JP2020176693A - Hydrogen storage state estimation device, hydrogen storage state estimation program and hydrogen storage state estimation method - Google Patents

Hydrogen storage state estimation device, hydrogen storage state estimation program and hydrogen storage state estimation method Download PDF

Info

Publication number
JP2020176693A
JP2020176693A JP2019079836A JP2019079836A JP2020176693A JP 2020176693 A JP2020176693 A JP 2020176693A JP 2019079836 A JP2019079836 A JP 2019079836A JP 2019079836 A JP2019079836 A JP 2019079836A JP 2020176693 A JP2020176693 A JP 2020176693A
Authority
JP
Japan
Prior art keywords
hydrogen storage
time
operation time
hydrogen
storage rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019079836A
Other languages
Japanese (ja)
Other versions
JP7209291B2 (en
Inventor
未来 杉田
Miki Sugita
未来 杉田
英介 下田
Eisuke Shimoda
英介 下田
野津 剛
Tsuyoshi Nozu
剛 野津
前田 哲彦
Tetsuhiko Maeda
哲彦 前田
成輝 遠藤
Naruki ENDO
成輝 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, National Institute of Advanced Industrial Science and Technology AIST, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2019079836A priority Critical patent/JP7209291B2/en
Publication of JP2020176693A publication Critical patent/JP2020176693A/en
Application granted granted Critical
Publication of JP7209291B2 publication Critical patent/JP7209291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

To provide a hydrogen storage state estimation device capable of appropriately estimating a hydrogen storage state even at an operation switching time in which a sucking operation and a discharging operation are switched.SOLUTION: A hydrogen storage state estimation device 1 comprises: a first calculation unit 122 which calculates a hydrogen storage rate xt per operation time; a second calculation unit 123 which corrects a hydrogen storage rate change amount Δxt on the basis of a ratio of a hydrogen storage rate xt-1 at a preceding time and an apparent hydrogen storage rate yt-1, thereby calculating an apparent hydrogen storage rate change amount Δyt at the operation time and accumulates the apparent hydrogen storage rate change amount Δyt per operation time with respect to an apparent hydrogen storage rate y0 at an initial time, thereby calculating an apparent hydrogen storage rate yt per operation time; and a third calculation unit 124 which calculates a tank temperature Tt and a tank pressure Pt per operation time on the basis of the apparent hydrogen storage rate yt per operation time and a PCT chart.SELECTED DRAWING: Figure 7

Description

本発明は、水素吸蔵合金が充填された水素貯蔵装置による水素貯蔵状態を推定する水素貯蔵状態推定装置、水素貯蔵状態推定プログラム及び水素貯蔵状態推定方法に関する。 The present invention relates to a hydrogen storage state estimation device for estimating a hydrogen storage state by a hydrogen storage device filled with a hydrogen storage alloy, a hydrogen storage state estimation program, and a hydrogen storage state estimation method.

従来、水素吸蔵合金が充填された水素貯蔵装置に水素を貯蔵する場合、水素貯蔵装置による水素貯蔵状態を管理するため、水素吸蔵合金の温度、水素圧力、水素吸蔵量等を把握することが要求される。 Conventionally, when hydrogen is stored in a hydrogen storage device filled with a hydrogen storage alloy, it is required to grasp the temperature, hydrogen pressure, hydrogen storage amount, etc. of the hydrogen storage alloy in order to control the hydrogen storage state by the hydrogen storage device. Will be done.

例えば、特許文献1には、温度センサ及び圧力センサにより水素吸蔵合金の温度及び水素圧力を検出するとともに、水素吸蔵合金の各温度における水素圧力と水素吸蔵量との関係を表す関数によって水素吸蔵合金の水素吸蔵量を求める水素吸蔵量の測定方法が開示されている。 For example, in Patent Document 1, the temperature and hydrogen pressure of a hydrogen storage alloy are detected by a temperature sensor and a pressure sensor, and the hydrogen storage alloy is a function expressing the relationship between the hydrogen pressure and the hydrogen storage amount at each temperature of the hydrogen storage alloy. A method for measuring the hydrogen storage amount of the hydrogen storage amount is disclosed.

特開2004−241261号公報Japanese Unexamined Patent Publication No. 2004-241261

しかし、特許文献1に開示された水素吸蔵量の測定方法にて用いられる上記関数では、吸蔵運転と放出運転とが切り換わるときの運転切換時の挙動が考慮されておらず、運転切換時における水素吸蔵量の変化を適切に把握することができない。また、特許文献1に開示された水素吸蔵量の測定方法では、温度センサ及び圧力センサによりそれぞれ検出された水素吸蔵合金の温度及び水素圧力を用いて水素吸蔵量を求めるため、リアルタイムでの水素庁貯蔵状態しか測定することができず、将来に亘って水素庁貯蔵状態の推移を把握することができない。 However, the above function used in the method for measuring the hydrogen storage amount disclosed in Patent Document 1 does not consider the behavior at the time of operation switching when the storage operation and the release operation are switched, and at the time of operation switching. It is not possible to properly grasp changes in hydrogen storage capacity. Further, in the method for measuring the hydrogen storage amount disclosed in Patent Document 1, since the hydrogen storage amount is obtained using the temperature and hydrogen pressure of the hydrogen storage alloy detected by the temperature sensor and the pressure sensor, respectively, the Hydrogen Agency in real time. Only the storage state can be measured, and the transition of the storage state of the Hydrogen Agency cannot be grasped in the future.

本発明は、このような事情に鑑みてなされたものであって、吸蔵運転と放出運転とが切り換わる運転切換時であっても水素貯蔵状態を適切に推定することができる水素貯蔵状態推定装置、水素貯蔵状態推定プログラム及び水素貯蔵状態推定方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a hydrogen storage state estimation device capable of appropriately estimating the hydrogen storage state even when the operation is switched between the storage operation and the release operation. , A hydrogen storage state estimation program and a hydrogen storage state estimation method.

本発明は、上記課題を解決するものであって、本発明の一実施形態に係る水素貯蔵状態推定装置は、
水素吸蔵合金が充填された水素貯蔵タンクにおける水素貯蔵状態を推定する水素貯蔵状態推定装置であって、
前記水素貯蔵状態の初期値として、所定の初期時刻における水素貯蔵率(x)、タンク温度(T)及びタンク圧力(P)を取得するとともに、前記初期時刻における前記タンク温度(T)及び前記タンク圧力(P)と、前記水素吸蔵合金のPCT線図とに基づいて、前記初期時刻における見かけの水素貯蔵率(y)を取得する初期状態取得部と、
前記初期時刻から所定の単位時間間隔で区切られた所定の運転時刻毎の前記水素貯蔵タンクの運転計画として、前記運転時刻毎の水素流入流出量(F)を取得する運転計画取得部と、
前記運転時刻毎の前記水素流入流出量(F)に基づいて、前記運転時刻毎の水素貯蔵率の変化量(Δx)を算定するとともに、前記初期時刻における前記水素貯蔵率(x)に対して前記運転時刻毎の前記水素貯蔵率の変化量(Δx)を累積することにより、前記運転時刻毎の水素貯蔵率xを算定する第1の算定部と、
前記運転時刻毎の前記見かけの水素貯蔵率の変化量(Δy)を算定するとともに、前記初期時刻における前記見かけの水素貯蔵率(y)に対して前記運転時刻毎の前記見かけの水素貯蔵率の変化量(Δy)を累積することにより、前記運転時刻毎の見かけの水素貯蔵率(y)を算定する第2の算定部と、
前記運転時刻毎の前記見かけの水素貯蔵率(y)と、前記PCT線図とに基づいて、前記運転時刻毎の前記タンク温度(T)及び前記タンク圧力(P)を算定する第3の算定部と、
前記第1の算定部により算定された前記運転時刻毎の前記水素貯蔵率(x)と、前記第3の算定部により算定された前記運転時刻毎の前記タンク温度(T)及び前記タンク圧力(P)を出力する出力部とを備え、
前記第2の算定部は、
前記運転時刻よりも前記単位時間前の直前時刻における前記水素貯蔵率(xt−1)及び前記見かけの水素貯蔵率(yt−1)の間の比率に基づいて、当該運転時刻における前記水素貯蔵率の変化量(Δx)を補正することにより、当該運転時刻における前記見かけの水素貯蔵率の変化量(Δy)を算定する、ことを特徴とする。
The present invention solves the above problems, and the hydrogen storage state estimation device according to the embodiment of the present invention is
A hydrogen storage state estimation device that estimates the hydrogen storage state in a hydrogen storage tank filled with a hydrogen storage alloy.
As an initial value of the hydrogen storage conditions, the hydrogen storage modulus at a predetermined initial time (x 0), to acquire the tank temperature (T 0) and tank pressure (P 0), the in the initial time tank temperature (T 0 ), The tank pressure (P 0 ), and the initial state acquisition unit that acquires the apparent hydrogen storage rate (y 0 ) at the initial time based on the PCT diagram of the hydrogen storage alloy.
As an operation plan of the hydrogen storage tank for each predetermined operation time divided at a predetermined unit time interval from the initial time, an operation plan acquisition unit for acquiring the hydrogen inflow / outflow amount ( Ft ) for each operation time, and an operation plan acquisition unit.
Based on the hydrogen inflow and outflow amount (F t ) for each operation time, the amount of change (Δx t ) in the hydrogen storage rate for each operation time is calculated, and the hydrogen storage rate (x 0 ) at the initial time is calculated. The first calculation unit for calculating the hydrogen storage rate x t for each operation time by accumulating the amount of change (Δx t ) of the hydrogen storage rate for each operation time.
The amount of change (Δy t ) in the apparent hydrogen storage rate for each operation time is calculated, and the apparent hydrogen storage rate for each operation time is relative to the apparent hydrogen storage rate (y 0 ) at the initial time. by accumulating the variation rate of the ([Delta] y t), a second calculation unit to calculate the hydrogen storage rate of apparent each of the operating time (y t),
The tank temperature (T t ) and the tank pressure (P t ) for each operation time are calculated based on the apparent hydrogen storage rate (y t ) for each operation time and the PCT diagram. Calculation department of 3 and
The hydrogen storage rate (x t ) for each operation time calculated by the first calculation unit, the tank temperature (T t ) for each operation time calculated by the third calculation unit, and the tank. Equipped with an output unit that outputs pressure ( Pt )
The second calculation unit is
The hydrogen at the operating time is based on the ratio between the hydrogen storage rate (x t-1 ) and the apparent hydrogen storage rate (y t-1 ) at the time immediately preceding the unit time before the operating time. by correcting the variation of the storage rate ([Delta] x t), calculates the amount of change in hydrogen storage rate of the apparent at the operation time of the ([Delta] y t), characterized in that.

また、上記水素貯蔵状態推定装置において、
前記第2の算定部は、
前記比率を2乗した値を、当該運転時刻における前記水素貯蔵率の変化量(Δx)に乗算することにより、当該運転時刻における前記見かけの水素貯蔵率の変化量(Δy)を算定する、ことを特徴とする。
In addition, in the hydrogen storage state estimation device,
The second calculation unit is
Squared values of said ratio by multiplying the change amount of the hydrogen storage modulus at the operation time ([Delta] x t), calculates the amount of change in hydrogen storage rate of the apparent at the operation time of the ([Delta] y t) , Characterized by.

また、上記水素貯蔵状態推定装置において、
前記第2の算定部は、
前記運転時刻における運転状態が、前記水素吸蔵合金に水素を吸蔵させる吸蔵運転である場合には、前記直前時刻における前記見かけの水素貯蔵率(yt−1)に対する前記水素貯蔵率(xt−1)の比率に基づいて、当該運転時刻における前記水素貯蔵率の変化量(Δx)を補正することにより、当該運転時刻における前記見かけの水素貯蔵率の変化量(Δy)を算定し、
前記運転時刻における運転状態が、前記水素吸蔵合金に水素を放出させる放出運転である場合には、前記直前時刻における前記水素貯蔵率(xt−1)に対する前記見かけの水素貯蔵率(yt−1)の比率に基づいて、当該運転時刻における前記水素貯蔵率の変化量(Δx)を補正することにより、当該運転時刻における前記見かけの水素貯蔵率の変化量(Δy)を算定する、ことを特徴とする。
In addition, in the hydrogen storage state estimation device,
The second calculation unit is
When the operating state at the operating time is a storage operation in which the hydrogen storage alloy stores hydrogen, the hydrogen storage rate (x t− ) with respect to the apparent hydrogen storage rate (y t-1 ) at the immediately preceding time. based on the ratio of 1), by correcting the change amount of the hydrogen storage modulus at the operation time of the ([Delta] x t), calculated change amount of the hydrogen storage rate of the apparent at the operation time of the ([Delta] y t),
Operation state in the operation time, if it is released operation for releasing hydrogen to the hydrogen storage alloy, a hydrogen storage rate of the apparent relative to the hydrogen storage rate in the immediately preceding time (x t-1) (y t- based on the ratio of 1), by correcting the change amount of the hydrogen storage modulus at the operation time of the ([Delta] x t), calculates the amount of change in hydrogen storage rate of the apparent at the operation time of the ([Delta] y t), It is characterized by that.

また、上記水素貯蔵状態推定装置において、
前記運転計画取得部は、
前記運転計画として、前記運転時刻毎の熱媒熱量(QC)をさらに取得し、
前記第3の算定部は、
前記運転時刻毎の前記水素流入流出量(F)及び前記熱媒熱量(QC)に基づいて、前記運転時刻毎の前記タンク温度(T)を算定し、
前記運転時刻毎の前記見かけの水素貯蔵率(y)及び前記タンク温度(T)と、前記PCT線図とに基づいて、前記運転時刻毎の前記タンク圧力(P)を算定する、ことを特徴とする。
In addition, in the hydrogen storage state estimation device,
The operation plan acquisition unit
As the operation plan, the heat medium heat amount (QC t ) for each operation time is further acquired.
The third calculation unit is
The tank temperature (T t ) for each operation time is calculated based on the hydrogen inflow / outflow amount (F t ) and the heat medium heat amount (QC t ) for each operation time.
The tank pressure (P t ) for each operation time is calculated based on the apparent hydrogen storage rate (y t ) and the tank temperature (T t ) for each operation time and the PCT diagram. It is characterized by that.

また、上記水素貯蔵状態推定装置において、
前記第2の算定部は、
前記運転時刻が、前記水素吸蔵合金に水素を吸蔵させる吸蔵運転と、前記水素吸蔵合金に水素を放出させる放出運転との間で運転状態の切換が行われる時刻である場合には、前記初期時刻におけるタンク温度(T)及びタンク圧力(P)と、前記PCT線図の前記切換後の前記運転状態に対する挙動とに基づいて、前記初期時刻における見かけの水素貯蔵率(y)を更新する、ことを特徴とする。
In addition, in the hydrogen storage state estimation device,
The second calculation unit is
When the operation time is a time at which the operation state is switched between the storage operation for storing hydrogen in the hydrogen storage alloy and the discharge operation for releasing hydrogen to the hydrogen storage alloy, the initial time The apparent hydrogen storage rate (y 0 ) at the initial time is updated based on the tank temperature (T 0 ) and the tank pressure (P 0 ) in the PCT diagram and the behavior of the PCT diagram with respect to the operating state after the switching. It is characterized by doing.

また、上記水素貯蔵状態推定装置において、
前記PCT線図は、
前記水素吸蔵合金と同一の組成の試験体を用いて作成された近似線である、ことを特徴とする。
In addition, in the hydrogen storage state estimation device,
The PCT diagram is
It is characterized in that it is an approximate line created by using a test piece having the same composition as the hydrogen storage alloy.

また、本発明の一実施形態に係る水素貯蔵状態推定プログラムは、
コンピュータを、上記水素貯蔵状態推定装置が備える各部として機能させる、ことを特徴とする。
Further, the hydrogen storage state estimation program according to the embodiment of the present invention is
It is characterized in that the computer functions as each part included in the hydrogen storage state estimation device.

また、本発明の一実施形態に係る水素貯蔵状態推定方法は、
水素吸蔵合金が充填された水素貯蔵タンクにおける水素貯蔵状態を推定する水素貯蔵状態推定方法であって、
前記水素貯蔵状態の初期値として、所定の初期時刻における水素貯蔵率(x)、タンク温度(T)及びタンク圧力(P)を取得するとともに、前記初期時刻における前記タンク温度(T)及び前記タンク圧力(P)と、前記水素吸蔵合金のPCT線図とに基づいて、前記初期時刻における見かけの水素貯蔵率(y)を取得する初期状態取得工程と、
前記初期時刻から所定の単位時間間隔で区切られた所定の運転時刻毎の前記水素貯蔵タンクの運転計画として、前記運転時刻毎の水素流入流出量(F)を取得する運転計画取得工程と、
前記運転時刻毎の前記水素流入流出量(F)に基づいて、前記運転時刻毎の水素貯蔵率の変化量(Δx)を算定するとともに、前記初期時刻における前記水素貯蔵率(x)に対して前記運転時刻毎の前記水素貯蔵率の変化量(Δx)を累積することにより、前記運転時刻毎の水素貯蔵率(x)を算定する第1の算定工程と、
前記運転時刻毎の前記見かけの水素貯蔵率の変化量(Δy)を算定するとともに、前記初期時刻における前記見かけの水素貯蔵率(y)に対して前記運転時刻毎の前記見かけの水素貯蔵率の変化量(Δy)を累積することにより、前記運転時刻毎の見かけの水素貯蔵率(y)を算定する第2の算定工程と、
前記運転時刻毎の前記見かけの水素貯蔵率(y)と、前記PCT線図とに基づいて、前記運転時刻毎の前記タンク温度(T)及び前記タンク圧力(P)を算定する第3の算定工程と、
前記第1の算定工程により算定された前記運転時刻毎の前記水素貯蔵率(x)と、前記第3の算定工程により算定された前記運転時刻毎の前記タンク温度(T)及び前記タンク圧力(P)を出力する出力工程とを備え、
前記第2の算定工程は、
前記運転時刻よりも前記単位時間前の直前時刻における前記水素貯蔵率(xt−1)及び前記見かけの水素貯蔵率(yt−1)の間の比率に基づいて、当該運転時刻における前記水素貯蔵率の変化量(Δx)を補正することにより、当該運転時刻における前記見かけの水素貯蔵率の変化量(Δy)を算定する、ことを特徴とする。
Further, the method for estimating the hydrogen storage state according to the embodiment of the present invention is
It is a hydrogen storage state estimation method for estimating the hydrogen storage state in a hydrogen storage tank filled with a hydrogen storage alloy.
As an initial value of the hydrogen storage conditions, the hydrogen storage modulus at a predetermined initial time (x 0), to acquire the tank temperature (T 0) and tank pressure (P 0), the in the initial time tank temperature (T 0 ), The tank pressure (P 0 ), and the initial state acquisition step of acquiring the apparent hydrogen storage rate (y 0 ) at the initial time based on the PCT diagram of the hydrogen storage alloy.
As an operation plan of the hydrogen storage tank for each predetermined operation time separated from the initial time at a predetermined unit time interval, an operation plan acquisition process for acquiring the hydrogen inflow / outflow amount ( Ft ) for each operation time, and an operation plan acquisition step.
Based on the hydrogen inflow and outflow amount (F t ) for each operation time, the amount of change (Δx t ) in the hydrogen storage rate for each operation time is calculated, and the hydrogen storage rate (x 0 ) at the initial time is calculated. The first calculation step of calculating the hydrogen storage rate (x t ) for each operation time by accumulating the amount of change (Δx t ) of the hydrogen storage rate for each operation time.
The amount of change (Δy t ) in the apparent hydrogen storage rate for each operation time is calculated, and the apparent hydrogen storage rate for each operation time is relative to the apparent hydrogen storage rate (y 0 ) at the initial time. by accumulating the variation rate of the ([Delta] y t), a second calculation step of calculating hydrogen storage modulus of apparent each of the operating time of the (y t),
The tank temperature (T t ) and the tank pressure (P t ) for each operation time are calculated based on the apparent hydrogen storage rate (y t ) for each operation time and the PCT diagram. Calculation process of 3 and
The hydrogen storage rate (x t ) for each operation time calculated by the first calculation step, the tank temperature (T t ) for each operation time calculated by the third calculation step, and the tank. It is equipped with an output process that outputs pressure ( Pt ).
The second calculation process is
The hydrogen at the operating time is based on the ratio between the hydrogen storage rate (x t-1 ) and the apparent hydrogen storage rate (y t-1 ) at the time immediately preceding the unit time before the operating time. by correcting the variation of the storage rate ([Delta] x t), calculates the amount of change in hydrogen storage rate of the apparent at the operation time of the ([Delta] y t), characterized in that.

本発明の一実施形態に係る予防保全管理装置によれば、第1の算定部が、初期時刻における水素貯蔵率に対して運転時刻毎の水素貯蔵率の変化量を累積することにより、運転時刻毎の水素貯蔵率を算定し、第2の算定部が、運転時刻よりも単位時間前の直前時刻における水素貯蔵率及び見かけの水素貯蔵率の間の比率に基づいて、当該運転時刻における水素貯蔵率の変化量を補正することにより、当該運転時刻における見かけの水素貯蔵率の変化量を算定するとともに、初期時刻における見かけの水素貯蔵率に対して運転時刻毎の見かけの水素貯蔵率の変化量を累積することにより、運転時刻毎の見かけの水素貯蔵率を算定し、第3の算定部が、運転時刻毎の見かけの水素貯蔵率と、PCT線図とに基づいて、運転時刻毎のタンク温度及びタンク圧力を算定する。 According to the preventive maintenance management device according to the embodiment of the present invention, the first calculation unit accumulates the amount of change in the hydrogen storage rate for each operation time with respect to the hydrogen storage rate at the initial time, thereby performing the operation time. The hydrogen storage rate for each is calculated, and the second calculation unit calculates the hydrogen storage rate at the operating time based on the ratio between the hydrogen storage rate at the time immediately before the operating time and the apparent hydrogen storage rate. By correcting the amount of change in the rate, the amount of change in the apparent hydrogen storage rate at the relevant operating time is calculated, and the amount of change in the apparent hydrogen storage rate at each operating time with respect to the apparent hydrogen storage rate at the initial time. By accumulating, the apparent hydrogen storage rate for each operation time is calculated, and the third calculation unit calculates the apparent hydrogen storage rate for each operation time and the tank for each operation time based on the PCT diagram. Calculate temperature and tank pressure.

そのため、タンク温度及びタンク圧力の推定値が、運転時刻毎の水素貯蔵率に基づいて算定された場合には、図4(a)、(b)(詳細は後述する)に示すように、吸蔵運転と放出運転とが切り換わる運転切換時において実験値との間に大きなずれが発生するのに対して、タンク温度及びタンク圧力の推定値が、第3の算定部により運転時刻毎の見かけの水素貯蔵率に基づいて算定された場合には、図8(a)、(b)(詳細は後述する)に示すように、運転切換時であっても実験値との間に大きなずれが発生することがない。したがって、吸蔵運転と放出運転とが切り換わる運転切換時であっても水素貯蔵状態を適切に推定することができる。 Therefore, when the estimated values of the tank temperature and the tank pressure are calculated based on the hydrogen storage rate for each operation time, as shown in FIGS. 4 (a) and 4 (b) (details will be described later), the occlusion is performed. While there is a large discrepancy between the experimental values and the experimental values when switching between operation and release operation, the estimated values of tank temperature and tank pressure are apparent for each operation time by the third calculation unit. When calculated based on the hydrogen storage rate, as shown in FIGS. 8A and 8B (details will be described later), a large deviation from the experimental value occurs even when the operation is switched. There is nothing to do. Therefore, the hydrogen storage state can be appropriately estimated even at the time of switching the operation between the storage operation and the release operation.

本発明の実施形態に係る水素エネルギー利用システム100の一例を示す全体構成図である。It is an overall block diagram which shows an example of the hydrogen energy utilization system 100 which concerns on embodiment of this invention. 本発明の実施形態に係る水素貯蔵状態推定装置1の一例を示すブロック図である。It is a block diagram which shows an example of the hydrogen storage state estimation apparatus 1 which concerns on embodiment of this invention. 本発明の実施形態に係るPCT線図データ110の一例を示す図である。It is a figure which shows an example of the PCT diagram data 110 which concerns on embodiment of this invention. 本発明の実施形態に係る水素貯蔵状態推定装置1(制御部12)が水素貯蔵状態の推定処理を行う際の見かけの水素貯蔵率yを説明する図であり、(a)は水素貯蔵率x及びPCT線図データ110から推定したタンク温度Tの推定値と、タンク温度の実験値との比較、(b)は水素貯蔵率x及びPCT線図データ110から推定したタンク圧力Pの推定値と、タンク圧力の実験値との比較、(c)は運転計画データ111から算定した水素貯蔵率xの算定値と、タンク温度及びタンク圧力の実験値をPCT線図データ110に代入した場合の水素貯蔵率の実験値との比較を示す図である。It is a figure explaining the apparent hydrogen storage rate y t when the hydrogen storage state estimation device 1 (control unit 12) which concerns on embodiment of this invention performs the hydrogen storage state estimation process, and (a) is a figure which explains the hydrogen storage rate y t . Comparison of the estimated value of tank temperature T t estimated from x t and PCT diagram data 110 with the experimental value of tank temperature, (b) is the tank pressure P estimated from hydrogen storage rate x t and PCT diagram data 110. Comparison of the estimated value of t and the experimental value of the tank pressure, (c) is the calculated value of the hydrogen storage rate x t calculated from the operation plan data 111, and the experimental values of the tank temperature and the tank pressure are shown in the PCT diagram data 110. It is a figure which shows the comparison with the experimental value of the hydrogen storage rate when substituting into. 本発明の実施形態に係る水素貯蔵状態推定装置1による水素貯蔵状態の推定処理(水素貯蔵状態推定方法)を示すフローチャートである。It is a flowchart which shows the hydrogen storage state estimation process (hydrogen storage state estimation method) by the hydrogen storage state estimation apparatus 1 which concerns on embodiment of this invention. 本発明の実施形態に係る水素貯蔵状態推定装置1による水素貯蔵状態の推定処理(水素貯蔵状態推定方法)を示すフローチャート(図5の続き)である。It is a flowchart (continuation of FIG. 5) which shows the hydrogen storage state estimation process (hydrogen storage state estimation method) by the hydrogen storage state estimation apparatus 1 which concerns on embodiment of this invention. 本発明の実施形態に係る水素貯蔵状態推定装置1による水素貯蔵状態の推定処理において、水素貯蔵率x(算定値)、見かけの水素貯蔵率y及びPCT線図データ110(近似式)の推移を示す図である。In the hydrogen storage state estimation process by the hydrogen storage state estimation device 1 according to the embodiment of the present invention, the hydrogen storage rate x t (calculated value), the apparent hydrogen storage rate y t, and the PCT diagram data 110 (approximate formula) It is a figure which shows the transition. 本発明の実施例に係るTi系合金が充填された水素貯蔵タンク2に対して、水素貯蔵状態推定装置1による水素貯蔵状態の推定処理を行った結果と、実験値との比較を示し、(a)はタンク温度Tの推定値と、タンク温度の実験値との比較、(b)はタンク圧力Pの推定値と、タンク圧力の実験値との比較、(c)は水素貯蔵率xの算定値と、見かけの水素貯蔵率yとの比較を示す図である。A comparison between the results of estimating the hydrogen storage state by the hydrogen storage state estimation device 1 with respect to the hydrogen storage tank 2 filled with the Ti-based alloy according to the embodiment of the present invention and the experimental values is shown. a) comparison of the estimated value of the tank temperature T t, the experimental values of the tank temperature, (b) a comparison of the estimated value of the tank pressure P t, the experimental values of tank pressure, (c) hydrogen storage modulus It is a figure which shows the comparison between the calculated value of x t , and the apparent hydrogen storage rate y t .

以下、本発明の一実施形態について添付図面を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の実施形態に係る水素エネルギー利用システム100の一例を示す全体構成図である。水素エネルギー利用システム100は、例えば、集合住宅等の建物や工場等の施設に付設されて、電気エネルギーの需給に応じて、水素エネルギーと電気エネルギーとの間で相互に変換することで、水素エネルギーを利用するシステムである。 FIG. 1 is an overall configuration diagram showing an example of a hydrogen energy utilization system 100 according to an embodiment of the present invention. The hydrogen energy utilization system 100 is attached to, for example, a building such as an apartment house or a facility such as a factory, and hydrogen energy is converted between hydrogen energy and electric energy according to the supply and demand of electric energy. It is a system that uses.

水素エネルギー利用システム100は、水素吸蔵合金20が充填された水素貯蔵タンク2と、水素を製造し、水素貯蔵タンク2に水素を供給する水素製造装置3と、水素貯蔵タンク2内の水素吸蔵合金20から放出された水素を利用する水素利用装置4と、水素貯蔵タンク2との間で熱媒体を循環させる熱媒体循環装置5と、水素貯蔵タンク2内の水素吸蔵合金20の温度(以下、「タンク温度T」という。)を検出する温度センサ6と、水素貯蔵タンク2に貯蔵された水素の圧力(以下、「タンク圧力P」という。)を検出する圧力センサ7と、水素貯蔵タンク2における水素貯蔵状態を推定する水素貯蔵状態推定装置1とを備えて構成されている。 The hydrogen energy utilization system 100 includes a hydrogen storage tank 2 filled with a hydrogen storage alloy 20, a hydrogen production device 3 that produces hydrogen and supplies hydrogen to the hydrogen storage tank 2, and a hydrogen storage alloy in the hydrogen storage tank 2. The temperature of the hydrogen storage alloy 20 in the hydrogen storage tank 2 and the heat medium circulation device 5 that circulates the heat medium between the hydrogen utilization device 4 that utilizes the hydrogen released from 20 and the hydrogen storage tank 2 (hereinafter, A temperature sensor 6 that detects "tank temperature T"), a pressure sensor 7 that detects the pressure of hydrogen stored in the hydrogen storage tank 2 (hereinafter referred to as "tank pressure P"), and a hydrogen storage tank 2. It is configured to include a hydrogen storage state estimation device 1 for estimating the hydrogen storage state in the above.

水素貯蔵タンク2に充填された水素吸蔵合金20は、タンク温度T及びタンク圧力Pに応じて水素を吸蔵又は放出する合金である。水素吸蔵合金20としては、例えば、アルカリ土類系、希土類系、チタン系、固溶体等の各種の合金が用いられる。 The hydrogen storage alloy 20 filled in the hydrogen storage tank 2 is an alloy that stores or releases hydrogen according to the tank temperature T and the tank pressure P. As the hydrogen storage alloy 20, for example, various alloys such as alkaline earth-based, rare earth-based, titanium-based, and solid solution are used.

水素製造装置3は、例えば、余剰電力や深夜電力等の電気エネルギーを用いて水を電気分解することにより水素を製造する電気分解装置や、メタンやメタノール等を改質することにより水素を製造する改質装置等で構成されている。 The hydrogen production device 3 is, for example, an electrolysis device that produces hydrogen by electrolyzing water using electric energy such as surplus power or midnight power, or a hydrogen production device 3 that produces hydrogen by reforming methane, methanol, or the like. It is composed of a reformer and the like.

水素利用装置4は、水素を利用して各種のエネルギーを発生する装置であり、例えば、水素と酸素との電気化学反応により電気エネルギー及び熱エネルギーを発生する燃料電池や、水素を燃焼させて運動エネルギー及び熱エネルギーを発生する水素エンジン等で構成されている。 The hydrogen utilization device 4 is a device that generates various energies by using hydrogen. For example, a fuel cell that generates electric energy and thermal energy by an electrochemical reaction between hydrogen and oxygen, or a fuel cell that burns hydrogen to move. It is composed of a hydrogen engine that generates energy and thermal energy.

熱媒体循環装置5は、水素貯蔵タンク2内の水素吸蔵合金20に対して熱媒体を循環させることで熱媒体と水素吸蔵合金20との間で熱交換を行う装置である。 The heat medium circulation device 5 is a device that exchanges heat between the heat medium and the hydrogen storage alloy 20 by circulating the heat medium with respect to the hydrogen storage alloy 20 in the hydrogen storage tank 2.

(水素貯蔵状態推定装置1の構成)
図2は、本発明の実施形態に係る水素貯蔵状態推定装置1の一例を示すブロック図である。
(Configuration of hydrogen storage state estimation device 1)
FIG. 2 is a block diagram showing an example of the hydrogen storage state estimation device 1 according to the embodiment of the present invention.

水素貯蔵状態推定装置1は、水素貯蔵タンク2における水素貯蔵状態として、所定の運転期間における水素貯蔵率x[%]、タンク温度T[℃]及びタンク圧力P[atm]の推移を推定する装置であり、例えば、汎用のコンピュータ等で構成されている。 Hydrogen storage state estimating apparatus 1, a hydrogen storage state in the hydrogen storage tank 2, a hydrogen storage rate in a given period of operation x [%], estimates the transition of the tank temperature T [° C.] and the tank pressure P [atm a] It is a device, and is composed of, for example, a general-purpose computer or the like.

水素貯蔵状態推定装置1は、その具体的な構成として、キーボード、マウス、タッチパネル等により構成される入力部10と、HDD、メモリ等により構成される記憶部11と、CPU等のプロセッサにより構成される制御部12と、温度センサ6及び圧力センサ7や外部のネットワーク等に接続される接続部13と、ディスプレイ等により構成される表示部14とを備える。 As a specific configuration thereof, the hydrogen storage state estimation device 1 is composed of an input unit 10 composed of a keyboard, a mouse, a touch panel, etc., a storage unit 11 composed of an HDD, a memory, etc., and a processor such as a CPU. The control unit 12 is provided with a temperature sensor 6, a pressure sensor 7, a connection unit 13 connected to an external network or the like, and a display unit 14 composed of a display or the like.

記憶部11には、PCT線図データ110と、運転計画データ111と、コンピュータを水素貯蔵状態推定装置1として機能させる水素貯蔵状態推定プログラム112とが記憶されている。 The storage unit 11 stores PCT diagram data 110, operation plan data 111, and a hydrogen storage state estimation program 112 that causes the computer to function as the hydrogen storage state estimation device 1.

制御部12は、水素貯蔵状態推定プログラム112を実行することにより、初期状態取得部120、運転計画取得部121、第1の算定部122、第2の算定部123、第3の算定部124、及び、出力部125として機能し、水素貯蔵タンク2における水素貯蔵状態(所定の運転期間における水素貯蔵率x、タンク温度T及びタンク圧力Pの推移)を推定する推定処理(水素貯蔵状態推定方法)を行う。 By executing the hydrogen storage state estimation program 112, the control unit 12 includes an initial state acquisition unit 120, an operation plan acquisition unit 121, a first calculation unit 122, a second calculation unit 123, and a third calculation unit 124. And, an estimation process (hydrogen storage state estimation method) that functions as an output unit 125 and estimates the hydrogen storage state in the hydrogen storage tank 2 (transition of hydrogen storage rate x, tank temperature T, and tank pressure P during a predetermined operation period). I do.

具体的には、制御部12は、所定の運転期間が、初期時刻tから所定の単位時間間隔で区切られた所定の運転時刻t(t=t,t,t,…,tMax)を含むものであり、水素貯蔵タンク2における水素貯蔵状態の初期値として、初期時刻tにおける水素貯蔵率x、タンク温度T及びタンク圧力Pが既知であるものとして、PCT線図データ110及び運転計画データ111に基づいて、所定の運転時刻t(t=t,t,t,…,tMax)毎の水素貯蔵率x、タンク温度T及びタンク圧力Pを推定する。なお、制御部12の各部の機能と、水素貯蔵状態の推定処理の詳細については後述する。 Specifically, the control unit 12 has a predetermined operation time t (t = t 1 , t 2 , t 3 , ..., T) in which a predetermined operation period is divided from the initial time t 0 at a predetermined unit time interval. is intended to include a max), as the initial value of the hydrogen storage conditions in the hydrogen storage tank 2, as the initial time t hydrogen storage modulus x 0 at 0, tank temperature T 0 and the tank pressure P 0 is known, PCT lines Based on the figure data 110 and the operation plan data 111, the hydrogen storage rate x t , the tank temperature T t, and the tank pressure P for each predetermined operation time t (t = t 1 , t 2 , t 3 , ..., T Max ). Estimate t . The functions of each part of the control unit 12 and the details of the hydrogen storage state estimation process will be described later.

(PCT線図データ110について)
図3は、本発明の実施形態に係るPCT線図データ110の一例を示す図である。PCT線図データ110は、水素吸蔵合金20の特性として、各温度Ta、Tb、…、Tn(=タンク温度T)における圧力組成等温線図(以下、「PCT(Pressure Composition Temperature)線図」という。)110a〜110nを、記憶部11に記憶可能なデータ形式で記憶したものである。
(About PCT diagram data 110)
FIG. 3 is a diagram showing an example of PCT diagram data 110 according to the embodiment of the present invention. The PCT diagram data 110 is a characteristic of the hydrogen storage alloy 20, and is referred to as a pressure composition isotherm diagram at each temperature Ta, Tb, ..., Tn (= tank temperature T) (hereinafter referred to as “PCT (Pressure Composition Temperature) diagram”). .) 110a to 110n are stored in a data format that can be stored in the storage unit 11.

n個のPCT線図110a〜110nは、各温度Ta、Tb、…、Tnについて、温度が一定で熱力学的平衡状態であるときの水素濃度z[wt%]と水素圧力P(=タンク圧力P)との間の関係を、X軸に水素濃度z、Y軸に水素圧力P(対数平衡水素圧力)として表したものである。 In the n PCT diagrams 110a to 110n, the hydrogen concentration z [wt%] and the hydrogen pressure P (= tank pressure) when the temperature is constant and the thermodynamic equilibrium state is obtained for each temperature Ta, Tb, ..., Tn. The relationship with P) is expressed as a hydrogen concentration z on the X-axis and a hydrogen pressure P (logous equilibrium hydrogen pressure) on the Y-axis.

図3に示すように、PCT線図110a〜110nは、水素を吸蔵する吸蔵運転時の挙動1100Aと、水素を放出する放出運転時の挙動1100Bとが異なるヒステリシス特性を有する。また、PCT線図110a〜110nは、略一定の傾きで推移するプラトー領域を有する。なお、プラトー領域は、1段階とは限らず、水素吸蔵合金20の種類によっては多段階でもよい。 As shown in FIG. 3, PCT diagrams 110a to 110n have different hysteresis characteristics between the behavior 1100A during the storage operation for storing hydrogen and the behavior 1100B during the discharge operation for releasing hydrogen. Further, the PCT diagrams 110a to 110n have a plateau region that changes with a substantially constant inclination. The plateau region is not limited to one stage, and may be multi-stage depending on the type of the hydrogen storage alloy 20.

PCT線図110a〜110nは、JIS7201:2007に従って、水素貯蔵タンク2に充填された水素吸蔵合金20と同一組成の試験体を用いて予め作成されたものである。その作成方法としては、試験体を用いて吸蔵運転及び放出運転を行い、各温度Ta、Tb、…、Tnに対する水素濃度z及び水素圧力Pを計測し、最小2乗法等による近似線を作成する。そして、その近似線から、下記(1)式に示す関数g(T)、h(T)を求めることにより、温度T及び水素圧力Pをパラメータとして水素濃度zを求める近似式が、PCT線図データ110として算定される。

Figure 2020176693
PCT diagrams 110a to 110n are prepared in advance using a test piece having the same composition as the hydrogen storage alloy 20 filled in the hydrogen storage tank 2 in accordance with JIS7201: 2007. As a method of preparing the test piece, an occlusion operation and a release operation are performed using the test piece, the hydrogen concentration z and the hydrogen pressure P for each temperature Ta, Tb, ..., Tn are measured, and an approximate line by the least squares method or the like is created. .. Then, by obtaining the functions g (T) and h (T) shown in the following equation (1) from the approximate line, the approximate expression for obtaining the hydrogen concentration z with the temperature T and the hydrogen pressure P as parameters is a PCT diagram. Calculated as data 110.
Figure 2020176693

また、水素貯蔵率xは、水素貯蔵率xが「0」のときの水素濃度ZLowを設定するとともに、水素貯蔵率xが「100」のときの水素濃度ZHighを設定することにより、水素濃度zから下記(2)式を用いて換算される。

Figure 2020176693
Further, the hydrogen storage rate x is hydrogen by setting the hydrogen concentration Z Low when the hydrogen storage rate x is “0” and setting the hydrogen concentration Z High when the hydrogen storage rate x is “100”. It is converted from the concentration z using the following equation (2).
Figure 2020176693

(運転計画データ111について)
運転計画データ111は、所定の運転時刻t(t=t,t,t,…,tMax)毎の水素貯蔵タンク2の運転計画を、記憶部11に記憶可能なデータ形式で記憶したものである。
(About operation plan data 111)
The operation plan data 111 stores the operation plan of the hydrogen storage tank 2 for each predetermined operation time t (t = t 1 , t 2 , t 3 , ..., T Max ) in a data format that can be stored in the storage unit 11. It was done.

水素貯蔵タンク2の運転計画データ111には、所定の運転時刻t(t=t,t,t,…,tMax)毎の水素流入流出量F[m/s]、熱媒熱量QC[kJ/s]が含まれる。 The operation plan data 111 of the hydrogen storage tank 2 contains the hydrogen inflow / outflow amount F t [m 3 / s] and heat for each predetermined operation time t (t = t 1 , t 2 , t 3 , ..., T Max ). The amount of heat medium QC t [kJ / s] is included.

水素流入流出量Fは、正の値である場合には、水素製造装置3から水素貯蔵タンク2に流入される流入量を示し、水素貯蔵タンク2は吸蔵運転となる。また、水素流入流出量Fは、負の値である場合には、水素貯蔵タンク2から水素利用装置4に流出される流出量を示し、水素貯蔵タンク2は放出運転となる。 When the hydrogen inflow / outflow amount Ft is a positive value, it indicates the amount of inflow from the hydrogen production apparatus 3 into the hydrogen storage tank 2, and the hydrogen storage tank 2 is in the storage operation. Further, when the hydrogen inflow / outflow amount Ft is a negative value, it indicates the outflow amount from the hydrogen storage tank 2 to the hydrogen utilization device 4, and the hydrogen storage tank 2 is in the discharge operation.

熱媒熱量QCは、熱媒体循環装置5から水素貯蔵タンク2に流入される熱媒体によって水素貯蔵タンク2にもたらされる熱量を示す。 The heat medium heat amount QC t indicates the amount of heat brought to the hydrogen storage tank 2 by the heat medium flowing into the hydrogen storage tank 2 from the heat medium circulation device 5.

(制御部12の各部の機能と、水素貯蔵状態の推定処理について)
次に、制御部12の各部の機能と、制御部12による水素貯蔵状態の推定処理について説明する。
(About the function of each part of the control unit 12 and the estimation processing of the hydrogen storage state)
Next, the functions of each unit of the control unit 12 and the process of estimating the hydrogen storage state by the control unit 12 will be described.

まず、制御部12が水素貯蔵状態の推定処理を行う際に導入するパラメータである、見かけの水素貯蔵率y[%]と、その見かけの水素貯蔵率yを導入する理由について説明する。 First, the control unit 12 is a parameter to be introduced when performing the estimation process of the hydrogen storage conditions, the apparent hydrogen storage rate y t [%], is described the reason for introducing the hydrogen storage rate y t its apparent.

図4は、本発明の実施形態に係る水素貯蔵状態推定装置1(制御部12)が水素貯蔵状態の推定処理を行う際の見かけの水素貯蔵率yを説明する図であり、(a)は水素貯蔵率x及びPCT線図データ110から推定したタンク温度Tの推定値と、タンク温度の実験値との比較、(b)は水素貯蔵率x及びPCT線図データ110から推定したタンク圧力Pの推定値と、タンク圧力の実験値との比較、(c)は運転計画データ111から算定した水素貯蔵率xの算定値と、タンク温度及びタンク圧力の実験値をPCT線図データ110に代入した場合の水素貯蔵率の実験値との比較を示す図である。 Figure 4 is a view exemplary hydrogen storage state estimating apparatus 1 according to the embodiment (the control unit 12) will be described apparent hydrogen storage rate y t when the estimation process of the hydrogen storage conditions of the present invention, (a) Is a comparison between the estimated value of the tank temperature Tt estimated from the hydrogen storage rate x t and the PCT diagram data 110 and the experimental value of the tank temperature, and (b) is estimated from the hydrogen storage rate x t and the PCT diagram data 110. Comparison of the estimated value of the tank pressure P t and the experimental value of the tank pressure, (c) is the calculated value of the hydrogen storage rate x t calculated from the operation plan data 111, and the experimental values of the tank temperature and the tank pressure are PCT. It is a figure which shows the comparison with the experimental value of the hydrogen storage rate when it is substituted into the diagram data 110.

なお、図4(a)、(b)に示すタンク温度及びタンク圧力の実験値は、運転計画データ111に従って水素貯蔵タンク2の吸蔵運転及び放出運転を行う実験を予め行ったときに、運転時刻t毎に温度センサ6及び圧力センサ7によりそれぞれ検出されたタンク温度及びタンク圧力の検出値を記録したものである。また、図4(c)に示す水素貯蔵率の実験値は、上記タンク温度及びタンク圧力の実験値を真値として、PCT線図データ110に代入することで水素濃度zを算定し、その水素濃度zから上記(2)式を用いて水素貯蔵率に換算したものである。 The experimental values of the tank temperature and the tank pressure shown in FIGS. 4 (a) and 4 (b) are the operation times when the experiment of performing the occlusion operation and the release operation of the hydrogen storage tank 2 is performed in advance according to the operation plan data 111. The tank temperature and the detected value of the tank pressure detected by the temperature sensor 6 and the pressure sensor 7 are recorded for each t. Further, the experimental value of the hydrogen storage rate shown in FIG. 4C is calculated by substituting the experimental values of the tank temperature and the tank pressure into the PCT diagram data 110, and the hydrogen concentration z is calculated. It is converted from the concentration z into the hydrogen storage rate using the above equation (2).

運転計画データ111が存在する場合、水素貯蔵タンク2における水素貯蔵状態のうち、運転時刻t毎の水素貯蔵率xは、運転計画データ111に含まれる水素流入流出量Fから算定される。具体的には、運転時刻t毎の水素貯蔵率xの変化量Δxが、下記(3)式を用いて、水素流入流出量Fに基づいて算定されるとともに、運転時刻t毎の水素貯蔵率xが、下記(4)式を用いて、運転時刻t毎の水素貯蔵率xの変化量Δxを累積することにより算定される。この運転時刻t毎の水素貯蔵率xは、図4(c)の算定値として表される。

Figure 2020176693
Figure 2020176693
ただし、aは定数である。 When the operation plan data 111 exists, the hydrogen storage rate x t for each operation time t in the hydrogen storage state in the hydrogen storage tank 2 is calculated from the hydrogen inflow / outflow amount F t included in the operation plan data 111. Specifically, the amount of change Δx t of the hydrogen storage rate x t for each operation time t is calculated based on the hydrogen inflow / outflow amount F t using the following equation (3), and for each operation time t. hydrogen storage rate x t, using the following equation (4), is calculated by accumulating the change amounts [Delta] x t of the hydrogen storage rate x t of each operating time t. The hydrogen storage rate x t for each operation time t is expressed as calculation values of FIG. 4 (c).
Figure 2020176693
Figure 2020176693
However, a is a constant.

水素貯蔵タンク2における水素貯蔵状態のうち、運転時刻t毎のタンク温度T及びタンク圧力Pは、水素貯蔵タンク2の直前の運転状態に依存し、特に、休止状態や、吸蔵運転と放出運転とが切り換わる運転切換タイミングでは、定常状態と異なる挙動を示すものである。 Of the hydrogen storage conditions in the hydrogen storage tank 2, the tank temperature T t and the tank pressure P t of each operating time t is dependent on the operating state immediately before the hydrogen storage tank 2, in particular, or hibernate, storage operation and release At the operation switching timing at which the operation is switched, the behavior is different from that in the steady state.

これに対して、PCT線図データ110に含まれるPCT線図110a〜110nは、水素貯蔵タンク2が定常状態であるときの特性を示すものである。そのため、上記(4)式により算定された運転時刻t毎の水素貯蔵率xを真値として、PCT線図データ110に基づいて、運転時刻t毎のタンク温度T及びタンク圧力Pを推定した場合、その推定したタンク温度T及びタンク圧力Pの推定値は、図4(a)、(b)に示すように、タンク温度及びタンク圧力の実験値との間でずれが発生する。 On the other hand, the PCT diagrams 110a to 110n included in the PCT diagram data 110 show the characteristics when the hydrogen storage tank 2 is in a steady state. Therefore, the tank temperature T t and the tank pressure P t for each operation time t are set based on the PCT diagram data 110, with the hydrogen storage rate x t for each operation time t calculated by the above equation (4) as a true value. When estimated, the estimated values of the tank temperature T t and the tank pressure P t differ from the experimental values of the tank temperature and the tank pressure as shown in FIGS. 4 (a) and 4 (b). To do.

また、上記タンク温度及びタンク圧力の実験値を真値として、PCT線図データ110に代入した場合の水素貯蔵率の実験値は、図4(c)に示すように、運転計画データ111から算定した水素貯蔵率xの算定値との間でずれが発生する。 Further, the experimental value of the hydrogen storage rate when the experimental values of the tank temperature and the tank pressure are used as true values and substituted into the PCT diagram data 110 is calculated from the operation plan data 111 as shown in FIG. 4 (c). There is a discrepancy with the calculated value of the hydrogen storage rate x t .

したがって、運転時刻t毎のタンク温度T及びタンク圧力Pを正しく推定するには、運転計画データ111から算定した運転時刻t毎の水素貯蔵率x(図4(c)に示す算定値)を真値とするのではなく、上記タンク温度及びタンク圧力の実験値をPCT線図データ110に代入して算定された運転時刻t毎の水素貯蔵率(図4(c)に示す実験値)と同等の水素貯蔵率(以下、「運転時刻t毎の見かけの水素貯蔵率y」という。)を見かけの真値として導入する必要がある。 Therefore, in order to correctly estimate the tank temperature T t and the tank pressure P t for each operation time t, the hydrogen storage rate x t for each operation time t calculated from the operation plan data 111 (calculated value shown in FIG. 4C). ) Is not used as the true value, but the hydrogen storage rate for each operation time t calculated by substituting the experimental values of the tank temperature and the tank pressure into the PCT diagram data 110 (experimental value shown in FIG. 4C). ) Equivalent to the hydrogen storage rate (hereinafter referred to as "apparent hydrogen storage rate y t for each operation time t ") needs to be introduced as an apparent true value.

そして、水素貯蔵状態の推定処理は、初期時刻tにおける水素貯蔵率x、タンク温度T及びタンク圧力P並びに運転計画データ111は既知ではあるが、運転時刻t毎のタンク温度及びタンク圧力の実験値は未知な状態で行われるため、制御部12では、上記タンク温度及びタンク圧力の実験値を用いずに、水素貯蔵率xとの関係に基づいて、見かけの水素貯蔵率yを算定する必要がある。 As for the estimation process of the hydrogen storage state, the hydrogen storage rate x 0 at the initial time t 0 , the tank temperature T 0 and the tank pressure P 0 , and the operation plan data 111 are known, but the tank temperature and the tank at each operation time t are known. Since the experimental pressure value is unknown, the control unit 12 does not use the experimental value of the tank temperature and the tank pressure, but based on the relationship with the hydrogen storage rate x t , the apparent hydrogen storage rate y. It is necessary to calculate t .

次に、制御部12の各部の機能と、制御部12による水素貯蔵状態の推定処理について説明するとともに、見かけの水素貯蔵率yの算定手法について説明する。 Next, the function of each part of the control unit 12, together with the described process of estimating the hydrogen storage state by the control unit 12 will be described calculation method of the apparent hydrogen storage rate y t.

図5及び図6は、本発明の実施形態に係る水素貯蔵状態推定装置1による水素貯蔵状態の推定処理(水素貯蔵状態推定方法)を示すフローチャートである。図7は、本発明の実施形態に係る水素貯蔵状態推定装置1による水素貯蔵状態の推定処理において、水素貯蔵率x(算定値)、見かけの水素貯蔵率y及びPCT線図データ110(近似式)の推移を示す図である。 5 and 6 are flowcharts showing a hydrogen storage state estimation process (hydrogen storage state estimation method) by the hydrogen storage state estimation device 1 according to the embodiment of the present invention. 7, in the estimation process of the hydrogen storage state by the hydrogen storage state estimating apparatus 1 according to an embodiment of the present invention, a hydrogen storage rate x t (calculated value), the apparent hydrogen storage rate y t and PCT diagram data 110 ( It is a figure which shows the transition of (approximate formula).

まず、水素貯蔵状態推定装置1が、水素貯蔵状態の推定処理を開始すると、前動状態取得工程(ステップS1)において、初期状態取得部120は、水素貯蔵タンク2の初期時刻t直前の運転状態(前動状態)が、吸蔵運転であるか放出運転であるかを選択する。初期状態取得部120は、例えば、水素貯蔵タンク2の運転履歴を参照したり、ユーザ(例えば、水素エネルギー利用システム100の管理者)による選択操作を受け付けたりすることで、前動状態が吸蔵運転であるか放出運転であるかを選択する。ここでは、初期状態取得部120は、前動状態が「放出運転」であることを選択したものとして説明する。 First, hydrogen storage state estimating device 1 starts the process of estimating the hydrogen storage conditions, before the dynamic state acquiring process (step S1), the initial state acquisition unit 120, the initial time t 0 immediately before the operation of the hydrogen storage tank 2 Select whether the state (forward motion state) is the storage operation or the release operation. The initial state acquisition unit 120, for example, refers to the operation history of the hydrogen storage tank 2 or accepts a selection operation by a user (for example, the administrator of the hydrogen energy utilization system 100), so that the forward state is the storage operation. Select whether it is a release operation or a release operation. Here, the initial state acquisition unit 120 will be described as selecting that the forward motion state is the “release operation”.

次に、初期状態取得工程(ステップS2)において、初期状態取得部120は、水素貯蔵状態の初期値を取得する。まず、初期状態取得部120は、初期時刻tにおける水素貯蔵率x、タンク温度T及びタンク圧力Pを取得する(ステップS20)。ここでの初期時刻tは、現在時刻であり、水素貯蔵率xは、図7に示すように、プロットされる。また、タンク温度T及びタンク圧力Pは、初期時刻tにおいて温度センサ6及び圧力センサ7によりそれぞれ検出されたタンク温度及びタンク圧力の検出値である。 Next, in the initial state acquisition step (step S2), the initial state acquisition unit 120 acquires the initial value of the hydrogen storage state. First, the initial state acquisition unit 120 acquires the hydrogen storage rate x 0 , the tank temperature T 0, and the tank pressure P 0 at the initial time t 0 (step S20). The initial time t 0 here is the current time, and the hydrogen storage rate x 0 is plotted as shown in FIG. Further, the tank temperature T 0 and the tank pressure P 0 are the detected values of the tank temperature and the tank pressure detected by the temperature sensor 6 and the pressure sensor 7 at the initial time t 0 , respectively.

続けて、初期状態取得部120は、初期時刻tにおけるタンク温度T及びタンク圧力Pと、PCT線図データ110とに基づいて、初期時刻tにおける見かけの水素貯蔵率yを取得する(ステップS21)。ここでは、初期状態取得部120は、前動状態が「放出運転」であることを選択していることから、初期状態取得部120は、PCT線図データ110に含まれるPCT線図110a〜110nの放出運転時の挙動1100Bを参照し、タンク温度T及びタンク圧力Pに対する水素濃度zを算定し、その水素濃度zから上記(2)式を用いて見かけの水素貯蔵率yに換算する。見かけの水素貯蔵率yは、図7に示すように、プロットされる。 Subsequently, the initial state acquisition unit 120 acquires the apparent hydrogen storage rate y 0 at the initial time t 0 based on the tank temperature T 0 and the tank pressure P 0 at the initial time t 0 and the PCT diagram data 110. (Step S21). Here, since the initial state acquisition unit 120 has selected that the forward motion state is the “release operation”, the initial state acquisition unit 120 has the PCT diagrams 110a to 110n included in the PCT diagram data 110. The hydrogen concentration z with respect to the tank temperature T 0 and the tank pressure P 0 is calculated with reference to the behavior 1100B during the discharge operation, and the hydrogen concentration z is converted to the apparent hydrogen storage rate y 0 using the above equation (2). To do. The apparent hydrogen storage rate y 0 is plotted as shown in FIG.

次に、運転計画取得工程(ステップS3)において、運転計画取得部121は、運転時刻t毎の水素貯蔵タンクの運転計画として、運転時刻t毎の水素流入流出量F、熱媒熱量QCを取得する。運転計画取得部121は、例えば、記憶部11に記憶された運転計画データ111を参照したり、接続部13を介して外部のネットワーク上の運転計画データを参照したり、ユーザによる入力操作を受け付けたりすることで、運転時刻t毎の水素貯蔵タンクの運転計画を取得する。 Next, in the operation plan acquisition step (step S3), the operation plan acquisition unit 121 uses the hydrogen storage tank operation plan for each operation time t as a hydrogen inflow / outflow amount F t and a heat transfer heat amount QC t for each operation time t. To get. For example, the operation plan acquisition unit 121 refers to the operation plan data 111 stored in the storage unit 11, refers to the operation plan data on the external network via the connection unit 13, and accepts an input operation by the user. By doing so, the operation plan of the hydrogen storage tank for each operation time t is acquired.

次に、制御部12は、運転時刻t(t=t,t,t,…,tMax)を変数とするループ処理を行う(ステップS4A)。すなわち、制御部12は、運転時刻tを単位時間間隔ずつ進めながら運転時刻tがtMaxになるまでの間、後述するステップS5〜S7の処理を繰り返し行うことにより、運転時刻t毎の水素貯蔵率xt、タンク温度T及びタンク圧力Pを算定する。 Next, the control unit 12 performs a loop process with the operation time t (t = t 1 , t 2 , t 3 , ..., T Max ) as a variable (step S4A). That is, the control unit 12, until the operating time t while advancing the operating time t by a unit time interval is t Max, by repeating the process of step S5~S7 to be described later, the hydrogen storage per operation time t Calculate the rate x t, the tank temperature T t, and the tank pressure P t .

まず、第1の算定工程(ステップS5)において、第1の算定部122は、上記(3)式を用いて、運転時刻t毎の水素流入流出量Fに基づいて、運転時刻tにおける水素貯蔵率の変化量Δxを算定する(ステップS50)。 First, in the first calculating step (step S5), and the first calculation section 122, using the above equation (3), based on the hydrogen inflow outflow F t of each operating time t, the hydrogen at the operating time t calculating the change amount [Delta] x t of the storage modulus (step S50).

続けて、第1の算定部122は、上記(4)式を用いて、初期時刻tにおける水素貯蔵率xに対して運転時刻t毎の水素貯蔵率の変化量Δxを累積することにより、運転時刻tにおける水素貯蔵率x(図7では破線で示す)を算定する(ステップS51)。 Subsequently, the first calculation unit 122 uses the above equation (4) to accumulate the amount of change Δx t of the hydrogen storage rate for each operation time t with respect to the hydrogen storage rate x 0 at the initial time t 0 . The hydrogen storage rate x t (indicated by the broken line in FIG. 7) at the operation time t is calculated (step S51).

次に、第2の算定工程(ステップS6)において、第2の算定部123は、下記(5)〜(7)式を用いて、運転時刻tよりも単位時間前の直前時刻t−1における水素貯蔵率xt−1及び見かけの水素貯蔵率yt−1の間の比率に基づいて、当該運転時刻tにおける水素貯蔵率の変化量Δxを補正することにより、当該運転時刻tにおける見かけの水素貯蔵率の変化量Δyを算定する。

Figure 2020176693
Figure 2020176693
Figure 2020176693
ただし、bは定数である。 Next, in the second calculation step (step S6), the second calculation unit 123 uses the following equations (5) to (7) to set the time t-1 immediately before the operation time t by a unit time. By correcting the amount of change Δx t of the hydrogen storage rate at the operation time t based on the ratio between the hydrogen storage rate x t-1 and the apparent hydrogen storage rate y t-1 , the apparent hydrogen storage rate at the operation time t is corrected. calculating the change amount [Delta] y t of the hydrogen storage rate.
Figure 2020176693
Figure 2020176693
Figure 2020176693
However, b is a constant.

具体的には、まず、第2の算定部123は、運転時刻tにおける水素流入流出量Fが正の値であるか負の値であるかに応じて、運転時刻tにおける運転状態が吸蔵運転であるか放出運転であるかを判定する(ステップS60)。 Specifically, first, the second calculation unit 123 stores the operating state at the operating time t according to whether the hydrogen inflow / outflow amount Ft at the operating time t is a positive value or a negative value. It is determined whether the operation is the operation or the release operation (step S60).

そして、第2の算定部123が、運転時刻tにおける運転状態が吸蔵運転であると判断した場合には、上記(6)式を関数fとして、上記(5)式を用いることにより、直前時刻t−1における見かけの水素貯蔵率yt−1に対する水素貯蔵率xt−1の比率を2乗し、さらにb倍した値を、水素貯蔵率の変化量Δxに乗算することにより、見かけの水素貯蔵率の変化量Δyを算定する(ステップS61)。 Then, when the second calculation unit 123 determines that the operating state at the operating time t is the storage operation, the above equation (6) is used as the function f and the above equation (5) is used to obtain the immediately preceding time. Apparent hydrogen storage rate at t-1 The ratio of hydrogen storage rate x t-1 to y t-1 is squared, and the value obtained by multiplying by b is multiplied by the amount of change in hydrogen storage rate Δx t. calculating the change amount [Delta] y t of the hydrogen storage rate (step S61).

一方、第2の算定部123が、運転時刻tにおける運転状態が放出運転であると判断した場合には、上記(7)式を関数fとして、上記(5)式を用いることにより、直前時刻t−1における水素貯蔵率xt−1に対する見かけの水素貯蔵率yt−1の比率を2乗し、さらにb倍した値を、水素貯蔵率の変化量Δxに乗算することにより、見かけの水素貯蔵率の変化量Δyを算定する(ステップS62)。 On the other hand, when the second calculation unit 123 determines that the operating state at the operating time t is the release operation, the above equation (7) is used as the function f and the above equation (5) is used to obtain the immediately preceding time. The apparent ratio of the hydrogen storage rate y t-1 to the hydrogen storage rate x t-1 at t-1 is squared, and the value obtained by multiplying by b is multiplied by the amount of change in the hydrogen storage rate Δx t. calculating the change amount [Delta] y t of the hydrogen storage rate (step S62).

次に、第2の算定部123は、運転時刻tにおける水素流入流出量Fの符号が、直前時刻t−1における水素流入流出量Fの符号と異なるか否かに応じて、運転時刻tが、吸蔵運転と放出運転との間で運転状態の切換が行われる時刻(運転切換タイミング)であるか否かを判定する(ステップS63)。 Then, the second calculation unit 123, the sign of the hydrogen inflow outflow F t at the operating time t, depending on whether the code is different from one of a hydrogen inflow outflow F t just before the time t-1, the operation time It is determined whether or not t is the time (operation switching timing) at which the operating state is switched between the storage operation and the release operation (step S63).

そして、第2の算定部123は、運転時刻tが、吸蔵運転から放出運転への運転切換タイミングであると判定した場合には、初期時刻tにおけるタンク温度T及びタンク圧力Pと、PCT線図データ110に含まれるPCT線図110a〜110nの放出運転時の挙動1100Bとに基づいて、初期時刻tにおける見かけの水素貯蔵率yを更新する(ステップS64)。 Then, when the second calculation unit 123 determines that the operation time t is the operation switching timing from the storage operation to the release operation, the tank temperature T 0 and the tank pressure P 0 at the initial time t 0 are determined. based on the behavior 1100B during release operation of PCT diagram 110a~110n contained in PCT diagram data 110, it updates the hydrogen storage rate y 0 apparent at the initial time t 0 (step S64).

一方、第2の算定部123は、運転時刻tが、放出運転から吸蔵運転への運転切換タイミングであると判定した場合には、初期時刻tにおけるタンク温度T及びタンク圧力Pと、PCT線図データ110に含まれるPCT線図110a〜110nの吸蔵運転時の挙動1100Aとに基づいて、初期時刻tにおける見かけの水素貯蔵率yを更新する(ステップS65)。ここでは、第2の算定部123は、運転時刻tであるとき、放出運転から吸蔵運転への運転切換タイミングであると判定し、初期時刻tにおける見かけの水素貯蔵率yを更新し、更新された見かけの水素貯蔵率yは、図7に示すように、プロットされる。 On the other hand, when the second calculation unit 123 determines that the operation time t is the operation switching timing from the discharge operation to the storage operation, the tank temperature T 0 and the tank pressure P 0 at the initial time t 0 are determined. based on the behavior 1100A during storage operation of PCT diagram 110a~110n contained in PCT diagram data 110, it updates the hydrogen storage rate y 0 apparent at the initial time t 0 (step S65). Here, the second calculation unit 123 determines that it is the operation switching timing from the release operation to the storage operation when the operation time is t k , and updates the apparent hydrogen storage rate y 0 at the initial time t 0 . , The updated apparent hydrogen storage rate y 0 is plotted as shown in FIG.

次に、第2の算定部123は、下記(8)式を用いて、初期時刻tにおける見かけの水素貯蔵率yに対して運転時刻t毎の見かけの水素貯蔵率の変化量Δyを累積することにより、運転時刻tにおける見かけの水素貯蔵率y(図7では実線で示す)を算定する(ステップS66)。

Figure 2020176693
Next, the second calculation unit 123 uses the following equation (8) to change the apparent hydrogen storage rate at each operation time t with respect to the apparent hydrogen storage rate y 0 at the initial time t 0 Δy t. By accumulating, the apparent hydrogen storage rate y t (shown by the solid line in FIG. 7) at the operation time t is calculated (step S66).
Figure 2020176693

次に、第3の算定工程(ステップS7)において、第3の算定部124は、運転時刻tにおける見かけの水素貯蔵率yと、PCT線図データ110とに基づいて、運転時刻tにおけるタンク温度T及びタンク圧力Pを算定する。 Next, in the third calculation step (step S7), the third calculation unit 124 determines the tank at the operation time t based on the apparent hydrogen storage rate y t at the operation time t and the PCT diagram data 110. Calculate the temperature T t and the tank pressure P t .

具体的には、まず、第3の算定部124は、運転時刻tにおける水素流入流出量F、熱媒熱量QCに基づいて、運転時刻tにおけるタンク温度Tを算定する(ステップS70)。 Specifically, first, the third calculation unit 124 calculates the tank temperature T t at the operation time t based on the hydrogen inflow / outflow amount F t at the operation time t and the heat medium heat amount QC t (step S70). ..

次に、第3の算定部124は、運転時刻tにおける見かけの水素貯蔵率y及びステップS70で算定したタンク温度Tと、PCT線図データ110とに基づいて、運転時刻tにおけるタンク圧力Pを算定する(ステップS71)。 Next, the third calculation unit 124 determines the tank pressure at the operation time t based on the apparent hydrogen storage rate y t at the operation time t, the tank temperature T t calculated in step S70, and the PCT diagram data 110. P t is calculated (step S71).

制御部12は、上記ステップS5〜S7を、運転時刻tがtMaxとなるまで繰り返し行うことにより、第2の算定部123が、図7に示すように、運転時刻t毎の水素貯蔵率x(破線)及び見かけの水素貯蔵率y(実線)を算定するとともに、第3の算定部124が、運転時刻t毎のタンク温度T及びタンク圧力Pを算定する。 The control unit 12 repeats steps S5 to S7 until the operation time t reaches t Max , so that the second calculation unit 123 causes the second calculation unit 123 to store the hydrogen storage rate x for each operation time t, as shown in FIG. The t (broken line) and the apparent hydrogen storage rate y t (solid line) are calculated, and the third calculation unit 124 calculates the tank temperature T t and the tank pressure P t for each operation time t.

そして、ループ処理の終了条件を満たすと(ステップS4B)、出力工程(ステップS8)において、出力部125は、第1の算定部122により算定された運転時刻t毎の水素貯蔵率xと、第3の算定部124により算定された運転時刻t毎のタンク温度T及びタンク圧力Pとを、水素貯蔵状態の推定処理結果として出力する。 Then, when the end condition of the loop processing is satisfied (step S4B), in the output step (step S8), the output unit 125 sets the hydrogen storage rate x t for each operation time t calculated by the first calculation unit 122. The tank temperature T t and the tank pressure P t for each operation time t calculated by the third calculation unit 124 are output as the estimation processing result of the hydrogen storage state.

なお、出力部125は、水素貯蔵状態の推定処理結果を、例えば、表示部14に表示するようにしてもよいし、記憶部11に推定処理結果データとして記憶するようにしてもよい。 The output unit 125 may display the estimation processing result of the hydrogen storage state on the display unit 14, or may store the estimation processing result data in the storage unit 11.

以上のようにして、水素貯蔵状態推定装置1は、水素貯蔵状態の推定処理を終了する。そして、ユーザ(例えば、水素エネルギー利用システム100の管理者)は、水素貯蔵状態推定装置1により出力された水素貯蔵状態の推定処理結果を参照することにより、所定の運転期間における水素庁貯蔵状態の推移を把握し、必要に応じて水素貯蔵タンク2の運転計画を見直すことが可能となる。 As described above, the hydrogen storage state estimation device 1 ends the hydrogen storage state estimation process. Then, the user (for example, the administrator of the hydrogen energy utilization system 100) refers to the estimation processing result of the hydrogen storage state output by the hydrogen storage state estimation device 1 to obtain the hydrogen storage state of the hydrogen storage state in a predetermined operation period. It is possible to grasp the transition and review the operation plan of the hydrogen storage tank 2 as necessary.

(実施例)
次に、本発明の実施例として、2段のプラトー領域を有するTi系合金が充填された水素貯蔵タンク2に対して、水素貯蔵状態推定装置1による水素貯蔵状態の推定処理を行った結果について説明する。
(Example)
Next, as an example of the present invention, the result of performing the hydrogen storage state estimation process by the hydrogen storage state estimation device 1 on the hydrogen storage tank 2 filled with the Ti-based alloy having the two-stage plateau region. explain.

本実施例に係るTi系合金のPCT線図データ110における近似式は、下記の式(9)〜(11)で表される。

Figure 2020176693
Figure 2020176693
Figure 2020176693
The approximate equations in the PCT diagram data 110 of the Ti-based alloy according to this embodiment are represented by the following equations (9) to (11).
Figure 2020176693
Figure 2020176693
Figure 2020176693

また、本実施例に係るTi系合金のPCT線図データ110における近似式の適用範囲は、下記のとおりである。
水素貯蔵率x:15<x<100 (45Nm=1.546wt%)
タンク圧力P:1<P<10 [atm
タンク温度T:T<60[℃]
Further, the applicable range of the approximate expression in the PCT diagram data 110 of the Ti-based alloy according to this embodiment is as follows.
Hydrogen storage rate x: 15 <x <100 (45 Nm 3 = 1.546 wt%)
Tank pressure P: 1 <P <10 [ atm a]
Tank temperature T: T <60 [° C.]

ここで、本実施例に係るTi系合金では、見かけの水素貯蔵率の変化量Δyは、水素貯蔵率の変化量Δxに対して、直前時刻t−1における水素貯蔵率xt−1及び見かけの水素貯蔵率yt−1の間の比率を2乗した値を、さらに約1.6〜2.4倍した値で変化していた。そのため、運転状態が吸蔵運転である場合には、b=2として上記(6)式を用いるとともに、運転状態が放出運転である場合には、b=2として上記(7)式を用いることにより、見かけの水素貯蔵率の変化量Δyを算定するとともに、見かけの水素貯蔵率yを算定し、水素貯蔵状態として、所定の運転時刻t毎の水素貯蔵率x、タンク温度T及びタンク圧力Pを推定した。 Here, the Ti-based alloy according to the present embodiment, the change amount [Delta] y t of the hydrogen storage rate of apparent relative change amount [Delta] x t of the hydrogen storage rate, the hydrogen storage rate just before time t-1 x t-1 And the value obtained by squared the ratio between the apparent hydrogen storage rate y t-1 was further multiplied by about 1.6 to 2.4. Therefore, when the operating state is the storage operation, the above equation (6) is used with b = 2, and when the operating state is the release operation, the above equation (7) is used with b = 2. , together to calculate the change amount [Delta] y t of the hydrogen storage rate apparent to calculate the apparent hydrogen storage rate y t, as a hydrogen storage conditions, the hydrogen storage rate for each predetermined operating time t x t, and tank temperature T t The tank pressure Pt was estimated.

図8は、本発明の実施例に係るTi系合金が充填された水素貯蔵タンク2に対して、水素貯蔵状態推定装置1による水素貯蔵状態の推定処理を行った結果と、実験値との比較を示し、(a)はタンク温度Tの推定値と、タンク温度の実験値との比較、(b)はタンク圧力Pの推定値と、タンク圧力の実験値との比較、(c)は水素貯蔵率xの算定値と、見かけの水素貯蔵率yとの比較を示す図である。なお、図8(a)、(b)に示すタンク温度及びタンク圧力の実験値とは、運転計画データ111に従って水素貯蔵タンク2の吸蔵運転及び放出運転を行う実験を予め行ったときに、運転時刻t毎に温度センサ6及び圧力センサ7によりそれぞれ検出されたタンク温度及びタンク圧力の検出値を記録したものである。 FIG. 8 shows a comparison between the results of estimating the hydrogen storage state of the hydrogen storage tank 2 filled with the Ti-based alloy according to the embodiment of the present invention by the hydrogen storage state estimation device 1 and the experimental values. (A) is a comparison between the estimated value of the tank temperature T t and the experimental value of the tank temperature, (b) is a comparison between the estimated value of the tank pressure P t and the experimental value of the tank pressure, (c). Is a diagram showing a comparison between the calculated value of the hydrogen storage rate x t and the apparent hydrogen storage rate y t . The experimental values of the tank temperature and the tank pressure shown in FIGS. 8 (a) and 8 (b) are the operations when the experiment of performing the storage operation and the release operation of the hydrogen storage tank 2 in advance according to the operation plan data 111 is performed. The tank temperature and the detected value of the tank pressure detected by the temperature sensor 6 and the pressure sensor 7 are recorded at each time t.

見かけの水素貯蔵率yは、図8(c)に示すように算定され、運転時刻t毎のタンク温度T及びタンク圧力Pは、この見かけの水素貯蔵率yと、PCT線図データ110とに基づいて、図8(a)、(b)に示す推定値のように算定された。 The apparent hydrogen storage rate y t is calculated as shown in FIG. 8 (c), and the tank temperature T t and the tank pressure P t for each operation time t are the apparent hydrogen storage rate y t and the PCT diagram. Based on the data 110, it was calculated as the estimated values shown in FIGS. 8A and 8B.

図8(a)において、タンク温度Tの推定値と、タンク温度の実験値との間のずれは、図4(a)に比較して小さくなっており、見かけの水素貯蔵率yを用いたタンク温度Tの推定値が適切であることが確認できた。また、図8(b)において、タンク圧力Pの推定値と、タンク圧力の実験値との間のずれは、図4(b)に比較して小さくなっており、見かけの水素貯蔵率yを用いたタンク圧力Pの推定値が適切であることが確認できた。 In FIG. 8 (a), the estimated value of the tank temperature T t, the deviation between the experimental values of the tank temperature is smaller as compared with FIG. 4 (a), the apparent hydrogen storage rate y t It was confirmed that the estimated value of the tank temperature Tt used was appropriate. Further, in FIG. 8 (b), the tank pressure P estimates of t and deviation between the experimental values of tank pressure is smaller as compared with FIG. 4 (b), the hydrogen storage rate Apparent y it was confirmed estimates of tank pressure P t with t is appropriate.

以上のように、本実施形態に係る水素貯蔵状態推定装置1によれば、第1の算定部122が、初期時刻tにおける水素貯蔵率xに対して運転時刻t毎の水素貯蔵率の変化量Δxを累積することにより、運転時刻t毎の水素貯蔵率xを算定し、第2の算定部123が、運転時刻tよりも単位時間前の直前時刻t−1における水素貯蔵率xt−1及び見かけの水素貯蔵率yt−1の間の比率に基づいて、当該運転時刻tにおける水素貯蔵率の変化量Δxを補正することにより、当該運転時刻tにおける見かけの水素貯蔵率の変化量Δyを算定するとともに、初期時刻tにおける見かけの水素貯蔵率yに対して運転時刻t毎の見かけの水素貯蔵率の変化量Δyを累積することにより、運転時刻t毎の見かけの水素貯蔵率yを算定し、第3の算定部124が、運転時刻t毎の見かけの水素貯蔵率yと、PCT線図とに基づいて、運転時刻t毎のタンク温度T及びタンク圧力Pを算定する。 As described above, according to the hydrogen storage state estimation device 1 according to the present embodiment, the first calculation unit 122 determines the hydrogen storage rate for each operation time t with respect to the hydrogen storage rate x 0 at the initial time t 0 . By accumulating the amount of change Δx t , the hydrogen storage rate x t for each operation time t is calculated, and the second calculation unit 123 calculates the hydrogen storage rate at the time t-1 immediately before the operation time t by a unit time. Apparent hydrogen storage at the operating time t by correcting the change amount Δx t of the hydrogen storage rate at the operating time t based on the ratio between x t-1 and the apparent hydrogen storage rate y t-1. By calculating the amount of change Δy t of the rate and accumulating the amount of change Δy t of the apparent hydrogen storage rate at each operation time t with respect to the apparent hydrogen storage rate y 0 at the initial time t 0 , the operation time t The apparent hydrogen storage rate y t for each operation time is calculated, and the third calculation unit 124 calculates the tank temperature for each operation time t based on the apparent hydrogen storage rate y t for each operation time t and the PCT diagram. Calculate T t and tank pressure P t .

そのため、タンク温度T及びタンク圧力Pの推定値が、運転時刻t毎の水素貯蔵率xに基づいて算定された場合には、図4(a)、(b)に示すように、吸蔵運転と放出運転とが切り換わる運転切換時において実験値との間に大きなずれが発生するのに対して、タンク温度T及びタンク圧力Pの推定値が、第3の算定部124により運転時刻t毎の見かけの水素貯蔵率yに基づいて算定された場合には、図8(a)、(b)に示すように、吸蔵運転と放出運転とが切り換わる運転切換時であっても実験値との間に大きなずれが発生することがない。したがって、吸蔵運転と放出運転とが切り換わる運転切換時であっても水素貯蔵状態を適切に推定することができる。 Therefore, when the estimated values of the tank temperature T t and the tank pressure P t are calculated based on the hydrogen storage rate x t for each operation time t, as shown in FIGS. 4 (a) and 4 (b), While a large deviation occurs between the experimental values at the time of switching between the storage operation and the release operation, the estimated values of the tank temperature Tt and the tank pressure Pt are determined by the third calculation unit 124. If it is determined based on the apparent hydrogen storage rate y t of each operating time t, FIG. 8 (a), the (b), the a in the operation switching time switches and the release operation and storing operation However, there is no large deviation from the experimental value. Therefore, the hydrogen storage state can be appropriately estimated even at the time of switching the operation between the storage operation and the release operation.

また、第2の算定部123は、直前時刻t−1における水素貯蔵率xt−1及び見かけの水素貯蔵率yt−1の間の比率を2乗した値を、当該運転時刻tにおける水素貯蔵率の変化量Δxに乗算することにより、当該運転時刻tにおける見かけの水素貯蔵率の変化量Δyを算定するので、簡単な計算により見かけの水素貯蔵率の変化量Δyを算定することができる。 Further, the second calculation unit 123 sets the value obtained by squaring the ratio between the hydrogen storage rate x t-1 at the immediately preceding time t-1 and the apparent hydrogen storage rate y t-1 as the hydrogen at the operation time t. by multiplying the change amount [Delta] x t of the storage modulus, since the calculated change amount [Delta] y t of the hydrogen storage rate of apparent at the operating time t, to calculate the change amount [Delta] y t of the hydrogen storage rate apparent by simple calculations be able to.

また、第2の算定部123は、運転状態が吸蔵運転である場合には、直前時刻t−1における見かけの水素貯蔵率yt−1に対する水素貯蔵率xt−1の比率に基づいて、見かけの水素貯蔵率の変化量Δyを算定し、運転状態が放出運転である場合には、直前時刻における水素貯蔵率xt−1に対する見かけの水素貯蔵率yt−1の比率に基づいて、見かけの水素貯蔵率の変化量Δyを算定するので、運転切換時の状況に合わせて水素貯蔵状態を適切に推定することができる。 Further, when the operating state is the storage operation, the second calculation unit 123 is based on the ratio of the hydrogen storage rate x t-1 to the apparent hydrogen storage rate y t-1 at the immediately preceding time t-1. Calculate the amount of change Δy t of the apparent hydrogen storage rate, and if the operating state is the release operation, based on the ratio of the apparent hydrogen storage rate y t-1 to the hydrogen storage rate x t-1 at the immediately preceding time. since calculates the change amount [Delta] y t of the hydrogen storage rate apparent, it is possible to appropriately estimate the hydrogen storage state in context of the operation switching.

また、第3の算定部124は、運転時刻t毎の水素流入流出量F、熱媒熱量QCに基づいて、運転時刻t毎のタンク温度Tを算定し、運転時刻t毎の見かけの水素貯蔵率y及びタンク温度Tと、PCT線図とに基づいて、運転時刻t毎のタンク圧力Pを算定するので、熱量の収支に基づいてタンク温度Tを算定し、そのタンク温度Tに基づいてタンク圧力Pを算定するため、水素貯蔵状態をより適切に推定することができる。 The third calculation unit 124, the operation time t for each of the hydrogen inflow outflow F t, based on the heat medium heat QC t, to calculate the tank temperature T t of each operating time t, the apparent each operating time t Since the tank pressure Pt for each operation time t is calculated based on the hydrogen storage rate y t, the tank temperature T t, and the PCT diagram, the tank temperature T t is calculated based on the balance of heat quantity, and the tank temperature T t is calculated. Since the tank pressure P t is calculated based on the tank temperature T t , the hydrogen storage state can be estimated more appropriately.

また、第2の算定部123は、運転時刻tが、運転切換タイミングである場合には、初期時刻tにおけるタンク温度T及びタンク圧力Pと、PCT線図の切換後の運転状態に対する挙動とに基づいて、初期時刻tにおける見かけの水素貯蔵率yを更新するので、運転切換時の状況に合わせて水素貯蔵状態を適切に推定することができる。 The second calculation unit 123, the operation time t, in the case of the operation changeover timing, a tank temperature T 0 and the tank pressure P 0 at the initial time t 0, for switching the operating state of換後of PCT diagram Since the apparent hydrogen storage rate y 0 at the initial time t 0 is updated based on the behavior, the hydrogen storage state can be appropriately estimated according to the situation at the time of operation switching.

(他の実施形態)
以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲で適宜変更可能である。
(Other embodiments)
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be appropriately modified without departing from the technical idea of the present invention.

例えば、上記実施形態では、水素貯蔵状態推定プログラム112は、記憶部11に記憶されたものとして説明したが、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、DVD等のコンピュータで読み取り可能な記録媒体に記録されて提供されてもよい。また、水素貯蔵状態推定プログラム112は、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供されてもよい。 For example, in the above embodiment, the hydrogen storage state estimation program 112 has been described as being stored in the storage unit 11, but it is read by a computer such as a CD-ROM or DVD as a file in an installable format or an executable format. It may be recorded and provided on a possible recording medium. Further, the hydrogen storage state estimation program 112 may be provided by storing it on a computer connected to a network such as the Internet and downloading it via the network.

1…水素貯蔵状態推定装置、2…水素貯蔵タンク、3…水素製造装置、
4…水素利用装置、5…熱媒体循環装置、6…温度センサ、7…圧力センサ、
10…入力部、11…記憶部、12…制御部、13…接続部、14…表示部、
20…水素吸蔵合金、100…水素エネルギー利用システム、
110…PCT線図データ、110a〜110n…PCT線図、
111…運転計画データ、112…水素貯蔵状態推定プログラム、
120…初期状態取得部、121…運転計画取得部、
122…第1の算定部、123…第2の算定部、124…第3の算定部、
125…出力部、1100A、1100B…挙動、
…水素流入流出量、QC…熱媒熱量、
…タンク圧力、P…初期時刻tにおけるタンク圧力、
High…圧力上限値、PLow…圧力下限値、
…タンク温度、T…初期時刻tにおけるタンク温度、
High…温度上限値、TLow…温度下限値、
t…運転時刻、t−1…直前時刻、t…初期時刻、
…水素貯蔵率、x…初期時刻tにおける水素貯蔵率、
t−1…直前時刻における水素貯蔵率、
Δx…水素貯蔵率の変化量、
…見かけの水素貯蔵率、y…初期時刻tにおける見かけの水素貯蔵率、
t−1…直前時刻における見かけの水素貯蔵率、
Δy…見かけの水素貯蔵率の変化量、z…水素濃度、
1 ... Hydrogen storage state estimation device, 2 ... Hydrogen storage tank, 3 ... Hydrogen production device,
4 ... Hydrogen utilization device, 5 ... Heat medium circulation device, 6 ... Temperature sensor, 7 ... Pressure sensor,
10 ... Input unit, 11 ... Storage unit, 12 ... Control unit, 13 ... Connection unit, 14 ... Display unit,
20 ... Hydrogen storage alloy, 100 ... Hydrogen energy utilization system,
110 ... PCT diagram data, 110a to 110n ... PCT diagram,
111 ... Operation plan data, 112 ... Hydrogen storage state estimation program,
120 ... Initial state acquisition unit, 121 ... Operation plan acquisition unit,
122 ... 1st calculation unit, 123 ... 2nd calculation unit, 124 ... 3rd calculation unit,
125 ... Output unit, 1100A, 1100B ... Behavior,
F t ... Hydrogen inflow and outflow, QC t ... Heat medium heat,
P t ... tank pressure, P 0 ... tank pressure at initial time t 0 ,
P High ... Pressure upper limit, P Low ... Pressure lower limit,
T t ... tank temperature, T 0 ... tank temperature at initial time t 0 ,
T High ... Temperature upper limit, T Low ... Temperature lower limit,
t ... operation time, t-1 ... last time, t 0 ... initial time,
x t ... Hydrogen storage rate, x 0 ... Hydrogen storage rate at initial time t 0 ,
x t-1 … Hydrogen storage rate at the last time,
The amount of change [Delta] x t ... hydrogen storage rate,
y t ... Apparent hydrogen storage rate, y 0 ... Apparent hydrogen storage rate at initial time t 0 ,
y t-1 ... Apparent hydrogen storage rate at the last time,
Δy t ... Amount of change in apparent hydrogen storage rate, z ... Hydrogen concentration,

Claims (8)

水素吸蔵合金が充填された水素貯蔵タンクにおける水素貯蔵状態を推定する水素貯蔵状態推定装置であって、
前記水素貯蔵状態の初期値として、所定の初期時刻における水素貯蔵率(x)、タンク温度(T)及びタンク圧力(P)を取得するとともに、前記初期時刻における前記タンク温度(T)及び前記タンク圧力(P)と、前記水素吸蔵合金のPCT線図とに基づいて、前記初期時刻における見かけの水素貯蔵率(y)を取得する初期状態取得部と、
前記初期時刻から所定の単位時間間隔で区切られた所定の運転時刻毎の前記水素貯蔵タンクの運転計画として、前記運転時刻毎の水素流入流出量(F)を取得する運転計画取得部と、
前記運転時刻毎の前記水素流入流出量(F)に基づいて、前記運転時刻毎の水素貯蔵率の変化量(Δx)を算定するとともに、前記初期時刻における前記水素貯蔵率(x)に対して前記運転時刻毎の前記水素貯蔵率の変化量(Δx)を累積することにより、前記運転時刻毎の水素貯蔵率xを算定する第1の算定部と、
前記運転時刻毎の前記見かけの水素貯蔵率の変化量(Δy)を算定するとともに、前記初期時刻における前記見かけの水素貯蔵率(y)に対して前記運転時刻毎の前記見かけの水素貯蔵率の変化量(Δy)を累積することにより、前記運転時刻毎の見かけの水素貯蔵率(y)を算定する第2の算定部と、
前記運転時刻毎の前記見かけの水素貯蔵率(y)と、前記PCT線図とに基づいて、前記運転時刻毎の前記タンク温度(T)及び前記タンク圧力(P)を算定する第3の算定部と、
前記第1の算定部により算定された前記運転時刻毎の前記水素貯蔵率(x)と、前記第3の算定部により算定された前記運転時刻毎の前記タンク温度(T)及び前記タンク圧力(P)を出力する出力部とを備え、
前記第2の算定部は、
前記運転時刻よりも前記単位時間前の直前時刻における前記水素貯蔵率(xt−1)及び前記見かけの水素貯蔵率(yt−1)の間の比率に基づいて、当該運転時刻における前記水素貯蔵率の変化量(Δx)を補正することにより、当該運転時刻における前記見かけの水素貯蔵率の変化量(Δy)を算定する、
ことを特徴とする水素貯蔵状態推定装置。
A hydrogen storage state estimation device that estimates the hydrogen storage state in a hydrogen storage tank filled with a hydrogen storage alloy.
As an initial value of the hydrogen storage conditions, the hydrogen storage modulus at a predetermined initial time (x 0), to acquire the tank temperature (T 0) and tank pressure (P 0), the in the initial time tank temperature (T 0 ), The tank pressure (P 0 ), and the initial state acquisition unit that acquires the apparent hydrogen storage rate (y 0 ) at the initial time based on the PCT diagram of the hydrogen storage alloy.
As an operation plan of the hydrogen storage tank for each predetermined operation time divided at a predetermined unit time interval from the initial time, an operation plan acquisition unit for acquiring the hydrogen inflow / outflow amount ( Ft ) for each operation time, and an operation plan acquisition unit.
Based on the hydrogen inflow and outflow amount (F t ) for each operation time, the amount of change (Δx t ) in the hydrogen storage rate for each operation time is calculated, and the hydrogen storage rate (x 0 ) at the initial time is calculated. The first calculation unit for calculating the hydrogen storage rate x t for each operation time by accumulating the amount of change (Δx t ) of the hydrogen storage rate for each operation time.
The amount of change (Δy t ) in the apparent hydrogen storage rate for each operation time is calculated, and the apparent hydrogen storage rate for each operation time is relative to the apparent hydrogen storage rate (y 0 ) at the initial time. by accumulating the variation rate of the ([Delta] y t), a second calculation unit to calculate the hydrogen storage rate of apparent each of the operating time (y t),
The tank temperature (T t ) and the tank pressure (P t ) for each operation time are calculated based on the apparent hydrogen storage rate (y t ) for each operation time and the PCT diagram. Calculation department of 3 and
The hydrogen storage rate (x t ) for each operation time calculated by the first calculation unit, the tank temperature (T t ) for each operation time calculated by the third calculation unit, and the tank. Equipped with an output unit that outputs pressure ( Pt )
The second calculation unit is
The hydrogen at the operating time is based on the ratio between the hydrogen storage rate (x t-1 ) and the apparent hydrogen storage rate (y t-1 ) at the time immediately preceding the unit time before the operating time. by correcting the variation of the storage rate ([Delta] x t), calculates the amount of change in hydrogen storage rate of the apparent at the operation time of the ([Delta] y t),
A hydrogen storage state estimation device characterized by this.
前記第2の算定部は、
前記比率を2乗した値を、当該運転時刻における前記水素貯蔵率の変化量(Δx)に乗算することにより、当該運転時刻における前記見かけの水素貯蔵率の変化量(Δy)を算定する、
ことを特徴とする請求項1に記載の水素貯蔵状態推定装置。
The second calculation unit is
Squared values of said ratio by multiplying the change amount of the hydrogen storage modulus at the operation time ([Delta] x t), calculates the amount of change in hydrogen storage rate of the apparent at the operation time of the ([Delta] y t) ,
The hydrogen storage state estimation device according to claim 1.
前記第2の算定部は、
前記運転時刻における運転状態が、前記水素吸蔵合金に水素を吸蔵させる吸蔵運転である場合には、前記直前時刻における前記見かけの水素貯蔵率(yt−1)に対する前記水素貯蔵率(xt−1)の比率に基づいて、当該運転時刻における前記水素貯蔵率の変化量(Δx)を補正することにより、当該運転時刻における前記見かけの水素貯蔵率の変化量(Δy)を算定し、
前記運転時刻における運転状態が、前記水素吸蔵合金に水素を放出させる放出運転である場合には、前記直前時刻における前記水素貯蔵率(xt−1)に対する前記見かけの水素貯蔵率(yt−1)の比率に基づいて、当該運転時刻における前記水素貯蔵率の変化量(Δx)を補正することにより、当該運転時刻における前記見かけの水素貯蔵率の変化量(Δy)を算定する、
ことを特徴とする請求項1又は請求項2に記載の水素貯蔵状態推定装置。
The second calculation unit is
When the operating state at the operating time is a storage operation in which the hydrogen storage alloy stores hydrogen, the hydrogen storage rate (x t− ) with respect to the apparent hydrogen storage rate (y t-1 ) at the immediately preceding time. based on the ratio of 1), by correcting the change amount of the hydrogen storage modulus at the operation time of the ([Delta] x t), calculated change amount of the hydrogen storage rate of the apparent at the operation time of the ([Delta] y t),
Operation state in the operation time, if it is released operation for releasing hydrogen to the hydrogen storage alloy, a hydrogen storage rate of the apparent relative to the hydrogen storage rate in the immediately preceding time (x t-1) (y t- based on the ratio of 1), by correcting the change amount of the hydrogen storage modulus at the operation time of the ([Delta] x t), calculates the amount of change in hydrogen storage rate of the apparent at the operation time of the ([Delta] y t),
The hydrogen storage state estimation device according to claim 1 or 2, wherein the hydrogen storage state estimation device is characterized.
前記運転計画取得部は、
前記運転計画として、前記運転時刻毎の熱媒熱量(QC)をさらに取得し、
前記第3の算定部は、
前記運転時刻毎の前記水素流入流出量(F)及び熱媒熱量(QC)に基づいて、前記運転時刻毎の前記タンク温度(T)を算定し、
前記運転時刻毎の前記見かけの水素貯蔵率(y)及び前記タンク温度(T)と、前記PCT線図とに基づいて、前記運転時刻毎の前記タンク圧力(P)を算定する、
ことを特徴とする請求項1乃至請求項3のいずれか一項に記載の水素貯蔵状態推定装置。
The operation plan acquisition unit
As the operation plan, the heat medium heat amount (QC t ) for each operation time is further acquired.
The third calculation unit is
The tank temperature (T t ) for each operation time is calculated based on the hydrogen inflow / outflow amount (F t ) and the heat medium heat amount (QC t ) for each operation time.
The tank pressure (P t ) for each operation time is calculated based on the apparent hydrogen storage rate (y t ) and the tank temperature (T t ) for each operation time and the PCT diagram.
The hydrogen storage state estimation device according to any one of claims 1 to 3, wherein the hydrogen storage state estimation device is characterized.
前記第2の算定部は、
前記運転時刻が、前記水素吸蔵合金に水素を吸蔵させる吸蔵運転と、前記水素吸蔵合金に水素を放出させる放出運転との間で運転状態の切換が行われる時刻である場合には、前記初期時刻におけるタンク温度(T)及びタンク圧力(P)と、前記PCT線図の前記切換後の前記運転状態に対する挙動とに基づいて、前記初期時刻における見かけの水素貯蔵率(y)を更新する、
ことを特徴とする請求項1乃至請求項4のいずれか一項に記載の水素貯蔵状態推定装置。
The second calculation unit is
When the operation time is a time at which the operation state is switched between the storage operation for storing hydrogen in the hydrogen storage alloy and the discharge operation for releasing hydrogen to the hydrogen storage alloy, the initial time The apparent hydrogen storage rate (y 0 ) at the initial time is updated based on the tank temperature (T 0 ) and the tank pressure (P 0 ) in the PCT diagram and the behavior of the PCT diagram with respect to the operating state after the switching. To do,
The hydrogen storage state estimation device according to any one of claims 1 to 4, wherein the hydrogen storage state estimation device is characterized.
前記PCT線図は、
前記水素吸蔵合金と同一の組成の試験体を用いて作成された近似線である、
ことを特徴とする請求項1乃至請求項5のいずれか一項に記載の水素貯蔵状態推定装置。
The PCT diagram is
It is an approximate line created by using a test piece having the same composition as the hydrogen storage alloy.
The hydrogen storage state estimation device according to any one of claims 1 to 5, wherein the hydrogen storage state estimation device is characterized.
コンピュータを、請求項1乃至請求項6のいずれか一項に記載の水素貯蔵状態推定装置が備える各部として機能させることを特徴とする水素貯蔵状態推定プログラム。 A hydrogen storage state estimation program, characterized in that the computer functions as each part included in the hydrogen storage state estimation device according to any one of claims 1 to 6. 水素吸蔵合金が充填された水素貯蔵タンクにおける水素貯蔵状態を推定する水素貯蔵状態推定方法であって、
前記水素貯蔵状態の初期値として、所定の初期時刻における水素貯蔵率(x)、タンク温度(T)及びタンク圧力(P)を取得するとともに、前記初期時刻における前記タンク温度(T)及び前記タンク圧力(P)と、前記水素吸蔵合金のPCT線図とに基づいて、前記初期時刻における見かけの水素貯蔵率(y)を取得する初期状態取得工程と、
前記初期時刻から所定の単位時間間隔で区切られた所定の運転時刻毎の前記水素貯蔵タンクの運転計画として、前記運転時刻毎の水素流入流出量(F)を取得する運転計画取得工程と、
前記運転時刻毎の前記水素流入流出量(F)に基づいて、前記運転時刻毎の水素貯蔵率の変化量(Δx)を算定するとともに、前記初期時刻における前記水素貯蔵率(x)に対して前記運転時刻毎の前記水素貯蔵率の変化量(Δx)を累積することにより、前記運転時刻毎の水素貯蔵率(x)を算定する第1の算定工程と、
前記運転時刻毎の前記見かけの水素貯蔵率の変化量(Δy)を算定するとともに、前記初期時刻における前記見かけの水素貯蔵率(y)に対して前記運転時刻毎の前記見かけの水素貯蔵率の変化量(Δy)を累積することにより、前記運転時刻毎の見かけの水素貯蔵率(y)を算定する第2の算定工程と、
前記運転時刻毎の前記見かけの水素貯蔵率(y)と、前記PCT線図とに基づいて、前記運転時刻毎の前記タンク温度(T)及び前記タンク圧力(P)を算定する第3の算定工程と、
前記第1の算定工程により算定された前記運転時刻毎の前記水素貯蔵率(x)と、前記第3の算定工程により算定された前記運転時刻毎の前記タンク温度(T)及び前記タンク圧力(P)を出力する出力工程とを備え、
前記第2の算定工程は、
前記運転時刻よりも前記単位時間前の直前時刻における前記水素貯蔵率(xt−1)及び前記見かけの水素貯蔵率(yt−1)の間の比率に基づいて、当該運転時刻における前記水素貯蔵率の変化量(Δx)を補正することにより、当該運転時刻における前記見かけの水素貯蔵率の変化量(Δy)を算定する、
ことを特徴とする水素貯蔵状態推定方法。
It is a hydrogen storage state estimation method for estimating the hydrogen storage state in a hydrogen storage tank filled with a hydrogen storage alloy.
As an initial value of the hydrogen storage conditions, the hydrogen storage modulus at a predetermined initial time (x 0), to acquire the tank temperature (T 0) and tank pressure (P 0), the in the initial time tank temperature (T 0 ), The tank pressure (P 0 ), and the initial state acquisition step of acquiring the apparent hydrogen storage rate (y 0 ) at the initial time based on the PCT diagram of the hydrogen storage alloy.
As an operation plan of the hydrogen storage tank for each predetermined operation time separated from the initial time at a predetermined unit time interval, an operation plan acquisition process for acquiring the hydrogen inflow / outflow amount ( Ft ) for each operation time, and an operation plan acquisition step.
Based on the hydrogen inflow and outflow amount (F t ) for each operation time, the amount of change (Δx t ) in the hydrogen storage rate for each operation time is calculated, and the hydrogen storage rate (x 0 ) at the initial time is calculated. The first calculation step of calculating the hydrogen storage rate (x t ) for each operation time by accumulating the amount of change (Δx t ) of the hydrogen storage rate for each operation time.
The amount of change (Δy t ) in the apparent hydrogen storage rate for each operation time is calculated, and the apparent hydrogen storage rate for each operation time is relative to the apparent hydrogen storage rate (y 0 ) at the initial time. by accumulating the variation rate of the ([Delta] y t), a second calculation step of calculating hydrogen storage modulus of apparent each of the operating time of the (y t),
The tank temperature (T t ) and the tank pressure (P t ) for each operation time are calculated based on the apparent hydrogen storage rate (y t ) for each operation time and the PCT diagram. Calculation process of 3 and
The hydrogen storage rate (x t ) for each operation time calculated by the first calculation step, the tank temperature (T t ) for each operation time calculated by the third calculation step, and the tank. It is equipped with an output process that outputs pressure ( Pt ).
The second calculation process is
The hydrogen at the operating time is based on the ratio between the hydrogen storage rate (x t-1 ) and the apparent hydrogen storage rate (y t-1 ) at the time immediately preceding the unit time before the operating time. by correcting the variation of the storage rate ([Delta] x t), calculates the amount of change in hydrogen storage rate of the apparent at the operation time of the ([Delta] y t),
A method for estimating the hydrogen storage state, which is characterized in that.
JP2019079836A 2019-04-19 2019-04-19 Hydrogen storage state estimation device, hydrogen storage state estimation program, and hydrogen storage state estimation method Active JP7209291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019079836A JP7209291B2 (en) 2019-04-19 2019-04-19 Hydrogen storage state estimation device, hydrogen storage state estimation program, and hydrogen storage state estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079836A JP7209291B2 (en) 2019-04-19 2019-04-19 Hydrogen storage state estimation device, hydrogen storage state estimation program, and hydrogen storage state estimation method

Publications (2)

Publication Number Publication Date
JP2020176693A true JP2020176693A (en) 2020-10-29
JP7209291B2 JP7209291B2 (en) 2023-01-20

Family

ID=72935837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079836A Active JP7209291B2 (en) 2019-04-19 2019-04-19 Hydrogen storage state estimation device, hydrogen storage state estimation program, and hydrogen storage state estimation method

Country Status (1)

Country Link
JP (1) JP7209291B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114484272A (en) * 2021-12-15 2022-05-13 中国空气动力研究与发展中心计算空气动力研究所 Method, device and system for monitoring combined state of gas storage tank group and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666787A (en) * 1992-08-18 1994-03-11 Sanyo Electric Co Ltd Measuring method for residual amount of hydrogen in hydrogen storage alloy container
JP2002333100A (en) * 2001-05-09 2002-11-22 Honda Motor Co Ltd Hydrogen remaining amount detecting device and hydrogen supply method for hydrogen storage tank
JP2003139298A (en) * 2001-11-07 2003-05-14 Nissan Motor Co Ltd Hydrogen storage device and method for detecting remaining amount of hydrogen
JP2005500534A (en) * 2001-08-13 2005-01-06 モトローラ・インコーポレイテッド Method and apparatus for determining the amount of hydrogen in a container
JP2005283127A (en) * 2004-03-26 2005-10-13 Nissan Motor Co Ltd Fuel amount processor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666787A (en) * 1992-08-18 1994-03-11 Sanyo Electric Co Ltd Measuring method for residual amount of hydrogen in hydrogen storage alloy container
JP2002333100A (en) * 2001-05-09 2002-11-22 Honda Motor Co Ltd Hydrogen remaining amount detecting device and hydrogen supply method for hydrogen storage tank
JP2005500534A (en) * 2001-08-13 2005-01-06 モトローラ・インコーポレイテッド Method and apparatus for determining the amount of hydrogen in a container
JP2003139298A (en) * 2001-11-07 2003-05-14 Nissan Motor Co Ltd Hydrogen storage device and method for detecting remaining amount of hydrogen
JP2005283127A (en) * 2004-03-26 2005-10-13 Nissan Motor Co Ltd Fuel amount processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114484272A (en) * 2021-12-15 2022-05-13 中国空气动力研究与发展中心计算空气动力研究所 Method, device and system for monitoring combined state of gas storage tank group and storage medium
CN114484272B (en) * 2021-12-15 2023-04-07 中国空气动力研究与发展中心计算空气动力研究所 Method, device and system for monitoring combined state of gas storage tank group and storage medium

Also Published As

Publication number Publication date
JP7209291B2 (en) 2023-01-20

Similar Documents

Publication Publication Date Title
US20130285610A1 (en) Power control apparatus, method, program, and integrated circuit, and storage battery unit
JP2015171315A (en) Time variant droop-based inertial control method for wind generator
JP2020176693A (en) Hydrogen storage state estimation device, hydrogen storage state estimation program and hydrogen storage state estimation method
EP3896814A1 (en) Control device, control method, and program
JP2008109810A (en) Evaluation index analysis method for control of load frequency
JP3651927B2 (en) Load control device for fuel cell power generator
JP5221762B2 (en) Water heater
KR20140065199A (en) System and method for managementing electric power
JPWO2016189756A1 (en) Power generation control device, control device, control method, and program
JP2007202277A (en) Maximum demanded electric power control system
JP2005276797A (en) Fuel cell power generation system and its control method
JP2018152205A (en) Fuel cell system and fuel cell control program
JP7527555B2 (en) Hydrogen storage state estimation device, hydrogen storage state estimation program, and hydrogen storage state estimation method
WO2018109858A1 (en) Hydrogen energy system, method for controlling hydrogen energy system, and program
US20230253590A1 (en) Fuel cell system and control method for fuel cell system
JP2016195513A (en) Ac power supply device and output power control method of the same
JP5577092B2 (en) Fuel cell system and control method thereof
JP6119558B2 (en) Estimated power generation calculation apparatus, program, and method
JP6677665B2 (en) Power supply system and power supply system control method
JP7294557B1 (en) POWER CONVERTER, POWER SUPPLY SYSTEM AND CONTROL METHOD
JP4535694B2 (en) Output control device and output control method for cogeneration system
JP7346155B2 (en) Battery capacity estimation device, battery capacity estimation method, and program
JP2018104731A (en) Electrochemical device and method of operating the same
KR102614065B1 (en) Battery SOH Estimation Device For Energy Storage System
JP6618788B2 (en) Fuel cell device and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R150 Certificate of patent or registration of utility model

Ref document number: 7209291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150