイズ、外乱光等の環境要因の存在可能性を報知し、また、表示部37を介して、これに対する対処として、区間環境の調査による原因の究明、当該区間に設置している火災検知器12の外観確認や動作試験等の点検の必要性、更には火災検知器12の交換を促すガイダンス表示等を行う。 Further, when the fire detector reliability determination unit 50 determines the reliability decrease of a specific fire detector 12 in the section determined to be the reliability decrease, for example, the fire detector via the alarm unit 36. Notifies that there may be a factor that impedes reliability in the surrounding environment of 12 and prompts for a predetermined action including replacement of the fire detector. For example, the fire detector reliability determination unit 50 uses the alarm unit 36 as an installation environmental factor that impedes the reliability of the fire detector 12, such as temperature, humidity, dust, electrical noise, and ambient light. In addition, as a countermeasure against this through the display unit 37, investigation of the cause by investigation of the section environment, appearance confirmation of the fire detector 12 installed in the section, operation test, etc. The necessity of inspection and the guidance display prompting the replacement of the fire detector 12 are performed.

(信頼性判断の制御動作)
図9は防災受信盤による信頼性判断制御を示したフローチャートであり、図8に示した区間信頼性情報生成部44、総合信頼性情報生成部46、区間信頼性判断部48及び火災検知器信頼性判断部50の機能を備えた防災受信盤10の制御部34による制御動作となる。なお、説明を簡単にするため、ここでは信号系統は1つであるものとする。
(Control operation for reliability judgment)
FIG. 9 is a flowchart showing reliability judgment control by the disaster prevention receiver, and shows the section reliability information generation unit 44, the comprehensive reliability information generation unit 46, the section reliability judgment unit 48, and the fire detector reliability shown in FIG. The control operation is performed by the control unit 34 of the disaster prevention receiver 10 having the function of the sex determination unit 50. For the sake of simplicity, it is assumed that there is only one signal system here.

図9に示すように、防災受信盤10の制御部34は、ステップS41で例えば1週間に1回の信頼性情報収集タイミングへの到達を判別するとステップS42に進み、信号系統の火災検知器12のアドレスを順次指定した内部状態要求コマンド信号を送信し、火災検知器12がそのとき保持している故障予兆の発生回数を示す情報を含む故障予兆情報を取得し、ステップS43で全ての火災検知器12の故障予兆の発生回数の平均による故障予兆の総合平均発生回数を示す総合信頼性情報を生成し、続いて、ステップS44で区間ごとに設けられた火災検知器12の故障予兆の発生回数を平均して故障予兆の区間平均発生回数を求めて区間信頼性情報を生成する。なお、ステップS43,S44に代えて、最初に各区間の故障予兆の区間平均発生回数を求めた後に、全ての区間の故障予兆の区間平均発生回数を平均して故障予兆の総合平均発生回数を求めるようにしても良い。 As shown in FIG. 9, when the control unit 34 of the disaster prevention receiver 10 determines in step S41 that the reliability information collection timing has been reached, for example, once a week, the control unit 34 proceeds to step S42 and proceeds to step S42, where the signal system fire detector 12 The internal state request command signal for which the addresses of the above are sequentially specified is transmitted, the failure sign information including the information indicating the number of occurrences of the failure sign held by the fire detector 12 at that time is acquired, and all the fires are detected in step S43. The total reliability information indicating the total average number of occurrences of the failure sign is generated by the average number of occurrences of the failure sign of the device 12, and then the number of occurrences of the failure sign of the fire detector 12 provided for each section in step S44. Is averaged to obtain the average number of occurrences of a failure sign in the section, and section reliability information is generated. Instead of steps S43 and S44, the average number of occurrences of failure signs in each section is first obtained, and then the average number of occurrences of failure signs in all sections is averaged to obtain the total average number of failure signs. You may ask for it.

続いて、制御部34は、ステップ45で故障予兆の総合平均発生回数と各区間の故障予兆の区間平均発生回数を比較し、故障予兆の総合平均発生回数に対し所定値以上の故障予兆の区間平均発生回数を持つ区間を判別するとステップS46に進み、信頼性低下の区間を判断する。 Subsequently, in step 45, the control unit 34 compares the total average number of occurrences of failure signs with the average number of occurrences of failure signs in each section, and the section of failure signs equal to or greater than a predetermined value with respect to the total average number of failure signs. When the section having the average number of occurrences is determined, the process proceeds to step S46, and the section with reduced reliability is determined.

続いて、制御部34は、信頼性低下と判断した区間の故障予兆の区間平均発生回数に対し、当該区間に設けている各火災検知器12の故障予兆の発生回数とを比較し、故障予兆の区間平均発生回数に対し所定値以上の故障予兆の故障予兆の発生回数を持つ火災検知器12を判別するとステップS50に進み、信頼性低下の火災感知器12を判断し、ステップS51で信頼性低下と判断した火災検知器12と区間及び信頼性低下に対する対処を報知し、ステップS52で火災監視制御部42に対し信頼性低下を判断した火災検知器12をアドレスに対応付けて設定し、信頼性低下と判断された火災検知器12からの火災信号に対応する火災制御(火災検知器の頼性低下に対応する火災処理)を可能とする。 Subsequently, the control unit 34 compares the average number of occurrences of the failure sign in the section determined to be reduced in reliability with the number of occurrences of the failure sign of each fire detector 12 provided in the section, and determines the failure sign. When the fire detector 12 having the number of occurrences of the failure sign of the failure sign equal to or more than the predetermined value is determined with respect to the average number of occurrences in the section, the process proceeds to step S50, the fire detector 12 with reduced reliability is determined, and the reliability is determined in step S51. The fire detector 12 judged to be deteriorated and the section and the countermeasure against the decrease in reliability are notified, and the fire detector 12 judged to be decreased in reliability is set in the fire monitoring control unit 42 in step S52 in association with the address, and the reliability is increased. It enables fire control (fire processing corresponding to the decrease in reliability of the fire detector) corresponding to the fire signal from the fire detector 12 determined to be deteriorated.

一方、制御部34は、ステップS47で故障予兆の区間平均発生回数に対し所定値以上の故障予兆の故障予兆の発生回数を持つ火災検知器12が判別されなかった場合はステップS48に進み、信頼性低下と判断された区間を報知し、続いてステップS49で信頼性低下と判断した区間に対する対処を報知する。 On the other hand, if the fire detector 12 having the number of occurrences of the failure sign of the failure sign equal to or higher than the predetermined value is not determined in step S47, the control unit 34 proceeds to step S48 and trusts. The section determined to be degraded is notified, and then the action for the section determined to be degraded in step S49 is notified.

なお、図9の信頼性判断制御では、信頼性低下を判断しているが、信頼性低下を判断した場合も同様である。 In the reliability determination control of FIG. 9, the decrease in reliability is determined, but the same applies when the decrease in reliability is determined.

(信頼性判断に対応した火災処理)
図8の防災受信盤10の制御部34に設けられた火災検知器信頼性判断部50により、信頼性低下と判断された区間の特定の火災検出器12の信頼性低下が判断された場合、当該火災検知器12の情報を火災監視制御部42に設定し、火災監視制御部42は火災検知器12から火災信号を受信したとき、信頼性ありか、信頼性低下かに応じた火災処理を行う。
(Fire treatment corresponding to reliability judgment)
When the fire detector reliability determination unit 50 provided in the control unit 34 of the disaster prevention receiver 10 of FIG. 8 determines that the reliability of the specific fire detector 12 in the section determined to be the reliability decrease is reduced. The information of the fire detector 12 is set in the fire monitoring control unit 42, and when the fire monitoring control unit 42 receives the fire signal from the fire detector 12, the fire processing is performed according to whether the fire is reliable or the reliability is lowered. Do.

火災監視制御部42による火災検知器12の信頼性の評価は、例えば故障予兆情報として取得して抽出した火災検知器12の故障予兆の発生回数Nが信頼性判断蓄積条件として設定した所定の閾値回数Nref以下又は閾値回数Nrefを下回った場合は信頼性有りと判断し、所定の閾値回数Nref以上又は閾値回数Nrefを超えた場合は信頼性低下と判断する。 In the evaluation of the reliability of the fire detector 12 by the fire monitoring control unit 42, for example, the number of occurrences N of the failure sign of the fire detector 12 acquired and extracted as the failure sign information is a predetermined threshold value set as the reliability judgment accumulation condition. If it is less than or equal to the number of times Nref or less than the threshold number Nref, it is judged to be reliable, and if it is equal to or more than the predetermined number of times Nref or exceeds the threshold number Nref, it is judged to be reliable.

火災検知器12が故障予兆を判定したときに火災信号を送信しないようにする場合は、例えば信頼性判断蓄積条件を設定する閾値回数Nrefは、図4に示した火災判断部86で故障予兆判断蓄積条件として設定した閾値回数Nthより低い値を設定すれば良い。 When the fire detector 12 does not transmit the fire signal when the failure sign is determined, for example, the threshold number Nref for setting the reliability judgment accumulation condition is determined by the fire determination unit 86 shown in FIG. A value lower than the threshold number Nth set as the accumulation condition may be set.

火災監視制御部42は、火災信号を送信した火災検知器12につき信頼性有りと判断したときは、火災検知器12に火災復旧コマンド信号を送信して復旧させた後に再度火災信号を受信した場合に火災と判断し、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む他設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 When the fire monitoring control unit 42 determines that the fire detector 12 that has transmitted the fire signal is reliable, the fire monitoring control unit 42 transmits a fire recovery command signal to the fire detector 12 to restore the fire, and then receives the fire signal again. It is judged that there is a fire, and the fire alarm is output, at least the interlocking control of other equipment including the display of the entry prohibition alarm by the alarm display board equipment 24, and the predetermined fire processing including the transmission of the fire transfer signal to the remote monitoring control equipment 32. Do.

一方、火災監視制御部42は、火災信号を送信した火災検知器12につき信頼性低下と判断したときは、火災検知器12の蓄積条件変更コマンド信号(蓄積条件厳格化コマンド)の送信により、火災検知器12の第1の火災判断蓄積条件(図5のステップS7の蓄積条件)を設定する蓄積回数閾値を増加して厳格な(より火災判断に到達し難い)第2の火災判断蓄積条件に変更し、具体的には例えば蓄積回数閾値を高くして実質的に火災に対し低感度化し、続いて、復旧コマンド信号を送信して復旧させる。 On the other hand, when the fire monitoring control unit 42 determines that the reliability of the fire detector 12 that has transmitted the fire signal has deteriorated, the fire monitoring control unit 42 transmits a fire detector 12 storage condition change command signal (accumulation condition tightening command) to generate a fire. Set the first fire judgment accumulation condition of the detector 12 (accumulation condition in step S7 of FIG. 5) Increase the accumulation number threshold to make it a stricter (more difficult to reach the fire judgment) second fire judgment accumulation condition. It is changed, specifically, for example, the accumulation number threshold is raised to substantially reduce the sensitivity to fire, and then a recovery command signal is transmitted for recovery.

この状態で、火災監視制御部42は、火災判断蓄積条件を変更した第1報目の火災信号を送信した火災検知器12から第2の火災判断蓄積条件の充足による第2報目の火災信号を受信し、且つ、又は、第1報目の火災信号を送信した火災検知器12と同じ検知エリアを重複監視している隣接した火災検知器12から火災信号を受信したときに火災と判断し、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む他設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 In this state, the fire monitoring control unit 42 transmits the first fire signal in which the fire judgment storage condition is changed, and the second fire signal due to the satisfaction of the second fire judgment storage condition from the fire detector 12 Is received, or when a fire signal is received from an adjacent fire detector 12 that duplicately monitors the same detection area as the fire detector 12 that transmitted the first fire signal, it is determined to be a fire. , Output of a fire alarm, interlocking control of other equipment including at least display of an entry prohibition alarm by the alarm display board equipment 24, and transmission of a fire transfer signal to the remote monitoring control equipment 32, and perform predetermined fire processing.

このように火災監視制御部42で火災信号を送信した火災検知器12につき信頼性低下と判断した場合、火災検知器12が火災以外の故障予兆により火災と判断して火災信号を送信した場合も、当該火災検知器の火災判断蓄積条件を厳格に変更することから復旧後に原因不明の非火災要因により再度火災信号を送信する可能性は低くなり、また、このとき隣接火災検知器12は信頼性が低下しておらず、実火災でない場合に火災信号を送信する可能性は極めて低く、第1報目の火災信号を送信して復旧した火災検知器12とこれに隣接する火災検知器12aの一方又は両方から火災信号が受信される場合に火災と判断するようすることで、非火災にもかかわらず火災と判断して火災処理を行ってしまうことを確実に防止できる。 In this way, when the fire monitoring and control unit 42 determines that the fire detector 12 that has transmitted the fire signal has a reduced reliability, the fire detector 12 may determine that the fire is a fire due to a failure sign other than the fire and transmit the fire signal. Since the fire judgment accumulation conditions of the fire detector are strictly changed, the possibility of transmitting a fire signal again due to a non-fire factor of unknown cause after restoration is reduced, and at this time, the adjacent fire detector 12 is reliable. It is extremely unlikely that a fire signal will be transmitted when the fire is not reduced and it is not an actual fire, and the fire detector 12 recovered by transmitting the first fire signal and the fire detector 12a adjacent thereto By determining a fire when a fire signal is received from one or both of them, it is possible to reliably prevent a fire from being determined as a fire despite the fact that it is not a fire.

また、火災監視制御部42は、第1報目の火災信号を送信した火災検知器12につき信頼性低下と判断した後に当該火災検知器12及び又はこれに隣接した火災検知器12aに基づく火災判断が成立しなかった場合、火災検知器12から非火災の(誤った)火災信号を受信したことを示す非火災移報信号を遠方監視制御設備32に送信して報知させる制御を行う。 Further, the fire monitoring control unit 42 determines that the fire detector 12 that has transmitted the first fire signal has a reduced reliability, and then determines a fire based on the fire detector 12 and / or a fire detector 12a adjacent thereto. If is not established, a non-fire transfer signal indicating that a non-fire (wrong) fire signal has been received from the fire detector 12 is transmitted to the remote monitoring control equipment 32 to notify the remote monitoring and control equipment 32.

これにより遠方監視制御設備32側の管理担当者は、非火災報の原因となり得る火災検知器12の信頼性が低下した状態を知ることができ、火災検知器12の点検強化等といったトンネルの運用管理効率化のために利用可能とする。 As a result, the person in charge of management on the remote monitoring and control equipment 32 side can know the state in which the reliability of the fire detector 12, which may cause a non-fire report, has deteriorated, and the tunnel operation such as strengthening the inspection of the fire detector 12 can be performed. Make it available for management efficiency.

また、火災監視制御部42で火災信号を送信した火災検知器12につき信頼性低下と判断した場合、当該火災検知器12の検知エリアを重複監視している隣接火災検知器12aに、蓄積条件変更コマンド信号(蓄積条件緩和コマンド)を送信して、図5のステップS7の蓄積回数閾値を低下させることで、第1の火災判断条件を緩和する(より火災判断に到達しやすくする)第3の火災判断条件に変更し、実質的に火災に対し高感度化しても良い。 Further, when the fire monitoring control unit 42 determines that the reliability of the fire detector 12 that has transmitted the fire signal is low, the storage conditions are changed to the adjacent fire detector 12a that duplicately monitors the detection area of the fire detector 12. By transmitting a command signal (accumulation condition relaxation command) and lowering the accumulation frequency threshold in step S7 of FIG. 5, the first fire determination condition is relaxed (making it easier to reach the fire determination). The fire judgment conditions may be changed to substantially increase the sensitivity to fire.

具体的には例えば、隣接した火災検知器12の第1の火災判断蓄積条件として設定した蓄積回数閾値を低下させて第3の火災判断条件に変更することで、実火災であった場合、隣接災検知器12aよる火災信号が迅速に送信され、且つ又は第1報目の火災信号を送信して信頼性低下と判断された火災検知器12の復旧後再度の火災信号の送信によって速やかに火災処理を行うことができる。 Specifically, for example, by lowering the accumulation number threshold set as the first fire judgment accumulation condition of the adjacent fire detector 12 and changing to the third fire judgment condition, if it is an actual fire, it is adjacent. A fire signal from the disaster detector 12a is quickly transmitted, or a fire is promptly transmitted by transmitting the fire signal again after the fire detector 12 which is judged to have deteriorated reliability by transmitting the first fire signal is restored. Processing can be performed.

なお、火災検知器12が右眼と左眼を区別した火災信号を送信できる場合、例えば、この火災検知器12の右眼の検知エリアを左眼で重複監視している火災検知器(の左眼)を隣接した火災検知器12aとすれば良い。右眼と左眼の区別ができない場合は、両隣かこのうちの何れかの火災検知器12aとなる。 If the fire detector 12 can transmit a fire signal that distinguishes between the right eye and the left eye, for example, the fire detector (left) that monitors the detection area of the right eye of the fire detector 12 with the left eye. The eye) may be an adjacent fire detector 12a. If the right eye and the left eye cannot be distinguished, the fire detector 12a on either side or one of them is used.

[本発明の変形例]
(火災検知器)
3波長方式の火災検知器を例にとっているが、他の方式でも良く、例えば、COの共鳴放射帯である4.5μm帯と、その短波長側の例えば、5.0μm付近の波長帯域における赤外線エネルギーを検知し、これらの2波長帯域における各受光信号の相対比によって炎の有無を判定する2波長式の炎検知器としても良い。
[Modification of the present invention]
(Fire detector)
A three-wavelength fire detector is taken as an example, but other methods may be used, for example, in the 4.5 μm band which is the resonance emission band of CO 2 , and in the wavelength band on the short wavelength side thereof, for example, near 5.0 μm. It may be a two-wavelength flame detector that detects infrared energy and determines the presence or absence of a flame based on the relative ratio of each received signal in these two wavelength bands.

(蓄積条件の変更)
また、上記の実施形態における火災検知器12の火災判断蓄積条件の変更、例えば火災判断蓄積回数閾値の変更は、火災検知器12自身が故障予兆処理として故障予兆判断条件を厳格にする(火災感度を下げる)ために蓄積回数閾値を増加する場合(図5のステップS14)と、防災受信盤10が信頼性低下と判断したときの指示を受けて火災判断蓄積条件を厳格(感度を緩和)にするために蓄積回数閾値を増加させる場合(図8のステップS51)とがあり、両者が重複して行われる場合には、全体の蓄積時間が必要以上に長くなり火災の発見が遅れることのないように適切に変更する。
(Change of storage conditions)
Further, in the change of the fire judgment accumulation condition of the fire detector 12 in the above embodiment, for example, the change of the fire judgment accumulation number threshold value, the fire detector 12 itself tightens the failure sign judgment condition as the failure sign processing (fire sensitivity). When the accumulation number threshold is increased (step S14 in FIG. 5) and when the disaster prevention receiver 10 determines that the reliability is lowered, the fire judgment accumulation condition is strict (relaxed sensitivity). There is a case where the accumulation number threshold is increased (step S51 in FIG. 8), and when both are performed in duplicate, the total accumulation time becomes longer than necessary and the detection of the fire is not delayed. Change as appropriate.

(P型トンネル防災システム)
上記の実施形態は、防災受信盤から引き出された信号線にアドレスが設定された火災検知を接続して火災監視する所謂R型のトンネル防災システムを示したが、本発明はこれに限定されず、防災受信盤から火災検知器単位に信号線を引き出し、各信号線に火災検知器が接続された所謂P型のトンネル防災システムについても同様である。
(P-type tunnel disaster prevention system)
The above embodiment shows a so-called R-type tunnel disaster prevention system in which a fire detection with an address set is connected to a signal line drawn from a disaster prevention receiver to monitor a fire, but the present invention is not limited to this. The same applies to the so-called P-type tunnel disaster prevention system in which a signal line is drawn from the disaster prevention receiver for each fire detector and a fire detector is connected to each signal line.

一般的なP型のトンネル防災システムにあっては、防災受信盤と火災検知器との間で具体的な予兆発生回数等の情報通信はできないことから、上記の実施形態に示した防災受信盤で火災検知器の信頼性を評価して信頼性あり、信頼性低下と判断する機能は火災検知器側に設け、火災検知器で信頼性低下を判断した場合に、例えば、信号線を断線状態とすることで、又は信頼性低下信号専用線を設けるなどして信頼性情報を防災受信盤に送信して信頼性低下を報知させる。 In a general P-type tunnel disaster prevention system, information communication such as the specific number of occurrences of signs cannot be performed between the disaster prevention receiver and the fire detector. Therefore, the disaster prevention receiver shown in the above embodiment is used. The function to evaluate the reliability of the fire detector and judge that it is reliable and the reliability is low is provided on the fire detector side, and when the fire detector judges the reliability is low, for example, the signal line is disconnected. By doing so, or by providing a dedicated line for the reliability reduction signal, the reliability information is transmitted to the disaster prevention receiver to notify the reliability reduction.

(その他)
また本発明は、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(Other)
Further, the present invention includes appropriate modifications that do not impair its purpose and advantages, and is not further limited by the numerical values shown in the above embodiments.

1a:上り線トンネル
1b:下り線トンネル
10:防災受信盤
12:火災検知器
14a,14b:信号線
16:消火ポンプ設備
18:冷却ポンプ設備
20:IG子局設備
22:換気設備
24:警報表示板設備
26:ラジオ再放送設備
28:テレビ監視設備
30:照明設備
32:遠方監視制御設備
34:盤制御部
35a,35b:伝送部
42:火災監視制御部
44:区間信頼性情報生成部
46:総合信頼性情報生成部
48:区間信頼性情報判断部
50:嵩検知器信頼性情報判断部
90R,90L:透光性窓
92R,92L:試験光源用透光窓
54:検知器制御部
56:伝送部
58:電源部
60R,60L:火災検知部
64,68,72:センサ部
66,70,74:増幅処理部
76:試験発光駆動部
78R,78L,80R,80L,82R,82L:内部試験光源
84R,84L:外部試験光源
86:火災判断部
88:感度試験部
90:汚れ試験部
1a: Up line tunnel 1b: Down line tunnel 10: Disaster prevention receiver 12: Fire detector 14a, 14b: Signal line 16: Fire extinguishing pump equipment 18: Cooling pump equipment 20: IG slave station equipment 22: Ventilation equipment 24: Alarm display Board equipment 26: Radio rebroadcasting equipment 28: TV monitoring equipment 30: Lighting equipment 32: Remote monitoring control equipment 34: Panel control units 35a, 35b: Transmission unit 42: Fire monitoring control unit 44: Section reliability information generation unit 46: Comprehensive reliability information generation unit 48: Section reliability information judgment unit 50: Bulk detector reliability information judgment unit 90R, 90L: Translucent window 92R, 92L: Translucent window for test light source 54: Detector control unit 56: Transmission unit 58: Power supply unit 60R, 60L: Fire detection unit 64, 68, 72: Sensor unit 66, 70, 74: Amplification processing unit 76: Test light emission drive unit 78R, 78L, 80R, 80L, 82R, 82L: Internal test Light sources 84R, 84L: External test light source 86: Fire judgment unit 88: Sensitivity test unit 90: Dirt test unit

Claims (9)

トンネル内を複数の区間に分けて、前記区間の各々に火災検知器を設けたトンネル防災システムに於いて、
前記区間内に設けた前記火災検知器の所定の故障予兆の発生回数を平均した故障予兆の区間平均発生回数を含む区間信頼性情報を生成する区間信頼性情報生成部と、
複数の前記区間における各区間の前記故障予兆の区間平均発生回数を平均した故障予兆の総合平均発生回数を含む総合故障予兆情報を生成する総合信頼性情報生成部と、
前記故障予兆の区間平均発生回数と前記故障予兆の総合平均発生回数とを比較した場合に所定の条件を充足する特定の区間を、信頼性低下と判断して報知する区間信頼性判断部と、
が設けられたことを特徴とするトンネル防災システム。
In a tunnel disaster prevention system in which the inside of a tunnel is divided into a plurality of sections and fire detectors are provided in each of the sections.
A section reliability information generation unit that generates section reliability information including the section average number of failure signs, which is the average number of occurrences of a predetermined failure sign of the fire detector provided in the section.
A comprehensive reliability information generator that generates comprehensive failure sign information including the total average number of failure signs that averages the average number of occurrences of the failure sign in each section of the plurality of sections.
When comparing the average number of occurrences of the failure sign in the section and the total average number of occurrences of the failure sign, a section reliability determination unit that determines and notifies a specific section that satisfies a predetermined condition as a decrease in reliability.
A tunnel disaster prevention system characterized by the establishment of.
請求項1記載のトンネル防災システムに於いて、更に、
前記故障予兆の区間平均発生回数に対し、前記故障予兆の発生回数が所定値以上又は前記所定値を超えている前記火災検知器を、信頼性低下と判断して報知する火災検知器信頼性判断部が設けられたことを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 1, further
Fire detector reliability judgment that notifies the fire detector that the number of occurrences of the failure sign is equal to or more than a predetermined value or exceeds the predetermined value with respect to the section average number of occurrences of the failure sign as a decrease in reliability. A tunnel disaster prevention system characterized by the establishment of a department.
請求項2記載のトンネル防災システムに於いて
前記区間信頼性判断部は、前記火災検知器信頼性判断部で前記火災検知器の信頼性低下が判断されなかった場合、前記信頼性低下が判断された前記区間に信頼性を阻害する要因が存在する旨と所定の対処を報知することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 2, the section reliability determination unit determines the reliability decrease when the fire detector reliability determination unit does not determine the reliability decrease of the fire detector. A tunnel disaster prevention system characterized in that a factor that hinders reliability exists in the section and that a predetermined countermeasure is notified.
請求項2記載のトンネル防災システムに於いて、
前記火災検知器信頼性判断部は、前記火災検出器の信頼性低下を判断した場合、当該火災検知器の周辺環境に信頼性を阻害する要因が存在する旨と当該火災検知器の交換を含む所定の対処を報知することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 2.
When the fire detector reliability determination unit determines that the reliability of the fire detector has deteriorated, the fire detector reliability determination unit includes the fact that there is a factor that impedes the reliability of the surrounding environment of the fire detector and the replacement of the fire detector. A tunnel disaster prevention system characterized by notifying a predetermined response.
請求項2記載のトンネル防災システムに於いて、
前記火災検知器信頼性判断部は、前記火災検知器の信頼性低下を判断した場合、当該火災検知器の所定の第1の火災判断蓄積条件を前記第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、前記火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、前記所定の火災処理を行うことを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 2.
When the fire detector reliability determination unit determines that the reliability of the fire detector is lowered, the predetermined first fire judgment accumulation condition of the fire detector is stricter than the first fire judgment accumulation condition. At least one of the fire detector that changed the predetermined second fire judgment storage condition and restored, and the fire detector that changed the fire judgment storage condition and the adjacent fire detector that duplicately monitors the detection area of the fire detector. A tunnel disaster prevention system characterized in that when a fire signal is received from, the predetermined fire treatment is performed.
請求項2記載のトンネル防災システムに於いて、
前記火災検知器信頼性判断部は、前記火災検知器の信頼性低下を判断した場合、当該火災検知器及び当該火災検知器の検知エリアを重複監視している前記隣接火災検知器の少なくとも一台の火災判断蓄積条件を前記第1の火災判断蓄積条件を緩和した所定の第3の火災判断条件蓄積条件に変更することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 2.
When the fire detector reliability determination unit determines that the reliability of the fire detector has deteriorated, at least one of the adjacent fire detectors that duplicately monitor the fire detector and the detection area of the fire detector. A tunnel disaster prevention system characterized in that the fire judgment accumulation condition of the above is changed to a predetermined third fire judgment condition accumulation condition in which the first fire judgment accumulation condition is relaxed.
請求項1乃至6の何れか記載のトンネル防災システムに於いて、
前記火災検知器は、複数の火災判定段階により火災を判断しており、前記複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの火災判定段階で火災と判定されるに至らなかった場合に前記故障予兆と判定して当該故障予兆の発生回数を求めることを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to any one of claims 1 to 6.
The fire detector determines a fire by a plurality of fire determination stages, and is determined to be a fire in at least one of the plurality of fire determination stages, but is determined to be a fire in the remaining fire determination stages. A tunnel disaster prevention system characterized in that it determines the failure sign and obtains the number of occurrences of the failure sign when the failure is not achieved.
請求項1乃至6の何れかに記載のトンネル防災システムに於いて、
前記火災検知器は、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、前記試験による前記受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判定して当該故障予兆の発生回数を求めることを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to any one of claims 1 to 6.
The fire detector is subjected to a test for determining a failure of the fire detection unit based on the light receiving signal when the test light source is driven, and the level of the received light signal according to the test is out of the predetermined normal range, but is predetermined. A tunnel disaster prevention system characterized in that when the failure judgment conditions of the above are not satisfied, it is determined as a failure sign and the number of occurrences of the failure sign is calculated.
請求項1乃至6の何れかに記載のトンネル防災システムに於いて、
請求項記載のトンネル防災システムに於いて、
前記火災検知器は、
複数の火災判定段階により火災を判断しており、前記複数の火災判定段階の内の少なくとも1つの火災判定段階で火災が判定されずに火災断定に至らなかった場合に故障予兆と判定して当該第1の故障予兆の発生回数を求め、
試験光源を駆動して受光信号を出力する火災検知部の故障を判断する試験を行っており、前記試験による前記受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判定し手当該第2の故障予兆の発生回数を求め、
区間信頼性情報性正部は、前記区間内に設けた前記火災検知器の前記第1の故障予兆の発生回数と前記第2の故障予兆の発生回数の何れか一方又は両方を平均した故障予兆の区間平均発生回数を含む区間信頼性情報を生成することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to any one of claims 1 to 6.
In the tunnel disaster prevention system described in the claims
The fire detector
A fire is judged by a plurality of fire judgment stages, and if a fire is not judged and a fire is not determined in at least one of the plurality of fire judgment stages, it is judged as a failure sign and the relevant fire is determined. Find the number of occurrences of the first failure sign,
We are conducting a test to determine the failure of the fire detection unit that drives the test light source and outputs the received light signal. The level of the received signal according to the test is out of the predetermined normal range, but the predetermined failure determination condition is satisfied. If it does not, it is judged as a failure sign and the number of occurrences of the second failure sign is calculated.
The section reliability information positive part is a failure sign obtained by averaging one or both of the number of occurrences of the first failure sign and the number of occurrences of the second failure sign of the fire detector provided in the section. A tunnel disaster prevention system characterized by generating section reliability information including the average number of occurrences of a section.
JP2019083630A 2019-04-25 2019-04-25 Tunnel disaster prevention system Active JP7336252B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019083630A JP7336252B2 (en) 2019-04-25 2019-04-25 Tunnel disaster prevention system
JP2023133777A JP2023156478A (en) 2019-04-25 2023-08-21 disaster prevention system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019083630A JP7336252B2 (en) 2019-04-25 2019-04-25 Tunnel disaster prevention system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023133777A Division JP2023156478A (en) 2019-04-25 2023-08-21 disaster prevention system

Publications (2)

Publication Number Publication Date
JP2020181354A true JP2020181354A (en) 2020-11-05
JP7336252B2 JP7336252B2 (en) 2023-08-31

Family

ID=73024076

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019083630A Active JP7336252B2 (en) 2019-04-25 2019-04-25 Tunnel disaster prevention system
JP2023133777A Pending JP2023156478A (en) 2019-04-25 2023-08-21 disaster prevention system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023133777A Pending JP2023156478A (en) 2019-04-25 2023-08-21 disaster prevention system

Country Status (1)

Country Link
JP (2) JP7336252B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162293A (en) * 2000-11-22 2002-06-07 Hochiki Corp Fire alarm and fire detection method
JP2007292462A (en) * 2006-03-30 2007-11-08 Exsym Corp Insulation deterioration diagnostic method for power cable
JP2018049487A (en) * 2016-09-23 2018-03-29 ホーチキ株式会社 Tunnel disaster prevention system
JP2018169893A (en) * 2017-03-30 2018-11-01 ホーチキ株式会社 Tunnel disaster prevention system
US20190080565A1 (en) * 2016-03-17 2019-03-14 Gsil Co., Ltd. Safety Management System for Worker at Tunnel Construction Site

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162293A (en) * 2000-11-22 2002-06-07 Hochiki Corp Fire alarm and fire detection method
JP2007292462A (en) * 2006-03-30 2007-11-08 Exsym Corp Insulation deterioration diagnostic method for power cable
US20190080565A1 (en) * 2016-03-17 2019-03-14 Gsil Co., Ltd. Safety Management System for Worker at Tunnel Construction Site
JP2018049487A (en) * 2016-09-23 2018-03-29 ホーチキ株式会社 Tunnel disaster prevention system
JP2018169893A (en) * 2017-03-30 2018-11-01 ホーチキ株式会社 Tunnel disaster prevention system

Also Published As

Publication number Publication date
JP7336252B2 (en) 2023-08-31
JP2023156478A (en) 2023-10-24

Similar Documents

Publication Publication Date Title
JP7253583B2 (en) disaster prevention system
JP2018169893A5 (en)
KR200414008Y1 (en) System for monitoring fire signals
JP7085670B2 (en) Disaster prevention system
JP6605885B2 (en) Fire detector
JP2023055960A (en) Disaster prevention system and fire detector
KR101775489B1 (en) Monitoring system of power supply apparatus for fire fighting equipment
KR20130094097A (en) Address type wire and wireless fire alarm system
JP7268999B2 (en) Fire detector and tunnel disaster prevention system
KR101145414B1 (en) Fire alarm system linked power monitoring unit
JP2020181354A (en) Tunnel disaster prevention system
KR102327158B1 (en) Remote firefighting management system using CCTV image
JP7336248B2 (en) Tunnel disaster prevention system and fire detector
KR101666652B1 (en) The monitoring and control system for transportation field which uses wired and wireless networks
KR20100053128A (en) System based on network for detecting a fire
JP7475114B2 (en) Monitoring system
JP7358071B2 (en) Monitoring system
JP6811512B2 (en) Fire detector
JP2023015283A (en) disaster prevention system
JP2023052809A (en) disaster prevention system
KR101176608B1 (en) Integrated fire processing device
JP3912738B2 (en) Tunnel disaster prevention system and flame detector
KR102632390B1 (en) An earthquake coping safety maintenance system for water treatment facility
KR102504121B1 (en) Apparatus and method for solar power system operation and maintenance based on location using qr code
KR102143378B1 (en) Facility remote control system using TF memory method based on PLC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7336252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150