JP2020178047A - Solenoid device - Google Patents

Solenoid device Download PDF

Info

Publication number
JP2020178047A
JP2020178047A JP2019079476A JP2019079476A JP2020178047A JP 2020178047 A JP2020178047 A JP 2020178047A JP 2019079476 A JP2019079476 A JP 2019079476A JP 2019079476 A JP2019079476 A JP 2019079476A JP 2020178047 A JP2020178047 A JP 2020178047A
Authority
JP
Japan
Prior art keywords
magnetic
core
movable core
movable
magnetic spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019079476A
Other languages
Japanese (ja)
Other versions
JP7113782B2 (en
Inventor
佳孝 西口
Yoshitaka Nishiguchi
佳孝 西口
貴洋 城
Takahiro Jo
貴洋 城
健太郎 山口
Kentaro Yamaguchi
健太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Denso Electronics Corp
Original Assignee
Denso Corp
Anden Co Ltd
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Anden Co Ltd, Soken Inc filed Critical Denso Corp
Priority to JP2019079476A priority Critical patent/JP7113782B2/en
Publication of JP2020178047A publication Critical patent/JP2020178047A/en
Application granted granted Critical
Publication of JP7113782B2 publication Critical patent/JP7113782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Electromagnets (AREA)

Abstract

To provide a solenoid device which can improve electromagnetic suction force when sucking a movable core to the stationary core side.SOLUTION: A solenoid device 1 includes an electromagnetic coil 11, a stationary core 2, a movable core 3, a magnetic spring 4 and a yoke 5. The magnetic spring 4 is arranged between a stationary opposite face part 21 of the stationary core 2 and a movable opposite face part 311 of the movable core 3. The stationary opposite face part 21 of the stationary core 2 and the movable opposite face part 311 of the movable core 3 mutually face in a Z direction in an overlaid manner in the Z direction. The magnetic spring 4 energizes the movable core 3 to the side away from the stationary core 2 in the Z direction. The yoke 5 has an opening 521 in a position opposite to the stationary opposite face part 21. The movable core 3 has a projection part 32. The projection part 32 is positioned outside the outer shape of the magnetic spring 4 and on the inner peripheral side of the opening 521 in a non-suction state in which the movable core 3 is not sucked to the stationary core 2, and projects to the stationary core 2 side than the movable opposite face part 311.SELECTED DRAWING: Figure 2

Description

本発明は、ソレノイド装置に関する。 The present invention relates to a solenoid device.

特許文献1には、ソレノイド装置の一種である電磁継電器が開示されている。特許文献1に記載された電磁継電器は、通電時に磁束を形成する電磁コイルと、電磁コイルの内側に配された固定コアと、固定コアと対向するよう配された可動コアとを備える。また、固定コアと可動コアとの間の空間には、可動コアを固定コアから遠ざかる側に付勢する磁性バネが配されている。さらに、特許文献1に記載された電磁継電器は、固定コア、可動コアと共に前記磁束が通る磁気回路を構成するヨークを備える。ヨークは、固定コアと対向する位置に開口部を備える。 Patent Document 1 discloses an electromagnetic relay which is a kind of solenoid device. The electromagnetic relay described in Patent Document 1 includes an electromagnetic coil that forms a magnetic flux when energized, a fixed core arranged inside the electromagnetic coil, and a movable core arranged so as to face the fixed core. Further, in the space between the fixed core and the movable core, a magnetic spring that urges the movable core toward the side away from the fixed core is arranged. Further, the electromagnetic relay described in Patent Document 1 includes a fixed core, a movable core, and a yoke that constitutes a magnetic circuit through which the magnetic flux passes. The yoke has an opening at a position facing the fixed core.

特許文献1に記載された電磁継電器は、電磁コイルに通電すると前記磁気回路に磁束が流れ、可動コアが、電磁力によりバネのバネ力に抗して固定コア側に吸引されてヨークの開口部の内側に配される。 In the electromagnetic relay described in Patent Document 1, when the electromagnetic coil is energized, a magnetic flux flows in the magnetic circuit, and the movable core is attracted to the fixed core side by the electromagnetic force against the spring force of the spring to open the yoke. It is placed inside the.

ここで、特許文献1に記載のソレノイド装置は、前記磁気回路における磁気抵抗を低減すべく、バネを磁性体で構成している。これにより、磁性バネが前記磁気回路の一部として作用し、前記磁気回路全体の磁気抵抗を低減させることができ、固定コア側へ可動コアを電磁的に吸引する際の吸引力を向上させることができる。かかる吸引力を向上させることにより、電磁コイルに通電する電流値を減らして省電力化を図ったり、電磁コイルのターン数を減らして小型化を図ったりすることが可能となる。 Here, in the solenoid device described in Patent Document 1, the spring is made of a magnetic material in order to reduce the magnetic resistance in the magnetic circuit. As a result, the magnetic spring acts as a part of the magnetic circuit, the magnetic resistance of the entire magnetic circuit can be reduced, and the attractive force when the movable core is electromagnetically attracted to the fixed core side is improved. Can be done. By improving the suction force, it is possible to reduce the value of the current applied to the electromagnetic coil to save power, or to reduce the number of turns of the electromagnetic coil to reduce the size.

特開2018−81901号公報JP-A-2018-81901

しかしながら、特許文献1に記載の電磁継電器においては、可動コアを介さず、磁性バネとヨークにおける開口部の周囲の部位との間を通る漏れ磁束が懸念される。かかる漏れ磁束は、固定コア側へ可動コアを吸引する際の電磁的な吸引力に寄与しない。それゆえ、特許文献1に記載のソレノイド装置においては、固定コア側へ可動コアを吸引する際の電磁的な吸引力を向上させる観点から改善の余地がある。 However, in the electromagnetic relay described in Patent Document 1, there is a concern about leakage flux passing between the magnetic spring and the portion around the opening in the yoke without passing through the movable core. Such leakage flux does not contribute to the electromagnetic attraction force when attracting the movable core to the fixed core side. Therefore, in the solenoid device described in Patent Document 1, there is room for improvement from the viewpoint of improving the electromagnetic attraction force when the movable core is attracted to the fixed core side.

本発明は、かかる課題に鑑みてなされたものであり、固定コア側へ可動コアを吸引する際の電磁的な吸引力を向上させることができるソレノイド装置を提供しようとするものである。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a solenoid device capable of improving an electromagnetic attraction force when sucking a movable core toward a fixed core side.

本発明の一態様は、通電により磁束(Φ)が発生する電磁コイル(11)と、
前記電磁コイルの内周側に配された固定コア(2)と、
前記固定コアと前記電磁コイルの軸方向(Z)に対向するよう配され、前記電磁コイルへの通電時に前記軸方向の前記固定コア側へ吸引される可動コア(3)と、
互いに前記軸方向に対向するとともに互いに前記軸方向に重なる位置に配された前記固定コアの固定対向面部(21)と前記可動コアの可動対向面部(311)との間に配され、磁性体からなり、前記可動コアを前記軸方向における前記固定コアから遠ざかる側に付勢する磁性バネ(4)と、
前記固定コア、前記可動コア、及び前記磁性バネと共に前記磁束が通る磁気回路を構成し、前記固定対向面部と対向する位置に開口部(521)を有するヨーク(5)と、を備え、
前記可動コアは、前記可動コアが前記固定コアに吸引されていない非吸引状態において前記磁性バネの外形の外側かつ前記開口部の内周側に位置するとともに、前記可動対向面部よりも前記固定コア側に突出する突出部(32)を有する、ソレノイド装置(1)にある。
One aspect of the present invention is an electromagnetic coil (11) in which magnetic flux (Φ) is generated by energization.
A fixed core (2) arranged on the inner peripheral side of the electromagnetic coil and
A movable core (3) arranged so as to face the fixed core in the axial direction (Z) of the electromagnetic coil and attracted to the fixed core side in the axial direction when the electromagnetic coil is energized.
It is arranged between the fixed facing surface portion (21) of the fixed core and the movable facing surface portion (311) of the movable core, which are arranged at positions facing each other in the axial direction and overlapping each other in the axial direction. A magnetic spring (4) that urges the movable core toward the side away from the fixed core in the axial direction.
A yoke (5) having a magnetic circuit through which the magnetic flux passes together with the fixed core, the movable core, and the magnetic spring, and having an opening (521) at a position facing the fixed facing surface portion is provided.
The movable core is located outside the outer shape of the magnetic spring and on the inner peripheral side of the opening in a non-suction state in which the movable core is not attracted to the fixed core, and the fixed core is located on the inner peripheral side of the opening. It is in a solenoid device (1) having a protruding portion (32) protruding to the side.

前記態様のソレノイド装置において、可動コアは、非吸引状態において磁性バネの外形の外側かつ開口部の内周側に位置するとともに、可動対向面部よりも固定コア側に突出する突出部を有する。それゆえ、磁性バネの各部から突出部を含む可動コアまでの距離を短くすることができ、磁性バネの各部と可動コアとの間の磁気抵抗を低減することができる。それゆえ、突出部が存在しない場合に可動コアを介さずに磁性バネとヨークにおける開口部周囲の部位との間を通るよう形成される漏れ磁束の少なくとも一部は、可動コアに突出部を形成することにより、磁性バネと突出部との間を通るよう形成される。そのため、固定コア側へ可動コアを吸引する際の電磁的な吸引力を向上させることができる。 In the solenoid device of the above aspect, the movable core is located on the outer side of the outer shape of the magnetic spring and on the inner peripheral side of the opening in the non-suction state, and has a protruding portion protruding toward the fixed core side from the movable facing surface portion. Therefore, the distance from each part of the magnetic spring to the movable core including the protruding part can be shortened, and the magnetic resistance between each part of the magnetic spring and the movable core can be reduced. Therefore, at least a part of the leakage flux formed to pass between the magnetic spring and the portion around the opening in the yoke without the movable core in the absence of the protrusion forms the protrusion on the movable core. By doing so, it is formed so as to pass between the magnetic spring and the protrusion. Therefore, it is possible to improve the electromagnetic attraction force when the movable core is attracted to the fixed core side.

以上のごとく、前記態様によれば、固定コア側へ可動コアを吸引する際の電磁的な吸引力を向上させることができるソレノイド装置を提供することができる。
なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
As described above, according to the above aspect, it is possible to provide a solenoid device capable of improving the electromagnetic attraction force when the movable core is attracted to the fixed core side.
The reference numerals in parentheses described in the scope of claims and the means for solving the problem indicate the correspondence with the specific means described in the embodiments described later, and limit the technical scope of the present invention. It's not a thing.

実施形態1における、ソレノイド装置の斜視図。The perspective view of the solenoid device in Embodiment 1. FIG. 実施形態1における、ソレノイド装置の断面図。FIG. 5 is a cross-sectional view of the solenoid device according to the first embodiment. 実施形態1における、可動コアを固定コア側から見た図。The figure which looked at the movable core from the fixed core side in Embodiment 1. FIG. 実施形態1における、電磁コイルに通電を開始した直後に生じる磁束の様子を示すソレノイド装置の断面図。The cross-sectional view of the solenoid device which shows the state of the magnetic flux generated immediately after starting the energization of an electromagnetic coil in Embodiment 1. FIG. 実施形態1における、磁性バネの周囲に形成される漏れ磁束を説明するためのソレノイド装置の拡大断面図。FIG. 5 is an enlarged cross-sectional view of the solenoid device for explaining the leakage flux formed around the magnetic spring in the first embodiment. 実施形態1における、完全吸引状態のソレノイド装置の断面図。The cross-sectional view of the solenoid device in the complete suction state in Embodiment 1. FIG. 比較形態における、磁性バネの外周部とヨークの開口形成部との間に漏れ磁束が形成されている様子を示すソレノイドの拡大断面図。An enlarged cross-sectional view of a solenoid showing a state in which a leakage flux is formed between an outer peripheral portion of a magnetic spring and an opening forming portion of a yoke in a comparative form. 実施形態2における、ソレノイド装置の断面図。FIG. 2 is a cross-sectional view of the solenoid device according to the second embodiment. 実施形態2における、可動コアを固定コア側から見た図。The figure which looked at the movable core from the fixed core side in Embodiment 2. 実施形態2における、完全吸引状態のソレノイド装置の断面図。FIG. 2 is a cross-sectional view of the solenoid device in a completely sucked state according to the second embodiment. 実施形態2における、突出部と磁性バネの外周部との間に形成される漏れ磁束を説明するためのソレノイド装置の拡大断面図。FIG. 2 is an enlarged cross-sectional view of a solenoid device for explaining the leakage flux formed between the protruding portion and the outer peripheral portion of the magnetic spring in the second embodiment. 試験例における、各ソレノイド装置の、ギャップ長さと吸引力との関係を示す線図。The diagram which shows the relationship between the gap length and the suction force of each solenoid device in a test example. 実施形態3における、ソレノイド装置の断面図。FIG. 3 is a cross-sectional view of the solenoid device according to the third embodiment. 実施形態3における、可動コアの突出部の一部拡大断面図。FIG. 3 is a partially enlarged cross-sectional view of a protruding portion of the movable core in the third embodiment. 実施形態3における、突出部と磁性バネの外周部との間に形成される漏れ磁束を説明するためのソレノイド装置の拡大断面図。FIG. 3 is an enlarged cross-sectional view of a solenoid device for explaining the leakage flux formed between the protruding portion and the outer peripheral portion of the magnetic spring in the third embodiment. 実施形態3における、突出部の磁気飽和部から先端側が磁気飽和した後に、可動コアと磁性バネの外周部との間に形成される漏れ磁束を説明するためのソレノイド装置の拡大断面図。FIG. 3 is an enlarged cross-sectional view of the solenoid device for explaining the leakage flux formed between the movable core and the outer peripheral portion of the magnetic spring after the tip side from the magnetic saturation portion of the protruding portion is magnetically saturated in the third embodiment. 実施形態4における、可動コアの突出部の一部拡大断面図。FIG. 6 is a partially enlarged cross-sectional view of a protruding portion of the movable core according to the fourth embodiment. 実施形態5における、可動コアの突出部の一部拡大断面図。FIG. 5 is a partially enlarged cross-sectional view of a protruding portion of the movable core in the fifth embodiment. 実施形態5における、突出部と磁性バネの外周部との間に形成される漏れ磁束を説明するためのソレノイド装置の拡大断面図。FIG. 5 is an enlarged cross-sectional view of a solenoid device for explaining the leakage flux formed between the protruding portion and the outer peripheral portion of the magnetic spring in the fifth embodiment. 実施形態5における、突出部の第二部位から先端側が磁気飽和した後に、突出部と磁性バネの外周部との間に形成される漏れ磁束を説明するためのソレノイド装置の拡大断面図。FIG. 5 is an enlarged cross-sectional view of a solenoid device for explaining the leakage flux formed between the protrusion and the outer peripheral portion of the magnetic spring after the tip side from the second portion of the protrusion is magnetically saturated in the fifth embodiment. 実施形態5における、突出部の第一部位から先端側が磁気飽和した後に、可動コアと磁性バネの外周部との間に形成される漏れ磁束を説明するためのソレノイド装置の拡大断面図。FIG. 5 is an enlarged cross-sectional view of a solenoid device for explaining the leakage flux formed between the movable core and the outer peripheral portion of the magnetic spring after the tip side from the first portion of the protruding portion is magnetically saturated in the fifth embodiment. 実施形態6における、可動コアの突出部の一部拡大断面図。FIG. 6 is a partially enlarged cross-sectional view of a protruding portion of the movable core according to the sixth embodiment. 実施形態7における、可動コアの突出部の一部拡大断面図。FIG. 7 is a partially enlarged cross-sectional view of a protruding portion of the movable core according to the seventh embodiment. 実施形態8における、可動コアの突出部の一部拡大断面図。FIG. 8 is a partially enlarged cross-sectional view of a protruding portion of the movable core according to the eighth embodiment.

(実施形態1)
ソレノイド装置の実施形態につき、図1〜図6を用いて説明する。
本実施形態のソレノイド装置1は、図1、図2に示すごとく、電磁コイル11と固定コア2と可動コア3と磁性バネ4とヨーク5とを備える。
(Embodiment 1)
An embodiment of the solenoid device will be described with reference to FIGS. 1 to 6.
As shown in FIGS. 1 and 2, the solenoid device 1 of the present embodiment includes an electromagnetic coil 11, a fixed core 2, a movable core 3, a magnetic spring 4, and a yoke 5.

図4に示すごとく、電磁コイル11は、通電により周囲に磁束Φを発生させる。固定コア2は、電磁コイル11の内周側に配されている。可動コア3は、固定コア2と電磁コイル11の軸方向(Z方向)に対向するよう配され、電磁コイル11への通電時にZ方向の固定コア2側へ吸引される。 As shown in FIG. 4, the electromagnetic coil 11 generates a magnetic flux Φ around it when energized. The fixed core 2 is arranged on the inner peripheral side of the electromagnetic coil 11. The movable core 3 is arranged so as to face the fixed core 2 in the axial direction (Z direction) of the electromagnetic coil 11, and is attracted to the fixed core 2 side in the Z direction when the electromagnetic coil 11 is energized.

図2に示すごとく、磁性バネ4は、固定コア2の固定対向面部21と可動コア3の可動対向面部311との間に配されている。ここで、固定コア2の固定対向面部21と可動コア3の可動対向面部311とは、互いにZ方向に対向するとともに互いにZ方向に重なる位置に配されている。磁性バネ4は、磁性体からなる。磁性バネ4は、可動コア3をZ方向における固定コア2から遠ざかる側に付勢する。 As shown in FIG. 2, the magnetic spring 4 is arranged between the fixed facing surface portion 21 of the fixed core 2 and the movable facing surface portion 311 of the movable core 3. Here, the fixed facing surface portion 21 of the fixed core 2 and the movable facing surface portion 311 of the movable core 3 are arranged at positions facing each other in the Z direction and overlapping each other in the Z direction. The magnetic spring 4 is made of a magnetic material. The magnetic spring 4 urges the movable core 3 toward the side away from the fixed core 2 in the Z direction.

図4に示すごとく、ヨーク5は、固定コア2、可動コア3、及び磁性バネ4と共に磁束Φが通る磁気回路を構成する。ヨーク5は、固定対向面部21とZ方向に対向する位置に開口部521を有する。 As shown in FIG. 4, the yoke 5 constitutes a magnetic circuit through which the magnetic flux Φ passes together with the fixed core 2, the movable core 3, and the magnetic spring 4. The yoke 5 has an opening 521 at a position facing the fixed facing surface portion 21 in the Z direction.

図2に示すごとく、可動コア3は、突出部32を有する。突出部32は、可動コア3が固定コア2に吸引されていない非吸引状態において磁性バネ4の外形の外側かつ開口部521の内周側に位置する。磁性バネ4の外形の外側とは、磁性バネ4と磁性バネ4の径方向の内周側の空間領域とを除く領域である。本実施形態において、突出部32は、非吸引状態において、磁性バネ4の内周部41の外周側において、内周部41に径方向に重なる位置に形成されている。また、突出部32は、可動対向面部311よりも固定コア2側に突出する。なお、図2は、非吸引状態のソレノイド装置1を表している。
以後、本実施形態につき詳説する。
As shown in FIG. 2, the movable core 3 has a protrusion 32. The protruding portion 32 is located on the outside of the outer shape of the magnetic spring 4 and on the inner peripheral side of the opening 521 in a non-suctioned state in which the movable core 3 is not attracted to the fixed core 2. The outside of the outer shape of the magnetic spring 4 is a region excluding the magnetic spring 4 and the spatial region on the inner peripheral side in the radial direction of the magnetic spring 4. In the present embodiment, the protruding portion 32 is formed at a position that radially overlaps the inner peripheral portion 41 on the outer peripheral side of the inner peripheral portion 41 of the magnetic spring 4 in the non-suction state. Further, the protruding portion 32 protrudes toward the fixed core 2 side from the movable facing surface portion 311. Note that FIG. 2 shows the solenoid device 1 in the non-suction state.
Hereinafter, the present embodiment will be described in detail.

以後、Z方向の一方側であって、固定コア2に対する可動コア3側をZ1側といい、その反対側をZ2側という。また、電磁コイル11の径方向を単に径方向といい、電磁コイル11の周方向を単に周方向という。 Hereinafter, the movable core 3 side with respect to the fixed core 2 which is one side in the Z direction is referred to as the Z1 side, and the opposite side is referred to as the Z2 side. Further, the radial direction of the electromagnetic coil 11 is simply referred to as a radial direction, and the circumferential direction of the electromagnetic coil 11 is simply referred to as a circumferential direction.

本実施形態において、ソレノイド装置1は、図示しないスイッチ部を備えた電磁継電器に用いることができる。すなわち、ソレノイド装置1は、可動コア3の進退動作によって、スイッチ部を開閉するよう構成することができる。 In the present embodiment, the solenoid device 1 can be used for an electromagnetic relay provided with a switch unit (not shown). That is, the solenoid device 1 can be configured to open and close the switch unit by moving the movable core 3 forward and backward.

電磁継電器は、例えば電気自動車やハイブリッド自動車に搭載される車載用の電磁継電器とすることができる。電磁継電器のスイッチ部は、例えばバッテリとインバータとの間に電気的に接続される。インバータは、バッテリから供給される直流電力を三相交流電力に変換し、三相交流モータへ供給するものである。 The electromagnetic relay can be, for example, an in-vehicle electromagnetic relay mounted on an electric vehicle or a hybrid vehicle. The switch portion of the electromagnetic relay is electrically connected, for example, between the battery and the inverter. The inverter converts the DC power supplied from the battery into three-phase AC power and supplies it to the three-phase AC motor.

図2に示すごとく、電磁コイル11は、Z方向に伸びる巻回軸を中心に巻回されており、略円筒形状を呈している。図4に示すごとく、電磁コイル11に通電することにより、電磁コイル11の周囲の固定コア2、ヨーク5、可動コア3及び磁性バネ4から構成される磁気回路に磁束Φが流れる。 As shown in FIG. 2, the electromagnetic coil 11 is wound around a winding shaft extending in the Z direction, and has a substantially cylindrical shape. As shown in FIG. 4, when the electromagnetic coil 11 is energized, a magnetic flux Φ flows through a magnetic circuit composed of a fixed core 2, a yoke 5, a movable core 3 and a magnetic spring 4 around the electromagnetic coil 11.

図2に示すごとく、電磁コイル11は、スプール12に巻回されている。スプール12は、電気的絶縁性を有する非磁性体の樹脂等からなる。スプール12は、電磁コイル11に対して、内周側及びZ方向の両側から対向するよう形成されている。スプール12の内周側に固定コア2が配置されている。 As shown in FIG. 2, the electromagnetic coil 11 is wound around the spool 12. The spool 12 is made of a non-magnetic resin or the like having electrical insulation. The spool 12 is formed so as to face the electromagnetic coil 11 from both the inner peripheral side and the Z direction. A fixed core 2 is arranged on the inner peripheral side of the spool 12.

固定コア2は、略円柱状を呈している。固定コア2は、強磁性体である。固定コア2の軸方向は、Z方向と一致している。固定コア2の外径は、スプール12の内径と同等であり、固定コア2の外周面とスプール12の内周面とは、微小空間を介して近接対向している、或いは当接している。 The fixed core 2 has a substantially columnar shape. The fixed core 2 is a ferromagnet. The axial direction of the fixed core 2 coincides with the Z direction. The outer diameter of the fixed core 2 is equivalent to the inner diameter of the spool 12, and the outer peripheral surface of the fixed core 2 and the inner peripheral surface of the spool 12 are in close contact with each other or in contact with each other via a minute space.

固定コア2は、Z方向に貫通するよう形成された固定挿入穴22を有する。固定挿入穴22には、後述のシャフト13のZ2側の部位が挿入されている。 The fixed core 2 has a fixed insertion hole 22 formed so as to penetrate in the Z direction. A portion of the shaft 13 on the Z2 side, which will be described later, is inserted into the fixed insertion hole 22.

固定コア2のZ2側端部には、Z2側に突出するコア嵌合部23が形成されている。コア嵌合部23は、固定コア2におけるコア嵌合部23のZ1側に隣接する部位よりも、外径が小さくなっている。コア嵌合部23は、ヨーク5に形成された底壁穴511aに挿入嵌合されている。 A core fitting portion 23 projecting to the Z2 side is formed at the Z2 side end portion of the fixed core 2. The core fitting portion 23 has a smaller outer diameter than the portion of the fixed core 2 adjacent to the Z1 side of the core fitting portion 23. The core fitting portion 23 is inserted and fitted into the bottom wall hole 511a formed in the yoke 5.

ヨーク5は、強磁性体である。図1、図2に示すごとく、ヨーク5は、第一ヨーク51と第二ヨーク52とを組み合わせてなる。 The yoke 5 is a ferromagnet. As shown in FIGS. 1 and 2, the yoke 5 is formed by combining the first yoke 51 and the second yoke 52.

第一ヨーク51の全体は、U字状に形成されている。第一ヨーク51は、電磁コイル11をZ2側から覆うよう形成された底壁511と、底壁511におけるZ方向に直交するX方向の両端縁のそれぞれからZ1側に立設されるとともに、X方向の両側から電磁コイル11を覆う一対の側壁512とを有する。なお、以後、X方向とZ方向との双方に直交する方向をY方向という。 The entire first yoke 51 is formed in a U shape. The first yoke 51 is erected on the Z1 side from each of the bottom wall 511 formed so as to cover the electromagnetic coil 11 from the Z2 side and both end edges of the bottom wall 511 in the X direction orthogonal to the Z direction. It has a pair of side walls 512 that cover the electromagnetic coil 11 from both sides in the direction. Hereinafter, the direction orthogonal to both the X direction and the Z direction is referred to as the Y direction.

底壁511は、矩形板状に形成されており、Z方向に厚みを有する。Z方向から見たときの底壁511の中央には、底壁511をZ方向に貫通する前述の底壁穴511aが形成されている。図2に示すごとく、固定コア2のコア嵌合部23は、底壁穴511aからヨーク5のZ2側に突出している。 The bottom wall 511 is formed in a rectangular plate shape and has a thickness in the Z direction. The above-mentioned bottom wall hole 511a that penetrates the bottom wall 511 in the Z direction is formed in the center of the bottom wall 511 when viewed from the Z direction. As shown in FIG. 2, the core fitting portion 23 of the fixed core 2 projects from the bottom wall hole 511a toward the Z2 side of the yoke 5.

側壁512は、X方向に厚みを有する矩形板状に形成されている。一対の側壁512は、互いにX方向に対向している。図1に示すごとく、側壁512のZ1側端部には、Y方向の中央がZ2側に凹んだ第一係合部512aが形成されている。第一係合部512aに第二ヨーク52が係合している。 The side wall 512 is formed in a rectangular plate shape having a thickness in the X direction. The pair of side walls 512 face each other in the X direction. As shown in FIG. 1, a first engaging portion 512a having a center in the Y direction recessed toward the Z2 side is formed at the Z1 side end portion of the side wall 512. The second yoke 52 is engaged with the first engaging portion 512a.

第二ヨーク52は、電磁コイル11をZ側から覆うよう形成されている。第二ヨーク52は、Z方向に厚みを有する板状に形成されている。第二ヨーク52のX方向の両端部には、Y方向の中央がX方向の固定コア2から離れる側に突出した第二係合部523が形成されている。第二係合部523は、第一ヨーク51の第一係合部512aに挿入されるとともに第一係合部512aに接合されている。 The second yoke 52 is formed so as to cover the electromagnetic coil 11 from the Z side. The second yoke 52 is formed in a plate shape having a thickness in the Z direction. At both ends of the second yoke 52 in the X direction, second engaging portions 523 are formed in which the center in the Y direction projects toward the side away from the fixed core 2 in the X direction. The second engaging portion 523 is inserted into the first engaging portion 512a of the first yoke 51 and is joined to the first engaging portion 512a.

Z方向から見たときの第二ヨーク52の中央部に、第二ヨーク52をZ方向に貫通する円形の開口部521が形成されている。図2に示すごとく、開口部521は、固定コア2のZ1側に形成されている。開口部521は、固定コア2の固定対向面部21よりも一回り大きく形成されており、Z方向から見たとき、固定対向面部21は開口部521の内側の領域に収まる。 A circular opening 521 that penetrates the second yoke 52 in the Z direction is formed in the central portion of the second yoke 52 when viewed from the Z direction. As shown in FIG. 2, the opening 521 is formed on the Z1 side of the fixed core 2. The opening 521 is formed to be one size larger than the fixed facing surface portion 21 of the fixed core 2, and the fixed facing surface portion 21 fits in the inner region of the opening 521 when viewed from the Z direction.

第二ヨーク52における開口部521の周囲には、開口形成部522が形成されている。開口形成部522は、環状に形成されており、その内周側が開口部521を構成している。開口形成部522のZ1側の面は、第二ヨーク52における開口形成部522の外周側に隣接する部位よりもZ2側に後退している。図6に示すごとく、開口形成部522のZ1側の空間は、固定コア2側に吸引された可動コア3の外周端部33が収まるよう構成されている。以後、可動コア3が固定コア2側に吸引され、可動コア3の外周端部33が開口形成部522に当接した状態を、完全吸引状態ということもある。図6に、完全吸引状態のソレノイド装置1の断面図を表している。 An opening forming portion 522 is formed around the opening 521 in the second yoke 52. The opening forming portion 522 is formed in an annular shape, and the inner peripheral side thereof constitutes the opening portion 521. The surface of the opening forming portion 522 on the Z1 side is recessed toward the Z2 side of the portion of the second yoke 52 adjacent to the outer peripheral side of the opening forming portion 522. As shown in FIG. 6, the space on the Z1 side of the opening forming portion 522 is configured to accommodate the outer peripheral end portion 33 of the movable core 3 attracted to the fixed core 2 side. After that, the state in which the movable core 3 is sucked to the fixed core 2 side and the outer peripheral end portion 33 of the movable core 3 is in contact with the opening forming portion 522 may be referred to as a complete suction state. FIG. 6 shows a cross-sectional view of the solenoid device 1 in the completely sucked state.

可動コア3は、強磁性体からなり、円盤状を呈している。図2に示すごとく、可動コア3は、電磁コイル11が非通電状態にあるとき、開口部521の内側空間を介して固定コア2にZ方向に対向するよう配されており、可動コア3の外周端部33とヨーク5の開口形成部522との間にはギャップGが形成されている。 The movable core 3 is made of a ferromagnet and has a disk shape. As shown in FIG. 2, the movable core 3 is arranged so as to face the fixed core 2 in the Z direction via the inner space of the opening 521 when the electromagnetic coil 11 is in a non-energized state. A gap G is formed between the outer peripheral end portion 33 and the opening forming portion 522 of the yoke 5.

可動コア3の外径は、開口部521の内径よりも大きい。また、可動コア3の外径は、第二ヨーク52の開口形成部522の外径と同等である。 The outer diameter of the movable core 3 is larger than the inner diameter of the opening 521. Further, the outer diameter of the movable core 3 is equivalent to the outer diameter of the opening forming portion 522 of the second yoke 52.

可動コア3は、外周端部33よりも内周側の領域に、Z2側に隆起する可動隆起部31を有する。可動隆起部31の外径は、開口部521の内径よりも小さい。図6に示すごとく、可動隆起部31は、完全吸引状態において、開口部521の内側に挿入される。 The movable core 3 has a movable raised portion 31 that is raised toward the Z2 side in a region on the inner peripheral side of the outer peripheral end portion 33. The outer diameter of the movable ridge 31 is smaller than the inner diameter of the opening 521. As shown in FIG. 6, the movable ridge 31 is inserted inside the opening 521 in the complete suction state.

可動隆起部31の主面は、固定コア2のZ1側の面にZ方向に対向している。可動隆起部31の主面は、略全体が、固定対向面部21の全面にZ方向に重なる位置に配されている。 The main surface of the movable raised portion 31 faces the surface of the fixed core 2 on the Z1 side in the Z direction. The main surface of the movable raised portion 31 is arranged at a position where substantially the entire surface overlaps the entire surface of the fixed facing surface portion 21 in the Z direction.

そして、前述のごとく、固定コア2の固定対向面部21と可動コア3の可動対向面部311とは、互いにZ方向に対向するとともに互いにZ方向に重なる位置に配されている。すなわち、本実施形態において、固定対向面部21は、固定コア2のZ1側の面であり、可動対向面部311は、可動隆起部31の主面である。なお、固定対向面部21に対して、Z方向に対向するとともにZ方向に重なる可動コア3の面部が複数ある場合は、その複数の面部のうちの最も面積の大きい面部を可動対向面部311という。 As described above, the fixed facing surface portion 21 of the fixed core 2 and the movable facing surface portion 311 of the movable core 3 are arranged at positions facing each other in the Z direction and overlapping each other in the Z direction. That is, in the present embodiment, the fixed facing surface portion 21 is the Z1 side surface of the fixed core 2, and the movable facing surface portion 311 is the main surface of the movable raised portion 31. When there are a plurality of surface portions of the movable core 3 that face the fixed facing surface portion 21 in the Z direction and overlap in the Z direction, the surface portion having the largest area among the plurality of surface portions is referred to as the movable facing surface portion 311.

可動対向面部311からZ2側に突出するように突出部32が形成されている。図2、図3に示すごとく、本実施形態において、突出部32は、複数形成されている。具体的には、突出部32は、2つ形成されている。2つの突出部32は、後述のシャフト13に対して、X方向の両側のそれぞれに形成されている。各突出部32は、径方向における可動対向面部311の中央位置に形成されている。すなわち、径方向の一つであるX方向において、各突出部32は、後述の可動挿入穴34に隣接する部位から可動対向面部311の外周縁までの領域の略中央位置に形成されている。 The protruding portion 32 is formed so as to protrude from the movable facing surface portion 311 toward the Z2 side. As shown in FIGS. 2 and 3, a plurality of protrusions 32 are formed in the present embodiment. Specifically, two protrusions 32 are formed. The two protrusions 32 are formed on both sides in the X direction with respect to the shaft 13 described later. Each protrusion 32 is formed at the center position of the movable facing surface portion 311 in the radial direction. That is, in the X direction, which is one of the radial directions, each protruding portion 32 is formed at a substantially central position of a region from a portion adjacent to the movable insertion hole 34 described later to the outer peripheral edge of the movable facing surface portion 311.

図2に示すごとく、突出部32は、可動対向面部311における磁性バネ4にZ方向に重ならない非投影領域に形成されている。そして、図6に示すごとく、突出部32は、完全吸引状態において、磁性バネ4の径方向に隣接する部位間の隙間に挿入されるよう形成されている。 As shown in FIG. 2, the protruding portion 32 is formed in a non-projected region that does not overlap the magnetic spring 4 in the movable facing surface portion 311 in the Z direction. Then, as shown in FIG. 6, the protruding portion 32 is formed so as to be inserted into the gap between the radially adjacent portions of the magnetic spring 4 in the completely attracted state.

なお、電磁コイル11に電流を流しておらず、可動コア3が固定コア2に吸引されていない非吸引状態と、完全吸引状態とにおいて、非投影領域や投影領域の形成範囲が、若干変更される場合が想定される。この場合において、非投影領域とは、特に断らない限り、完全吸引状態の、可動対向面部311における磁性バネ4にZ方向に重ならない領域を表すものとする。また、投影領域とは、特に断らない限り、完全吸引状態において、磁性バネ4を可動対向面部311にZ方向に投影した領域を表すものとする。 The formation range of the non-projection region and the projection region is slightly changed between the non-suction state in which no current is passed through the electromagnetic coil 11 and the movable core 3 is not attracted to the fixed core 2 and the complete suction state. Is expected. In this case, the non-projected region means a region that does not overlap the magnetic spring 4 in the movable facing surface portion 311 in the completely attracted state in the Z direction, unless otherwise specified. Further, unless otherwise specified, the projected region represents a region in which the magnetic spring 4 is projected onto the movable facing surface portion 311 in the Z direction in a completely attracted state.

図6に示すごとく、Z方向において、突出部32の長さは、完全吸引状態における可動対向面部311と固定対向面部21との間のZ方向の長さよりも短い。本実施形態において、Z方向の突出部32の長さは、完全吸引状態における可動対向面部311と固定対向面部21との間のZ方向の長さの半分の長さと同等の長さを有する。また、図3に示すごとく、Y方向において、各突出部32の長さは、後述の可動挿入穴34のZ2側端部34aを除く部位の直径と同等であるが、これに限られない。 As shown in FIG. 6, in the Z direction, the length of the protruding portion 32 is shorter than the length in the Z direction between the movable facing surface portion 311 and the fixed facing surface portion 21 in the fully sucked state. In the present embodiment, the length of the protruding portion 32 in the Z direction has a length equivalent to half the length in the Z direction between the movable facing surface portion 311 and the fixed facing surface portion 21 in the completely suctioned state. Further, as shown in FIG. 3, in the Y direction, the length of each protruding portion 32 is equivalent to, but not limited to, the diameter of the portion of the movable insertion hole 34 excluding the Z2 side end portion 34a described later.

図2に示すごとく、Z方向から見たときの可動コア3の中央に、可動コア3をZ方向に貫通する可動挿入穴34が形成されている。可動挿入穴34に、非磁性体からなるシャフト13が挿入されている。 As shown in FIG. 2, a movable insertion hole 34 penetrating the movable core 3 in the Z direction is formed in the center of the movable core 3 when viewed from the Z direction. A shaft 13 made of a non-magnetic material is inserted into the movable insertion hole 34.

シャフト13は、Z方向に長尺な棒状(円柱状)に形成されている。本実施形態において、シャフト13は可動挿入穴34に圧入されている。これにより、シャフト13が可動コア3に対して固定されている。 The shaft 13 is formed in a rod shape (cylindrical shape) long in the Z direction. In this embodiment, the shaft 13 is press-fitted into the movable insertion hole 34. As a result, the shaft 13 is fixed to the movable core 3.

シャフト13には、外周側に突出するシャフト係合部131が形成されている。また、可動挿入穴34のZ2側端部は、可動挿入穴34の他の部位よりも大きい径となるよう形成されている。そして、シャフト13は、シャフト係合部131を可動挿入穴34のZ2側端部に挿入するよう配されている。これにより、Z方向におけるシャフト13と可動コア3との位置決めがなされている。 The shaft 13 is formed with a shaft engaging portion 131 projecting to the outer peripheral side. Further, the Z2 side end portion of the movable insertion hole 34 is formed to have a diameter larger than that of other portions of the movable insertion hole 34. The shaft 13 is arranged so that the shaft engaging portion 131 is inserted into the Z2 side end portion of the movable insertion hole 34. As a result, the shaft 13 and the movable core 3 are positioned in the Z direction.

シャフト13のZ2側の部位は、固定コア2の固定挿入穴22に挿入されている。シャフト13は、可動コア3に対して固定されている一方、固定コア2の固定挿入穴22に対しては、Z方向に進退可能となっている。可動コア3の可動対向面部311と固定コア2の固定対向面部21との間に、磁性バネ4が配されている。 The portion of the shaft 13 on the Z2 side is inserted into the fixed insertion hole 22 of the fixed core 2. While the shaft 13 is fixed to the movable core 3, it can move forward and backward in the Z direction with respect to the fixed insertion hole 22 of the fixed core 2. A magnetic spring 4 is arranged between the movable facing surface portion 311 of the movable core 3 and the fixed facing surface portion 21 of the fixed core 2.

磁性バネ4は、Z方向の一方側へ向かうほど縮径する螺旋状に巻回されている。本実施形態において、磁性バネ4は、Z1側に向かうほど縮径する螺旋状に巻回されている。磁性バネ4は、強磁性体の板バネ部材を、当該板バネ部材の厚さ方向が磁性バネ4の径方向となるように螺旋状に巻回してなる。すなわち、磁性バネ4は、いわゆる竹の子ばねである。 The magnetic spring 4 is spirally wound so that its diameter decreases toward one side in the Z direction. In the present embodiment, the magnetic spring 4 is wound in a spiral shape whose diameter decreases toward the Z1 side. The magnetic spring 4 is formed by spirally winding a ferromagnetic leaf spring member so that the thickness direction of the leaf spring member is the radial direction of the magnetic spring 4. That is, the magnetic spring 4 is a so-called volute spring.

磁性バネ4の内周端のZ1側の端面は、可動対向面部311における可動挿入穴34の先端部に外周側に隣接する部位に溶接等により接合されているが、溶接されていなくてもよい。また、磁性バネ4の外周部42(すなわちZ2側端部)の外径は、固定コア2の固定対向面部21の外径より若干小さい。 The end surface of the inner peripheral end of the magnetic spring 4 on the Z1 side is joined to the tip of the movable insertion hole 34 in the movable facing surface portion 311 by welding or the like to a portion adjacent to the outer peripheral side, but it does not have to be welded. .. Further, the outer diameter of the outer peripheral portion 42 (that is, the Z2 side end portion) of the magnetic spring 4 is slightly smaller than the outer diameter of the fixed facing surface portion 21 of the fixed core 2.

非吸引状態において、磁性バネ4の内周部41(すなわちZ1側端部)の外周側に、突出部32が配されている。突出部32は、磁性バネ4の外周部42(すなわちZ2側端部)よりも内周側に配されている。図6に示すごとく、完全吸引状態において、磁性バネ4の径方向の中央部分において径方向に隣接する部位間の隙間に、突出部32が挿入される。 In the non-suction state, the protruding portion 32 is arranged on the outer peripheral side of the inner peripheral portion 41 (that is, the Z1 side end portion) of the magnetic spring 4. The protruding portion 32 is arranged on the inner peripheral side of the outer peripheral portion 42 (that is, the Z2 side end portion) of the magnetic spring 4. As shown in FIG. 6, in the completely attracted state, the protruding portion 32 is inserted into the gap between the radially adjacent portions in the radial central portion of the magnetic spring 4.

磁性バネ4は、電磁コイル11が通電状態にあるときも非通電状態にあるときも、弾性変形していない自由状態よりもZ方向に圧縮された状態で、固定対向面部21と可動対向面部311との間に配されている。これにより、磁性バネ4は、可動コア3をZ1側に向かって付勢している。電磁コイル11が非通電状態にあるとき、可動コア3の外周端部33は、磁性バネ4からの付勢力により、開口部521よりもZ1側に配され、第二ヨーク52の開口形成部522との間にギャップGが形成される。 The magnetic spring 4 has a fixed facing surface portion 21 and a movable facing surface portion 311 in a state of being compressed in the Z direction rather than a free state in which the electromagnetic coil 11 is in an energized state or a non-energized state. It is arranged between and. As a result, the magnetic spring 4 urges the movable core 3 toward the Z1 side. When the electromagnetic coil 11 is in the non-energized state, the outer peripheral end 33 of the movable core 3 is arranged on the Z1 side of the opening 521 by the urging force from the magnetic spring 4, and the opening forming portion 522 of the second yoke 52. A gap G is formed between the two.

次に、図4〜図6を用いて、電磁コイル11への通電により形成される磁束Φ、及びソレノイド装置1の動作につき説明する。 Next, the magnetic flux Φ formed by energizing the electromagnetic coil 11 and the operation of the solenoid device 1 will be described with reference to FIGS. 4 to 6.

図4に示すごとく、電磁コイル11に通電すると、固定コア2、ヨーク5、ギャップG、可動コア3、磁性バネ4を含む磁気回路に磁束Φが形成される。これにより、ギャップGを挟む可動コア3とヨーク5との間にZ方向の磁気的な吸引力が発生し、可動コア3が固定コア2側に吸引される。 As shown in FIG. 4, when the electromagnetic coil 11 is energized, a magnetic flux Φ is formed in a magnetic circuit including a fixed core 2, a yoke 5, a gap G, a movable core 3, and a magnetic spring 4. As a result, a magnetic attraction force in the Z direction is generated between the movable core 3 sandwiching the gap G and the yoke 5, and the movable core 3 is attracted to the fixed core 2 side.

また、磁性バネ4を通る磁束Φは、磁性バネ4の長手方向に沿って螺旋状に形成される。ここで、磁性バネ4は、その長手方向に直交する断面積が比較的小さく、磁気飽和しやすい。 Further, the magnetic flux Φ passing through the magnetic spring 4 is spirally formed along the longitudinal direction of the magnetic spring 4. Here, the magnetic spring 4 has a relatively small cross-sectional area orthogonal to the longitudinal direction thereof, and is likely to be magnetically saturated.

磁性バネ4が磁気飽和すると、図5に示すごとく、磁性バネ4と固定コア2との間、及び磁性バネ4と可動コア3との間に漏れ磁束Φaが発生する。この漏れ磁束Φaによって、固定コア2と磁性バネ4との間、及び磁性バネ4と可動コア3との間のそれぞれに吸引力が発生する。 When the magnetic spring 4 is magnetically saturated, a leakage flux Φa is generated between the magnetic spring 4 and the fixed core 2 and between the magnetic spring 4 and the movable core 3, as shown in FIG. Due to this leakage flux Φa, an attractive force is generated between the fixed core 2 and the magnetic spring 4 and between the magnetic spring 4 and the movable core 3, respectively.

ここで、漏れ磁束Φaは、磁性バネ4における固定コア2に近い部位と固定コア2との間、及び磁性バネ4における可動コア3に近い部位と可動コア3との間に多く形成される。そのため、磁性バネ4における固定コア2に近い部位と固定コア2との間、及び磁性バネ4における可動コア3に近い部位と可動コア3との間において、漏れ磁束Φaによる吸引力も大きくなる。 Here, a large amount of leakage flux Φa is formed between the portion of the magnetic spring 4 close to the fixed core 2 and the fixed core 2, and between the portion of the magnetic spring 4 close to the movable core 3 and the movable core 3. Therefore, the attractive force due to the leakage flux Φa also increases between the portion of the magnetic spring 4 close to the fixed core 2 and the fixed core 2, and between the portion of the magnetic spring 4 close to the movable core 3 and the movable core 3.

特に、本実施形態においては、可動コア3に、磁性バネ4が配されたZ2側に突出する突出部32が形成されているため、突出部32と磁性バネ4の各部との間の長さが比較的短くなりやすい。そのため、可動コア3の突出部32と磁性バネ4の各部との間にZ方向成分を有する漏れ磁束Φaが形成されやすい。これにより、可動コア3の突出部32と磁性バネ4との間にもZ方向の吸引力が作用する。 In particular, in the present embodiment, since the movable core 3 is formed with a protruding portion 32 protruding toward the Z2 side in which the magnetic spring 4 is arranged, the length between the protruding portion 32 and each portion of the magnetic spring 4 Is relatively short. Therefore, a leakage flux Φa having a Z-direction component is likely to be formed between the protruding portion 32 of the movable core 3 and each portion of the magnetic spring 4. As a result, a suction force in the Z direction also acts between the protruding portion 32 of the movable core 3 and the magnetic spring 4.

そして、磁性バネ4の各部と、固定コア2及び可動コア3のそれぞれとの間に形成される漏れ磁束Φaにより、磁性バネ4にZ方向に縮もうとする力が生じ、見かけ上の磁性バネ4の反力が弱まる(すなわち見かけ上の磁性バネ4のバネ定数が下がる)。これにより、可動コア3に作用する固定コア2側への吸引力が増加する。 Then, due to the leakage flux Φa formed between each part of the magnetic spring 4 and each of the fixed core 2 and the movable core 3, a force that tries to contract in the Z direction is generated in the magnetic spring 4, and the apparent magnetic spring The reaction force of 4 is weakened (that is, the spring constant of the apparent magnetic spring 4 is lowered). As a result, the suction force on the fixed core 2 side acting on the movable core 3 increases.

前述したすべての吸引力により、可動コア3が固定コア2側に吸引される。図6に示すごとく、完全吸引状態においては、可動コア3の可動隆起部31がヨーク5の開口部521内に挿入されるとともに、可動コア3の外周端部33が、開口形成部522に当接する。この状態においては、磁性バネ4のZ1側の面の全体が可動コア3の可動対向面部311と当接又は近接対向するとともに、磁性バネ4のZ2側の面の全体が固定コア2の固定対向面部21と当接又は近接対向する。つまり、磁性バネ4を構成する板バネ部材のZ方向の幅は、完全吸引状態における可動対向面部311と固定対向面部21とのZ方向の長さと同等である。完全吸引状態において、磁束Φは、磁性バネ4をZ方向に沿って流れる。 The movable core 3 is sucked toward the fixed core 2 by all the suction forces described above. As shown in FIG. 6, in the complete suction state, the movable ridge 31 of the movable core 3 is inserted into the opening 521 of the yoke 5, and the outer peripheral end 33 of the movable core 3 hits the opening forming portion 522. Contact. In this state, the entire surface of the magnetic spring 4 on the Z1 side is in contact with or close to the movable facing surface portion 311 of the movable core 3, and the entire surface of the magnetic spring 4 on the Z2 side is fixedly opposed to the fixed core 2. It comes into contact with or faces the surface portion 21. That is, the width of the leaf spring member constituting the magnetic spring 4 in the Z direction is equivalent to the length of the movable facing surface portion 311 and the fixed facing surface portion 21 in the completely attracted state in the Z direction. In the completely attracted state, the magnetic flux Φ flows through the magnetic spring 4 along the Z direction.

次に、本実施形態の作用効果につき説明する。
本実施形態のソレノイド装置1において、可動コア3は、非吸引状態において磁性バネ4の外形の外側かつ開口部521の内周側に位置するとともに、可動対向面部311よりも固定コア2側に突出する突出部32を有する。それゆえ、磁性バネ4の各部から突出部32を含む可動コア3までの距離を短くすることができ、磁性バネ4の各部と可動コア3との間の磁気抵抗を低減することができる。それゆえ、突出部32が存在しない場合に可動コア3を介さずに磁性バネ4とヨーク5における開口部521周囲の部位(すなわち開口形成部522)との間を通るよう形成される漏れ磁束Φaの少なくとも一部は、可動コア3に突出部32を形成することにより、磁性バネ4と突出部32との間を通るよう形成される。そのため、固定コア2側へ可動コア3を吸引する際の電磁的な吸引力を向上させることができる。
Next, the action and effect of this embodiment will be described.
In the solenoid device 1 of the present embodiment, the movable core 3 is located outside the outer shape of the magnetic spring 4 and on the inner peripheral side of the opening 521 in a non-suction state, and protrudes toward the fixed core 2 side from the movable facing surface portion 311. It has a protruding portion 32 to be formed. Therefore, the distance from each portion of the magnetic spring 4 to the movable core 3 including the protruding portion 32 can be shortened, and the magnetic resistance between each portion of the magnetic spring 4 and the movable core 3 can be reduced. Therefore, when the protrusion 32 is not present, the leakage flux Φa is formed so as to pass between the magnetic spring 4 and the portion around the opening 521 in the yoke 5 (that is, the opening forming portion 522) without passing through the movable core 3. At least a part of the above is formed so as to pass between the magnetic spring 4 and the protrusion 32 by forming the protrusion 32 on the movable core 3. Therefore, it is possible to improve the electromagnetic attraction force when the movable core 3 is attracted to the fixed core 2 side.

ここで、図7に示すごとく、突出部32が形成されていない場合を想定する。すなわち、可動隆起部31のZ2側の面の全体が、Z方向に直交する平面状に形成された場合を想定する。この場合、電磁コイル11に通電し、磁性バネ4が飽和した場合、ヨーク5の開口形成部522と磁性バネ4における開口形成部522に近い部位との間に漏れ磁束Φbが形成される。すなわち、突出部32が形成されていない場合、磁性バネ4の各部とヨーク5の開口形成部522との間の距離が、磁性バネ4の各部と可動コア3との間の距離よりも短くなりやすく、磁性バネ4における開口形成部522付近の部位と開口形成部522との間に直接的に漏れ磁束Φbが形成されやすい。開口形成部522と磁性バネ4との間に形成される漏れ磁束Φbは、可動コア3を固定コア2側に吸引することに寄与せず、可動コア3を固定コア2側に吸引する際のロスとなる漏れ磁束である。 Here, as shown in FIG. 7, it is assumed that the protruding portion 32 is not formed. That is, it is assumed that the entire surface of the movable ridge 31 on the Z2 side is formed in a plane shape orthogonal to the Z direction. In this case, when the electromagnetic coil 11 is energized and the magnetic spring 4 is saturated, a leakage flux Φb is formed between the opening forming portion 522 of the yoke 5 and the portion of the magnetic spring 4 close to the opening forming portion 522. That is, when the protruding portion 32 is not formed, the distance between each portion of the magnetic spring 4 and the opening forming portion 522 of the yoke 5 is shorter than the distance between each portion of the magnetic spring 4 and the movable core 3. It is easy to form a leakage flux Φb directly between the portion of the magnetic spring 4 near the opening forming portion 522 and the opening forming portion 522. The leakage flux Φb formed between the opening forming portion 522 and the magnetic spring 4 does not contribute to attracting the movable core 3 to the fixed core 2 side, and when attracting the movable core 3 to the fixed core 2 side. It is a leakage flux that becomes a loss.

そこで、図5に示すごとく、可動コア3に突出部32を形成し、突出部32と磁性バネ4の各部との間の距離を短くすることにより、磁性バネ4と開口形成部522との間に形成される漏れ磁束(図7の符号Φb参照)を減らし、磁性バネ4と可動コア3との間を通る漏れ磁束Φaを増やすことができる。これにより、本実施形態においては、固定コア2側へ可動コア3を吸引する際の電磁的な吸引力を向上させることができる。 Therefore, as shown in FIG. 5, a protruding portion 32 is formed on the movable core 3 and the distance between the protruding portion 32 and each portion of the magnetic spring 4 is shortened, so that the distance between the magnetic spring 4 and the opening forming portion 522 is reduced. It is possible to reduce the leakage flux formed in (see reference numeral Φb in FIG. 7) and increase the leakage flux Φa passing between the magnetic spring 4 and the movable core 3. Thereby, in the present embodiment, it is possible to improve the electromagnetic attraction force when the movable core 3 is attracted to the fixed core 2 side.

また、磁性バネ4は、Z方向の一方側へ向かうほど縮径する螺旋状に巻回されている。それゆえ、磁性バネ4の外周部42は、ヨーク5の開口形成部522に近接し、磁性バネ4と開口形成部522との間に、可動コア3を固定コア2側にZ方向に吸引する際の吸引力に寄与しない漏れ磁束が生じることが懸念される。しかしながら、前述のごとく可動コア3に突出部32を有することにより、磁性バネ4と開口形成部522との間に形成される漏れ磁束(図7の符号Φb参照)を減らし、磁性バネ4と可動コア3との間を通る漏れ磁束Φaを増やすことができる。 Further, the magnetic spring 4 is wound in a spiral shape whose diameter decreases toward one side in the Z direction. Therefore, the outer peripheral portion 42 of the magnetic spring 4 is close to the opening forming portion 522 of the yoke 5, and the movable core 3 is attracted to the fixed core 2 side in the Z direction between the magnetic spring 4 and the opening forming portion 522. There is a concern that leakage flux that does not contribute to the attractive force will be generated. However, by having the protruding portion 32 on the movable core 3 as described above, the leakage flux formed between the magnetic spring 4 and the opening forming portion 522 (see the reference numeral Φb in FIG. 7) is reduced, and the movable core 3 is movable with the magnetic spring 4. The leakage flux Φa passing between the core 3 and the core 3 can be increased.

さらに、磁性バネ4の各部と固定コア2及び可動コア3との間に漏れ磁束Φaが流れ、磁性バネ4と固定コア2との間、及び、磁性バネ4と可動コア3との間のそれぞれに電磁的な吸引力が発生する。これにより、見かけ上の磁性バネ4の反力を弱めやすく、固定コア2側へ可動コア3を吸引する際の電磁的な吸引力を向上させやすい。 Further, a leakage flux Φa flows between each part of the magnetic spring 4 and the fixed core 2 and the movable core 3, and between the magnetic spring 4 and the fixed core 2 and between the magnetic spring 4 and the movable core 3, respectively. An electromagnetic attraction is generated in the spring. As a result, the apparent reaction force of the magnetic spring 4 can be easily weakened, and the electromagnetic attraction force when the movable core 3 is attracted to the fixed core 2 side can be easily improved.

また、突出部32は、可動対向面部311における磁性バネ4にZ方向に重ならない非投影領域に形成されている。それゆえ、可動コア3が固定コア2側に吸引される際、可動コア3の突出部32が、磁性バネ4に干渉することを防止することができる。 Further, the protruding portion 32 is formed in a non-projected region that does not overlap the magnetic spring 4 in the movable facing surface portion 311 in the Z direction. Therefore, when the movable core 3 is attracted to the fixed core 2, it is possible to prevent the protruding portion 32 of the movable core 3 from interfering with the magnetic spring 4.

また、本実施形態のソレノイド装置1は、複数の突出部32を有する。このように、突出部32の形成箇所を増やすことにより、磁性バネ4の各部と可動コア3との距離を縮めやすく、これらの間に形成される漏れ磁束Φaを増やすことができる。これによっても、固定コア2側へ可動コア3を吸引する際の電磁的な吸引力を向上させることができる。 Further, the solenoid device 1 of the present embodiment has a plurality of protrusions 32. By increasing the number of formed portions of the protruding portions 32 in this way, the distance between each portion of the magnetic spring 4 and the movable core 3 can be easily shortened, and the leakage flux Φa formed between them can be increased. This also makes it possible to improve the electromagnetic attraction force when the movable core 3 is attracted to the fixed core 2 side.

以上のごとく、本実施形態によれば、固定コア側へ可動コアを吸引する際の電磁的な吸引力を向上させることができるソレノイド装置を提供することができる。 As described above, according to the present embodiment, it is possible to provide a solenoid device capable of improving the electromagnetic attraction force when the movable core is attracted to the fixed core side.

(実施形態2)
本実施形態は、図8〜図11に示すごとく、実施形態1に対し、突出部32の構成を変更した実施形態である。
(Embodiment 2)
As shown in FIGS. 8 to 11, this embodiment is an embodiment in which the configuration of the protrusion 32 is changed from that of the first embodiment.

図8に示すごとく、突出部32は、可動隆起部31の主面の外周縁に沿うよう形成されている。すなわち、可動コア3の可動対向面部311の外周端縁に形成されている。また、図9に示すごとく、突出部32は、全周に形成されており、全体として環状を呈している。図2に示すごとく、非吸引状態において、突出部32の先端(すなわちZ2側端)の位置は、ヨーク5の開口形成部522の位置と同等の位置にある。 As shown in FIG. 8, the protruding portion 32 is formed along the outer peripheral edge of the main surface of the movable raised portion 31. That is, it is formed on the outer peripheral edge of the movable facing surface portion 311 of the movable core 3. Further, as shown in FIG. 9, the protruding portion 32 is formed on the entire circumference and has an annular shape as a whole. As shown in FIG. 2, in the non-suction state, the position of the tip (that is, the Z2 side end) of the protruding portion 32 is the same as the position of the opening forming portion 522 of the yoke 5.

突出部32は、磁性バネ4の最外周部よりも外周側に位置している。すなわち、突出部32の最内周位置は、磁性バネ4の最外周位置よりも外周側に位置している。また、突出部32は、スプール12の内周側に配されている。それゆえ、図10に示すごとく、突出部32は、完全吸引状態においては、径方向における磁性バネ4とスプール12との間の空間に配される。本実施形態において、突出部32のZ方向の長さは、完全吸引状態におけるZ方向の可動対向面部311と固定対向面部21との間の長さの半分の長さよりも長い。 The protruding portion 32 is located on the outer peripheral side of the outermost peripheral portion of the magnetic spring 4. That is, the innermost peripheral position of the protruding portion 32 is located on the outer peripheral side of the outermost peripheral position of the magnetic spring 4. Further, the protruding portion 32 is arranged on the inner peripheral side of the spool 12. Therefore, as shown in FIG. 10, the protruding portion 32 is arranged in the space between the magnetic spring 4 and the spool 12 in the radial direction in the completely attracted state. In the present embodiment, the length of the protruding portion 32 in the Z direction is longer than half the length between the movable facing surface portion 311 and the fixed facing surface portion 21 in the Z direction in the completely sucked state.

その他は、実施形態1と同様である。
なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
Others are the same as in the first embodiment.
In addition, among the codes used in the second and subsequent embodiments, the same codes as those used in the above-described embodiments represent the same components and the like as those in the above-mentioned embodiments, unless otherwise specified.

次に、本実施形態の作用効果につき説明する。
本実施形態において、突出部32は、磁性バネ4の最外周部よりも外周側であって、開口部521よりも内周側に形成される。それゆえ、磁性バネ4の各部から突出部32を含む可動コア3までの距離を、磁性バネ4の各部からヨーク5の開口形成部522までの距離よりも短くしやすい。特に、磁性バネ4の外周部42は、開口形成部522に比較的近くに形成され、開口形成部522との間に漏れ磁束が形成されることが懸念される。そこで、本実施形態のように突出部32を設けることにより、突出部32を磁性バネ4の外周部42近傍の部位に近付けることができ、図11に示すごとく、磁性バネ4の外周部42と、可動コア3の突出部32との間にZ方向成分を有する漏れ磁束Φaを形成することができる。これにより、固定コア2側へ可動コア3を吸引する際の電磁的な吸引力を向上させることができる。
Next, the action and effect of this embodiment will be described.
In the present embodiment, the protruding portion 32 is formed on the outer peripheral side of the outermost peripheral portion of the magnetic spring 4 and on the inner peripheral side of the opening 521. Therefore, the distance from each portion of the magnetic spring 4 to the movable core 3 including the protruding portion 32 is likely to be shorter than the distance from each portion of the magnetic spring 4 to the opening forming portion 522 of the yoke 5. In particular, the outer peripheral portion 42 of the magnetic spring 4 is formed relatively close to the opening forming portion 522, and there is a concern that a leakage flux may be formed between the magnetic spring 4 and the opening forming portion 522. Therefore, by providing the protruding portion 32 as in the present embodiment, the protruding portion 32 can be brought closer to the portion near the outer peripheral portion 42 of the magnetic spring 4, and as shown in FIG. 11, the protruding portion 32 and the outer peripheral portion 42 of the magnetic spring 4 , A leakage flux Φa having a Z-direction component can be formed between the movable core 3 and the protruding portion 32. As a result, it is possible to improve the electromagnetic attraction force when the movable core 3 is attracted to the fixed core 2 side.

また、突出部32は、環状に形成されている。それゆえ、固定コア2側へ可動コア3を吸引する際の電磁的な吸引力を、全周において安定して向上させることができる。 Further, the protruding portion 32 is formed in an annular shape. Therefore, the electromagnetic attraction force when the movable core 3 is attracted to the fixed core 2 side can be stably improved over the entire circumference.

さらに、突出部32は、環状に形成されており、かつ、磁性バネ4の最外周部よりも外周側に配されている。それゆえ、突出部32を磁性バネ4との干渉を防止することができる。ここで、突出部32が環状に形成されているが、磁性バネ4の最外周部よりも内周側に形成されている場合、磁性バネ4はZ方向の一方側に向かうほど縮径する螺旋状に形成されているため、可動コア3が固定コア2側に吸引されている過程において突出部32が磁性バネ4に干渉するおそれがある。そこで、本実施形態のように、突出部32を、環状に形成し、かつ、磁性バネ4の最外周部よりも外周側に配することにより、突出部32を環状に形成しても、突出部32と磁性バネ4とが干渉することを防止することができる。
その他、実施形態1と同様の作用効果を有する。
Further, the protruding portion 32 is formed in an annular shape and is arranged on the outer peripheral side of the outermost peripheral portion of the magnetic spring 4. Therefore, the protrusion 32 can be prevented from interfering with the magnetic spring 4. Here, the protruding portion 32 is formed in an annular shape, but when the protruding portion 32 is formed on the inner peripheral side of the outermost peripheral portion of the magnetic spring 4, the magnetic spring 4 is a spiral whose diameter is reduced toward one side in the Z direction. Since the movable core 3 is formed in a shape, the protruding portion 32 may interfere with the magnetic spring 4 in the process of being attracted to the fixed core 2 side. Therefore, as in the present embodiment, even if the protruding portion 32 is formed in an annular shape and is arranged on the outer peripheral side of the outermost peripheral portion of the magnetic spring 4, the protruding portion 32 is formed in an annular shape. It is possible to prevent the portion 32 and the magnetic spring 4 from interfering with each other.
In addition, it has the same effect as that of the first embodiment.

(試験例)
本例は、実施形態1のソレノイド装置、実施形態2のソレノイド装置、及び突出部を備えないソレノイド装置のそれぞれについて、ギャップ長さと可動コアに作用する固定コア側への吸引力との関係を解析した例である。なお、例えば図2に示すごとく、ギャップ長さは、可動コア3の外周端部33とヨーク5の開口形成部522との間のギャップGのZ方向の長さである。
(Test example)
In this example, the relationship between the gap length and the suction force acting on the movable core toward the fixed core is analyzed for each of the solenoid device of the first embodiment, the solenoid device of the second embodiment, and the solenoid device having no protrusion. This is an example. As shown in FIG. 2, for example, the gap length is the length of the gap G between the outer peripheral end portion 33 of the movable core 3 and the opening forming portion 522 of the yoke 5 in the Z direction.

突出部を備えないソレノイド装置は、実施形態1のソレノイド装置と基本構造を同じくしつつ、可動隆起部のZ2側の面の全体を、Z方向に直交する平面状に形成したソレノイド装置である。そして、各ソレノイド装置において、ギャップ長さを3mm〜0mmの間で変化させたとき、各ソレノイド装置の可動コアに作用する固定コア側への吸引力を確認した。なお、ギャップ長さ3mmは、各ソレノイド装置の電磁コイルに電流を流しておらず、可動コアが固定コアに吸引されていない非吸引状態における可動コアの外周端部と開口形成部との間のギャップ長さである。 The solenoid device having no protruding portion is a solenoid device having the same basic structure as the solenoid device of the first embodiment, but in which the entire surface of the movable ridge portion on the Z2 side is formed in a plane shape orthogonal to the Z direction. Then, in each solenoid device, when the gap length was changed between 3 mm and 0 mm, the suction force on the fixed core side acting on the movable core of each solenoid device was confirmed. The gap length of 3 mm is between the outer peripheral end of the movable core and the opening forming portion in a non-suctioned state in which no current is passed through the electromagnetic coil of each solenoid device and the movable core is not attracted to the fixed core. The gap length.

結果を図12に示す。図12において、横軸は、各ソレノイド装置のギャップ長さを示し、縦軸は、各ソレノイド装置の可動コアに作用する固定コア側への吸引力を示している。図12において、縦軸は、上側ほど吸引力が大きく、下側ほど吸引力が小さくなる。また、図12において、実施形態1のソレノイド装置の解析結果を四角記号(□)でプロットし、実施形態2のソレノイド装置の解析結果を三角記号(△)でプロットし、突出部を備えないソレノイド装置の解析結果をひし形記号(◇)でプロットした。 The results are shown in FIG. In FIG. 12, the horizontal axis represents the gap length of each solenoid device, and the vertical axis represents the attractive force acting on the movable core of each solenoid device toward the fixed core side. In FIG. 12, the vertical axis has a larger suction force toward the upper side and a smaller suction force toward the lower side. Further, in FIG. 12, the analysis result of the solenoid device of the first embodiment is plotted with a square symbol (□), the analysis result of the solenoid device of the second embodiment is plotted with a triangular symbol (Δ), and the solenoid having no protrusion is provided. The analysis result of the device was plotted with a diamond symbol (◇).

図12から分かるように、実施形態1のソレノイド装置及び実施形態2のソレノイド装置は、特にギャップ長さが1mm〜2mmのとき、突出部を有さないソレノイド装置に比べ、可動コアに作用する固定コア側への吸引力が高くなることが分かる。これは、実施形態1のソレノイド装置、及び実施形態2のソレノイド装置において、ギャップ長さが1mm〜2mmのときに突出部と磁性バネの外周部とがZ方向に最も近接するからである。 As can be seen from FIG. 12, the solenoid device of the first embodiment and the solenoid device of the second embodiment are fixed acting on the movable core as compared with the solenoid device having no protrusion, particularly when the gap length is 1 mm to 2 mm. It can be seen that the suction force to the core side increases. This is because, in the solenoid device of the first embodiment and the solenoid device of the second embodiment, when the gap length is 1 mm to 2 mm, the protruding portion and the outer peripheral portion of the magnetic spring are closest to each other in the Z direction.

そして、ギャップ長さが0.5mm以下となると、実施形態1のソレノイド装置、実施形態2のソレノイド装置のそれぞれの可動コアに作用する固定コア側への吸引力は、突出部を備えないソレノイド装置の可動コアに作用する固定コア側への吸引力と同等となった。これは、実施形態1のソレノイド装置及び実施形態2のソレノイド装置において、ギャップ長さが0.5mm以下となると、磁性バネにおける突出部と径方向に重なる領域が形成され、磁性バネと突出部とに径方向に流れる磁束が増加するためであると考えられる。すなわち、磁性バネと突出部とに径方向に流れる磁束は、可動コアを固定コア側にZ方向に吸引する際の吸引力に寄与しないため、ギャップ長さが0.5mm以下となると、3種類のソレノイド装置のそれぞれの可動コアに作用する固定コア側への吸引力が互いに同等になったものと考えられる。 When the gap length is 0.5 mm or less, the suction force on the fixed core side acting on the movable cores of the solenoid device of the first embodiment and the solenoid device of the second embodiment is the solenoid device having no protruding portion. It became the same as the suction force to the fixed core side acting on the movable core of. This is because, in the solenoid device of the first embodiment and the solenoid device of the second embodiment, when the gap length is 0.5 mm or less, a region overlapping the protruding portion of the magnetic spring in the radial direction is formed, and the magnetic spring and the protruding portion are formed. It is considered that this is because the magnetic flux flowing in the radial direction increases. That is, the magnetic flux flowing in the radial direction between the magnetic spring and the protruding portion does not contribute to the attractive force when the movable core is attracted to the fixed core side in the Z direction. Therefore, when the gap length is 0.5 mm or less, there are three types. It is considered that the attractive forces acting on each movable core of the solenoid device of the above are equal to each other on the fixed core side.

以上から、実施形態1のソレノイド装置及び実施形態2のソレノイド装置は、突出部を有さないソレノイド装置に比べ、特にギャップ長さが1mm〜2mmのときに可動コアに作用する固定コア側への吸引力が高くなることが分かった。つまり、実施形態1、2において、突出部32が磁性バネ4のZ1側に位置しており(すなわち、突出部32が磁性バネ4の部位間の隙間に挿入されていない状態)、かつ、突出部32が磁性バネ4に近づくことで、可動コア3に作用する固定コア2側への吸引力が増加することが分かった。 From the above, the solenoid device of the first embodiment and the solenoid device of the second embodiment have a fixed core side that acts on the movable core, particularly when the gap length is 1 mm to 2 mm, as compared with the solenoid device having no protrusion. It was found that the suction power was increased. That is, in the first and second embodiments, the protruding portion 32 is located on the Z1 side of the magnetic spring 4 (that is, the protruding portion 32 is not inserted into the gap between the portions of the magnetic spring 4) and protrudes. It was found that the attractive force toward the fixed core 2 acting on the movable core 3 increases as the portion 32 approaches the magnetic spring 4.

(実施形態3)
本実施形態は、図13〜図16に示すごとく、実施形態2と基本構造を同様としつつ、突出部32に磁気飽和部321を形成した実施形態である。磁気飽和部321は、電磁コイル11が通電状態にあるときに局所的に磁気飽和する突出部32の部位である。
(Embodiment 3)
As shown in FIGS. 13 to 16, the present embodiment is an embodiment in which the magnetic saturation portion 321 is formed on the protruding portion 32 while having the same basic structure as that of the second embodiment. The magnetic saturation portion 321 is a portion of the protrusion 32 that locally magnetically saturates when the electromagnetic coil 11 is in the energized state.

磁気飽和部321は、突出部32に形成される磁束量を所定値以下に制御するために設けられている。磁気飽和部321は、突出部32の外周面の一部が内周側に凹むように形成されている。これにより、磁気飽和部321の径方向の厚みT1は、突出部32における磁気飽和部321以外の部位の径方向の厚みT0よりも小さくなっている。また、磁気飽和部321は、突出部32における磁気飽和部321以外の部位よりも、Z方向に直交する断面積が小さくなっている。磁気飽和部321は、全周に形成されている。また、磁気飽和部321は、突出部32のZ1側端部に形成されている。 The magnetic saturation portion 321 is provided to control the amount of magnetic flux formed in the protruding portion 32 to a predetermined value or less. The magnetic saturation portion 321 is formed so that a part of the outer peripheral surface of the protruding portion 32 is recessed toward the inner peripheral side. As a result, the radial thickness T1 of the magnetic saturation portion 321 is smaller than the radial thickness T0 of the portion other than the magnetic saturation portion 321 in the protruding portion 32. Further, the magnetic saturation portion 321 has a smaller cross-sectional area orthogonal to the Z direction than the portion of the protruding portion 32 other than the magnetic saturation portion 321. The magnetic saturation portion 321 is formed on the entire circumference. Further, the magnetic saturation portion 321 is formed at the Z1 side end portion of the protruding portion 32.

なお、「磁気飽和する」とは、BHカーブの磁気飽和領域に入ったことを意味する。磁気飽和領域とは、磁束密度が、飽和磁束密度の50%以上になる領域と定義することができる。また、飽和磁束密度とは、磁性体に外部から磁界を加え、それ以上外部から磁界を加えても磁化の強さが増加しない状態における磁束密度である。 Note that "magnetic saturation" means that the BH curve has entered the magnetic saturation region. The magnetic saturation region can be defined as a region in which the magnetic flux density is 50% or more of the saturation magnetic flux density. The saturated magnetic flux density is a magnetic flux density in a state in which the strength of magnetization does not increase even if a magnetic field is applied to the magnetic material from the outside and a magnetic field is further applied from the outside.

次に、図15、図16を用いて、可動コア3と磁性バネ4における外周部42との間に形成される漏れ磁束Φaについて説明する。 Next, the leakage flux Φa formed between the movable core 3 and the outer peripheral portion 42 of the magnetic spring 4 will be described with reference to FIGS. 15 and 16.

図15に示すごとく、電磁コイル11に通電すると、実施形態1と同様、固定コア2、ヨーク5、ギャップG、可動コア3、磁性バネ4を含む磁気回路に磁束が形成される。そして、可動コア3と磁性バネ4の外周部42との間は、可動コア3の突出部32の先端部と磁性バネ4の外周部42とが最も近接するため、突出部32と磁性バネ4の外周部42との間に漏れ磁束Φaが形成される。この漏れ磁束Φaによって、可動コア3と磁性バネ4との間に吸引力が作用し、固定コア2側への可動コア3の吸引力が増加する。 As shown in FIG. 15, when the electromagnetic coil 11 is energized, a magnetic flux is formed in a magnetic circuit including a fixed core 2, a yoke 5, a gap G, a movable core 3, and a magnetic spring 4, as in the first embodiment. Since the tip of the protruding portion 32 of the movable core 3 and the outer peripheral portion 42 of the magnetic spring 4 are closest to each other between the movable core 3 and the outer peripheral portion 42 of the magnetic spring 4, the protruding portion 32 and the magnetic spring 4 A leakage flux Φa is formed between the outer peripheral portion 42 and the outer peripheral portion 42 of the. Due to this leakage flux Φa, an attractive force acts between the movable core 3 and the magnetic spring 4, and the attractive force of the movable core 3 toward the fixed core 2 side increases.

そして、可動コア3が固定コア2側へ吸引されていくと、突出部32と磁性バネ4の外周部42との間の距離が縮まるため、可動コア3が固定コア2側へ吸引されるにつれて突出部32に形成される磁束量が増加する。そのため、可動コア3が固定コア2側へ吸引されていくと、やがて突出部32に形成される磁束量が前述の所定量を超え、突出部32の磁気飽和部321から先端側の部位が磁気飽和する。 Then, when the movable core 3 is sucked toward the fixed core 2, the distance between the protruding portion 32 and the outer peripheral portion 42 of the magnetic spring 4 is shortened, so that as the movable core 3 is sucked toward the fixed core 2 side. The amount of magnetic flux formed on the protrusion 32 increases. Therefore, when the movable core 3 is attracted to the fixed core 2 side, the amount of magnetic flux formed in the protruding portion 32 eventually exceeds the above-mentioned predetermined amount, and the portion on the tip side from the magnetic saturation portion 321 of the protruding portion 32 is magnetic. Saturate.

ここで、図16に示すごとく、磁気飽和部321は、少なくとも、突出部32と磁性バネ4の外周部42とが径方向に重なる位置に配されるまで可動コア3が固定コア2側に吸引された状態において磁気飽和するよう形成されることが好ましい。これにより、突出部32と磁性バネ4の外周部42とが径方向に重なった状態において、突出部32と磁性バネ4の外周部42との間に径方向に形成される、可動コア3の吸引力に寄与しない漏れ磁束を減らすことができる。 Here, as shown in FIG. 16, the magnetic saturation portion 321 attracts the movable core 3 to the fixed core 2 side at least until the protruding portion 32 and the outer peripheral portion 42 of the magnetic spring 4 are arranged at positions where they overlap in the radial direction. It is preferably formed so as to be magnetically saturated in this state. As a result, in a state where the protruding portion 32 and the outer peripheral portion 42 of the magnetic spring 4 overlap in the radial direction, the movable core 3 is formed in the radial direction between the protruding portion 32 and the outer peripheral portion 42 of the magnetic spring 4. It is possible to reduce the leakage flux that does not contribute to the attractive force.

磁気飽和部321が磁気飽和すると、突出部32の磁気飽和部321からZ2側の部位と磁性バネ4の外周部42との間に磁束が形成されにくくなる。この状態においては、磁性バネ4の外周部42と可動コア3の可動対向面部311とが近接し、可動対向面部311と磁性バネ4の外周部42との間にZ方向に漏れ磁束Φaが形成される。これによって、可動コア3と磁性バネ4との間にZ方向の吸引力が作用し、固定コア2側へ可動コア3を吸引する際の吸引力が増加する。なお、図16において、突出部32における磁気飽和した部位に可動コア3の他の部位とは異なるハッチングを施している。
その他は、実施形態2と同様である。
When the magnetic saturation portion 321 is magnetically saturated, magnetic flux is less likely to be formed between the portion of the protrusion 32 on the Z2 side of the magnetic saturation portion 321 and the outer peripheral portion 42 of the magnetic spring 4. In this state, the outer peripheral portion 42 of the magnetic spring 4 and the movable facing surface portion 311 of the movable core 3 are close to each other, and a leakage flux Φa is formed between the movable facing surface portion 311 and the outer peripheral portion 42 of the magnetic spring 4 in the Z direction. Will be done. As a result, a suction force in the Z direction acts between the movable core 3 and the magnetic spring 4, and the suction force when sucking the movable core 3 toward the fixed core 2 side increases. In FIG. 16, the magnetically saturated portion of the protruding portion 32 is hatched differently from the other portions of the movable core 3.
Others are the same as in the second embodiment.

次に、本実施形態の作用効果につき説明する。
本実施形態において、突出部32は、電磁コイル11が通電状態にあるときに局所的に磁気飽和する磁気飽和部321を有する。これにより、固定コア2側へ可動コア3を吸引する際の電磁的な吸引力を向上させることができる。すなわち、図15に示すごとく、ギャップGが大きく、突出部32から磁性バネ4の各部までの距離が比較的長い状態においては、磁性バネ4と突出部32との間に漏れ磁束Φaを形成することで、磁性バネ4と可動コア3との間に吸引力を作用させることができる。そして、図16に示すごとく、ギャップGが小さく、例えば突出部32が磁性バネ4の外周部42の外周側に沿うように配されるまで可動コア3が固定コア2側に吸引された状態においては、突出部32における磁気飽和部321からZ2側の部位を磁気飽和させることで突出部32に形成される磁束の量を制限することができる。これにより、可動コア3のZ方向の吸引に寄与しない、磁性バネ4と突出部32との間に径方向に沿って流れる磁束を制限し、可動コア3のZ方向の吸引に寄与する、磁性バネ4の外周部42と可動対向面部311との間にZ方向に沿う磁束を増やすことができる。
その他、実施形態2と同様の作用効果を有する。
Next, the action and effect of this embodiment will be described.
In the present embodiment, the protruding portion 32 has a magnetic saturation portion 321 that locally magnetically saturates when the electromagnetic coil 11 is in an energized state. As a result, it is possible to improve the electromagnetic attraction force when the movable core 3 is attracted to the fixed core 2 side. That is, as shown in FIG. 15, when the gap G is large and the distance from the protruding portion 32 to each portion of the magnetic spring 4 is relatively long, a leakage flux Φa is formed between the magnetic spring 4 and the protruding portion 32. As a result, an attractive force can be applied between the magnetic spring 4 and the movable core 3. Then, as shown in FIG. 16, the gap G is small, for example, in a state where the movable core 3 is attracted to the fixed core 2 side until the protruding portion 32 is arranged along the outer peripheral side of the outer peripheral portion 42 of the magnetic spring 4. Can limit the amount of magnetic flux formed in the protrusion 32 by magnetically saturate the portion of the protrusion 32 on the Z2 side from the magnetic saturation portion 321. This limits the magnetic flux flowing along the radial direction between the magnetic spring 4 and the protruding portion 32, which does not contribute to the attraction of the movable core 3 in the Z direction, and contributes to the attraction of the movable core 3 in the Z direction. The magnetic flux along the Z direction can be increased between the outer peripheral portion 42 of the spring 4 and the movable facing surface portion 311.
In addition, it has the same effect as that of the second embodiment.

(実施形態4)
本実施形態は、図17に示すごとく、実施形態3に対し、磁気飽和部321の形成の仕方を変更した実施形態である。
(Embodiment 4)
As shown in FIG. 17, the present embodiment is an embodiment in which the method of forming the magnetic saturation portion 321 is changed from the third embodiment.

本実施形態において、突出部32は、外周面がZ方向に平行に形成されている一方、内周面がZ1側に向かうほど内周側に向かうテーパ状に形成されている。これにより、突出部32は、Z1側端部におけるZ方向に直交する断面積が、それよりもZ2側の部位におけるZ方向に直交する断面積よりも小さくなっている。そして、突出部32は、Z1側端部が磁気飽和部321を構成している。
その他は、実施形態3と同様である。
In the present embodiment, the outer peripheral surface of the protruding portion 32 is formed parallel to the Z direction, while the inner peripheral surface is formed in a tapered shape toward the inner peripheral side toward the Z1 side. As a result, the cross-sectional area of the protruding portion 32 orthogonal to the Z direction at the Z1 side end portion is smaller than the cross-sectional area orthogonal to the Z direction at the Z2 side portion. The Z1 side end of the protruding portion 32 constitutes the magnetic saturation portion 321.
Others are the same as in the third embodiment.

本実施形態においても、実施形態3と同様の作用効果を有する。 This embodiment also has the same effect as that of the third embodiment.

(実施形態5)
本実施形態は、図18〜図21に示すごとく、実施形態3に対し、突出部32のZ方向の複数箇所に磁気飽和部321を形成した実施形態である。本実施形態において、突出部32は、Z方向の2箇所に磁気飽和部321を有する。
(Embodiment 5)
As shown in FIGS. 18 to 21, the present embodiment is an embodiment in which magnetic saturation portions 321 are formed at a plurality of locations in the Z direction of the protruding portions 32 with respect to the third embodiment. In the present embodiment, the protruding portion 32 has magnetic saturation portions 321 at two positions in the Z direction.

図18に示すごとく、突出部32は、実施形態3と同様にZ1側端部に磁気飽和部321を有し、加えて、Z方向の中央部にも磁気飽和部321を有する。本実施形態において、Z方向の2箇所の磁気飽和部321のうち、Z1側のものを第一部位321a、Z2側のものを第二部位321bという。第一部位321aは、実施形態3で示した磁気飽和部321と同様の構成を有する。 As shown in FIG. 18, the protruding portion 32 has a magnetic saturation portion 321 at the Z1 side end portion as in the third embodiment, and also has a magnetic saturation portion 321 at the central portion in the Z direction. In the present embodiment, of the two magnetic saturation portions 321 in the Z direction, the one on the Z1 side is referred to as the first portion 321a, and the one on the Z2 side is referred to as the second portion 321b. The first portion 321a has the same configuration as the magnetic saturation portion 321 shown in the third embodiment.

第二部位321bは、突出部32における第一部位321aのZ2側に離れた位置に形成されている。第二部位321bは、突出部32におけるZ方向の中央部に形成されている。 The second portion 321b is formed at a position distant from the Z2 side of the first portion 321a in the protruding portion 32. The second portion 321b is formed at the central portion in the Z direction of the protruding portion 32.

第二部位321bの径方向の厚みT2は、第一部位321aの径方向の厚みT1よりも小さくなっている。そして、第二部位321bのZ方向に直交する断面積は、第一部位321aのZ方向に直交する断面積よりも小さくなっている。これにより、第二部位321bは、第一部位321aよりも少ない磁束量で磁気飽和するよう形成されている。つまり、突出部32に形成されたZ方向の複数箇所の磁気飽和部321は、固定コア2側のものほど高い磁気抵抗を有する。第二部位321bのその他の構成は、第一部位321aと同様である。 The radial thickness T2 of the second portion 321b is smaller than the radial thickness T1 of the first portion 321a. The cross-sectional area of the second portion 321b orthogonal to the Z direction is smaller than the cross-sectional area of the first portion 321a orthogonal to the Z direction. As a result, the second portion 321b is formed so as to be magnetically saturated with a smaller amount of magnetic flux than the first portion 321a. That is, the magnetic saturation portions 321 formed in the protruding portions 32 at a plurality of locations in the Z direction have higher magnetoresistance as those on the fixed core 2 side. Other configurations of the second site 321b are the same as those of the first site 321a.

次に、図19〜図21を用いて、可動コア3と磁性バネ4における外周部との間に形成される漏れ磁束Φaについて説明する。 Next, the leakage flux Φa formed between the movable core 3 and the outer peripheral portion of the magnetic spring 4 will be described with reference to FIGS. 19 to 21.

図19に示すごとく、電磁コイル11に通電すると、実施形態1と同様、固定コア2、ヨーク5、ギャップG、可動コア3、磁性バネ4を含む磁気回路に磁束が形成される。そして、可動コア3と磁性バネ4の外周部42との間は、可動コア3の突出部32の先端部と磁性バネ4の外周部42とが最も近接するため、突出部32と磁性バネ4の外周部42との間に漏れ磁束Φaが形成される。この漏れ磁束Φaによって、可動コア3と磁性バネ4との間に吸引力が作用し、固定コア2側への可動コア3の吸引力が増加する。 As shown in FIG. 19, when the electromagnetic coil 11 is energized, a magnetic flux is formed in a magnetic circuit including a fixed core 2, a yoke 5, a gap G, a movable core 3, and a magnetic spring 4, as in the first embodiment. Since the tip of the protruding portion 32 of the movable core 3 and the outer peripheral portion 42 of the magnetic spring 4 are closest to each other between the movable core 3 and the outer peripheral portion 42 of the magnetic spring 4, the protruding portion 32 and the magnetic spring 4 A leakage flux Φa is formed between the outer peripheral portion 42 and the outer peripheral portion 42 of the. Due to this leakage flux Φa, an attractive force acts between the movable core 3 and the magnetic spring 4, and the attractive force of the movable core 3 toward the fixed core 2 side increases.

そして、可動コア3が固定コア2側へ吸引されていくと、突出部32と磁性バネ4の外周部42との間の距離が縮まるため、可動コア3が固定コア2側へ吸引されるにつれて、突出部32に形成される磁束量が増加する。そのため、可動コア3が固定コア2側へ吸引されていくと、図20に示すごとく、まず、磁性バネ4の外周部42に近く、かつ、断面積の比較的小さい第二部位321bからZ2側の部位が磁気飽和する。 Then, when the movable core 3 is sucked toward the fixed core 2, the distance between the protruding portion 32 and the outer peripheral portion 42 of the magnetic spring 4 is shortened, so that as the movable core 3 is sucked toward the fixed core 2 side. , The amount of magnetic flux formed in the protruding portion 32 increases. Therefore, when the movable core 3 is attracted to the fixed core 2 side, as shown in FIG. 20, first, the second portion 321b to the Z2 side, which is close to the outer peripheral portion 42 of the magnetic spring 4 and has a relatively small cross-sectional area. The part of is magnetically saturated.

ここで、第二部位321bは、少なくとも、突出部32と磁性バネ4の外周部42とが径方向に重なる位置に配されるまで可動コア3が固定コア2側に吸引された状態において磁気飽和するよう形成されることが好ましい。これにより、突出部32と磁性バネ4の外周部42とが径方向に重なった状態において、突出部32と磁性バネ4の外周部42との間に径方向に形成される、可動コア3の吸引力に寄与しない磁束を減らすことができる。 Here, the second portion 321b is magnetically saturated in a state where the movable core 3 is attracted to the fixed core 2 side at least until the protruding portion 32 and the outer peripheral portion 42 of the magnetic spring 4 are arranged at positions where they overlap in the radial direction. It is preferably formed so as to. As a result, in a state where the protruding portion 32 and the outer peripheral portion 42 of the magnetic spring 4 are overlapped in the radial direction, the movable core 3 is formed in the radial direction between the protruding portion 32 and the outer peripheral portion 42 of the magnetic spring 4. It is possible to reduce the magnetic flux that does not contribute to the attractive force.

第二部位321bが磁気飽和すると、突出部32における第二部位321bからZ2側の部位と磁性バネ4の外周部42との間に漏れ磁束が形成されにくくなり、突出部32における第二部位321bよりZ1側の部位と磁性バネ4の外周部42との間にZ方向成分を有する漏れ磁束Φaが形成されやすくなる。これにより、突出部32における第二部位321bよりZ1側の部位と磁性バネ4との間にZ方向の吸引力が作用し、固定コア2側へ可動コア3を吸引する際の吸引力が増加する。 When the second portion 321b is magnetically saturated, it becomes difficult for a leakage flux to be formed between the portion on the Z2 side from the second portion 321b in the protruding portion 32 and the outer peripheral portion 42 of the magnetic spring 4, and the second portion 321b in the protruding portion 32 The leakage flux Φa having a Z-direction component is likely to be formed between the portion on the Z1 side and the outer peripheral portion 42 of the magnetic spring 4. As a result, a suction force in the Z direction acts between the portion of the protrusion 32 on the Z1 side of the second portion 321b and the magnetic spring 4, and the suction force when the movable core 3 is attracted to the fixed core 2 side increases. To do.

そして、さらに可動コア3が固定コア2側へ吸引されていくと、突出部32における第二部位321bよりもZ1側の部位と磁性バネ4の外周部42との間の距離が縮まる。そのため、可動コア3が固定コア2側に吸引されるにつれて、突出部32における第二部位321bよりもZ1側の部位に形成される磁束量が増加する。それゆえ、可動コア3が固定コア2側へ吸引されていくと、図21に示すごとく、やがて第一部位321aが磁気飽和する。 Then, when the movable core 3 is further attracted to the fixed core 2 side, the distance between the portion of the protruding portion 32 on the Z1 side of the second portion 321b and the outer peripheral portion 42 of the magnetic spring 4 is shortened. Therefore, as the movable core 3 is attracted to the fixed core 2 side, the amount of magnetic flux formed in the portion on the Z1 side of the second portion 321b in the protruding portion 32 increases. Therefore, when the movable core 3 is attracted to the fixed core 2 side, the first portion 321a is magnetically saturated as shown in FIG. 21.

ここで、第一部位321aは、少なくとも、突出部32における第二部位321bよりもZ1側の部位と磁性バネ4の外周部42とが径方向に重なる位置に配されるまで可動コア3が固定コア2側に吸引された状態において磁気飽和するよう形成されることが好ましい。これにより、突出部32における第二部位321bよりもZ1側の部位と磁性バネ4の外周部42とが径方向に重なった状態において、突出部32における第二部位321bよりもZ2側の部位と磁性バネ4との間に径方向に形成される、可動コア3の吸引力に寄与しない磁束を減らすことができる。 Here, in the first portion 321a, the movable core 3 is fixed at least until the portion of the protrusion 32 on the Z1 side of the second portion 321b and the outer peripheral portion 42 of the magnetic spring 4 are arranged at a position where they overlap in the radial direction. It is preferably formed so as to be magnetically saturated in a state of being attracted to the core 2 side. As a result, in a state where the portion on the Z1 side of the second portion 321b in the protruding portion 32 and the outer peripheral portion 42 of the magnetic spring 4 overlap in the radial direction, the portion on the Z2 side of the second portion 321b in the protruding portion 32 It is possible to reduce the magnetic flux formed between the magnetic spring 4 and the magnetic spring 4 in the radial direction and not contributing to the attractive force of the movable core 3.

第一部位321aが磁気飽和すると、突出部32における第一部位321aからZ2側の部位と磁性バネ4の外周部42との間に磁束が形成されにくくなる。この状態においては、磁性バネ4の外周部42と可動コア3の可動対向面部311とが近接し、可動対向面部311と磁性バネ4の外周部42との間にZ方向に漏れ磁束Φaが形成される。これによって、可動コア3と磁性バネ4との間にZ方向の吸引力が作用し、固定コア2側へ可動コア3を吸引する際の吸引力が増加する。
その他は、実施形態3と同様である。
When the first portion 321a is magnetically saturated, it becomes difficult for a magnetic flux to be formed between the portion of the protrusion 32 on the Z2 side of the first portion 321a and the outer peripheral portion 42 of the magnetic spring 4. In this state, the outer peripheral portion 42 of the magnetic spring 4 and the movable facing surface portion 311 of the movable core 3 are close to each other, and a leakage flux Φa is formed between the movable facing surface portion 311 and the outer peripheral portion 42 of the magnetic spring 4 in the Z direction. Will be done. As a result, a suction force in the Z direction acts between the movable core 3 and the magnetic spring 4, and the suction force when sucking the movable core 3 toward the fixed core 2 side increases.
Others are the same as in the third embodiment.

次に、本実施形態の作用効果につき説明する。
本実施形態において、突出部32は、Z方向の複数箇所に磁気飽和部321を有する。それゆえ、前述のごとく、可動コア3が固定コア2側に吸引される過程において、Z2側から段階的に突出部32を磁気飽和させることができる。それゆえ、磁性バネ4の外周部42と突出部32とが径方向に重なった状態において突出部32と磁性バネ4との間に径方向に形成される磁性バネ4を効果的に抑制することができ、可動コア3が固定コア2側に吸引される過程において可動コア3と磁性バネ4との間に形成されるZ方向成分を有する磁束を確保しやすい。
Next, the action and effect of this embodiment will be described.
In the present embodiment, the protruding portion 32 has magnetic saturation portions 321 at a plurality of locations in the Z direction. Therefore, as described above, in the process in which the movable core 3 is attracted to the fixed core 2 side, the protruding portion 32 can be magnetically saturated from the Z2 side in stages. Therefore, when the outer peripheral portion 42 and the protruding portion 32 of the magnetic spring 4 are overlapped in the radial direction, the magnetic spring 4 formed in the radial direction between the protruding portion 32 and the magnetic spring 4 is effectively suppressed. It is easy to secure a magnetic flux having a Z-direction component formed between the movable core 3 and the magnetic spring 4 in the process in which the movable core 3 is attracted to the fixed core 2 side.

また、突出部32に形成されたZ方向の複数箇所の磁気飽和部321は、固定コア2側のものほど高い磁気抵抗を有する。それゆえ、可動コア3が固定コア2側に吸引される過程において、磁気飽和部321を、固定コア2側のものから順に確実に磁気飽和させることができ、より確実にZ2側から段階的に突出部32を磁気飽和させることができる。
その他、実施形態3と同様の作用効果を有する。
Further, the magnetic saturation portions 321 formed in the protruding portions 32 at a plurality of locations in the Z direction have higher magnetoresistance as those on the fixed core 2 side. Therefore, in the process in which the movable core 3 is attracted to the fixed core 2 side, the magnetic saturation portion 321 can be reliably magnetically saturated in order from the fixed core 2 side, and more reliably stepwise from the Z2 side. The protrusion 32 can be magnetically saturated.
In addition, it has the same effect as that of the third embodiment.

(実施形態6)
本実施形態は、図22に示すごとく、基本構造を実施形態5と同様としつつ、突出部32において、磁気飽和部321をZ方向の3箇所に形成した例である。本実施形態において、3箇所の磁気飽和部321のうち、Z1側端のものを第一部位321a、Z方向の中間のものを第二部位321b、Z2側端のものを第三部位321cという。
(Embodiment 6)
As shown in FIG. 22, the present embodiment is an example in which the magnetic saturation portions 321 are formed at three locations in the Z direction in the protruding portions 32 while the basic structure is the same as that of the fifth embodiment. In the present embodiment, of the three magnetic saturation portions 321, the one at the Z1 side end is referred to as the first portion 321a, the one intermediate in the Z direction is referred to as the second portion 321b, and the one at the Z2 side end is referred to as the third portion 321c.

第一部位321a及び第二部位321bは、実施形態5で示したものと同様である。第三部位321cは、突出部32における第二部位321bのZ2側に離れた位置に形成されている。第三部位321cは、突出部32におけるZ方向の中央よりもZ2側の領域に形成されている。 The first part 321a and the second part 321b are the same as those shown in the fifth embodiment. The third portion 321c is formed at a position distant from the Z2 side of the second portion 321b in the protruding portion 32. The third portion 321c is formed in a region of the protrusion 32 on the Z2 side of the center in the Z direction.

第三部位321cの径方向の厚みT3は、第一部位321aの径方向の厚みT1、及び第二部位321bの径方向の厚みT2のそれぞれよりも小さくなっている。そして、第三部位321cのZ方向に直交する断面積は、第一部位321aのZ方向に直交する断面積、及び第二部位321bのZ方向に直交する断面積のそれぞれよりも小さくなっている。これにより、第三部位321cは、第二部位321bよりも少ない磁束量で磁気飽和するよう形成されている。そして、本実施形態においても、突出部32に形成されたZ方向の複数箇所の磁気飽和部321は、固定コア2側のものほど高い磁気抵抗を有する。 The radial thickness T3 of the third portion 321c is smaller than the radial thickness T1 of the first portion 321a and the radial thickness T2 of the second portion 321b. The cross-sectional area of the third portion 321c orthogonal to the Z direction is smaller than the cross-sectional area of the first portion 321a orthogonal to the Z direction and the cross-sectional area of the second portion 321b orthogonal to the Z direction. .. As a result, the third portion 321c is formed so as to be magnetically saturated with a smaller amount of magnetic flux than the second portion 321b. Further, also in this embodiment, the magnetic saturation portions 321 formed in the protruding portions 32 at a plurality of locations in the Z direction have higher magnetoresistance as those on the fixed core 2 side.

第三部位321cは、可動コア3が固定コア2側に吸引されている過程において、少なくとも突出部32と磁性バネ4の外周部42とが径方向に重なった状態において磁気飽和するよう形成されている。また、第二部位321bは、可動コア3が固定コア2側に吸引されている過程において、少なくとも突出部32における第三部位321cよりもZ1側の部位と磁性バネ4の外周部42とが径方向に重なった状態において磁気飽和するよう形成されている。また、第一部位321aは、少なくとも突出部32における第二部位321bよりもZ1側の部位と磁性バネ4の外周部42とが径方向に重なった状態において磁気飽和するよう形成されている。
その他は、実施形態5と同様である。
The third portion 321c is formed so as to be magnetically saturated in a state where at least the protruding portion 32 and the outer peripheral portion 42 of the magnetic spring 4 are radially overlapped in the process in which the movable core 3 is attracted to the fixed core 2 side. There is. Further, in the second portion 321b, in the process in which the movable core 3 is attracted to the fixed core 2 side, at least the portion of the protruding portion 32 on the Z1 side of the third portion 321c and the outer peripheral portion 42 of the magnetic spring 4 have a diameter. It is formed so as to be magnetically saturated when it overlaps in the direction. Further, the first portion 321a is formed so as to be magnetically saturated in a state where at least a portion of the protruding portion 32 on the Z1 side of the second portion 321b and the outer peripheral portion 42 of the magnetic spring 4 are overlapped in the radial direction.
Others are the same as in the fifth embodiment.

本実施形態において、突出部32は、Z方向の3箇所に磁気飽和部321を有する。それゆえ、可動コア3が固定コア2側に吸引される過程において、Z2側から、より段階的に突出部を磁気飽和させることができる。
その他、実施形態5と同様の作用効果を有する。
In the present embodiment, the protruding portion 32 has magnetic saturation portions 321 at three positions in the Z direction. Therefore, in the process in which the movable core 3 is attracted to the fixed core 2 side, the protruding portion can be magnetically saturated from the Z2 side in a more stepwise manner.
In addition, it has the same effect as that of the fifth embodiment.

(実施形態7)
本実施形態は、図23に示すごとく、実施形態2に対して、突出部32の構成を変更した実施形態である。
(Embodiment 7)
As shown in FIG. 23, this embodiment is an embodiment in which the configuration of the protrusion 32 is changed from that of the second embodiment.

本実施形態において、突出部32は、可動コア3における突出部32を除く部位を構成する材料よりも透磁率の低い材料からなる。例えば、可動コア3における突出部32を除く部位は、ELCH2やSUY等の純鉄等によって構成することができ、突出部32は、SPCC等の圧延鋼板により構成することができる。突出部32は、例えば溶接等により、可動コア3における突出部32以外の部位に固定されている。
その他は、実施形態2と同様である。
In the present embodiment, the protruding portion 32 is made of a material having a lower magnetic permeability than the material constituting the portion of the movable core 3 other than the protruding portion 32. For example, the portion of the movable core 3 other than the protruding portion 32 can be formed of pure iron such as ELCH2 or SUY, and the protruding portion 32 can be formed of a rolled steel plate such as SPCC. The protruding portion 32 is fixed to a portion of the movable core 3 other than the protruding portion 32 by welding or the like.
Others are the same as in the second embodiment.

本実施形態において、突出部32は、可動コア3における突出部32を除く部位を構成する材料よりも、透磁率の低い材料からなる。それゆえ、比較的ギャップGが大きく、突出部32から磁性バネ4の各部までの距離が比較的長い状態においては、磁性バネ4と突出部32との間に漏れ磁束Φaを形成することで、磁性バネ4と可動コア3との間に吸引力を作用させることができる。そして、ギャップGが小さく、例えば突出部32が磁性バネ4の外周部42の外周側に沿うように配されるまで可動コア3が固定コア2側に吸引された状態においては、突出部32を磁気飽和させることで突出部32に形成される磁束の量を制限することができる。これにより、可動コア3のZ方向の吸引に寄与しない、磁性バネ4と突出部32との間に径方向に沿って流れる磁束を制限し、可動コア3のZ方向の吸引に寄与する、磁性バネ4の外周部42と可動対向面部311との間にZ方向に沿う磁束を増やすことができる。これにより、固定コア2側へ可動コア3を吸引する際の電磁的な吸引力を向上させることができる。
その他は、実施形態2と同様の作用効果を有する。
In the present embodiment, the protruding portion 32 is made of a material having a lower magnetic permeability than the material constituting the portion of the movable core 3 excluding the protruding portion 32. Therefore, in a state where the gap G is relatively large and the distance from the protruding portion 32 to each part of the magnetic spring 4 is relatively long, the leakage flux Φa is formed between the magnetic spring 4 and the protruding portion 32. A suction force can be applied between the magnetic spring 4 and the movable core 3. Then, in a state where the gap G is small, for example, the movable core 3 is attracted to the fixed core 2 side until the protruding portion 32 is arranged along the outer peripheral side of the outer peripheral portion 42 of the magnetic spring 4, the protruding portion 32 is moved. Magnetic saturation can limit the amount of magnetic flux formed on the protrusion 32. This limits the magnetic flux flowing along the radial direction between the magnetic spring 4 and the protruding portion 32, which does not contribute to the attraction of the movable core 3 in the Z direction, and contributes to the attraction of the movable core 3 in the Z direction. The magnetic flux along the Z direction can be increased between the outer peripheral portion 42 of the spring 4 and the movable facing surface portion 311. As a result, it is possible to improve the electromagnetic attraction force when the movable core 3 is attracted to the fixed core 2 side.
Others have the same effects as in the second embodiment.

(実施形態8)
本実施形態は、図24に示すごとく、実施形態3に対して、突出部32の磁気飽和部321の構成を変更した実施形態である。
(Embodiment 8)
As shown in FIG. 24, this embodiment is an embodiment in which the configuration of the magnetic saturation portion 321 of the protrusion 32 is changed from that of the third embodiment.

本実施形態において、磁気飽和部321は、可動コア3における磁気飽和部321を除く部位を構成する材料よりも、透磁率の低い材料を含有する。本実施形態において、磁気飽和部321は、突出部32のZ1側の端部であり、外周面が内周側に凹んでなる第一飽和部321dと、第一飽和部321dの外周側の凹部に配された第二飽和部321eとを有する。 In the present embodiment, the magnetic saturation portion 321 contains a material having a lower magnetic permeability than the material constituting the portion of the movable core 3 other than the magnetic saturation portion 321. In the present embodiment, the magnetic saturation portion 321 is an end portion of the protruding portion 32 on the Z1 side, and the first saturation portion 321d whose outer peripheral surface is recessed toward the inner circumference and the recess on the outer peripheral side of the first saturation portion 321d. It has a second saturated portion 321e arranged in.

第一飽和部321dは、可動コア3における磁気飽和部321を除く部位を構成する材料と同じ材料で構成されており、第二飽和部321eは、可動コア3における磁気飽和部321を除く部位を構成する材料よりも透磁率の低い材料からなる。例えば、可動コア3における第二飽和部321eを除く部位は、ELCH2やSUY等の純鉄等によって構成することができ、第二飽和部321eは、SPCC等の圧延鋼板により構成することができる。第二飽和部321eは、突出部32の外周面と面一になるよう形成されている。
その他は、実施形態3と同様である。
The first saturation portion 321d is made of the same material as the material constituting the portion of the movable core 3 excluding the magnetic saturation portion 321, and the second saturation portion 321e is a portion of the movable core 3 excluding the magnetic saturation portion 321. It is made of a material with a lower magnetic permeability than the constituent materials. For example, the portion of the movable core 3 other than the second saturated portion 321e can be formed of pure iron such as ELCH2 or SUY, and the second saturated portion 321e can be formed of a rolled steel plate such as SPCC. The second saturated portion 321e is formed so as to be flush with the outer peripheral surface of the protruding portion 32.
Others are the same as in the third embodiment.

本実施形態において、磁気飽和部321は、可動コア3における磁気飽和部321を除く部位を構成する材料よりも、透磁率の低い材料を含有する。それゆえ、磁気飽和部321の飽和磁束密度を調整しやすい。このため、適宜磁気飽和部321の飽和磁束密度を調整することにより、所望のギャップGのときに、磁気飽和部321を磁気飽和させることができる。それゆえ、比較的ギャップGが大きく、突出部32から磁性バネ4の各部までの距離が比較的長い状態においては、磁性バネ4と突出部32との間に漏れ磁束Φaを形成することで、磁性バネ4と可動コア3との間に吸引力を作用させることができる。また、ギャップGが小さく、例えば突出部32が磁性バネ4の外周部42の外周側に沿うように配されるまで可動コア3が固定コア2側に吸引された状態においては、突出部32を磁気飽和させることで突出部32に形成される磁束の量を制限することができる。これにより、可動コア3のZ方向の吸引に寄与しない、磁性バネ4と突出部32との間に径方向に沿って流れる磁束を制限し、可動コア3のZ方向の吸引に寄与する、磁性バネ4の外周部42と可動対向面部311との間にZ方向に沿う磁束を増やすことができる。これにより、固定コア2側へ可動コア3を吸引する際の電磁的な吸引力を向上させることができる。
その他、実施形態3と同様の作用効果を有する。
In the present embodiment, the magnetic saturation portion 321 contains a material having a lower magnetic permeability than the material constituting the portion of the movable core 3 other than the magnetic saturation portion 321. Therefore, it is easy to adjust the saturation magnetic flux density of the magnetic saturation unit 321. Therefore, by appropriately adjusting the saturation magnetic flux density of the magnetic saturation section 321, the magnetic saturation section 321 can be magnetically saturated at a desired gap G. Therefore, in a state where the gap G is relatively large and the distance from the protruding portion 32 to each part of the magnetic spring 4 is relatively long, the leakage flux Φa is formed between the magnetic spring 4 and the protruding portion 32. A suction force can be applied between the magnetic spring 4 and the movable core 3. Further, when the gap G is small, for example, the movable core 3 is attracted to the fixed core 2 side until the protruding portion 32 is arranged along the outer peripheral side of the outer peripheral portion 42 of the magnetic spring 4, the protruding portion 32 is formed. Magnetic saturation can limit the amount of magnetic flux formed on the protrusion 32. This limits the magnetic flux flowing along the radial direction between the magnetic spring 4 and the protruding portion 32, which does not contribute to the attraction of the movable core 3 in the Z direction, and contributes to the attraction of the movable core 3 in the Z direction. The magnetic flux along the Z direction can be increased between the outer peripheral portion 42 of the spring 4 and the movable facing surface portion 311. As a result, it is possible to improve the electromagnetic attraction force when the movable core 3 is attracted to the fixed core 2 side.
In addition, it has the same effect as that of the third embodiment.

本発明は、前記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。 The present invention is not limited to each of the above-described embodiments, and can be applied to various embodiments without departing from the gist thereof.

前記各実施形態おいて、磁性バネは、可動コア側に向かうほど縮径する螺旋状に巻回されている例を示したが、これとは逆に、固定コア側に向かうほど縮径する螺旋状に巻回されていてもよい。また、磁性バネは、例えばZ方向において径が一定のコイルバネ等によって形成することも可能である。 In each of the above embodiments, the magnetic spring is wound in a spiral shape that shrinks toward the movable core side, but conversely, the magnetic spring has a spiral diameter that shrinks toward the fixed core side. It may be wound in a shape. Further, the magnetic spring can be formed by, for example, a coil spring having a constant diameter in the Z direction.

また、突出部と同様な構成が、磁性バネの内周側に形成されていてもよい。この場合、突出部に磁性バネの内周端を係合させることで、磁性バネの位置決めをすることができる。 Further, a structure similar to that of the protruding portion may be formed on the inner peripheral side of the magnetic spring. In this case, the magnetic spring can be positioned by engaging the inner peripheral end of the magnetic spring with the protruding portion.

1 ソレノイド装置
11 電磁コイル
2 固定コア
21 固定対向面部
3 可動コア
311 可動対向面部
32 突出部
4 磁性バネ
5 ヨーク
521 開口部
1 Solenoid device 11 Electromagnetic coil 2 Fixed core 21 Fixed facing surface 3 Movable core 311 Movable facing surface 32 Protruding part 4 Magnetic spring 5 York 521 Opening

Claims (11)

通電により磁束(Φ)が発生する電磁コイル(11)と、
前記電磁コイルの内周側に配された固定コア(2)と、
前記固定コアと前記電磁コイルの軸方向(Z)に対向するよう配され、前記電磁コイルへの通電時に前記軸方向の前記固定コア側へ吸引される可動コア(3)と、
互いに前記軸方向に対向するとともに互いに前記軸方向に重なる位置に配された前記固定コアの固定対向面部(21)と前記可動コアの可動対向面部(311)との間に配され、磁性体からなり、前記可動コアを前記軸方向における前記固定コアから遠ざかる側に付勢する磁性バネ(4)と、
前記固定コア、前記可動コア、及び前記磁性バネと共に前記磁束が通る磁気回路を構成し、前記固定対向面部と対向する位置に開口部(521)を有するヨーク(5)と、を備え、
前記可動コアは、前記可動コアが前記固定コアに吸引されていない非吸引状態において前記磁性バネの外形の外側かつ前記開口部の内周側に位置するとともに、前記可動対向面部よりも前記固定コア側に突出する突出部(32)を有する、ソレノイド装置(1)。
An electromagnetic coil (11) that generates magnetic flux (Φ) when energized,
A fixed core (2) arranged on the inner peripheral side of the electromagnetic coil and
A movable core (3) arranged so as to face the fixed core in the axial direction (Z) of the electromagnetic coil and attracted to the fixed core side in the axial direction when the electromagnetic coil is energized.
It is arranged between the fixed facing surface portion (21) of the fixed core and the movable facing surface portion (311) of the movable core, which are arranged at positions facing each other in the axial direction and overlapping each other in the axial direction. A magnetic spring (4) that urges the movable core toward the side away from the fixed core in the axial direction.
A yoke (5) having a magnetic circuit through which the magnetic flux passes together with the fixed core, the movable core, and the magnetic spring, and having an opening (521) at a position facing the fixed facing surface portion is provided.
The movable core is located outside the outer shape of the magnetic spring and on the inner peripheral side of the opening in a non-suction state where the movable core is not attracted to the fixed core, and the fixed core is located on the inner peripheral side of the opening. A solenoid device (1) having a protruding portion (32) protruding to the side.
前記磁性バネは、前記軸方向の一方側へ向かうほど縮径する螺旋状に巻回されている、請求項1に記載のソレノイド装置。 The solenoid device according to claim 1, wherein the magnetic spring is spirally wound so as to decrease in diameter toward one side in the axial direction. 前記突出部は、前記可動対向面部における前記磁性バネに前記軸方向に重ならない非投影領域に形成されている、請求項1又は2に記載のソレノイド装置。 The solenoid device according to claim 1 or 2, wherein the protruding portion is formed in a non-projected region that does not overlap the magnetic spring in the movable facing surface portion in the axial direction. 前記突出部は、前記磁性バネの最外周部よりも外周側に位置する、請求項3に記載のソレノイド装置。 The solenoid device according to claim 3, wherein the protruding portion is located on the outer peripheral side of the outermost peripheral portion of the magnetic spring. 前記突出部は、環状に形成されている、請求項4に記載のソレノイド装置。 The solenoid device according to claim 4, wherein the protruding portion is formed in an annular shape. 複数の前記突出部を有する、請求項1〜5のいずれか一項に記載のソレノイド装置。 The solenoid device according to any one of claims 1 to 5, which has a plurality of the protrusions. 前記突出部は、前記電磁コイルが通電状態にあるときに局所的に磁気飽和する磁気飽和部(321)を有する、請求項1〜6のいずれか一項に記載のソレノイド装置。 The solenoid device according to any one of claims 1 to 6, wherein the protruding portion has a magnetic saturation portion (321) that locally magnetically saturates when the electromagnetic coil is energized. 前記突出部は、前記軸方向の複数箇所に前記磁気飽和部を有する、請求項7に記載のソレノイド装置。 The solenoid device according to claim 7, wherein the protruding portion has the magnetic saturation portion at a plurality of positions in the axial direction. 前記突出部に形成された前記軸方向の複数箇所の前記磁気飽和部は、前記固定コア側のものほど高い磁気抵抗を有する、請求項8に記載のソレノイド装置。 The solenoid device according to claim 8, wherein the magnetic saturation portions at a plurality of axial directions formed on the protruding portions have higher magnetic resistance as those on the fixed core side. 前記突出部は、前記可動コアにおける前記突出部を除く部位を構成する材料よりも、透磁率の低い材料からなる、請求項1〜6のいずれか一項に記載のソレノイド装置。 The solenoid device according to any one of claims 1 to 6, wherein the protruding portion is made of a material having a magnetic permeability lower than that of a material constituting a portion of the movable core other than the protruding portion. 前記磁気飽和部は、前記可動コアにおける前記磁気飽和部を除く部位を構成する材料よりも、透磁率の低い材料を含有する、請求項7〜9のいずれか一項に記載のソレノイド装置。 The solenoid device according to any one of claims 7 to 9, wherein the magnetic saturation portion contains a material having a lower magnetic permeability than a material constituting a portion of the movable core other than the magnetic saturation portion.
JP2019079476A 2019-04-18 2019-04-18 Solenoid device Active JP7113782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019079476A JP7113782B2 (en) 2019-04-18 2019-04-18 Solenoid device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079476A JP7113782B2 (en) 2019-04-18 2019-04-18 Solenoid device

Publications (2)

Publication Number Publication Date
JP2020178047A true JP2020178047A (en) 2020-10-29
JP7113782B2 JP7113782B2 (en) 2022-08-05

Family

ID=72936483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079476A Active JP7113782B2 (en) 2019-04-18 2019-04-18 Solenoid device

Country Status (1)

Country Link
JP (1) JP7113782B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4615019Y1 (en) * 1967-10-06 1971-05-26
JP2002175914A (en) * 2000-12-05 2002-06-21 Ckd Corp Solenoid
US20140225691A1 (en) * 2013-02-08 2014-08-14 Anden Co., Ltd. Solenoid device and solenoid control system
JP2018026474A (en) * 2016-08-10 2018-02-15 Kyb株式会社 Solenoid actuator
JP2018142529A (en) * 2017-02-28 2018-09-13 株式会社Soken Electromagnetic relay
JP2018142503A (en) * 2017-02-28 2018-09-13 株式会社Soken Electromagnetic relay

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4615019Y1 (en) * 1967-10-06 1971-05-26
JP2002175914A (en) * 2000-12-05 2002-06-21 Ckd Corp Solenoid
US20140225691A1 (en) * 2013-02-08 2014-08-14 Anden Co., Ltd. Solenoid device and solenoid control system
JP2018026474A (en) * 2016-08-10 2018-02-15 Kyb株式会社 Solenoid actuator
JP2018142529A (en) * 2017-02-28 2018-09-13 株式会社Soken Electromagnetic relay
JP2018142503A (en) * 2017-02-28 2018-09-13 株式会社Soken Electromagnetic relay

Also Published As

Publication number Publication date
JP7113782B2 (en) 2022-08-05

Similar Documents

Publication Publication Date Title
JP6300157B2 (en) Electromagnetic relay
JPH0134326Y2 (en)
US8415838B1 (en) Linear motor with two magnets and a coil carrier having multiple winding areas with each area having a section of a coil wound with one continuous wire with the winding in opposite directions in spaced apart winding areas
KR101035764B1 (en) Core back of an electrical machine and method for making the same
JPH08340651A (en) Permanent magnet, and permanent magnet rotating machine
US11201529B2 (en) Rotary electric machine
JP2010040823A (en) Superconducting coil and magnetic field generation device
WO2008132970A1 (en) Insulator, stator of electric motor, and electric motor
JP5120801B2 (en) Rotating machine and method of manufacturing the rotating machine
JP5581179B2 (en) DC brushless motor and control method thereof
JP2018142529A (en) Electromagnetic relay
JP2000083364A (en) Movable core linear motor
JP6416045B2 (en) Ignition coil for internal combustion engine
JP2007216097A (en) Vibration generator
CN106253518A (en) The manufacture method of rotor, motor and rotor
JP2016143623A (en) Electromagnetic relay
JP2020178047A (en) Solenoid device
JP7097289B2 (en) Solenoid device
JP6686936B2 (en) Electromagnetic relay
JP5300381B2 (en) DC series motor and starter
JP2018081901A (en) Electromagnetic relay
JP2010268650A (en) Axial gap type rotary electric machine
JP6933060B2 (en) Electromagnetic relay
JP2021068907A (en) System and method for solenoid having permanent magnet
JP5742133B2 (en) Electromagnet device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220726

R150 Certificate of patent or registration of utility model

Ref document number: 7113782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150