JP2020180890A - Method of detecting protein - Google Patents

Method of detecting protein Download PDF

Info

Publication number
JP2020180890A
JP2020180890A JP2019084576A JP2019084576A JP2020180890A JP 2020180890 A JP2020180890 A JP 2020180890A JP 2019084576 A JP2019084576 A JP 2019084576A JP 2019084576 A JP2019084576 A JP 2019084576A JP 2020180890 A JP2020180890 A JP 2020180890A
Authority
JP
Japan
Prior art keywords
protein
measured
filter
detection
coloration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019084576A
Other languages
Japanese (ja)
Other versions
JP7327985B2 (en
Inventor
桂子 森久保
Keiko Morikubo
桂子 森久保
章裕 中島
Akihiro Nakajima
章裕 中島
俊文 大島
Toshibumi Oshima
俊文 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Original Assignee
Meiji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd filed Critical Meiji Co Ltd
Priority to JP2019084576A priority Critical patent/JP7327985B2/en
Publication of JP2020180890A publication Critical patent/JP2020180890A/en
Application granted granted Critical
Publication of JP7327985B2 publication Critical patent/JP7327985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method of detecting protein in an object sample through easy operation, but precisely with high sensitivity, according to the present invention.SOLUTION: The present invention relates to a method of detecting protein that comprises: a coloring process of coloring protein in an object of measurement; a filtering process of filtering the protein out of the object of measurement through a filter; and a detecting process of detecting the coloring of the protein of the object of measurement captured on the filter in the filtering process, and that further comprises, before the detecting process: a protein denaturing process of denaturing the protein of the object of measurement captured on the filter; and a decoloring process of adding a decoloring agent to the filter.SELECTED DRAWING: None

Description

本発明は、たんぱく質の検出方法、たんぱく質の濃度測定方法、及びたんぱく質の検出キットに関する。 The present invention relates to a method for detecting a protein, a method for measuring a concentration of a protein, and a protein detection kit.

食品業界においては、ある食品製品中に含まれるアレルゲンが、別の食品製品に混入することを防ぐ目的で、製造設備等の洗浄後のすすぎ水中のアレルゲン量を把握する必要がある。アレルゲンはたんぱく質であることが多いため、すすぎ水中のたんぱく質の量を測定するのが一般的である。
また、近年は低カロリー食品やゼロカロリー食品に対する消費者の需要が高まっており、栄養表示にたんぱく質が0と表示された食品が市場に広く流通するようになった。そのため、当該食品中にたんぱく質が含有していないかどうか、製造時に簡易に把握できる方法が求められている。
In the food industry, it is necessary to grasp the amount of allergen in the rinse water after cleaning the manufacturing equipment, etc., in order to prevent the allergen contained in one food product from being mixed with another food product. Since allergens are often proteins, it is common to measure the amount of protein in the rinse water.
In recent years, consumer demand for low-calorie foods and zero-calorie foods has increased, and foods labeled as zero protein on the nutrition label have become widely distributed in the market. Therefore, there is a need for a method that can easily determine at the time of manufacture whether or not the food contains protein.

このように、対象試料に含まれるたんぱく質を検出、測定するニーズは高い。これまで対象試料中のたんぱく質の検出や測定は、エンザイムイムノアッセイ法(ELISA法)等で行うことが一般的であった。しかし、ELISA法は、抗体を用いて特定のたんぱく質を検出する方法であり、検出や測定ができるたんぱく質が限られ、汎用性に欠ける。 In this way, there is a great need to detect and measure the protein contained in the target sample. Until now, it has been common to detect and measure proteins in a target sample by an enzyme-linked immunosorbent assay (ELISA method) or the like. However, the ELISA method is a method for detecting a specific protein using an antibody, and the proteins that can be detected and measured are limited, and lacks versatility.

上記問題に対しては、例えば、特許文献1には、ドットブロット法と蛍光染色法を組み合わせたたんぱく質の分析方法が開示されている。 To solve the above problem, for example, Patent Document 1 discloses a protein analysis method that combines a dot blotting method and a fluorescent staining method.

国際公開第2004/011948号International Publication No. 2004/011948

しかしながら、特許文献1では、蛍光染色法を実施するための特別な蛍光画像解析装置が必要なことや、サンプル調製から画像解析まで4〜5時間も必要であり、迅速なたんぱく質の検出が困難であった。そのため、例えば食品の製造工場で日々実施される、製造設備等のすすぎ水の洗浄度確認や、食品中のたんぱく質を検出する方法としては採用が難しい。 However, in Patent Document 1, a special fluorescence image analyzer for carrying out the fluorescence staining method is required, and 4 to 5 hours are required from sample preparation to image analysis, which makes it difficult to detect proteins quickly. there were. Therefore, for example, it is difficult to adopt it as a method for checking the degree of cleaning of rinse water in a manufacturing facility or the like and detecting a protein in a food, which is carried out every day in a food manufacturing factory.

そこで、本発明は、操作が簡便でありながら、精度良くかつ高感度に、対象試料中のたんぱく質を検出する方法、たんぱく質の濃度を測定する方法、及びたんぱく質の検出キットを提供することを課題とする。 Therefore, it is an object of the present invention to provide a method for detecting a protein in a target sample, a method for measuring a protein concentration, and a protein detection kit with high accuracy and high sensitivity while being simple to operate. To do.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、対象試料に含まれる測定対象のたんぱく質を呈色し、フィルターでろ過することにより、たんぱく質を検出する方法であって、たんぱく質検出前にフィルターに捕捉された測定対象のたんぱく質を変性させ、かつ、フィルターに脱色剤を添加することによって、操作が簡便でありながら、精度良く、かつ高感度に対象試料中のたんぱく質を検出できることを見出した。 The present inventors have conducted intensive studies to solve the above problems. As a result, the protein to be measured contained in the target sample is colored and filtered with a filter to detect the protein, and the protein to be measured captured by the filter is denatured before the protein is detected. It was also found that by adding a decolorizing agent to the filter, the protein in the target sample can be detected with high accuracy and high sensitivity while being easy to operate.

また、本発明者らは、上記方法によれば、対象試料に含まれる測定対象のたんぱく質の濃度と、検出される測定対象のたんぱく質の呈色の色彩値との間の相関関係をより線形(一次関数)に近似でき、測定対象のたんぱく質の濃度をより精度良く測定することができることを見出した。 Further, according to the above method, the present inventors more linearly correlate the correlation between the concentration of the protein to be measured contained in the target sample and the coloration color value of the detected protein to be measured ( It was found that it can be approximated to a linear function) and the concentration of the protein to be measured can be measured more accurately.

すなわち、本発明は、次の通りである。
[1]測定対象のたんぱく質を呈色する呈色工程と、
測定対象のたんぱく質をフィルターでろ過するろ過工程と、
前記ろ過工程によりフィルターに捕捉された測定対象のたんぱく質の呈色を検出する検出工程と、
を備える、たんぱく質の検出方法であって、
前記検出工程の前に、
フィルターに捕捉された測定対象のたんぱく質を変性させるたんぱく質変性工程と、
フィルターに脱色剤を添加する脱色工程と、
をさらに備えることを特徴とする、たんぱく質の検出方法。
[2]前記呈色工程、前記ろ過工程、前記たんぱく質変性工程、前記脱色工程、および前記検出工程をこの順で実施する、前記[1]に記載の検出方法。
[3]前記ろ過工程、前記呈色工程、前記たんぱく質変性工程、前記脱色工程、および前記検出工程をこの順で実施する、前記[1]に記載の検出方法。
[4]前記呈色工程において、測定対象のたんぱく質との結合により吸収波長がシフトする呈色試薬を用い、測定対象のたんぱく質を呈色する、前記[1]〜[3]のいずれか1に記載の検出方法。
[5]前記呈色工程において、ブラッドフォード法により測定対象のたんぱく質を呈色する、前記[1]〜[3]のいずれか1に記載の検出方法。
[6]前記ろ過工程において、測定対象のたんぱく質をガラスフィルターでろ過する、前記[1]〜[5]のいずれか1に記載の検出方法。
[7]前記たんぱく質変性工程において、フィルターに酸を添加することによりフィルターに捕捉された測定対象のたんぱく質を変性させる、前記[1]〜[6]のいずれか1に記載の検出方法。
[8]前記酸が、酢酸、リン酸、ギ酸、クエン酸、塩酸、及び乳酸からなる群より選ばれる少なくとも一種の酸である、前記[7]に記載の検出方法。
[9]前記酸が酢酸である、前記[7]に記載の検出方法。
[10]前記脱色工程において、フィルターに添加する脱色剤が有機溶剤を含む、前記[1]〜[9]のいずれか1に記載の検出方法。
[11]前記有機溶剤が、エタノール、メタノール、イソプロパノールからなる群より選ばれる少なくとも一種のアルコールを含む、前記[10]に記載の検出方法。
[12]前記有機溶剤がエタノールを含む、前記[10]に記載の検出方法。
[13]前記たんぱく質変性工程において、フィルターに酢酸を添加することによりフィルターに捕捉された測定対象のたんぱく質を変性させ、かつ、前記脱色工程において、フィルターにエタノールを添加する、前記[1]〜[12]のいずれか1に記載の検出方法。
[14]前記測定対象のたんぱく質が、食品工場の製造設備の洗浄に用いたすすぎ水に含まれるたんぱく質、または、食物もしくは飲料に含まれるたんぱく質である、前記[1]〜[13]のいずれか1に記載の検出方法。
[15]前記食品工場の製造設備の洗浄に用いたすすぎ水に含まれるたんぱく質が、乳、卵、小麦、そば、落花生、エビ、カニ、あわび、いか、いくら、オレンジ、カシューナッツ、キウイフルーツ、 牛肉、くるみ、ごま、さけ、さば、大豆、鶏肉、バナナ、豚肉、まつたけ、もも、やまいも、りんご、またはゼラチンに含まれるたんぱく質である、前記[14]に記載の検出方法。
[16]食物もしくは飲料に含まれるたんぱく質が、乳、卵、小麦、そば、落花生、エビ、カニ、あわび、いか、いくら、オレンジ、カシューナッツ、キウイフルーツ、牛肉、くるみ、ごま、さけ、さば、大豆、鶏肉、バナナ、豚肉、まつたけ、もも、やまいも、りんご、またはゼラチンに含まれるたんぱく質である、前記[14]に記載の検出方法。
[17]検出の所要時間が1時間以下であることを特徴とする、前記[1]〜[16]のいずれか1に記載の検出方法。
[18]測定対象のたんぱく質を呈色させる呈色工程と、
測定対象のたんぱく質をフィルターでろ過するろ過工程と、
前記ろ過工程によりフィルターに捕捉された測定対象のたんぱく質を変性させるたんぱく質変性工程と、
フィルターに脱色剤を添加する脱色工程と、
フィルターに捕捉された測定対象のたんぱく質の呈色を検出する検出工程と、
前記検出工程において検出された測定対象のたんぱく質の呈色について、その色彩値を測定する色彩値測定工程と、
を備える、たんぱく質の濃度測定方法であって、
測定対象のたんぱく質の濃度と、その色彩値とが既知の複数の参照用試料を用いて、各参照用試料中の測定対象のたんぱく質の濃度と前記色彩値との対応関係を示す検量線を作成することにより、前記色彩値測定工程で測定される色彩値から測定対象のたんぱく質の濃度を測定することを特徴とする、たんぱく質の濃度測定方法。
[19]測定対象のたんぱく質をブラッドフォード法により呈色させる呈色工程と、
測定対象のたんぱく質をフィルターでろ過するろ過工程と、
前記ろ過工程によりフィルターに捕捉された測定対象のたんぱく質を変性させるたんぱく質変性工程と、
フィルターに脱色剤を添加する脱色工程と、
フィルターに捕捉された測定対象のたんぱく質の呈色を検出する検出工程と、
前記検出工程において検出された測定対象のたんぱく質の呈色について、CIE規格に準拠したL表色系において定義されるb値を測定する色彩値測定工程と、
を備える、たんぱく質の濃度測定方法であって、
測定対象のたんぱく質の濃度とCIE規格に準拠したL表色系において定義されるb値とが既知である複数の参照用試料を用いて、各参照用試料中の測定対象のたんぱく質の濃度と前記b値との対応関係を示す検量線を作成することにより、前記色彩値測定工程で測定されるb値から測定対象のたんぱく質の濃度を測定することを特徴とする、たんぱく質の濃度測定方法。
[20]測定対象のたんぱく質を捕捉するフィルターと、測定対象のたんぱく質を呈色させる呈色試薬と、測定対象のたんぱく質を変性させるたんぱく質変性剤と、脱色剤とを含む、たんぱく質の検出キット。
[21]さらに、呈色判断紙を備え、
前記呈色判断紙と前記フィルターに捕捉された測定対象のたんぱく質の呈色状態とを比較することによって、測定対象のたんぱく質の濃度を測定するための、
前記[20]に記載のたんぱく質の検出キット。
That is, the present invention is as follows.
[1] A coloration process for coloring the protein to be measured, and
A filtration process that filters the protein to be measured with a filter,
A detection step for detecting the coloration of the protein to be measured captured by the filter by the filtration step, and a detection step for detecting the coloration of the protein to be measured.
It is a protein detection method that includes
Before the detection step,
A protein denaturation step that denatures the protein to be measured captured by the filter,
The decolorization process of adding a decolorizing agent to the filter and
A method for detecting a protein, which is characterized by further comprising.
[2] The detection method according to [1], wherein the coloration step, the filtration step, the protein denaturation step, the decolorization step, and the detection step are carried out in this order.
[3] The detection method according to the above [1], wherein the filtration step, the coloration step, the protein denaturation step, the decolorization step, and the detection step are carried out in this order.
[4] In any one of the above [1] to [3], in the coloring step, a coloring reagent whose absorption wavelength is shifted by binding to the protein to be measured is used to color the protein to be measured. The detection method described.
[5] The detection method according to any one of [1] to [3] above, wherein in the coloration step, the protein to be measured is colored by the Bradford method.
[6] The detection method according to any one of [1] to [5] above, wherein in the filtration step, the protein to be measured is filtered with a glass filter.
[7] The detection method according to any one of [1] to [6] above, wherein in the protein denaturing step, the protein to be measured captured in the filter is denatured by adding an acid to the filter.
[8] The detection method according to the above [7], wherein the acid is at least one acid selected from the group consisting of acetic acid, phosphoric acid, formic acid, citric acid, hydrochloric acid, and lactic acid.
[9] The detection method according to [7] above, wherein the acid is acetic acid.
[10] The detection method according to any one of [1] to [9] above, wherein the decolorizing agent added to the filter in the decoloring step contains an organic solvent.
[11] The detection method according to the above [10], wherein the organic solvent contains at least one alcohol selected from the group consisting of ethanol, methanol and isopropanol.
[12] The detection method according to the above [10], wherein the organic solvent contains ethanol.
[13] In the protein denaturing step, acetic acid is added to the filter to denature the protein to be measured captured in the filter, and in the decolorization step, ethanol is added to the filter. 12] The detection method according to any one of.
[14] Any one of the above [1] to [13], wherein the protein to be measured is a protein contained in rinse water used for washing manufacturing equipment of a food factory, or a protein contained in food or beverage. The detection method according to 1.
[15] The proteins contained in the rinse water used for cleaning the manufacturing equipment of the food factory are milk, eggs, wheat, buckwheat, peanuts, shrimp, crab, abalone, squid, salmon roe, orange, cashew nuts, kiwifruit, and beef. The detection method according to the above [14], which is a protein contained in salmon roe, sesame, salmon roe, buckwheat, soybean, chicken, banana, pork, matsutake, thigh, yamaimo, apple, or gelatin.
[16] The proteins contained in food or beverage are milk, egg, wheat, buckwheat, peanut, shrimp, crab, abalone, squid, salmon roe, orange, cashew nut, kiwifruit, beef, walnut, sesame, salmon, mackerel, soybean. The detection method according to the above [14], which is a protein contained in chicken, banana, pork, matsutake, thigh, yam, apple, or gelatin.
[17] The detection method according to any one of [1] to [16], wherein the time required for detection is one hour or less.
[18] A coloration step for coloring the protein to be measured, and
A filtration process that filters the protein to be measured with a filter,
A protein denaturing step of denaturing the protein to be measured captured by the filter by the filtration step, and a protein denaturing step.
The decolorization process of adding a decolorizing agent to the filter and
A detection process that detects the coloration of the protein to be measured captured by the filter,
With respect to the coloration of the protein to be measured detected in the detection step, the color value measuring step for measuring the color value and the color value measuring step
It is a method for measuring the concentration of protein, which comprises
Using a plurality of reference samples whose color values and the concentration of the protein to be measured are known, a calibration curve showing the correspondence between the concentration of the protein to be measured in each reference sample and the color value is created. A method for measuring a protein concentration, which comprises measuring the concentration of a protein to be measured from the color value measured in the color value measuring step.
[19] A coloration step of coloring the protein to be measured by the Bradford method, and
A filtration process that filters the protein to be measured with a filter,
A protein denaturing step of denaturing the protein to be measured captured by the filter by the filtration step, and a protein denaturing step.
The decolorization process of adding a decolorizing agent to the filter and
A detection process that detects the coloration of the protein to be measured captured by the filter,
Regarding the color development of the protein to be measured detected in the detection step, a color value measuring step for measuring the b value defined in the L * a * b * color system conforming to the CIE standard, and a color value measuring step.
It is a method for measuring the concentration of protein, which comprises
Using a plurality of reference samples for which the concentration of the protein to be measured and the b value defined in the L * a * b * color system conforming to the CIE standard are known, the measurement target in each reference sample is used. By creating a calibration curve showing the correspondence between the protein concentration and the b value, the concentration of the protein to be measured is measured from the b value measured in the color value measuring step. Concentration measurement method.
[20] A protein detection kit containing a filter for capturing a protein to be measured, a coloring reagent for coloring the protein to be measured, a protein denaturing agent for denaturing the protein to be measured, and a decolorizing agent.
[21] Further, a color determination paper is provided.
A method for measuring the concentration of a protein to be measured by comparing the coloration determination paper with the coloration state of the protein to be measured captured by the filter.
The protein detection kit according to the above [20].

本発明の一実施態様であるたんぱく質の検出方法によれば、簡便な操作で対象試料中のたんぱく質を検出することができる。また、対象試料に含まれるたんぱく質に由来しない呈色を低減することができ、精度良くかつ高感度に、対象試料中のたんぱく質を検出することができる。 According to the protein detection method according to the embodiment of the present invention, the protein in the target sample can be detected by a simple operation. In addition, it is possible to reduce the coloration that is not derived from the protein contained in the target sample, and it is possible to detect the protein in the target sample with high accuracy and high sensitivity.

また、本発明の一実施態様であるたんぱく質の濃度測定方法によれば、対象試料に含まれる測定対象のたんぱく質の濃度と、検出される測定対象のたんぱく質の呈色の色彩値との間の相関関係をより線形(一次関数)に近似できる。そのため、簡便かつ精度良く、対象試料中のたんぱく質の濃度を測定することができる。 Further, according to the protein concentration measuring method according to the embodiment of the present invention, the correlation between the concentration of the protein to be measured contained in the target sample and the color color value of the detected protein to be measured is correlated. The relationship can be approximated more linearly (linear function). Therefore, the protein concentration in the target sample can be measured easily and accurately.

また、本発明の一実施態様であるたんぱく質の検出キットによれば、上記たんぱく質の検出方法や濃度測定方法を簡便に実施することができる。 Further, according to the protein detection kit according to the embodiment of the present invention, the above-mentioned protein detection method and concentration measurement method can be easily carried out.

たんぱく質の検出の際に用いる呈色判断紙を示す図である。It is a figure which shows the color reaction paper used at the time of the detection of a protein. 本発明の検出キットの一実施態様を説明するための図である。It is a figure for demonstrating one Embodiment of the detection kit of this invention. 本発明の検出キットの別の実施態様を説明するための図である。It is a figure for demonstrating another embodiment of the detection kit of this invention. 本発明の検出キットの別の実施態様を説明するための図である。It is a figure for demonstrating another embodiment of the detection kit of this invention. 試験例3で測定した比較例3及び実施例9のb値と、試料中のカゼインナトリウムの濃度の関係を示すグラフである。It is a graph which shows the relationship between the b value of Comparative Example 3 and Example 9 measured in Test Example 3 and the concentration of sodium caseinate in a sample. 試験例3で測定した比較例4及び実施例10のb値と、試料中のカゼインナトリウムの濃度の関係を示すグラフである。It is a graph which shows the relationship between the b value of Comparative Example 4 and Example 10 measured in Test Example 3 and the concentration of sodium caseinate in a sample. 試験例3で測定した比較例5及び実施例11のb値と、試料中のカゼインナトリウムの濃度の関係を示すグラフである。It is a graph which shows the relationship between the b value of Comparative Example 5 and Example 11 measured in Test Example 3 and the concentration of sodium caseinate in a sample. 試験例3で測定した比較例6及び実施例12のb値と、試料中のカゼインナトリウムの濃度の関係を示すグラフである。It is a graph which shows the relationship between the b value of Comparative Example 6 and Example 12 measured in Test Example 3 and the concentration of sodium caseinate in a sample. 試験例3で測定した比較例7及び実施例13のb値と、試料中のカゼインナトリウムの濃度の関係を示すグラフである。It is a graph which shows the relationship between the b value of Comparative Example 7 and Example 13 measured in Test Example 3 and the concentration of sodium caseinate in a sample. 試験例4で測定した比較例8及び実施例14のb値と、試料中のカゼインナトリウムの濃度の関係を示すグラフである。It is a graph which shows the relationship between the b value of Comparative Example 8 and Example 14 measured in Test Example 4 and the concentration of sodium caseinate in a sample.

以下、本発明の実施態様について詳細に説明する。なお、本発明は、以下に説明する実施態様に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to the embodiments described below.

<たんぱく質の検出方法>
本発明の一実施態様であるたんぱく質の検出方法は、少なくとも、上記呈色工程、ろ過工程、及び検出工程に加え、たんぱく質変性工程、及び脱色工程を備えることを特徴とする。以下各工程について説明する。
<Protein detection method>
A protein detection method according to an embodiment of the present invention is characterized by including, at least, a protein denaturation step and a decolorization step in addition to the above-mentioned coloring step, filtration step, and detection step. Each step will be described below.

[呈色工程]
本発明における呈色工程は、測定対象のたんぱく質を呈色させる工程である。たんぱく質を呈色させる方法は特に制限されず、測定対象のたんぱく質が後述する検出工程で検出できる限りにおいて任意の方法を採用できる。
本工程を実施するに際しては、採用する呈色方法に応じて、対象試料を予め緩衝液や水等に溶解、懸濁、分散等させて抽出しておく等、対象試料の前処理を実施してもよい。
[Coloring process]
The coloration step in the present invention is a step of coloring the protein to be measured. The method for coloring the protein is not particularly limited, and any method can be adopted as long as the protein to be measured can be detected in the detection step described later.
When carrying out this step, pretreatment of the target sample is carried out, such as extracting the target sample by dissolving, suspending, or dispersing it in a buffer solution or water in advance according to the coloration method to be adopted. You may.

本発明における呈色工程をろ過工程の前に実施する場合、呈色方法としては以下の方法が例示できる。すなわち、対象試料に、たんぱく質と結合し複合体を形成する色素を添加する。これにより、対象試料中に含まれるたんぱく質と上記色素とを結合させ、たんぱく質−色素複合体を形成させることで、測定対象のたんぱく質を呈色させる。 When the coloration step in the present invention is carried out before the filtration step, the following methods can be exemplified as the coloration method. That is, a dye that binds to a protein to form a complex is added to the target sample. As a result, the protein contained in the target sample and the above-mentioned dye are combined to form a protein-dye complex, whereby the protein to be measured is colored.

また、本発明における呈色工程をろ過工程の後に実施する場合、呈色方法としては以下の方法が例示できる。すなわち、ろ過工程によりフィルターに捕捉されたたんぱく質に対し、たんぱく質と結合し複合体を形成する色素を添加する。これにより、フィルター上でたんぱく質−色素複合体を形成させることで、測定対象のたんぱく質を呈色させる。 Further, when the coloration step in the present invention is carried out after the filtration step, the following methods can be exemplified as the coloration method. That is, a dye that binds to the protein to form a complex is added to the protein captured by the filter in the filtration step. As a result, the protein to be measured is colored by forming a protein-dye complex on the filter.

上記たんぱく質−色素複合体を形成させる際の、色素の添加量、色素を添加してからたんぱく質と接触させる時間、温度、pH等の種々の呈色条件は特に制限されるものではなく、選択する呈色方法に応じて適宜設定できる。また、たんぱく質の呈色反応を妨げない範囲であれば、その他任意の添加剤を併用して呈色反応を行ってもよい。 Various coloration conditions such as the amount of the dye added, the time of contact with the protein after the dye is added, the temperature, and the pH when forming the protein-dye complex are not particularly limited and are selected. It can be set appropriately according to the coloring method. Further, as long as it does not interfere with the color reaction of the protein, the color reaction may be carried out in combination with any other additive.

なかでも、測定対象のたんぱく質との結合により吸収波長がシフトする色素を有する呈色試薬を用いて、測定対象のたんぱく質の呈色を行う方法が好ましい。この方法によれば、たんぱく質に結合した色素と、たんぱく質に結合していない色素とが、異なる色に呈色するため、その呈色の違いによって、両者を識別することができる。これにより、例えば、たんぱく質に結合していない色素がフィルターに捕捉される場合であっても、たんぱく質に結合していない色素の呈色のみを検出することによって、測定対象のたんぱく質をより精度良く検出することができる。 Among them, a method of coloring the protein to be measured by using a color-developing reagent having a dye whose absorption wavelength is shifted by binding to the protein to be measured is preferable. According to this method, the dye bound to the protein and the dye not bound to the protein are colored in different colors, so that the two can be distinguished by the difference in the coloration. As a result, for example, even when a dye that is not bound to a protein is captured by the filter, the protein to be measured can be detected more accurately by detecting only the coloration of the dye that is not bound to the protein. can do.

このような呈色方法としては、例えば、ブラッドフォード法、BCA(Bicinchoninic Acid)法、Lowry法等が挙げられる。なかでも、呈色反応が肉眼でも確認しやすく、より高感度に、かつ精度良く測定対象のたんぱく質を検出できるという観点から、ブラッドフォード法が好ましい。 Examples of such a coloring method include the Bradford method, the BCA (Bicinchoninic Acid) method, the Lowry method, and the like. Of these, the Bradford method is preferable from the viewpoint that the color reaction can be easily confirmed with the naked eye and the protein to be measured can be detected with higher sensitivity and accuracy.

ブラッドフォード法は、酸性染料であるクマシーブリリアントブルー(CBB)と測定対象のたんぱく質とが結合することで、たんぱく質−CBB複合体が形成されると、その吸収波長が465nmから595nm(茶色から青)へシフトすることを利用して、たんぱく質を呈色させる方法である。この色の変化は、たんぱく質の量に比例して起こるので、595nmの吸光度を測定することにより、後述するように試料中のたんぱく質濃度の定量または半定量が可能となる。ブラッドフォード法は、例えば、Takara Bradford Protein Assay Kit(タカラバイオ株式会社製)を用いて実施することができる。 In the Bradford method, when the acid dye Coomassie Brilliant Blue (CBB) is combined with the protein to be measured to form a protein-CBB complex, the absorption wavelength is 465 nm to 595 nm (brown to blue). It is a method of coloring proteins by utilizing the shift to. Since this color change occurs in proportion to the amount of protein, measuring the absorbance at 595 nm makes it possible to quantify or semi-quantify the protein concentration in the sample as described later. The Bradford method can be carried out using, for example, Takara Bradford Protein Assay Kit (manufactured by Takara Bio Inc.).

[ろ過工程]
本発明におけるろ過工程は、測定対象のたんぱく質をフィルターでろ過し、そのフィルターに測定対象のたんぱく質が捕捉されることにより、フィルター上で測定対象のたんぱく質を濃縮する工程である。試料が固体状である場合や、液状であっても粘性が高い場合など、は、ろ過処理を行う前に対象試料を予め緩衝液や水等に溶解、懸濁、分散等させて抽出しておく等、対象試料の前処理を実施してもよい。
[Filtration process]
The filtration step in the present invention is a step of filtering the protein to be measured with a filter and concentrating the protein to be measured on the filter by capturing the protein to be measured by the filter. If the sample is solid, or if it is liquid but highly viscous, extract the target sample by dissolving, suspending, or dispersing it in a buffer solution or water in advance before performing the filtration treatment. Pretreatment of the target sample may be carried out, such as leaving.

本発明において、ろ過処理に使用するフィルターとは、多孔質を備え液体が通過できる構造体を指す。当該フィルターは、測定対象のたんぱく質を捕捉、濃縮できるものであれば特に制限されない。例えば、物理的に測定対象のたんぱく質を捕捉し濃縮できるもの;測定対象のたんぱく質を化学的に吸着できるもの;測定対象のたんぱく質を電気的に吸着できるもの等を挙げることができる。具体的には、例えば、ガラスフィルター、シリンジフィルター、メンブレンフィルター、ろ紙等が挙げられる。本発明におけるろ過工程では、本発明の効果の観点から、ガラスフィルターを用いることが特に好ましい。 In the present invention, the filter used for the filtration treatment refers to a structure having porosity and allowing a liquid to pass through. The filter is not particularly limited as long as it can capture and concentrate the protein to be measured. For example, those capable of physically capturing and concentrating the protein to be measured; those capable of chemically adsorbing the protein to be measured; those capable of electrically adsorbing the protein to be measured can be mentioned. Specific examples thereof include glass filters, syringe filters, membrane filters, filter papers and the like. In the filtration step of the present invention, it is particularly preferable to use a glass filter from the viewpoint of the effect of the present invention.

本発明におけるフィルターの保持粒子径は、試料の種類や、測定対象のたんぱく質の種類に応じて、適宜調整することができる。フィルターの保持粒子径は、例えば0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.3μm以上であることがさらに好ましい。また、フィルターの保持粒子径は、例えば1.6μm以下であることが好ましく、1.4μm以下であることがより好ましく、1.2μm以下であることがさらに好ましい。フィルターの保持粒子径が上記範囲であることにより、呈色したたんぱく質を良好に吸着させることができる。フィルターの保持粒子径とは、JIS Z 8901で規定された7種粉体分散水を自然ろ過した際に、90%以上を保持できる粒子径を意味する。 The retained particle size of the filter in the present invention can be appropriately adjusted according to the type of sample and the type of protein to be measured. The holding particle size of the filter is, for example, preferably 0.1 μm or more, more preferably 0.2 μm or more, and further preferably 0.3 μm or more. The holding particle size of the filter is, for example, preferably 1.6 μm or less, more preferably 1.4 μm or less, and further preferably 1.2 μm or less. When the retained particle size of the filter is within the above range, the colored protein can be adsorbed satisfactorily. The holding particle size of the filter means a particle size that can hold 90% or more when the 7-kind powder-dispersed water specified in JIS Z 8901 is naturally filtered.

本発明におけるフィルターのろ過径は、液体試料の種類や、測定対象のたんぱく質の種類に応じて、適宜調整することができる。フィルターのろ過径は、例えば3mm以上が好ましく、5mm以上がより好ましく、7mm以上がさらに好ましい。また、フィルターのろ過径は、例えば40mm以下が好ましく、35mm以下がより好ましく、33mm以下がさらに好ましい。フィルターのろ過径が上記範囲であることにより、濃度がppmオーダー以上のたんぱく質水溶液を色彩色差計等で測定することができる。フィルターのろ過径とは、ガラスフィルターのうち実際に試料がろ過される範囲の直径を意味する。 The filtration diameter of the filter in the present invention can be appropriately adjusted according to the type of the liquid sample and the type of the protein to be measured. The filtration diameter of the filter is, for example, preferably 3 mm or more, more preferably 5 mm or more, and even more preferably 7 mm or more. The filtration diameter of the filter is, for example, preferably 40 mm or less, more preferably 35 mm or less, and even more preferably 33 mm or less. When the filtration diameter of the filter is within the above range, a protein aqueous solution having a concentration on the order of ppm or more can be measured with a color difference meter or the like. The filtration diameter of the filter means the diameter of the glass filter in the range where the sample is actually filtered.

フィルターへの試料の通液量や通液時間は、試料中のたんぱく質の濃度や通液する流速に従って適宜調整することができる。例えば、通液量は10ml〜100mlが好ましい。また、通液時間は通常3秒〜40分の範囲である。 The amount and time of passing the sample through the filter can be appropriately adjusted according to the concentration of protein in the sample and the flow rate of passing the sample. For example, the flow rate is preferably 10 ml to 100 ml. The liquid passing time is usually in the range of 3 seconds to 40 minutes.

本発明におけるろ過の方法は特に制限されず、例えば、自然ろ過、減圧ろ過、加圧ろ過、遠心ろ過等が挙げられる。なかでも、低濃度のたんぱく質を簡便に検出、測定できるという観点からは、吸引ろ過による減圧ろ過を行うことが好ましい。また、シリンジの先端にフィルター(シリンジフィルター)を固定し、ブランジャー(押子)を押し込むことによりろ過する方法も、ろ過を簡便に実施できるという観点から好ましい。 The filtration method in the present invention is not particularly limited, and examples thereof include natural filtration, vacuum filtration, pressure filtration, and centrifugal filtration. Among them, from the viewpoint that low-concentration protein can be easily detected and measured, it is preferable to perform vacuum filtration by suction filtration. Further, a method in which a filter (syringe filter) is fixed to the tip of a syringe and a blanger (presser) is pushed in to perform filtration is also preferable from the viewpoint of easy filtration.

[たんぱく質変性工程、脱色工程]
本発明におけるたんぱく質変性工程は、上記ろ過工程によりフィルターに捕捉された測定対象のたんぱく質を変性させる工程である。また、本発明における脱色工程は、フィルターに脱色剤を添加する工程である。上記いずれの工程も、後述する検出工程の前に実施する。本発明においては、たんぱく質変性工程と脱色工程の両工程を備えることにより、以下のとおり、測定対象のたんぱく質をより高精度に検出することが可能となる。
[Protein denaturation process, decolorization process]
The protein denaturing step in the present invention is a step of denaturing the protein to be measured captured by the filter by the above filtration step. Further, the decolorization step in the present invention is a step of adding a decolorizing agent to the filter. All of the above steps are carried out before the detection step described later. In the present invention, by providing both the protein denaturing step and the decoloring step, it is possible to detect the protein to be measured with higher accuracy as follows.

上記呈色工程においては、試料に含まれるたんぱく質以外の物質と色素とが非特異的に結合した複合体が僅かに形成されるおそれがある。また、たんぱく質に結合しなかった色素が、色素単体でフィルターに捕捉され、フィルターに保持されるおそれがある。このような場合、フィルターにたんぱく質に由来しない呈色が僅かに生じるおそれがあり、測定試料中に存在するたんぱく質の検出精度が低下することになる。 In the coloration step, there is a possibility that a complex in which a substance other than the protein contained in the sample and the dye are non-specifically bonded is slightly formed. In addition, the dye that has not been bound to the protein may be captured by the filter by itself and retained by the filter. In such a case, the filter may have a slight coloration that is not derived from the protein, and the detection accuracy of the protein present in the measurement sample is lowered.

例えば、工場用水、特に、食品工場の製造設備の洗浄に用いたすすぎ水を対象試料とする場合、当該すすぎに用いられる水道水や地下水は地域によってその成分が異なる。そのため、これらの成分に起因する非特異な呈色が生じる場合、その呈色の程度は測定試料ごとに異なる可能性がある。その差異は僅かであったとしても、低濃度のたんぱく質を検出する場合であれば、その影響は無視できず、測定結果の精度を低下させるおそれがある。
また、食物や飲料等の食品を測定試料とする場合、当該試料にはたんぱく質以外の成分が多く含まれるため、これらの成分に起因する非特異な呈色が生じるおそれがある。また、食物や飲料等の食品はもともと有色のものも多く、測定対象のたんぱく質の呈色を検出する際に、対象試料自身が呈する色が測定結果に影響を与えてしまう可能性もある。
For example, when factory water, particularly rinse water used for cleaning manufacturing equipment of a food factory, is used as a target sample, the components of tap water and groundwater used for the rinse differ depending on the region. Therefore, when non-specific coloration caused by these components occurs, the degree of coloration may differ depending on the measurement sample. Even if the difference is small, if a low concentration of protein is detected, the effect cannot be ignored and the accuracy of the measurement result may be reduced.
In addition, when foods such as foods and beverages are used as measurement samples, since the samples contain many components other than proteins, non-specific coloration due to these components may occur. In addition, many foods such as foods and beverages are originally colored, and when detecting the coloration of the protein to be measured, the color exhibited by the target sample itself may affect the measurement result.

一方、本発明は、たんぱく質変性工程を備えるため、測定対象のたんぱく質を変性させることにより、たんぱく質の立体構造を変化させ、たんぱく質をフィルターに強固に吸着させることができる。そのため、たんぱく質に結合していない色素がフィルターに捕捉された場合であっても、たんぱく質に色素が結合した「たんぱく質−色素複合体」を選択的にフィルターに強固に吸着させることが可能となると考えられる。 On the other hand, since the present invention includes a protein denaturing step, by denaturing the protein to be measured, the three-dimensional structure of the protein can be changed and the protein can be firmly adsorbed on the filter. Therefore, even when a dye that is not bound to a protein is captured by the filter, it is possible to selectively and firmly adsorb the "protein-dye complex" in which the dye is bound to the protein to the filter. Be done.

これにより、例えば、たんぱく質変性工程の後にフィルターを洗浄する工程を備えることにより、たんぱく質に結合していない色素を優先的にフィルターから除去することが可能となる。そのため、測定対象のたんぱく質をより高精度に検出することができる。
また、本発明は脱色工程を備えるため、測定対象のたんぱく質をより高精度に検出することができる。これは、上記たんぱく質変性工程によって、フィルターに強固に吸着した色素(たんぱく質−色素複合体)は、脱色工程において脱色されにくいのに対し、フィルターに捕捉された色素(たんぱく質に結合していない色素)は、フィルターへの吸着力が弱いため優先的に脱色されるためであると推測される。なお、本発明は上述したメカニズムに限定されるものではない。
As a result, for example, by providing a step of washing the filter after the protein denaturing step, it is possible to preferentially remove the dye that is not bound to the protein from the filter. Therefore, the protein to be measured can be detected with higher accuracy.
Further, since the present invention includes a decolorization step, the protein to be measured can be detected with higher accuracy. This is because the dye (protein-dye complex) strongly adsorbed on the filter by the above protein denaturation step is difficult to be decolorized in the decolorization step, whereas the dye captured by the filter (dye not bound to protein). It is presumed that this is because the color is preferentially decolorized because the adsorption force to the filter is weak. The present invention is not limited to the mechanism described above.

以上のとおり、本発明はたんぱく質変性工程と脱色工程の両工程を備えることにより、測定対象のたんぱく質に起因する呈色を精度良く検出することができる。 As described above, the present invention can accurately detect the coloration caused by the protein to be measured by including both the protein denaturation step and the decolorization step.

測定対象のたんぱく質を変性させる方法は、本発明の効果を阻害しない限り特に制限されない。例えば、たんぱく質を加熱する方法、たんぱく質変性剤を添加する方法等が挙げられる。
たんぱく質を加熱する方法は、例えば、測定対象のたんぱく質が捕捉されたフィルターを60℃以上で加熱する方法が挙げられる。加熱手段は特に限定されない。
たんぱく質変性剤を添加する方法は、例えば、酸、カオトロピック剤等のたんぱく質変性剤を用いることができる。
上記酸としては、有機酸、無機酸いずれでもよく、例えば、酢酸、リン酸、ギ酸、クエン酸、塩酸、及び乳酸等が挙げられる。
カオトロピック剤としては、例えば、尿素、ホルムアミド、グアニジン等が挙げられる。
The method for denaturing the protein to be measured is not particularly limited as long as the effect of the present invention is not impaired. For example, a method of heating a protein, a method of adding a protein denaturing agent, and the like can be mentioned.
Examples of the method of heating the protein include a method of heating the filter in which the protein to be measured is captured at 60 ° C. or higher. The heating means is not particularly limited.
As a method for adding a protein denaturing agent, for example, a protein denaturing agent such as an acid or a chaotropic agent can be used.
The acid may be any organic acid or inorganic acid, and examples thereof include acetic acid, phosphoric acid, formic acid, citric acid, hydrochloric acid, and lactic acid.
Examples of the chaotropic agent include urea, formamide, guanidine and the like.

好ましくは、フィルターに酸を添加することによりフィルターに捕捉された測定対象のたんぱく質を変性させる方法である。上記酸としては、酢酸、リン酸、ギ酸、クエン酸、塩酸、及び乳酸からなる群より選ばれる少なくとも一種の酸であることが好ましい。また、後述する実施例でも示されているとおり、対象試料と陰性対照試料とのS/N比を特に向上させることができるという観点から、酢酸がより好ましい。また、上記酸は、pHが2〜5の範囲であることが好ましい。 Preferably, it is a method of denaturing the protein to be measured captured by the filter by adding an acid to the filter. The acid is preferably at least one acid selected from the group consisting of acetic acid, phosphoric acid, formic acid, citric acid, hydrochloric acid, and lactic acid. Further, as shown in Examples described later, acetic acid is more preferable from the viewpoint that the S / N ratio between the target sample and the negative control sample can be particularly improved. The pH of the acid is preferably in the range of 2 to 5.

本発明における脱色工程において、フィルターに脱色剤を添加する方法は特に制限されない。使用する脱色剤は、上記呈色工程で採用する呈色方法に応じて適宜従来公知の方法を採用できる。
脱色剤としては、例えば、アルコール等の有機溶剤を含む脱色剤が挙げられる。有機溶剤は、脱色効率の観点から、エタノール、メタノール、イソプロパノールからなる群より選ばれる少なくとも一種のアルコールを含むことが好ましい。安全性の観点および脱色効率の観点からは、エタノールを含むことが好ましい。
In the decolorization step of the present invention, the method of adding the decolorizing agent to the filter is not particularly limited. As the decolorizing agent to be used, a conventionally known method can be appropriately adopted depending on the coloration method adopted in the coloration step.
Examples of the decolorizing agent include a decolorizing agent containing an organic solvent such as alcohol. From the viewpoint of decolorization efficiency, the organic solvent preferably contains at least one alcohol selected from the group consisting of ethanol, methanol and isopropanol. From the viewpoint of safety and decolorization efficiency, it is preferable to contain ethanol.

上記脱色剤をフィルターに添加する際の条件は、対象試料の種類、呈色方法、脱色剤の種類等によって適宜設定でき、例えば、pHは2〜5、温度が4〜80℃とする。 The conditions for adding the decolorizing agent to the filter can be appropriately set depending on the type of the target sample, the coloring method, the type of the decolorizing agent, and the like. For example, the pH is 2 to 5 and the temperature is 4 to 80 ° C.

上記たんぱく質変性工程と脱色工程は、両工程をあわせて一の工程で行ってもよく、別々の工程で行ってもよい。両工程をあわせて一の工程で行う場合は、例えば、上記たんぱく質変性剤と脱色剤の両方を含む試薬を、測定対象のたんぱく質が捕捉されたフィルターに添加する。このような試薬としては、具体的には、酸とアルコールを含む試薬が挙げられ、特に好ましくは、酢酸とエタノールを含む試薬が挙げられる。これにより、たんぱく質の変性と、脱色反応を同時に行うことでき、操作の簡便性の観点から好ましい。 The protein denaturation step and the decolorization step may be carried out in one step by combining both steps, or may be carried out in separate steps. When both steps are combined in one step, for example, a reagent containing both the above-mentioned protein denaturing agent and decolorizing agent is added to a filter in which the protein to be measured is captured. Specific examples of such a reagent include a reagent containing an acid and an alcohol, and particularly preferably a reagent containing acetic acid and ethanol. As a result, protein denaturation and decolorization reaction can be performed at the same time, which is preferable from the viewpoint of ease of operation.

[検出工程]
本発明における検出工程は、呈色後のフィルターに捕捉された測定対象のたんぱく質を検出する工程である。検出工程では、上記各工程により、フィルター上で呈色した測定対象のたんぱく質が捕捉、濃縮されることで、測定対象のたんぱく質の検出が可能となる。
[Detection process]
The detection step in the present invention is a step of detecting the protein to be measured captured by the filter after color development. In the detection step, each of the above steps captures and concentrates the protein to be measured that is colored on the filter, so that the protein to be measured can be detected.

上記測定対象のたんぱく質の検出は、呈色方法に合わせた最適な方法で実施できる。例えばL表色系、L表色系、L表色系、ハンターLab表色系、XYZ(Yxy)表色系、マンセル表色系等により、呈色の程度を数値化した色彩値を測定行うことができる。または色彩値を求めず、呈色判断紙を用いて肉眼で判定を行ってもよい。 The detection of the protein to be measured can be carried out by an optimum method according to the coloration method. For example, L * a * b * color system, L * c * h * color system, L * u * v * color system, Hunter Lab color system, XYZ (Yxy) color system, Munsell color system, etc. Therefore, it is possible to measure the color value in which the degree of color development is quantified. Alternatively, the color value may not be obtained, and the determination may be made with the naked eye using a color determination paper.

上記色彩値の測定には色彩色差計を用いることもできる。または、例えば、種々の色彩値ごとに作製した呈色判断紙と、実際のたんぱく質の呈色状態を比較することによって、色彩値を求めてもよい。 A color difference meter can also be used to measure the color value. Alternatively, for example, the color value may be obtained by comparing the coloration determination paper prepared for each of various color values with the actual coloration state of the protein.

本発明においては、特に、呈色反応としてブラッドフォード法を採用し、かつ、上記色彩値がCIE規格に準拠したL表色系において定義されるb値であることが好ましい。L表色系は、JIS Z8729においても採用されている。 In the present invention, it is particularly preferable that the Bradford method is adopted as the color reaction and the color value is the b value defined in the L * a * b * color system conforming to the CIE standard. The L * a * b * color system is also used in JIS Z8729.

上記b値は、色彩色差計により測定可能である。また、例えば、種々のb値ごとに作成された呈色判断紙と、実際のたんぱく質の呈色状態を比較することによって、測定対象のたんぱく質のb値を求めてもよい。図1は、呈色判断紙の一例を示す図である。呈色判断紙は、例えば(a)〜(d)のように無色から濃青色まで着色されたろ紙を擬似的に示しており、それぞれb値が割り当てられている(図示せず)。呈色判断紙の枚数は制限されず、その枚数は多いほど、多くのb値が割り当てられることになるため、より正確にb値を求めることができ、好ましい。 The b value can be measured by a color difference meter. Further, for example, the b value of the protein to be measured may be obtained by comparing the coloration determination paper prepared for each of various b values with the actual coloration state of the protein. FIG. 1 is a diagram showing an example of a color determination paper. The color-developing papers pseudo-show filter papers colored from colorless to dark blue as in (a) to (d), and are assigned b values (not shown). The number of coloration determination papers is not limited, and the larger the number, the more b values are assigned. Therefore, the b value can be obtained more accurately, which is preferable.

本発明のたんぱく質の検出方法は、対象試料に対して適用するとともに、陰性対照試料に対しても適用することができる。本発明の方法によれば、対象試料だけでなく陰性対照試料に対しても、上述した非特異的な呈色が低減される結果、対象試料の呈色と陰性対照試料の呈色の差を肉眼でより明確に判断できるようになる。そのため、対象試料の呈色と陰性対照試料の呈色とを比較することによって、対象試料がたんぱく質を含有するか否かについての判定を肉眼でも行うことが可能となる。 The protein detection method of the present invention can be applied not only to a target sample but also to a negative control sample. According to the method of the present invention, as a result of the above-mentioned non-specific coloration being reduced not only for the target sample but also for the negative control sample, the difference between the coloration of the target sample and the coloration of the negative control sample You will be able to judge more clearly with the naked eye. Therefore, by comparing the coloration of the target sample with the coloration of the negative control sample, it is possible to visually determine whether or not the target sample contains a protein.

また、対象試料と陰性対照試料とのS/N比を向上させることができるため、両者の呈色を比較することにより、より精度の高い測定が可能となる。上記S/N比は、例えば、後述する実施例で示すように対象試料と陰性対照試料のb値を測定し、得られた対象試料のb値を陰性対照試料のb値で除することで求めることができる。S/N比は、好ましくは6.3以上、より好ましくは7以上、さらに好ましくは10以上である。 Further, since the S / N ratio between the target sample and the negative control sample can be improved, more accurate measurement becomes possible by comparing the coloration of both. The S / N ratio is determined by, for example, measuring the b value of the target sample and the negative control sample as shown in Examples described later, and dividing the b value of the obtained target sample by the b value of the negative control sample. Can be sought. The S / N ratio is preferably 6.3 or more, more preferably 7 or more, still more preferably 10 or more.

陰性対照試料は、対象試料の種類に応じて適宜選択して使用できる。例えば、測定試料が上記すすぎ水である場合は、すすぎ水に用いられる水道水や地下水自体を陰性対照対象として、対象試料と同様に、呈色工程、ろ過工程、たんぱく質変性工程、脱色工程、及び検出工程を実施することが好ましい。これにより、上述した非特異的な呈色が低減された測定試料と陰性対照試料同志を比較することができ、より正確な測定が可能となる。
また、例えば、測定試料が食物や飲料等の食品である場合は、たんぱく質が含まれていないことが確認されている同種の試料を陰性対照試料とすることが好ましい。
The negative control sample can be appropriately selected and used according to the type of the target sample. For example, when the measurement sample is the above-mentioned rinse water, tap water or groundwater used for the rinse water itself is used as a negative control target, and the coloring step, the filtration step, the protein modification step, the decolorization step, and the same as the target sample are performed. It is preferable to carry out the detection step. As a result, it is possible to compare the above-mentioned measurement sample with reduced nonspecific coloration and the negative control sample, and more accurate measurement becomes possible.
Further, for example, when the measurement sample is a food such as food or beverage, it is preferable to use a sample of the same type that has been confirmed not to contain protein as a negative control sample.

その他、本発明は、検出工程の前にフィルターを洗浄する洗浄工程を備えてよい。洗浄工程は任意の方法を実施することができる。これにより、例えば、フィルターに捕捉されたたんぱく質以外の余分な成分を洗浄する。 In addition, the present invention may include a cleaning step of cleaning the filter prior to the detection step. Any method can be carried out in the cleaning step. This cleans, for example, extra components other than the protein trapped in the filter.

本発明に係るたんぱく質の検出方法の一実施態様としては、呈色工程、ろ過工程、たんぱく質変性工程、脱色工程、検出工程の順で実施する。当該態様では呈色工程後にろ過工程を実施することになる。そのため、試料に対して呈色処理を行い、その後に実施するろ過工程により呈色したたんぱく質をフィルターに捕捉させる。具体的には、試料に、たんぱく質と結合し複合体を形成する色素を添加し、試料中に含まれるたんぱく質と上記色素とを結合させ、たんぱく質−色素複合体を形成させることで、測定対象のたんぱく質を呈色させる。その後、当該試料をフィルターでろ過することにより、たんぱく質−色素複合体をフィルターに捕捉させる。
このように、呈色工程後にろ過工程を実施することにより、より低濃度のたんぱく質を測定できるという利点がある。
As one embodiment of the protein detection method according to the present invention, the color development step, the filtration step, the protein denaturation step, the decolorization step, and the detection step are carried out in this order. In this aspect, the filtration step is performed after the coloration step. Therefore, the sample is subjected to a color treatment, and the protein colored by the subsequent filtration step is captured by the filter. Specifically, a dye that binds to a protein to form a complex is added to the sample, and the protein contained in the sample is bound to the above dye to form a protein-dye complex, whereby the measurement target is measured. Colors the protein. The sample is then filtered through a filter to capture the protein-dye complex.
As described above, by carrying out the filtration step after the coloration step, there is an advantage that a lower concentration of protein can be measured.

また、本発明の検出方法の他の実施態様としては、ろ過工程、呈色工程、たんぱく質変性工程、脱色工程、検出工程の順で実施する。当該態様ではろ過工程後に呈色工程を実施することになる。そのため、試料をフィルターでろ過し測定対象のたんぱく質をフィルターに捕捉させ、その後に実施する呈色工程により、フィルターに捕捉されたたんぱく質を呈色する。
このように、ろ過工程後に呈色工程を実施することにより、たんぱく質の呈色方法の選択の幅が広くなるという利点がある。
Further, as another embodiment of the detection method of the present invention, a filtration step, a coloration step, a protein denaturation step, a decolorization step, and a detection step are carried out in this order. In this aspect, the coloration step is carried out after the filtration step. Therefore, the sample is filtered with a filter to capture the protein to be measured by the filter, and the protein captured by the filter is colored by the subsequent coloration step.
As described above, by carrying out the coloration step after the filtration step, there is an advantage that the range of selection of the protein coloring method is widened.

本発明に適用する試料としては、たんぱく質を含む可能性のある試料であれば特に制限されず、例えば、食物、飲料、環境試料、生体試料等が挙げられる。本発明における試料は、液状であってもよく、固体状であってもよい。また、試料を緩衝液等に溶解、懸濁、分散等させて抽出しておく等、前処理を実施してもよい。
食物としては、例えば、動物、植物等の食物、加工食品、調味料等が挙げられる。
飲料としては、例えば、ジュース、酒類、炭酸飲料等が挙げられる。
環境試料としては、土壌、岩石、海水、淡水、生活排水、生活用水、工場排水、工場用水等が挙げられる。
生体試料としては、例えば、喀痰、鼻腔吸引液、鼻腔洗浄液、鼻腔ぬぐい液、鼻汁、咽頭ぬぐい液、含漱液、唾液、全血、血清、血漿、汗、尿、細胞、糞便等が挙げられる。
The sample applied to the present invention is not particularly limited as long as it is a sample that may contain a protein, and examples thereof include foods, beverages, environmental samples, and biological samples. The sample in the present invention may be in a liquid state or in a solid state. In addition, pretreatment may be performed such as dissolving, suspending, or dispersing the sample in a buffer solution or the like to extract the sample.
Examples of foods include foods such as animals and plants, processed foods, seasonings and the like.
Examples of beverages include juices, alcoholic beverages, and carbonated beverages.
Examples of environmental samples include soil, rocks, seawater, freshwater, domestic wastewater, domestic water, factory wastewater, and factory water.
Examples of biological samples include sputum, nasal aspirate, nasal lavage fluid, nasal swab, nasal discharge, pharyngeal swab, rinsing fluid, saliva, whole blood, serum, plasma, sweat, urine, cells, feces and the like. ..

本発明は試料中の微量のたんぱく質を検出できるため、もともとたんぱく質を含むことが想定されていないものや、たんぱく質が含まれていてもその量が極めて微量であるものを試料とすることが可能である。その観点から、例えば、栄養表示にたんぱく質が0と表示された食物や飲料等の食品や、工場排水のうち食品工場の製造設備の洗浄に用いたすすぎ水等が好適である。 Since the present invention can detect a trace amount of protein in a sample, it is possible to use a sample that is not originally supposed to contain a protein or a sample that contains a very small amount of protein. is there. From this point of view, for example, foods such as foods and beverages whose nutrition label has 0 protein, and rinse water used for cleaning the manufacturing equipment of a food factory among factory wastewater are suitable.

なお、本発明に適用する試料がたんぱく質の検出を妨害する物質を含有する場合は、その妨害物質の種類に応じて適宜必要な処理を行い、当該妨害物質を除去してもよい。例えば、工場用水のように塩素濃度が高い試料の場合は、適当な中和剤を事前に添加しておくことが好ましい。中和剤としては、例えばアスコルビン酸ナトリウムや、チオ硫酸ナトリウム等が挙げられる。 When the sample applied to the present invention contains a substance that interferes with the detection of protein, necessary treatment may be appropriately performed according to the type of the interfering substance to remove the interfering substance. For example, in the case of a sample having a high chlorine concentration such as factory water, it is preferable to add an appropriate neutralizing agent in advance. Examples of the neutralizing agent include sodium ascorbate, sodium thiosulfate and the like.

本発明で検出できる測定対象のたんぱく質の種類は、特に制限されるものではない。例えば、卵、牛乳、小麦、そば、落花生、エビ、カニ、あわび、いか、いくら、オレンジ、カシューナッツ、キウイフルーツ、牛肉、くるみ、ごま、さけ、さば、大豆、鶏肉、バナナ、豚肉、まつたけ、もも、やまいも、りんご、またはゼラチンに含まれるたんぱく質等が挙げられる。また、その他にも、日本または外国で指定されている種々のアレルゲンを検出することが可能である。 The type of protein to be measured that can be detected in the present invention is not particularly limited. For example, eggs, milk, wheat, buckwheat, peanuts, shrimp, crabs, abalone, squid, how much, oranges, cashew nuts, kiwifruit, beef, walnuts, sesame, salmon, mackerel, soybeans, chicken, bananas, pork, matsutake, etc. Examples include chicken, egg, and protein contained in gelatin. In addition, it is possible to detect various allergens designated in Japan or abroad.

本発明の検出方法は、ELISA法や濁度法、蛍光染色法等の従来法に比べて、手間やコストがかからず、非常に簡便で迅速に対象試料中のたんぱく質を検出できる。具体的には、本発明の検出方法によれば、検出の所要時間を1時間以下とすることができる。なお、検出の所要時間とは、試験器具を設置するところから検出結果が出るまでの時間を指す。また、後述するキットを用いれば、検出の所要時間をさらに短縮することも可能である。 Compared with conventional methods such as ELISA method, turbidity method, and fluorescence staining method, the detection method of the present invention requires less labor and cost, and can detect proteins in a target sample very simply and quickly. Specifically, according to the detection method of the present invention, the time required for detection can be set to 1 hour or less. The time required for detection refers to the time from when the test instrument is installed until the detection result is obtained. Further, by using the kit described later, it is possible to further shorten the time required for detection.

以上、本発明の一実施態様であるたんぱく質の検出方法を説明したが、上記説明した態様のみに限定されるものではなく、本発明の効果を奏する限り、上記した態様以外の実施態様とすることを妨げるものではない。 Although the method for detecting a protein, which is one embodiment of the present invention, has been described above, the method is not limited to the above-described embodiment, and the embodiment other than the above-described embodiment shall be used as long as the effect of the present invention is exhibited. Does not prevent.

<たんぱく質の濃度測定方法>
本発明は、上記検出方法における呈色工程、ろ過工程、たんぱく質変性工程、脱色工程、検出工程に加え、検出工程において検出された測定対象のたんぱく質の呈色状態について、その色彩値を測定する色彩値測定工程を備えることにより、試料中における測定対象のたんぱく質の濃度を測定する方法を提供する。
<Protein concentration measurement method>
In the present invention, in addition to the coloration step, the filtration step, the protein modification step, the decolorization step, and the detection step in the above detection method, the color for measuring the color value of the coloration state of the protein to be measured detected in the detection step. By providing a value measuring step, a method for measuring the concentration of a protein to be measured in a sample is provided.

試料中における測定対象のたんぱく質の濃度と、上述した検出工程で検出される測定対象のたんぱく質の呈色の色彩値との間に、一定の相関関係がある。具体的には、測定対象のたんぱく質の濃度と、測定対象のたんぱく質の呈色の色彩値との間には線形(一次関数)の関係が存在する。 There is a certain correlation between the concentration of the protein to be measured in the sample and the color color value of the protein to be measured detected in the detection step described above. Specifically, there is a linear (linear function) relationship between the concentration of the protein to be measured and the color value of the coloration of the protein to be measured.

したがって、測定対象のたんぱく質の濃度とその色彩値とが既知である複数の参照用試料を用いて、各参照用試料中の測定対象のたんぱく質の濃度と上記色彩値との対応関係を示す検量線を、事前に作成しておくことにより、測定により得られた色彩値から測定対象のたんぱく質の濃度を測定することが可能となる。 Therefore, using a plurality of reference samples in which the concentration of the protein to be measured and its color value are known, a calibration curve showing the correspondence between the concentration of the protein to be measured in each reference sample and the above color value. By preparing in advance, it is possible to measure the concentration of the protein to be measured from the color value obtained by the measurement.

特に本発明においては、上記たんぱく質変性工程と脱色工程の両工程を備えることにより、精度良く、測定対象のたんぱく質を検出することができるため、測定対象のたんぱく質の濃度と、検出される測定対象のたんぱく質の呈色の色彩値との間の相関関係がより線形(一次関数)に近似したものとなる。そのため、測定対象のたんぱく質の濃度をより精度良く測定することができる。 In particular, in the present invention, by providing both the protein denaturation step and the decolorization step, the protein to be measured can be detected with high accuracy. Therefore, the concentration of the protein to be measured and the measurement target to be detected can be detected. The correlation between the denaturing color value of the protein and the color value is closer to a more linear (linear function). Therefore, the concentration of the protein to be measured can be measured more accurately.

上記色彩値の測定は、たんぱく質の検出方法で上述した方法により行うことができる。上記色彩値を測定して、たんぱく質の濃度を測定する場合、色彩色差計を用いて定量的にたんぱく質の濃度を測定してもよいし、呈色判断紙を用いて半定量的にたんぱく質の濃度を測定してもよい。 The measurement of the color value can be performed by the method described above in the method for detecting a protein. When the above color value is measured to measure the protein concentration, the protein concentration may be quantitatively measured using a color difference meter, or the protein concentration may be measured semi-quantitatively using a color determination paper. May be measured.

本発明の濃度測定方法によれば、測定対象のたんぱく質の種類にもよるが、濃度が0.25ppb程度であっても、測定された色彩値を上記検量線に適用することにより、サンプル中の測定対象のたんぱく質濃度を測定することができる。好ましくは、例えば、0.25ppb以上、0.5ppb以上、1ppb以上、2ppb以上、5ppb以上、10ppb以上等である。なお上限については特に制限はないが、例えば、2000ppm以下である。 According to the concentration measuring method of the present invention, although it depends on the type of protein to be measured, even if the concentration is about 0.25 ppb, the measured color value can be applied to the calibration curve in the sample. The protein concentration to be measured can be measured. Preferably, for example, 0.25 ppb or more, 0.5 ppb or more, 1 ppb or more, 2 ppb or more, 5 ppb or more, 10 ppb or more, and the like. The upper limit is not particularly limited, but is, for example, 2000 ppm or less.

以上、本発明の一実施態様であるたんぱく質の濃度測定方法を説明したが、上記説明した態様のみに限定されるものではなく、本発明の効果を奏する限り、上記した態様以外の実施態様とすることを妨げるものではない。 Although the method for measuring the concentration of protein, which is one embodiment of the present invention, has been described above, the method is not limited to the above-described embodiment, and the embodiment other than the above-described embodiment is used as long as the effect of the present invention is exhibited. It doesn't prevent you from doing that.

<たんぱく質の検出キット>
本発明のたんぱく質の検出キットは、少なくとも、測定対象のたんぱく質を捕捉するフィルターと、測定対象のたんぱく質を呈色させる呈色試薬と、測定対象のたんぱく質を変性させるたんぱく質変性剤と、脱色剤とを含むものである。本発明の検出キットは、上述した本発明のたんぱく質の検出方法やその濃度測定方法を実施する際に用いることができる。
<Protein detection kit>
The protein detection kit of the present invention contains at least a filter that captures the protein to be measured, a coloring reagent that colors the protein to be measured, a protein denaturing agent that denatures the protein to be measured, and a decolorizing agent. It includes. The detection kit of the present invention can be used when carrying out the above-mentioned method for detecting a protein of the present invention and the method for measuring a concentration thereof.

たんぱく質の検出キットにおけるフィルター、呈色試薬、脱色剤は、上記で詳述したものを使用できる。また、当該キットは呈色判断紙を備えてもよい。本発明のキットによれば、実験器具や資材等が揃っていない状況でも、簡便な操作で対象試料中のたんぱく質を検出することができる。また、対象試料に含まれるたんぱく質に由来しない呈色を低減することができ、精度良く、かつ高感度に対象試料中のたんぱく質を検出することができる。 As the filter, color reagent, and decolorizing agent in the protein detection kit, those detailed above can be used. In addition, the kit may include a color determination paper. According to the kit of the present invention, it is possible to detect a protein in a target sample by a simple operation even in a situation where laboratory equipment, materials and the like are not available. In addition, it is possible to reduce the coloration that is not derived from the protein contained in the target sample, and it is possible to detect the protein in the target sample with high accuracy and high sensitivity.

本発明の一実施態様であるたんぱく質の検出キット10は、図2に示すように、測定対象のたんぱく質をろ過、捕捉、濃縮するフィルター12と、試料導入容器11と、呈色工程に使用する呈色試薬13と、脱色剤(図示せず)とを備える。また、測定対象のたんぱく質の濃度を測定するための呈色判断紙(図示せず)を備えていてもよい。以下、上記検出キット10の使用方法について説明する。 As shown in FIG. 2, the protein detection kit 10 according to an embodiment of the present invention includes a filter 12 for filtering, capturing, and concentrating a protein to be measured, a sample introduction container 11, and a presentation used in a coloration step. A color reagent 13 and a decolorizing agent (not shown) are provided. In addition, a color determination paper (not shown) for measuring the concentration of the protein to be measured may be provided. Hereinafter, how to use the detection kit 10 will be described.

まず、試料を、試料導入容器11内に導入する。試料は種類に応じて緩衝液や水等に溶解、懸濁、分散等させて抽出しておく等、適宜前処理を実施してもよい。試料導入容器11は、図2に示すようにあらかじめ呈色試薬13を収納しておくことで、試料を試料導入容器11に導入するとともに、試料が呈色試薬とが接触するようにしておいてもよく、あるいは、試料を試料導入容器11に充填してから、呈色試薬13を試料導入容器11中の試料に添加してもよい。あるいは、この時点では呈色試薬を使用せず、後述するろ過後の呈色工程において使用してもよい。 First, the sample is introduced into the sample introduction container 11. Depending on the type of sample, pretreatment may be carried out as appropriate, such as dissolving, suspending, or dispersing in a buffer solution or water to extract the sample. As shown in FIG. 2, the sample introduction container 11 stores the coloring reagent 13 in advance so that the sample is introduced into the sample introduction container 11 and the sample is in contact with the coloring reagent. Alternatively, the sample may be filled in the sample introduction container 11 and then the color-developing reagent 13 may be added to the sample in the sample introduction container 11. Alternatively, at this point, the color-developing reagent may not be used and may be used in the color-developing step after filtration described later.

つづいて、フィルター12を試料導入容器11上部の開口部付近に固定する。その後、試料を、任意の方法でフィルター12に通液させ、ろ過処理を行うことで、フィルター12に測定対象のたんぱく質を捕捉、濃縮させる。なお、この時点で、呈色試薬13を試料に適用していない場合は、フィルター12上に捕捉、濃縮された測定対象のたんぱく質に対して、呈色試薬13を適用する。 Subsequently, the filter 12 is fixed near the opening at the top of the sample introduction container 11. After that, the sample is passed through the filter 12 by an arbitrary method and filtered to capture and concentrate the protein to be measured by the filter 12. If the color reagent 13 has not been applied to the sample at this point, the color reagent 13 is applied to the protein to be measured that has been captured and concentrated on the filter 12.

上記ろ過処理後、フィルター12にたんぱく質変性剤を添加し、フィルター12に捕捉されたたんぱく質を、フィルター12により強固に吸着させる。その後、フィルター12に脱色剤を添加する。これにより、たんぱく質に結合していない色素をフィルター12から優先的に脱色させることができると考えられる。なお、たんぱく質変性剤と脱色剤とを含む試薬を用いることで、たんぱく質の変性と、脱色を同時に行ってもよい。 After the above filtration treatment, a protein denaturing agent is added to the filter 12, and the protein trapped in the filter 12 is strongly adsorbed by the filter 12. After that, a decolorizing agent is added to the filter 12. It is considered that this makes it possible to preferentially decolorize the dye that is not bound to the protein from the filter 12. By using a reagent containing a protein denaturing agent and a decolorizing agent, protein denaturation and decolorization may be performed at the same time.

最後に、フィルター12に捕捉、濃縮された測定対象のたんぱく質の呈色を確認し、たんぱく質の検出を行う。呈色の確認は、上述したとおり色彩色差計や呈色判断紙等を用いて行うことができる。また上述したとおり、検量線を用いて測定対象のたんぱく質の濃度を測定してもよい。 Finally, the coloration of the protein to be measured captured and concentrated by the filter 12 is confirmed, and the protein is detected. The coloration can be confirmed by using a color difference meter, a coloration determination paper, or the like as described above. Further, as described above, the concentration of the protein to be measured may be measured using a calibration curve.

本発明の別の実施態様である検出キット20は、複数の試料において、たんぱく質を検出可能なように構成された態様である。検出キット20は、図3に示すように、試料導入容器30と、フィルター31と、呈色試薬(図示せず)と、脱色剤(図示せず)と、ろ液収容容器40と、減圧口41と、ろ液排出口42とを備える。なお、図3中、試料導入容器30は1つのみ図示しているが、対象試料の数に応じて複数個備えていてもよい。
以下、上記検出キット20の使用方法について説明する。なお、以下は試料が1つの場合で説明するが、試料が複数の場合は、その数量に応じて同様の操作を行えばよい。
The detection kit 20, which is another embodiment of the present invention, is an embodiment configured so that a protein can be detected in a plurality of samples. As shown in FIG. 3, the detection kit 20 includes a sample introduction container 30, a filter 31, a color-developing reagent (not shown), a decolorizing agent (not shown), a filtrate storage container 40, and a pressure reducing port. 41 and a filtrate discharge port 42 are provided. Although only one sample introduction container 30 is shown in FIG. 3, a plurality of sample introduction containers 30 may be provided depending on the number of target samples.
Hereinafter, how to use the detection kit 20 will be described. The following describes the case where there is one sample, but when there are a plurality of samples, the same operation may be performed according to the quantity.

まず、試料導入容器30をろ液収容容器40から取り外した状態で、試料を試料導入容器30内に導入する。これは上記検出キット10の使用方法で説明した方法で実施できる。 First, the sample is introduced into the sample introduction container 30 with the sample introduction container 30 removed from the filtrate storage container 40. This can be done by the method described in the method of using the detection kit 10 above.

つづいて、試料導入容器30上部の開口部付近に、必要に応じてフィルター固定器(図示せず)を設け、そこにフィルターを設置する。フィルター固定器はフィルターによるろ過を阻害しないものを用いる。その後、試料導入容器30を図3に示すように、ろ液収容容器40に接続しろ過処理を行う。ろ過処理は上記検出キット10と同様の方法で実施できるが、必要に応じて、ろ液収容容器40の減圧口41とアスピレータ(図示せず)とを接続し、ろ液収容容器40内を減圧することにより、試料に含まれる測定対象のたんぱく質をフィルターに捕捉、濃縮してもよい。 Subsequently, a filter fixture (not shown) is provided near the opening at the top of the sample introduction container 30 as needed, and the filter is installed there. Use a filter fixture that does not interfere with filtration by the filter. After that, as shown in FIG. 3, the sample introduction container 30 is connected to the filtrate storage container 40 to perform the filtration process. The filtration process can be carried out in the same manner as in the detection kit 10, but if necessary, the pressure reducing port 41 of the filtrate storage container 40 and the aspirator (not shown) are connected to reduce the pressure inside the filtrate storage container 40. By doing so, the protein to be measured contained in the sample may be captured by the filter and concentrated.

ろ液はろ液出口32からろ液収容容器40内に排出される。ろ液排出口42は通常閉塞しており、ろ液収容容器40内のろ液の貯水量が増加した場合には、適宜ろ液排出口42を開放し、ろ液をろ液収容容器40の外部に排出する。 The filtrate is discharged into the filtrate storage container 40 from the filtrate outlet 32. The filtrate discharge port 42 is normally closed, and when the amount of the filtrate stored in the filtrate storage container 40 increases, the filtrate discharge port 42 is appropriately opened and the filtrate is discharged from the filtrate storage container 40. Discharge to the outside.

上記ろ過処理後のたんぱく質変性剤及び脱色剤の適用、ないし測定対象のたんぱく質の検出及び濃度測定は上記検出キット10の使用方法で説明した同様の方法で実施できる。 The application of the protein denaturing agent and the decolorizing agent after the filtration treatment, or the detection and concentration measurement of the protein to be measured can be carried out by the same method described in the method of using the detection kit 10.

さらに、本発明の検出キットの別の実施態様としては、上記検出キット20において、試料導入容器30等の代わりに、図4に示すシリンジ60を用いた態様の検出キット50が挙げられる。シリンジ60は、ブランジャー(押子)61、シリンジフィルター62、ろ液出口63、外筒64、ガスケット65を備える。使用方法としては、外筒内に対象試料を充填し、ブランジャー(押子)61を押し込むことによりシリンジフィルター62でろ過を行う点を除いては、上記検出キット20とほぼ同様の方法を採用できる。 Further, as another embodiment of the detection kit of the present invention, in the detection kit 20, the detection kit 50 in which the syringe 60 shown in FIG. 4 is used instead of the sample introduction container 30 and the like can be mentioned. The syringe 60 includes a blanger (presser) 61, a syringe filter 62, a filtrate outlet 63, an outer cylinder 64, and a gasket 65. The method of use is almost the same as that of the detection kit 20 except that the target sample is filled in the outer cylinder and the syringe filter 62 is used for filtering by pushing the blanger (pressor) 61. it can.

以上、本発明の一実施態様であるたんぱく質の検出キットを説明したが、上記説明した実施態様のみに限定されるものではなく、本発明の効果を奏する限り、上記した態様以外の実施態様とすることを妨げるものではない。 The protein detection kit according to one embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment, and the embodiment other than the above-described embodiment is used as long as the effect of the present invention is exhibited. It doesn't prevent you from doing that.

以下、実施例に基づいて、本発明をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples. The present invention is not limited to the following examples.

(試験例1)
本試験では、乳アレルゲンであるカゼインナトリウムを各種水(精製水、水道水(八王子で採取)、製造用水(京都で採取)、地下水(香川で採取))で希釈したものを対象試料として、本発明の方法によりたんぱく質の検出を行った。また、上記各種水のみを用いたものを陰性対照試料として、同様に試験を実施した。
(Test Example 1)
In this test, casein sodium, which is a milk allergen, diluted with various waters (purified water, tap water (collected in Hachioji), production water (collected in Kyoto), groundwater (collected in Kagawa)) was used as the target sample. The protein was detected by the method of the present invention. Further, the same test was carried out using only the above-mentioned various types of water as a negative control sample.

[実施例1]
実施例1−1:対象試料の調製
対象試料として、カゼインナトリウムを精製水で希釈し、1ppmのカゼインナトリウム水溶液を調製した。また、アスコルビン酸ナトリウム30mgを添加し、水溶液中の遊離塩素を中和した。
実施例1−2:陰性対照試料の調製
1ppmのカゼインナトリウム水溶液の代わりに、精製水を用いたことを除いては、対象試料と同様にして、陰性対照試料を調製した。
測定:
上記調製した各試料に、ブラッドフォード試薬のクマシーブリリアントブルー G‐250染色液(TAKARA社製)を1mL添加、撹拌後、室温(25℃)で5分静置した(呈色工程)。各試料20mLをガラスフィルター「GF−75」(ADVANTEC社製、保持粒子径:0.3μm、ろ過径:30mm)に3秒かけて通液した(ろ過工程)。その後、ガラスフィルターに、たんぱく質変性剤および脱色剤として5%酢酸(pH2.4)8%エタノール100mLを、40秒かけて通液した(たんぱく質変性および脱色工程)。その後、イオン交換水100mLをガラスフィルターに40秒かけて通液した。
フィルター上の青色の呈色を色差計(CR−5、コニカミノルタ社製)で測定し、得られたb値を求めた。測定値を表1に示す。
[Example 1]
Example 1-1: Preparation of target sample As a target sample, sodium casein was diluted with purified water to prepare a 1 ppm aqueous solution of sodium casein. In addition, 30 mg of sodium ascorbate was added to neutralize free chlorine in the aqueous solution.
Example 1-2: Preparation of negative control sample A negative control sample was prepared in the same manner as the target sample except that purified water was used instead of the 1 ppm aqueous casein sodium solution.
Measurement:
To each of the above prepared samples, 1 mL of Coomassie Brilliant Blue G-250 staining solution (manufactured by TAKARA) of Bradford's reagent was added, stirred, and then allowed to stand at room temperature (25 ° C.) for 5 minutes (coloring step). 20 mL of each sample was passed through a glass filter "GF-75" (manufactured by ADVANTEC, holding particle diameter: 0.3 μm, filtration diameter: 30 mm) over 3 seconds (filtration step). Then, 100 mL of 5% acetic acid (pH 2.4) 8% ethanol as a protein denaturing agent and a decolorizing agent was passed through a glass filter over 40 seconds (protein denaturing and decolorizing step). Then, 100 mL of ion-exchanged water was passed through a glass filter over 40 seconds.
The blue coloration on the filter was measured with a color difference meter (CR-5, manufactured by Konica Minolta), and the obtained b value was determined. The measured values are shown in Table 1.

[実施例2]
実施例2−1:対象試料の調製
カゼインナトリウムを水道水(八王子で採取)で希釈したことを除いては、実施例1−1と同様に、対象試料を調製した。
実施例2−2:陰性対照試料の調製
精製水の代わりに水道水(八王子で採取)を用いたことを除いては、実施例1−2と同様に、陰性対照試料を調製した。
測定:
実施例1と同様に測定を行い、b値を求めた。測定値を表1に示す。
[Example 2]
Example 2-1: Preparation of target sample A target sample was prepared in the same manner as in Example 1-1, except that sodium caseinate was diluted with tap water (collected in Hachioji).
Example 2-2: Preparation of negative control sample A negative control sample was prepared in the same manner as in Example 1-2, except that tap water (collected in Hachioji) was used instead of purified water.
Measurement:
The measurement was carried out in the same manner as in Example 1 to determine the b value. The measured values are shown in Table 1.

[実施例3]
実施例3−1:対象試料の調製
カゼインナトリウムを製造用水(京都で採取)で希釈したことを除いては、実施例1−1と同様に、対象試料を調製した。
実施例3−2:陰性対照試料の調製
精製水の代わりに製造用水(京都で採取)を用いたことを除いては、実施例1−2と同様に、陰性対照試料を調製した。
測定:
実施例1と同様に測定を行い、b値を求めた。測定値を表1に示す。
[Example 3]
Example 3-1: Preparation of target sample A target sample was prepared in the same manner as in Example 1-1, except that sodium caseinate was diluted with production water (collected in Kyoto).
Example 3-2: Preparation of negative control sample A negative control sample was prepared in the same manner as in Example 1-2, except that production water (collected in Kyoto) was used instead of purified water.
Measurement:
The measurement was carried out in the same manner as in Example 1 to determine the b value. The measured values are shown in Table 1.

[実施例4]
実施例4−1:対象試料の調製
カゼインナトリウムを地下水(香川で採取)で希釈したことを除いては、実施例1−1と同様に、対象試料を調製した。
実施例4−2:陰性対照試料の調製
精製水の代わりに地下水(香川で採取)を用いたことを除いては、実施例1−2と同様に、陰性対照試料を調製した。
測定:
実施例1と同様に測定を行い、b値を求めた。測定値を表1に示す。
[Example 4]
Example 4-1: Preparation of target sample A target sample was prepared in the same manner as in Example 1-1, except that sodium caseinate was diluted with groundwater (collected in Kagawa).
Example 4-2: Preparation of negative control sample A negative control sample was prepared in the same manner as in Example 1-2, except that groundwater (collected in Kagawa) was used instead of purified water.
Measurement:
The measurement was carried out in the same manner as in Example 1 to determine the b value. The measured values are shown in Table 1.

[比較例1]
測定前にたんぱく質変性および脱色工程を実施しなかったことを除いては、実施例1−1と同様に対象試料(比較例1−1)を調製し、また、実施例1−2と同様に陰性対象試料(比較例1−2)を調製し、b値の測定を行った。測定値を表1に示す。
[Comparative Example 1]
A target sample (Comparative Example 1-1) was prepared in the same manner as in Example 1-1, except that the protein denaturation and bleaching steps were not performed before the measurement, and also in the same manner as in Example 1-2. A negative target sample (Comparative Example 1-2) was prepared and the b value was measured. The measured values are shown in Table 1.

[比較例2]
測定前にたんぱく質変性および脱色工程を実施しなかったことを除いては、実施例2−1と同様に対象試料(比較例2−1)を調製し、また、実施例2−2と同様に陰性対象試料(比較例2−2)を調製し、b値の測定を行った。測定値を表1に示す。
[Comparative Example 2]
A target sample (Comparative Example 2-1) was prepared in the same manner as in Example 2-1 except that the protein denaturation and bleaching steps were not performed before the measurement, and also in the same manner as in Example 2-2. A negative target sample (Comparative Example 2-2) was prepared and the b value was measured. The measured values are shown in Table 1.

[比較例3]
測定前にたんぱく質変性および脱色工程を実施しなかったことを除いては、実施例3−1と同様に対象試料(比較例3−1)を調製し、また、実施例3−2と同様に陰性対象試料(比較例3−2)を調製し、b値の測定を行った。測定値を表1に示す。
[Comparative Example 3]
A target sample (Comparative Example 3-1) was prepared in the same manner as in Example 3-1 except that the protein denaturation and bleaching steps were not performed before the measurement, and also in the same manner as in Example 3-2. A negative target sample (Comparative Example 3-2) was prepared and the b value was measured. The measured values are shown in Table 1.

[比較例4]
測定前にたんぱく質変性および脱色工程を実施しなかったことを除いては、実施例4−1と同様に対象試料(比較例4−1)を調製し、また、実施例4−2と同様に陰性対象試料(比較例4−2)を調製し、b値の測定を行った。測定値を表1に示す。
[Comparative Example 4]
A target sample (Comparative Example 4-1) was prepared in the same manner as in Example 4-1 except that the protein denaturation and bleaching steps were not performed before the measurement, and also in the same manner as in Example 4-2. A negative target sample (Comparative Example 4-2) was prepared and the b value was measured. The measured values are shown in Table 1.

Figure 2020180890
Figure 2020180890

表1に示すとおり、対象試料はいずれも陰性対照試料よりもb値が小さい(b値のマイナスの絶対値が大きい)結果となり、呈色した青色が濃くなった。対象試料中のたんぱく質(カゼインナトリウム)の検出が可能であることが示された。
また、対象試料および陰性対照試料のいずれの試料においても、たんぱく質変性工程および脱色工程を実施することによりb値が増加した。また、陰性対照試料のb値は0に近づいており、着色がほとんど見られなくなったため、対象試料についてのたんぱく質の検出を肉眼で判定することが可能となった。
以上の結果から、本発明の方法により、対象試料に含まれるたんぱく質以外のバックグラウンドの影響を低減しつつ、精度良く測定対象のたんぱく質を検出できることが示された。
As shown in Table 1, the b value of each of the target samples was smaller than that of the negative control sample (the absolute negative value of the b value was large), and the colored blue color became darker. It was shown that the protein (sodium casein) in the target sample can be detected.
In addition, in both the target sample and the negative control sample, the b value was increased by carrying out the protein denaturation step and the decolorization step. In addition, since the b value of the negative control sample approached 0 and almost no coloring was observed, it became possible to visually determine the detection of the protein in the target sample.
From the above results, it was shown that the method of the present invention can accurately detect the protein to be measured while reducing the influence of the background other than the protein contained in the target sample.

(試験例2)
本試験では、試験例1のたんぱく質変性剤や脱色剤を種々変更して、試験例1と同様の試験を実施した。
(Test Example 2)
In this test, the same test as in Test Example 1 was carried out by variously changing the protein denaturing agent and the decolorizing agent of Test Example 1.

[実施例3]
たんぱく質変性剤および脱色剤を5%リン酸(pH2.4)8%エタノールに変更した点を除いては、実施例2−1と同様に対象試料を調製し、実施例2−2と同様に陰性対照試料を調製し、b値を測定した。また、対象試料におけるb値と陰性対照試料におけるb値の比率(S/N比)を求めた。結果を表2に示す。
[Example 3]
A target sample was prepared in the same manner as in Example 2-1 except that the protein denaturing agent and the decolorizing agent were changed to 5% phosphoric acid (pH 2.4) and 8% ethanol, and the same as in Example 2-2. A negative control sample was prepared and the b value was measured. In addition, the ratio (S / N ratio) of the b value in the target sample and the b value in the negative control sample was determined. The results are shown in Table 2.

[実施例4]
たんぱく質変性剤および脱色剤を5%ギ酸(pH2.4)8%エタノールに変更した点を除いては、実施例2−1と同様に対象試料を調製し、実施例2−2と同様に陰性対照試料を調製し、b値を測定した。また、対象試料と陰性対照試料のS/N比を求めた。結果を表2に示す。
[Example 4]
A target sample was prepared in the same manner as in Example 2-1 except that the protein denaturing agent and the decolorizing agent were changed to 5% formic acid (pH 2.4) and 8% ethanol, and negative as in Example 2-2. A control sample was prepared and the b value was measured. In addition, the S / N ratio of the target sample and the negative control sample was determined. The results are shown in Table 2.

[実施例5]
たんぱく質変性剤および脱色剤を5%クエン酸(pH2.4)8%エタノールに変更した点を除いては、実施例2−1と同様に対象試料を調製し、実施例2−2と同様に陰性対照試料を調製し、b値を測定した。また、対象試料と陰性対照試料のS/N比を求めた。結果を表2に示す。
[Example 5]
A target sample was prepared in the same manner as in Example 2-1 except that the protein denaturing agent and the decolorizing agent were changed to 5% citric acid (pH 2.4) and 8% ethanol, and the same as in Example 2-2. A negative control sample was prepared and the b value was measured. In addition, the S / N ratio of the target sample and the negative control sample was determined. The results are shown in Table 2.

[実施例6]
たんぱく質変性剤および脱色剤を5%塩酸(pH2.4)8%エタノールに変更した点を除いては、実施例2−1と同様に対象試料を調製し、実施例2−2と同様に陰性対照試料を調製し、b値を測定した。また、対象試料と陰性対照試料のS/N比を求めた。結果を表2に示す。
[Example 6]
A target sample was prepared in the same manner as in Example 2-1 except that the protein denaturing agent and the decolorizing agent were changed to 5% hydrochloric acid (pH 2.4) and 8% ethanol, and negative as in Example 2-2. A control sample was prepared and the b value was measured. In addition, the S / N ratio of the target sample and the negative control sample was determined. The results are shown in Table 2.

[実施例7]
たんぱく質変性剤および脱色剤を5%乳酸(pH2.4)8%エタノールに変更した点を除いては、実施例2−1と同様に対象試料を調製し、実施例2−2と同様に陰性対照試料を調製し、b値を測定した。また、対象試料と陰性対照試料のS/N比を求めた。結果を表2に示す。
[Example 7]
A target sample was prepared in the same manner as in Example 2-1 except that the protein denaturing agent and the decolorizing agent were changed to 5% lactic acid (pH 2.4) and 8% ethanol, and negative as in Example 2-2. A control sample was prepared and the b value was measured. In addition, the S / N ratio of the target sample and the negative control sample was determined. The results are shown in Table 2.

[実施例8]
たんぱく質変性剤および脱色剤を5%酢酸(pH2.3)7%メタノールに変更した点を除いては、実施例2−1と同様に対象試料を調製し、実施例2−2と同様に陰性対照試料を調製し、b値を測定した。また、対象試料と陰性対照試料のS/N比を求めた。結果を表2に示す。
[Example 8]
A target sample was prepared in the same manner as in Example 2-1 except that the protein denaturing agent and the decolorizing agent were changed to 5% acetic acid (pH 2.3) and 7% methanol, and negative as in Example 2-2. A control sample was prepared and the b value was measured. In addition, the S / N ratio of the target sample and the negative control sample was determined. The results are shown in Table 2.

Figure 2020180890
Figure 2020180890

表2に示すとおり、各試料ともに対象試料は陰性対照試料よりもb値が小さい(b値のマイナスの絶対値が大きい)結果となり、呈色した青色が濃くなった。対象試料中のたんぱく質(カゼインナトリウム)の検出が可能であることが示された。
また、対象試料および陰性対照試料のいずれの試料においても、たんぱく質変性および脱色工程を実施することによりb値が増加した。なかでも、たんぱく質変性剤および脱色剤として、酢酸とエタノールを組み合わせた実施例2が最もb値が増加した。
また、たんぱく質変性および脱色工程を実施することにより、対象試料と陰性対照試料とのS/N比が向上した。
以上の結果から、本発明の方法により、対象試料に含まれるたんぱく質以外のバックグラウンドの影響を低減しつつ、精度良く測定対象のたんぱく質を検出できることが示された。
As shown in Table 2, in each sample, the b value of the target sample was smaller than that of the negative control sample (the absolute negative value of the b value was large), and the colored blue color became darker. It was shown that the protein (sodium casein) in the target sample can be detected.
In addition, the b value was increased by carrying out the protein denaturation and decolorization steps in both the target sample and the negative control sample. Among them, Example 2 in which acetic acid and ethanol were combined as a protein denaturing agent and a decolorizing agent showed the largest increase in b value.
In addition, the S / N ratio between the target sample and the negative control sample was improved by carrying out the protein denaturation and decolorization steps.
From the above results, it was shown that the method of the present invention can accurately detect the protein to be measured while reducing the influence of the background other than the protein contained in the target sample.

(試験例3)
試験例3では、各種飲料水を対象試料として用い、試験例1と同様に本発明の方法を実施した。
[実施例9]
対象試料として、ミネラルウォーター(透明色)にカゼインナトリウムを所定の濃度(0ppm、0.5ppm、1ppm)になるように加えた試料を用いたことを除いては、試験例1の実施例1−1と同様の処理を行い、b値を求めた。また、合わせてL値、a値も求めた。結果を表3及び図5に示す。
(Test Example 3)
In Test Example 3, various drinking waters were used as target samples, and the method of the present invention was carried out in the same manner as in Test Example 1.
[Example 9]
Example 1- of Test Example 1 except that a sample in which sodium caseinate was added to a predetermined concentration (0 ppm, 0.5 ppm, 1 ppm) was used as a target sample in mineral water (transparent color). The same process as in 1 was performed to obtain the b value. In addition, the L value and the a value were also obtained. The results are shown in Table 3 and FIG.

[実施例10]
対象試料として、清涼飲料水(透明色)にカゼインナトリウムを所定の濃度(0ppm、0.5ppm、1ppm)になるように加えた試料を用いたことを除いては、実施例9と同様の処理を行い、b値を求めた。また、合わせてL値、a値も求めた。結果を表3及び図6に示す。
[Example 10]
The same treatment as in Example 9 except that a sample in which sodium caseinate was added to a soft drink (transparent color) to a predetermined concentration (0 ppm, 0.5 ppm, 1 ppm) was used as the target sample. Was performed, and the b value was obtained. In addition, the L value and the a value were also obtained. The results are shown in Table 3 and FIG.

[実施例11]
対象試料として、果実ミックスジュース(透明な褐色)にカゼインナトリウムを所定の濃度(0ppm、0.5ppm、1ppm)になるように加えた試料を用いたことを除いては、実施例9と同様の処理を行い、b値を求めた。また、合わせてL値、a値も求めた。結果を表3及び図7に示す。
[Example 11]
As a target sample, the same as in Example 9 except that a sample in which sodium caseinate was added to a fruit mixed juice (clear brown) to a predetermined concentration (0 ppm, 0.5 ppm, 1 ppm) was used. Processing was performed and the b value was obtained. In addition, the L value and the a value were also obtained. The results are shown in Table 3 and FIG.

[実施例12]
対象試料として、緑茶(半透明な緑色)にカゼインナトリウムを所定の濃度(0ppm、0.5ppm、1ppm)になるように加えた試料を用いたことを除いては、実施例9と同様の処理を行い、b値を求めた。また、合わせてL値、a値も求めた。結果を表3及び図8に示す。
[Example 12]
The same treatment as in Example 9 except that a sample in which sodium caseinate was added to a predetermined concentration (0 ppm, 0.5 ppm, 1 ppm) was used as a target sample in green tea (translucent green). Was performed, and the b value was obtained. In addition, the L value and the a value were also obtained. The results are shown in Table 3 and FIG.

[実施例13]
対象試料として、りんごジュース(透明褐色)にカゼインナトリウムを所定の濃度(0ppm、0.5ppm、1ppm)になるように加えた試料を用いたことを除いては、実施例9と同様の処理を行い、b値を求めた。また、合わせてL値、a値も求めた。結果を表3及び図9に示す。
[Example 13]
As the target sample, the same treatment as in Example 9 was carried out except that a sample in which sodium caseinate was added to apple juice (clear brown) to a predetermined concentration (0 ppm, 0.5 ppm, 1 ppm) was used. The b value was obtained. In addition, the L value and the a value were also obtained. The results are shown in Table 3 and FIG.

[比較例3]
たんぱく質変性および脱色工程を実施しなかったことを除いては、実施例9と同様の処理を行い、b値を求めた。また、合わせてL値、a値も求めた。結果を表3及び図5に示す。
[Comparative Example 3]
The same treatment as in Example 9 was carried out except that the protein denaturation and decolorization steps were not carried out, and the b value was determined. In addition, the L value and the a value were also obtained. The results are shown in Table 3 and FIG.

[比較例4]
たんぱく質変性および脱色工程を実施しなかったことを除いては、実施例10と同様の処理を行い、b値を求めた。また、合わせてL値、a値も求めた。結果を表3及び図6に示す。
[Comparative Example 4]
The same treatment as in Example 10 was carried out except that the protein denaturation and decolorization steps were not carried out, and the b value was determined. In addition, the L value and the a value were also obtained. The results are shown in Table 3 and FIG.

[比較例5]
たんぱく質変性および脱色工程を実施しなかったことを除いては、実施例11と同様の処理を行い、b値を求めた。また、合わせてL値、a値も求めた。結果を表3及び図7に示す。
[Comparative Example 5]
The same treatment as in Example 11 was carried out except that the protein denaturation and decolorization steps were not carried out, and the b value was determined. In addition, the L value and the a value were also obtained. The results are shown in Table 3 and FIG.

[比較例6]
たんぱく質変性および脱色工程を実施しなかったことを除いては、実施例12と同様の処理を行い、b値を求めた。また、合わせてL値、a値も求めた。結果を表3及び図8に示す。
[Comparative Example 6]
The same treatment as in Example 12 was carried out except that the protein denaturation and decolorization steps were not carried out, and the b value was determined. In addition, the L value and the a value were also obtained. The results are shown in Table 3 and FIG.

[比較例7]
たんぱく質変性および脱色工程を実施しなかったことを除いては、実施例13と同様の処理を行い、b値を求めた。また、合わせてL値、a値も求めた。結果を表3及び図9に示す。
[Comparative Example 7]
The same treatment as in Example 13 was carried out except that the protein denaturation and decolorization steps were not carried out, and the b value was determined. In addition, the L value and the a value were also obtained. The results are shown in Table 3 and FIG.

Figure 2020180890
Figure 2020180890

表3に示すとおり、各試料ともに、1ppm、0.5ppm、0ppmの順にb値が小さい(b値のマイナスの絶対値が大きい)結果となっており、飲料中に含まれるたんぱく質の検出が可能であることが示された。
また、いずれの試料においても、たんぱく質変性および脱色工程を実施することによりb値が増加した。
また図5に示す通り、たんぱく質変性および脱色工程を行った実施例では、それらの工程を行わない比較例と比べて、Rの値が1に近くなっており、対象試料の濃度とb値との間の線形の相関性が高い結果となった。
以上の結果からも、本発明は、たんぱく質変性および脱色工程を備えることにより、より精度良く測定対象の濃度を測定できることが示された。
As shown in Table 3, the b value is smaller in the order of 1 ppm, 0.5 ppm, and 0 ppm (the absolute negative value of the b value is larger) in each sample, and it is possible to detect the protein contained in the beverage. Was shown to be.
Moreover, in all the samples, the b value was increased by carrying out the protein denaturation and decolorization steps.
Further, as shown in FIG. 5, in the examples in which the protein denaturation and decolorization steps were performed, the value of R 2 was closer to 1 as compared with the comparative example in which those steps were not performed, and the concentration and b value of the target sample were obtained. The result is that the linear correlation between and is high.
From the above results, it was shown that the present invention can measure the concentration to be measured more accurately by including the protein denaturation and decolorization steps.

(試験例4)
本試験では、カゼインナトリウム水溶液を対象試料として用い、試験例1と同様に本発明の方法を実施した。
[実施例14]
対象試料として、カゼインナトリウムを、精製水で希釈し、0ppm、0.1ppm、0.25ppm、0.5ppm、1ppm、1.5ppm、2ppmのカゼインナトリウム水溶液を用いたことを除いては、試験例1の実施例1−1と同様の処理を行い、b値を求めた。同じ試験を合計3回行い、b値の平均値(n=3)を表4及び図10に示す。
(Test Example 4)
In this test, the method of the present invention was carried out in the same manner as in Test Example 1 using an aqueous casein sodium solution as a target sample.
[Example 14]
As a target sample, test examples except that sodium casein was diluted with purified water and 0 ppm, 0.1 ppm, 0.25 ppm, 0.5 ppm, 1 ppm, 1.5 ppm, and 2 ppm aqueous casein sodium solution were used. The same process as in Example 1-1 of 1 was carried out to determine the b value. The same test was performed a total of 3 times, and the average value of b values (n = 3) is shown in Table 4 and FIG.

[比較例8]
たんぱく質変性および脱色工程を実施しなかったことを除いては、実施例14と同様の処理を行い、b値を求めた。同じ試験を合計3回行い、b値の平均値(n=3)を表4及び図10に示す。
[Comparative Example 8]
The same treatment as in Example 14 was carried out except that the protein denaturation and decolorization steps were not carried out, and the b value was determined. The same test was performed a total of 3 times, and the average value of b values (n = 3) is shown in Table 4 and FIG.

Figure 2020180890
Figure 2020180890

表4に示すとおり、各試料ともに、おおよそ濃度の高い順にb値が小さい(b値のマイナスの絶対値が大きい)結果となっており、たんぱく質の検出が可能であることが示された。
また図10に示す通り、たんぱく質変性および脱色工程を行った実施例では、それらの工程を行わない比較例と比べて、Rの値が1に近くなっており、対象試料の濃度とb値との間の線形の相関性が高い結果となった。
以上の結果からも、本発明は、たんぱく質変性および脱色工程を備えることにより、より精度良く測定対象の濃度を測定できることが示された。
As shown in Table 4, in each sample, the b value was smaller (the absolute negative value of the b value was larger) in descending order of concentration, indicating that protein could be detected.
Further, as shown in FIG. 10, in the examples in which the protein denaturation and decolorization steps were performed, the value of R 2 was closer to 1 as compared with the comparative example in which those steps were not performed, and the concentration and b value of the target sample were obtained. The result is that the linear correlation between and is high.
From the above results, it was shown that the present invention can measure the concentration to be measured more accurately by including the protein denaturation and decolorization steps.

本発明によれば、操作が簡便でありながら、精度良くかつ高感度に、対象試料中のたんぱく質を検出できる。特に食品業界においては、食品工場での製造設備等に残存するアレルゲン量を把握するため、当該設備の洗浄後のすすぎ水に含まれるたんぱく質の量を把握したり、食物や飲料等の食品中にたんぱく質が含まれるかを把握するために、本発明の検出方法は非常に有用であり、産業上の利用可能性は極めて大きい。 According to the present invention, it is possible to detect a protein in a target sample with high accuracy and high sensitivity while being easy to operate. In particular, in the food industry, in order to grasp the amount of allergen remaining in the manufacturing equipment at a food factory, the amount of protein contained in the rinse water after cleaning the equipment can be grasped, or in foods such as foods and beverages. The detection method of the present invention is very useful for grasping whether or not a protein is contained, and its industrial utility is extremely high.

10,20,50 検出キット
11,30 試料導入容器
12,31 フィルター
13 呈色試薬
32,63 ろ液出口
40,70 ろ液収容容器
41 減圧口
42,71 ろ液排出口
60 シリンジ
61 ブランジャー(押子)
62 シリンジフィルター
64 外筒
65 ガスケット
10, 20, 50 Detection kit 11, 30 Sample introduction container 12, 31 Filter 13 Coloring reagent 32, 63 Filtrate outlet 40, 70 Filtrate storage container 41 Decompression port 42, 71 Filtrate discharge port 60 Syringe 61 Blancer ( Oshiko)
62 Syringe filter 64 Outer cylinder 65 Gasket

Claims (21)

測定対象のたんぱく質を呈色する呈色工程と、
測定対象のたんぱく質をフィルターでろ過するろ過工程と、
前記ろ過工程によりフィルターに捕捉された測定対象のたんぱく質の呈色を検出する検出工程と、
を備える、たんぱく質の検出方法であって、
前記検出工程の前に、
フィルターに捕捉された測定対象のたんぱく質を変性させるたんぱく質変性工程と、
フィルターに脱色剤を添加する脱色工程と、
をさらに備えることを特徴とする、たんぱく質の検出方法。
The coloring process that colors the protein to be measured and
A filtration process that filters the protein to be measured with a filter,
A detection step for detecting the coloration of the protein to be measured captured by the filter by the filtration step, and a detection step for detecting the coloration of the protein to be measured.
It is a protein detection method that includes
Before the detection step,
A protein denaturation step that denatures the protein to be measured captured by the filter,
The decolorization process of adding a decolorizing agent to the filter and
A method for detecting a protein, which is characterized by further comprising.
前記呈色工程、前記ろ過工程、前記たんぱく質変性工程、前記脱色工程、および前記検出工程をこの順で実施する、請求項1に記載の検出方法。 The detection method according to claim 1, wherein the coloration step, the filtration step, the protein denaturation step, the decolorization step, and the detection step are carried out in this order. 前記ろ過工程、前記呈色工程、前記たんぱく質変性工程、前記脱色工程、および前記検出工程をこの順で実施する、請求項1に記載の検出方法。 The detection method according to claim 1, wherein the filtration step, the color development step, the protein denaturation step, the decolorization step, and the detection step are carried out in this order. 前記呈色工程において、測定対象のたんぱく質との結合により吸収波長がシフトする呈色試薬を用い、測定対象のたんぱく質を呈色する、請求項1〜3のいずれか1項に記載の検出方法。 The detection method according to any one of claims 1 to 3, wherein in the coloring step, a coloring reagent whose absorption wavelength shifts due to binding to the protein to be measured is used to color the protein to be measured. 前記呈色工程において、ブラッドフォード法により測定対象のたんぱく質を呈色する、請求項1〜3のいずれか1項に記載の検出方法。 The detection method according to any one of claims 1 to 3, wherein in the coloration step, the protein to be measured is colored by the Bradford method. 前記ろ過工程において、測定対象のたんぱく質をガラスフィルターでろ過する、請求項1〜5のいずれか1項に記載の検出方法。 The detection method according to any one of claims 1 to 5, wherein in the filtration step, the protein to be measured is filtered with a glass filter. 前記たんぱく質変性工程において、フィルターに酸を添加することによりフィルターに捕捉された測定対象のたんぱく質を変性させる、請求項1〜6のいずれか1項に記載の検出方法。 The detection method according to any one of claims 1 to 6, wherein in the protein denaturing step, the protein to be measured captured by the filter is denatured by adding an acid to the filter. 前記酸が、酢酸、リン酸、ギ酸、クエン酸、塩酸、及び乳酸からなる群より選ばれる少なくとも一種の酸である、請求項7に記載の検出方法。 The detection method according to claim 7, wherein the acid is at least one acid selected from the group consisting of acetic acid, phosphoric acid, formic acid, citric acid, hydrochloric acid, and lactic acid. 前記酸が酢酸である、請求項7に記載の検出方法。 The detection method according to claim 7, wherein the acid is acetic acid. 前記脱色工程において、フィルターに添加する脱色剤が有機溶剤を含む、請求項1〜9のいずれか1項に記載の検出方法。 The detection method according to any one of claims 1 to 9, wherein in the decolorization step, the decolorizing agent added to the filter contains an organic solvent. 前記有機溶剤が、エタノール、メタノール、イソプロパノールからなる群より選ばれる少なくとも一種のアルコールを含む、請求項10に記載の検出方法。 The detection method according to claim 10, wherein the organic solvent contains at least one alcohol selected from the group consisting of ethanol, methanol, and isopropanol. 前記有機溶剤がエタノールを含む、請求項10に記載の検出方法。 The detection method according to claim 10, wherein the organic solvent contains ethanol. 前記たんぱく質変性工程において、フィルターに酢酸を添加することによりフィルターに捕捉された測定対象のたんぱく質を変性させ、かつ、前記脱色工程において、フィルターにエタノールを添加する、請求項1〜12のいずれか1項に記載の検出方法。 Any one of claims 1 to 12, wherein in the protein denaturing step, acetic acid is added to the filter to denature the protein to be measured captured in the filter, and in the decolorization step, ethanol is added to the filter. The detection method described in the section. 前記測定対象のたんぱく質が、食品工場の製造設備の洗浄に用いたすすぎ水に含まれるたんぱく質、または、食物もしくは飲料に含まれるたんぱく質である、請求項1〜13のいずれか1項に記載の検出方法。 The detection according to any one of claims 1 to 13, wherein the protein to be measured is a protein contained in rinse water used for cleaning a manufacturing facility of a food factory, or a protein contained in food or beverage. Method. 前記食品工場の製造設備の洗浄に用いたすすぎ水に含まれるたんぱく質が、乳、卵、小麦、そば、落花生、エビ、カニ、あわび、いか、いくら、オレンジ、カシューナッツ、キウイフルーツ、牛肉、くるみ、ごま、さけ、さば、大豆、鶏肉、バナナ、豚肉、まつたけ、もも、やまいも、りんご、またはゼラチンに含まれるたんぱく質である、請求項14に記載の検出方法。 The proteins contained in the rinse water used to clean the manufacturing equipment of the food factory are milk, eggs, wheat, buckwheat, peanuts, shrimp, crabs, abalone, squid, salmon roe, oranges, cashew nuts, kiwifruit, beef, walnuts, etc. The detection method according to claim 14, wherein the protein is contained in sesame, salmon roe, buckwheat, soybean, chicken, banana, pork, matsutake, thigh, yamaimo, apple, or gelatin. 食物もしくは飲料に含まれるたんぱく質が、乳、卵、小麦、そば、落花生、エビ、カニ、あわび、いか、いくら、オレンジ、カシューナッツ、キウイフルーツ、牛肉、くるみ、ごま、さけ、さば、大豆、鶏肉、バナナ、豚肉、まつたけ、もも、やまいも、りんご、またはゼラチンに含まれるたんぱく質である、請求項14に記載の検出方法。 Proteins in food or beverages include milk, eggs, wheat, buckwheat, peanuts, shrimp, crabs, abalone, squid, salmon roe, oranges, cashew nuts, kiwifruit, beef, walnuts, sesame, salmon, mackerel, soybeans, chicken, The detection method according to claim 14, wherein the protein is contained in banana, pork, matsutake, thigh, yam, apple, or gelatin. 検出の所要時間が1時間以下であることを特徴とする、請求項1〜16のいずれか1項に記載の検出方法。 The detection method according to any one of claims 1 to 16, wherein the time required for detection is one hour or less. 測定対象のたんぱく質を呈色させる呈色工程と、
測定対象のたんぱく質をフィルターでろ過するろ過工程と、
前記ろ過工程によりフィルターに捕捉された測定対象のたんぱく質を変性させるたんぱく質変性工程と、
フィルターに脱色剤を添加する脱色工程と、
フィルターに捕捉された測定対象のたんぱく質の呈色を検出する検出工程と、
前記検出工程において検出された測定対象のたんぱく質の呈色について、その色彩値を測定する色彩値測定工程と、
を備える、たんぱく質の濃度測定方法であって、
測定対象のたんぱく質の濃度と、その色彩値とが既知の複数の参照用試料を用いて、各参照用試料中の測定対象のたんぱく質の濃度と前記色彩値との対応関係を示す検量線を作成することにより、前記色彩値測定工程で測定される色彩値から測定対象のたんぱく質の濃度を測定することを特徴とする、たんぱく質の濃度測定方法。
The coloring process to color the protein to be measured and
A filtration process that filters the protein to be measured with a filter,
A protein denaturing step of denaturing the protein to be measured captured by the filter by the filtration step, and a protein denaturing step.
The decolorization process of adding a decolorizing agent to the filter and
A detection process that detects the coloration of the protein to be measured captured by the filter,
With respect to the coloration of the protein to be measured detected in the detection step, the color value measuring step for measuring the color value and the color value measuring step
It is a method for measuring the concentration of protein, which comprises
Using a plurality of reference samples whose color values and the concentration of the protein to be measured are known, a calibration curve showing the correspondence between the concentration of the protein to be measured in each reference sample and the color value is created. A method for measuring the concentration of a protein, which comprises measuring the concentration of a protein to be measured from the color value measured in the color value measuring step.
測定対象のたんぱく質をブラッドフォード法により呈色させる呈色工程と、
測定対象のたんぱく質をフィルターでろ過するろ過工程と、
前記ろ過工程によりフィルターに捕捉された測定対象のたんぱく質を変性させるたんぱく質変性工程と、
フィルターに脱色剤を添加する脱色工程と、
フィルターに捕捉された測定対象のたんぱく質の呈色を検出する検出工程と、
前記検出工程において検出された測定対象のたんぱく質の呈色について、CIE規格に準拠したL表色系において定義されるb値を測定する色彩値測定工程と、
を備える、たんぱく質の濃度測定方法であって、
測定対象のたんぱく質の濃度とCIE規格に準拠したL表色系において定義されるb値とが既知である複数の参照用試料を用いて、各参照用試料中の測定対象のたんぱく質の濃度と前記b値との対応関係を示す検量線を作成することにより、前記色彩値測定工程で測定されるb値から測定対象のたんぱく質の濃度を測定することを特徴とする、たんぱく質の濃度測定方法。
The coloration process of coloring the protein to be measured by the Bradford method,
A filtration process that filters the protein to be measured with a filter,
A protein denaturing step of denaturing the protein to be measured captured by the filter by the filtration step, and a protein denaturing step.
The decolorization process of adding a decolorizing agent to the filter and
A detection process that detects the coloration of the protein to be measured captured by the filter,
Regarding the color development of the protein to be measured detected in the detection step, a color value measuring step for measuring the b value defined in the L * a * b * color system conforming to the CIE standard, and a color value measuring step.
It is a method for measuring the concentration of protein, which comprises
Using a plurality of reference samples for which the concentration of the protein to be measured and the b value defined in the L * a * b * color system conforming to the CIE standard are known, the measurement target in each reference sample is used. By creating a calibration curve showing the correspondence between the protein concentration and the b value, the concentration of the protein to be measured is measured from the b value measured in the color value measuring step. Concentration measurement method.
測定対象のたんぱく質を捕捉するフィルターと、測定対象のたんぱく質を呈色させる呈色試薬と、測定対象のたんぱく質を変性させるたんぱく質変性剤と、脱色剤とを含む、たんぱく質の検出キット。 A protein detection kit containing a filter that captures the protein to be measured, a coloring reagent that colors the protein to be measured, a protein denaturing agent that denatures the protein to be measured, and a decolorizing agent. さらに、呈色判断紙を備え、
前記呈色判断紙と前記フィルターに捕捉された測定対象のたんぱく質の呈色状態とを比較することによって、測定対象のたんぱく質の濃度を測定するための、
請求項20に記載のたんぱく質の検出キット。
In addition, it is equipped with a coloration judgment paper.
A method for measuring the concentration of a protein to be measured by comparing the coloration determination paper with the coloration state of the protein to be measured captured by the filter.
The protein detection kit according to claim 20.
JP2019084576A 2019-04-25 2019-04-25 Protein detection method Active JP7327985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019084576A JP7327985B2 (en) 2019-04-25 2019-04-25 Protein detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019084576A JP7327985B2 (en) 2019-04-25 2019-04-25 Protein detection method

Publications (2)

Publication Number Publication Date
JP2020180890A true JP2020180890A (en) 2020-11-05
JP7327985B2 JP7327985B2 (en) 2023-08-16

Family

ID=73023953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019084576A Active JP7327985B2 (en) 2019-04-25 2019-04-25 Protein detection method

Country Status (1)

Country Link
JP (1) JP7327985B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325490A (en) * 1976-06-10 1978-03-09 Uni Jiyoojia Za Reagent for analyzing proteins and method of analyzing proteins
JPH07243972A (en) * 1994-03-04 1995-09-19 Nippon Oil & Fats Co Ltd Quantitative determination method for trace protein in lipid
JPH1183859A (en) * 1997-09-02 1999-03-26 Nakarai Tesuku Kk Detecting method for membrane-bound specific protein and adjusting kit for decoloring liquid
JP2000221197A (en) * 1999-02-02 2000-08-11 Konica Corp Kit and method for detecting protein
US20060084175A1 (en) * 2004-10-19 2006-04-20 Wayne Comper Colorimetric strip containing coomassie blue for semi-quantitation of albumin
JP2010223726A (en) * 2009-03-23 2010-10-07 Shino Test Corp Method and kit for measuring protein in sample
JP2016211967A (en) * 2015-05-08 2016-12-15 プリマハム株式会社 Allergen detection method using immuno-chromatography

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325490A (en) * 1976-06-10 1978-03-09 Uni Jiyoojia Za Reagent for analyzing proteins and method of analyzing proteins
JPH07243972A (en) * 1994-03-04 1995-09-19 Nippon Oil & Fats Co Ltd Quantitative determination method for trace protein in lipid
JPH1183859A (en) * 1997-09-02 1999-03-26 Nakarai Tesuku Kk Detecting method for membrane-bound specific protein and adjusting kit for decoloring liquid
JP2000221197A (en) * 1999-02-02 2000-08-11 Konica Corp Kit and method for detecting protein
US20060084175A1 (en) * 2004-10-19 2006-04-20 Wayne Comper Colorimetric strip containing coomassie blue for semi-quantitation of albumin
JP2010223726A (en) * 2009-03-23 2010-10-07 Shino Test Corp Method and kit for measuring protein in sample
JP2016211967A (en) * 2015-05-08 2016-12-15 プリマハム株式会社 Allergen detection method using immuno-chromatography

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAOSHAN HE: "Field detection of proteins by a disposable strip", SCIENTIFIC RESEARCH AND ESSAYS, vol. 6, no. 7, JPN6023003713, 4 April 2011 (2011-04-04), pages 1688 - 1691, ISSN: 0004976926 *
S. BRAMHALL: "A Simple Colorimetric Method for Determination of Protein", ANALYTICAL BIOCHEMISTRY, vol. 31, JPN6023003712, 1969, pages 146 - 148, XP024827595, ISSN: 0004976927, DOI: 10.1016/0003-2697(69)90251-6 *

Also Published As

Publication number Publication date
JP7327985B2 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
Anfossi et al. Lateral-flow immunoassays for mycotoxins and phycotoxins: a review
CN102156191A (en) Magnetic immune chromatography method capable of synchronously detecting Tm and Pa allergens
WO2005114182A1 (en) Histamine detection method and histamine detection kit
CN102043055A (en) Rapid immunomagnetic bead chromatographic method for main allergens in aquatic products
NO803479L (en) PROCEDURE FOR DETERMINATION AND QUANTITATIVE DETERMINATION OF BLOOD
US20100112604A1 (en) Home food test kit and method of use
CN103995130B (en) α 1-microglobulin detection kit and preparation thereof
CN105044003A (en) Nano-sensor for colorimetric/fluorescence dual-mode rapid detection of antibiotics and antibiotic detection method
US7691602B1 (en) Agricultural screening system and method for detection of infectious microorganisms
JP7327985B2 (en) Protein detection method
CA2812312A1 (en) Device, method, system and kit for the detection of contaminants and/or pathogens in consumables by way of a color-change analysis using nanoparticles within a hydrogel
US10151749B2 (en) Method and kit for the detection of microorganisms
CN104535768A (en) Urinary microalbumin detection apparatus
JP5493069B2 (en) Method and kit for measuring protein in sample
US20120112097A1 (en) Method and apparatus for quantitative analysis of the extent of membrane fouling by using fluorescent protein structures
JP2011145288A (en) Impurity removal method for heavy metal measuring sample, impurity removing agent, and measuring method of heavy metal
TWI412494B (en) Detection kit of melamine and detection method thereof
Sasaki et al. Flow-based food analysis: an overview of recent contributions
US20230101980A1 (en) Method, system and apparatus for substance identification
CN109813900A (en) A kind of time-resolved fluoroimmunoassay chromatography quantitative testing test paper item detecting chloramphenicol
CN107907680B (en) Colloidal gold immune test paper for detecting bacillus larvae of bees and preparation and application thereof
US11781991B2 (en) Method for detecting protein
EP1463744A2 (en) Devices and methods for isolating and detecting specific substances in complex matrices
Uyeh et al. Food safety applications
CN116794287B (en) Fecal occult blood sensor with high scale resistance and high accuracy and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230803

R150 Certificate of patent or registration of utility model

Ref document number: 7327985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150