JPH0666787A - Measuring method for residual amount of hydrogen in hydrogen storage alloy container - Google Patents

Measuring method for residual amount of hydrogen in hydrogen storage alloy container

Info

Publication number
JPH0666787A
JPH0666787A JP4240110A JP24011092A JPH0666787A JP H0666787 A JPH0666787 A JP H0666787A JP 4240110 A JP4240110 A JP 4240110A JP 24011092 A JP24011092 A JP 24011092A JP H0666787 A JPH0666787 A JP H0666787A
Authority
JP
Japan
Prior art keywords
hydrogen
amount
strain
storage alloy
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4240110A
Other languages
Japanese (ja)
Other versions
JP3203062B2 (en
Inventor
Shin Fujitani
伸 藤谷
Hiroshi Nakamura
宏 中村
Akio Furukawa
明男 古川
Ikuro Yonezu
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24011092A priority Critical patent/JP3203062B2/en
Publication of JPH0666787A publication Critical patent/JPH0666787A/en
Application granted granted Critical
Publication of JP3203062B2 publication Critical patent/JP3203062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To easily and accurately measure the residual amount of hydrogen in a hydrogen storage alloy container. CONSTITUTION:A strain gauge G is attached to the wall 1a of a hydrogen storage alloy container 1 and, by discharging hydrogen little by little from he hydrogen storage alloy 2 of the container 2, the residual amount of hydrogen in the alloy 2 is successively calculated. Then the relation between strains and residual amounts of hydrogen is established by successively measuring the strains at the time of discharging the hydrogen. The residual amount of hydrogen in the container 1 is measured from the strain measured with the gauge G based on the established relation between the strains and residual amounts of hydrogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を利用し
た水素吸蔵合金容器内の残存水素量測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the amount of residual hydrogen in a hydrogen storage alloy container using a hydrogen storage alloy.

【0002】[0002]

【従来の技術】水素吸蔵合金を用いた水素吸蔵合金容器
では、残存水素量の測定が実用上不可欠である。従来技
術として、水素解離圧力の異なる2種類以上の水素吸蔵
合金を混合し、貯蔵容器内容の圧力変化から残存水素量
を測定を行う方法が開示されている。
2. Description of the Related Art In a hydrogen storage alloy container using a hydrogen storage alloy, it is practically essential to measure the amount of residual hydrogen. As a conventional technique, a method is disclosed in which two or more kinds of hydrogen storage alloys having different hydrogen dissociation pressures are mixed and the amount of residual hydrogen is measured from the pressure change of the contents of the storage container.

【0003】例えば、特開昭59ー78902号公報で
は、容器内に圧力P1で水素を解離する第1の金属水素
化物を主成分とし、圧力P1よりも低い圧力P2で水素
を解離する第2の金属水素化物を従成分とする金属水素
化物の混合物が充填されて、第1の金属水素化物から水
素が実質的に放出しつくされた後に、第2の金属水素化
物から水素が放出されると共に、圧力P1から圧力P2
の圧力変化を測定することにより残存水素量を測定する
ものが開示されている。
For example, in JP-A-59-78902, a first metal hydride that dissociates hydrogen at a pressure P1 as a main component is contained in a container, and a second metal dissociates at a pressure P2 lower than the pressure P1. The hydrogen is released from the second metal hydride after the hydrogen has been substantially released from the first metal hydride by being filled with the mixture of the metal hydride containing the metal hydride as a subcomponent. Together with pressure P1 to pressure P2
It is disclosed that the amount of residual hydrogen is measured by measuring the change in pressure.

【0004】また、特開昭59ー197546号公報で
は金属水素化物の水素吸蔵量と平衡圧力との関係が直線
性を持つように数種類の金属水素化物の混合物を用いて
圧力の計測から水素貯蔵量を測定するものが開示されて
いる。
Further, in Japanese Patent Laid-Open No. 59-197546, the pressure is measured and the hydrogen is stored by using a mixture of several kinds of metal hydride so that the relationship between the hydrogen storage amount of the metal hydride and the equilibrium pressure has a linear relationship. Those that measure quantity are disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来技
術の水素解離圧力の異なる2種類以上の水素吸蔵合金を
混合し、貯蔵容器内の圧力変化から残存水素量を測定を
行う方法よれば、水素放出停止時の温度と圧力の安定し
た平衡状態では残存水素量の測定ができるが、水素放出
中では、水素放出速度に応じて水素吸蔵合金の水素解離
吸熱反応の変化が生じて水素吸蔵合金の温度や圧力が不
確定に変動するから、圧力の測定では正確な残存水素量
の測定が困難である。
However, according to the prior art method of mixing two or more kinds of hydrogen storage alloys having different hydrogen dissociation pressures and measuring the amount of residual hydrogen from the pressure change in the storage container, hydrogen is released. The amount of residual hydrogen can be measured in a stable equilibrium state of temperature and pressure at the time of stop, but during hydrogen release, the temperature of the hydrogen storage alloy changes due to the change in the hydrogen dissociation endothermic reaction of the hydrogen storage alloy depending on the hydrogen release rate. Since the pressure and the pressure fluctuate indefinitely, it is difficult to measure the residual hydrogen amount accurately by measuring the pressure.

【0006】そこで、本発明は水素放出中でも正確な残
存水素量の測定が可能な水素吸蔵合金容器内の残存水素
量測定方法を提供することを目的とする。
Therefore, it is an object of the present invention to provide a method for measuring the amount of residual hydrogen in a hydrogen storage alloy container, which enables accurate measurement of the amount of residual hydrogen even during hydrogen release.

【0007】[0007]

【課題を解決するための手段】本発明は、水素吸蔵合金
容器の壁に歪ゲージを付着し、予めこの水素吸蔵合金か
ら水素を少しずつ放出することによって順次残存水素量
を算出すると共に、このときの歪量を順次測定して歪量
と残存水素量との関係を設定し、残存水素量の測定時に
は前記歪ゲージで測定した歪量から前記設定された前記
歪量と残存水素量との関係に基づいて残存水素量を測定
するようにしたものである。
According to the present invention, a strain gauge is attached to the wall of a hydrogen storage alloy container and the amount of residual hydrogen is sequentially calculated by gradually releasing hydrogen from the hydrogen storage alloy little by little in advance. When the strain amount is sequentially measured and the relationship between the strain amount and the residual hydrogen amount is set, when measuring the residual hydrogen amount, the strain amount and the residual hydrogen amount are set from the strain amount measured by the strain gauge. The residual hydrogen amount is measured based on the relationship.

【0008】[0008]

【作用】水素吸蔵合金は、水素吸収量(残存水素量)に
応じて膨脹、収縮を生ずる。即ち、水素吸収量が多い
程、膨脹の度合は大きい。しかも、この膨脹、収縮の度
合は温度の影響を受けない。従って、この膨脹、収縮に
よる容器壁の歪により水素吸蔵合金容器内の残存水素量
を簡便に的確に測定でき、しかも、水素供給中でも安定
して測定できる。
The hydrogen storage alloy expands and contracts according to the amount of absorbed hydrogen (the amount of residual hydrogen). That is, the greater the amount of absorbed hydrogen, the greater the degree of expansion. Moreover, the degree of expansion and contraction is not affected by temperature. Therefore, the amount of residual hydrogen in the hydrogen storage alloy container can be easily and accurately measured by the strain of the container wall due to the expansion and contraction, and can be stably measured even during hydrogen supply.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は、本発明の第1実施例を示す構成図
である。図中、1は水素吸蔵合金2が充填された容器、
3は容器1に形成される水素導入排出部、4は歪ゲージ
Gの変化量を検出する歪変化量検出手段としてのブリッ
ジ回路、5はブリッジ回路4からの歪の変化量を入力
し、この歪の変化量と予め設定された歪の変化量に対応
する残存水素量との関係から残存水素量を測定する残存
水素量測定手段である。ここで、測定する残存水素量
は、水素吸蔵合金2に吸蔵された水素と容器1内の水素
を含むものとする。
FIG. 1 is a block diagram showing a first embodiment of the present invention. In the figure, 1 is a container filled with hydrogen storage alloy 2,
Reference numeral 3 is a hydrogen introducing / exhausting portion formed in the container 1, 4 is a bridge circuit as a strain change amount detecting means for detecting the change amount of the strain gauge G, and 5 is the strain change amount from the bridge circuit 4, It is a residual hydrogen amount measuring means for measuring the residual hydrogen amount from the relationship between the amount of change in strain and the amount of residual hydrogen corresponding to a preset amount of change in strain. Here, the residual hydrogen amount to be measured is assumed to include the hydrogen stored in the hydrogen storage alloy 2 and the hydrogen in the container 1.

【0011】容器1は、円筒状のステンレススチール製
で、この容器1の円筒の一端に水素導入排出部3が形成
され、図示省略する水素バルブを介して水素供給手段に
連絡している。容器1の内部には、一例として、合金組
成LaNi5の水素吸蔵合金2が約50%の気孔率で充
填されており、容器1へ水素導入排出部3より図示省略
する水素供給手段から水素ガスが供給され、図2に示す
ように25℃で、圧力10atmの水素吸収状態(1.
5wt%)としている。容器1の外周壁1aには、歪抵
抗感応素子として歪ゲージGが貼付けられ、リード線G
a,Gbが付いている。なお、この歪ゲージGは金属抵
抗素子を線引した箔状のものを用いている。
The container 1 is made of a cylindrical stainless steel, and a hydrogen introducing / discharging portion 3 is formed at one end of the cylinder of the container 1 and is connected to a hydrogen supply means via a hydrogen valve (not shown). As an example, the inside of the container 1 is filled with a hydrogen storage alloy 2 having an alloy composition LaNi 5 with a porosity of about 50%. 2 is supplied, and at a temperature of 25 ° C., a hydrogen absorption state (1.
5 wt%). On the outer peripheral wall 1a of the container 1, a strain gauge G is attached as a strain resistance sensitive element, and a lead wire G
a and Gb are attached. The strain gauge G is a foil-shaped one obtained by drawing a metal resistance element.

【0012】歪ゲージGは、リード線Ga,Gbにより
抵抗RGとしてホイストンブリッジ回路4の一辺に接続
されている。すなわち、この抵抗RGをブリッジの一
辺、他の三辺を各々R1,R2,R3とするブリッジ回
路4が形成され、ブリッジ回路のR2とR3またはRG
とR1の両端4a,4bには一定の電圧Eが印加され、
ブリッジ回路4の他の両端4c,4dからブリッジ回路
4の電圧出力eが取り出され、この電圧出力eが入力す
るように残存水素量測定手段5がブリッジ回路4に接続
されている。
The strain gauge G is connected to one side of the Hoiston bridge circuit 4 as a resistance RG by lead wires Ga and Gb. That is, a bridge circuit 4 is formed in which the resistor RG is one side of the bridge and the other three sides are R1, R2, and R3, respectively, and the bridge circuit R2 and R3 or RG is formed.
And a constant voltage E is applied to both ends 4a and 4b of R1,
The voltage output e of the bridge circuit 4 is taken out from the other ends 4c and 4d of the bridge circuit 4, and the residual hydrogen amount measuring means 5 is connected to the bridge circuit 4 so that the voltage output e is input.

【0013】ところで、歪ゲージの抵抗RGは次の式
(1)で示される。
The resistance RG of the strain gauge is expressed by the following equation (1).

【0014】[0014]

【数1】 [Equation 1]

【0015】また、ブリッジ回路4の電圧出力eは次の
式(2)で示される。
The voltage output e of the bridge circuit 4 is expressed by the following equation (2).

【0016】[0016]

【数2】 [Equation 2]

【0017】上記式(2)において次の式(3)の条件
とすれば、電圧出力eは次の式(4)で示される。
Under the condition of the following expression (3) in the above expression (2), the voltage output e is expressed by the following expression (4).

【0018】[0018]

【数3】 [Equation 3]

【0019】[0019]

【数4】 [Equation 4]

【0020】この結果、上記の式(4)から歪εの変化
量に比例した電圧出力eが残存水素量測定手段5に入力
される。
As a result, the voltage output e proportional to the change amount of the strain ε is input to the residual hydrogen amount measuring means 5 from the above equation (4).

【0021】次に、残存水素量測定手段5では、予め実
験により水素導入排出部3から順次水素を放出して残存
水素量を測定し、このときの歪の変化量を順次測定し、
歪の変化量と残存水素量との関係を設定しておく。すな
わち、例えば、上記した図2の25℃で、かつ、圧力1
0atmの状態で水素導入排出部3から図示省略する水
素バルブを開いて図示省略する水素流量計で放出水素の
測定から残存水素量を求め、対応する電圧出力eから歪
εを求めて図3に示す如く残存水素量cと歪ε/ε0
の関係を残存水素量測定手段5に設定する。
Next, the residual hydrogen amount measuring means 5 measures the residual hydrogen amount by sequentially releasing hydrogen from the hydrogen introducing / exhausting part 3 beforehand by an experiment, and sequentially measuring the amount of change in strain at this time,
The relationship between the amount of change in strain and the amount of residual hydrogen is set. That is, for example, at 25 ° C. in FIG.
At 0 atm, the hydrogen valve (not shown) is opened from the hydrogen introducing / exhausting unit 3, and the amount of residual hydrogen is obtained by measuring the amount of released hydrogen with a hydrogen flow meter (not shown), and the strain ε is obtained from the corresponding voltage output e. As shown, the relationship between the residual hydrogen amount c and the strain ε / ε 0 is set in the residual hydrogen amount measuring means 5.

【0022】ここで、残存水素量cは、図2に示す完全
な水素吸収状態、1.5wt%を100%として、これ
に対応して残存水素量の比を%で示し、図2においてε
0完全な水素放出状態、つまり、1atmのときの歪を
示している。この図3によって歪の比ε/ε0は残存水
素量cに対して単調に比例して増加している。従って、
歪の比ε/ε0を求めれば、残存水素量cを求められ
る。
Here, the residual hydrogen amount c is 100% when 1.5 wt% is the perfect hydrogen absorption state shown in FIG. 2, and correspondingly, the ratio of the residual hydrogen amount is shown in%.
0 shows the complete hydrogen release state, that is, the strain at 1 atm. As shown in FIG. 3, the strain ratio ε / ε 0 increases monotonically in proportion to the residual hydrogen amount c. Therefore,
If the strain ratio ε / ε 0 is obtained, the residual hydrogen amount c can be obtained.

【0023】ところで、上記式(1)では歪ε0のとき
の電圧出力e=e0とすればe/e0の比はε/ε0の比
に対応するから残存水素量測定手段5ではe/e0の比
と図3に示す如くの歪の変化量に対応する残存水素量と
の関係とから残存水素量を測定する時にそのときの残存
水素量が測定される。残存水素量では、必要に応じて残
存水素量をモニタするため表示と印字、さらに、警報出
力する手段を設けるようにする。
By the way, in the above equation (1), if the voltage output e = e 0 when the strain is ε 0 , the ratio of e / e 0 corresponds to the ratio of ε / ε 0. When measuring the residual hydrogen amount from the relationship between the ratio of e / e 0 and the residual hydrogen amount corresponding to the amount of change in strain as shown in FIG. 3, the residual hydrogen amount at that time is measured. As for the residual hydrogen amount, a display and a print for monitoring the residual hydrogen amount and a means for outputting an alarm are provided as needed.

【0024】なお、図3中S1の点で水素の放出を停止
しても歪の比ε/ε0の値は変化しなかった。すなわ
ち、本実施例では、水素吸蔵合金2が温度変化の影響を
受けず、水素の供給中でも停止中でも正確な残存水素量
の測定がされることが判明した。
The value of the strain ratio ε / ε 0 did not change even if the release of hydrogen was stopped at the point S1 in FIG. That is, in this example, it was found that the hydrogen storage alloy 2 was not affected by the temperature change, and the amount of residual hydrogen was accurately measured during the supply of hydrogen and the stop of hydrogen.

【0025】このように、本実施例によれば、容器1の
外周壁1aに歪ゲージGを貼付け残存水素量に応じた水
素吸蔵合金2の体積の変化に伴う、容器1の壁の応力、
歪の変化から残存水素量を簡便に、しかも、正確に測定
できる。その上、水素供給中変化状態でも的確に残存水
素量の測定ができる。
As described above, according to this embodiment, the strain gauge G is attached to the outer peripheral wall 1a of the container 1, and the stress of the wall of the container 1 due to the change in the volume of the hydrogen storage alloy 2 according to the amount of residual hydrogen,
The amount of residual hydrogen can be easily and accurately measured from the change in strain. In addition, the amount of residual hydrogen can be accurately measured even when the supply of hydrogen changes.

【0026】次に、本発明の第2実施例を図4を参照し
て説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

【0027】図4が図1と異なる点は。3個の歪ゲージ
G1,G2,G3を容器1の外周壁1aに貼付けて、各
歪ゲージG1,G2,G3のリード線を直列に接続して
両端のリード線Ga,Gbにより抵抗RGとしてブリッ
ジ回路4の一辺として構成している点である。
What is different from FIG. 1 in FIG. 4? The three strain gauges G1, G2, G3 are attached to the outer peripheral wall 1a of the container 1, the lead wires of the strain gauges G1, G2, G3 are connected in series, and the lead wires Ga, Gb at both ends are connected to form a bridge as a resistance RG. The point is that it is configured as one side of the circuit 4.

【0028】上記構成で、第1実施例と同様に予め実験
によって残存水素量cと歪の比ε/ε0との関係を求め
た。その結果、第4図に示すように、残存水素量cと歪
の比ε/ε0の関係はほぼリニヤの関係となった。ま
た、第1実施例と同様にS2の点で水素放出を停止して
も歪の比ε/ε0の値は変化しなかった。残存水素量測
定手段5では、ホイストンブリッジ回路4の電圧出力の
比e/e0、つまり、図5に示す如くのε/ε0の比と残
存水素量cとの関係を予め設定しておけば、歪の変化量
から残存水素量cが測定される。
With the above structure, the relationship between the residual hydrogen amount c and the strain ratio ε / ε 0 was previously obtained by an experiment as in the first embodiment. As a result, as shown in FIG. 4, the relationship between the residual hydrogen amount c and the strain ratio ε / ε 0 was almost linear. Further, similarly to the first embodiment, the value of the strain ratio ε / ε 0 did not change even if the hydrogen release was stopped at the point of S2. In the residual hydrogen amount measuring means 5, the relationship between the voltage output ratio e / e 0 of the Whiston bridge circuit 4, that is, the ratio of ε / ε 0 as shown in FIG. 5 and the residual hydrogen amount c is set in advance. In other words, the residual hydrogen amount c can be measured from the amount of change in strain.

【0029】このように、電圧出力eと残存水素量cと
はリニヤに比例するから電圧表示計等によりモニタする
ことも容易で、機器構成の簡素化、低コスト化で実施で
きる。
As described above, since the voltage output e and the residual hydrogen amount c are proportional to the linear range, it is easy to monitor them with a voltage indicator or the like, and the equipment structure can be simplified and the cost can be reduced.

【0030】なお、歪ゲージを貼付ける場所は、容器外
壁、内壁のいずれであっても、水素吸蔵合金の水素吸放
出に伴う体積変化による応力を受ける部位であれば同様
の効果が得られ、複数の歪ゲージを貼付ける場合では、
直列に接続に限らず並列の接続でもよい。また、本発明
の水素吸蔵合金容器を燃料電池の水素供給源として使用
すれば、燃料としての残存水素量を的確に知ることがで
き、容器の交換を円滑に行える。また、水素吸蔵合金は
前記に示した組成LaNi5に限られず他の組成の水素
吸蔵合金にも適用することができる。
It should be noted that the same effect can be obtained as long as the strain gauge is attached to either the outer wall or the inner wall of the container as long as it is stressed by the volume change accompanying the hydrogen absorption / release of the hydrogen storage alloy. When attaching multiple strain gauges,
The connection is not limited to serial connection, but parallel connection may be used. Further, when the hydrogen storage alloy container of the present invention is used as a hydrogen supply source for a fuel cell, the amount of residual hydrogen as fuel can be accurately known and the container can be replaced smoothly. Further, the hydrogen storage alloy is not limited to the composition LaNi 5 shown above, but can be applied to hydrogen storage alloys having other compositions.

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、容
器の壁に歪ゲージを付着し、歪の変化量から残存水素量
を測定するから簡便に、しかも、正確に測定できる。そ
の上、水素供給中、停止中を問わず残存水素量の測定が
可能である。従って、水素貯蔵手段として水素吸蔵合金
容器の実用化に寄与することができる。
As described above, according to the present invention, a strain gauge is attached to the wall of a container and the amount of residual hydrogen is measured from the amount of change in strain, so that the amount of hydrogen remaining can be measured easily and accurately. In addition, the amount of residual hydrogen can be measured regardless of whether hydrogen is being supplied or stopped. Therefore, it can contribute to the practical application of the hydrogen storage alloy container as the hydrogen storage means.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す構成図。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】図1の第1実施例に用いる水素吸蔵合金の平衡
圧力と残存水素量との関係を示す特性図。
FIG. 2 is a characteristic diagram showing the relationship between the equilibrium pressure and the amount of residual hydrogen of the hydrogen storage alloy used in the first embodiment of FIG.

【図3】図1の第1実施例に用いる残存水素量と歪の比
との関係を示す特性図。
FIG. 3 is a characteristic diagram showing the relationship between the residual hydrogen amount and the strain ratio used in the first embodiment of FIG.

【図4】本発明の第2実施例を示す構成図。FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

【図5】図4の第2実施例に用いる残存水素量と歪の比
との関係を示す特性図。
5 is a characteristic diagram showing the relationship between the amount of residual hydrogen and the strain ratio used in the second embodiment of FIG.

【符号の説明】[Explanation of symbols]

1 容器 2 水素吸蔵合金 3 水素導入排出部 4 ブリッジ回路 5 残存水素量測定手段 1 container 2 hydrogen storage alloy 3 hydrogen introduction / exhaust section 4 bridge circuit 5 residual hydrogen amount measuring means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ikuro Yonezu 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金容器の壁に歪ゲージを付着
し、予めこの水素吸蔵合金から水素を少しずつ放出する
ことによって順次残存水素量を算出すると共に、このと
きの歪量を順次測定して歪量と残存水素量との関係を設
定し、残存水素量の測定時には前記歪ゲージで測定した
歪量から前記設定された前記歪量と残存水素量との関係
に基づいて残存水素量を測定することを特徴とする水素
吸蔵合金容器内の残存水素量測定方法。
1. A strain gauge is attached to the wall of a hydrogen storage alloy container, and the amount of residual hydrogen is sequentially calculated by preliminarily releasing hydrogen from the hydrogen storage alloy little by little, and the strain amount at this time is sequentially measured. The relationship between the strain amount and the residual hydrogen amount is set, and when measuring the residual hydrogen amount, the residual hydrogen amount is determined based on the relationship between the strain amount and the residual hydrogen amount set from the strain amount measured by the strain gauge. A method for measuring the amount of residual hydrogen in a hydrogen storage alloy container, which comprises measuring.
【請求項2】 前記歪ゲージを複数個として、これらの
歪ゲージを直列または並列に接続して残存水素量を測定
することを特徴とする請求項1記載の水素吸蔵合金容器
内の残存水素量測定方法。
2. The residual hydrogen amount in the hydrogen storage alloy container according to claim 1, wherein the strain gauges are plural and the strain gauges are connected in series or in parallel to measure the residual hydrogen amount. Measuring method.
【請求項3】 燃料電池の燃料極への水素供給源として
前記水素吸蔵合金容器を用いたことを特徴とする請求項
1記載または請求項2記載の水素吸蔵合金容器内の残存
水素量測定方法。
3. The method for measuring the amount of residual hydrogen in the hydrogen storage alloy container according to claim 1, wherein the hydrogen storage alloy container is used as a hydrogen supply source to a fuel electrode of a fuel cell. .
JP24011092A 1992-08-18 1992-08-18 Method for measuring residual hydrogen content in hydrogen storage alloy container Expired - Fee Related JP3203062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24011092A JP3203062B2 (en) 1992-08-18 1992-08-18 Method for measuring residual hydrogen content in hydrogen storage alloy container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24011092A JP3203062B2 (en) 1992-08-18 1992-08-18 Method for measuring residual hydrogen content in hydrogen storage alloy container

Publications (2)

Publication Number Publication Date
JPH0666787A true JPH0666787A (en) 1994-03-11
JP3203062B2 JP3203062B2 (en) 2001-08-27

Family

ID=17054644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24011092A Expired - Fee Related JP3203062B2 (en) 1992-08-18 1992-08-18 Method for measuring residual hydrogen content in hydrogen storage alloy container

Country Status (1)

Country Link
JP (1) JP3203062B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097931A (en) * 1998-09-25 2000-04-07 Toyota Autom Loom Works Ltd Method and device for detecting amount of hydrogen occlusion in hydrogen occlusion tank
WO2008045736A3 (en) * 2006-10-06 2008-06-19 Honeywell Int Inc Power generation capacity indicator
WO2008090932A1 (en) * 2007-01-26 2008-07-31 The Japan Steel Works, Ltd. Sensor for residual amount of hydrogen
US7879472B2 (en) * 2003-12-29 2011-02-01 Honeywell International Inc. Micro fuel cell
US7972738B2 (en) 2006-10-18 2011-07-05 Olympus Imaging Corp. Residual capacity detection method and residual capacity detection system for fuel cell battery
US8153285B2 (en) 2003-12-29 2012-04-10 Honeywell International Inc. Micro fuel cell
US8168338B2 (en) 2006-07-13 2012-05-01 Olympus Imaging Corp. Mobile terminal equipment using fuel battery and fuel battery system for mobile terminal equipment
CN102519562A (en) * 2006-12-22 2012-06-27 法商Bic公司 State of charge indicator and methods related thereto
US20120198917A1 (en) * 2006-12-22 2012-08-09 Societe Bic State of charge indicator and methods related thereto
US9029028B2 (en) 2003-12-29 2015-05-12 Honeywell International Inc. Hydrogen and electrical power generator
US9065128B2 (en) 2008-12-15 2015-06-23 Honeywell International Inc. Rechargeable fuel cell
US9219287B2 (en) 2008-12-15 2015-12-22 Honeywell International Inc. Fuel cell
CN107543033A (en) * 2017-09-29 2018-01-05 吉林科领科技有限公司 A kind of metal hydride hydrogen storage unit
CN107702759A (en) * 2017-09-29 2018-02-16 吉林科领科技有限公司 A kind of metal hydride hydrogen storage unit and its hydrogen content measuring method
JP2020176693A (en) * 2019-04-19 2020-10-29 清水建設株式会社 Hydrogen storage state estimation device, hydrogen storage state estimation program and hydrogen storage state estimation method
JP2020197248A (en) * 2019-06-04 2020-12-10 清水建設株式会社 Hydrogen storage state estimation device, hydrogen storage state estimation program and hydrogen storage state estimation method
WO2022091379A1 (en) * 2020-10-30 2022-05-05 株式会社辰巳菱機 Electric power/hydrogen supply station, and electric power/hydrogen supply system
JP7141670B1 (en) * 2020-10-30 2022-09-26 株式会社辰巳菱機 Power/hydrogen supply station, power/hydrogen supply system
US11735929B1 (en) 2020-10-30 2023-08-22 Tatsumi Ryoki Co., Ltd Power supply station

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097931A (en) * 1998-09-25 2000-04-07 Toyota Autom Loom Works Ltd Method and device for detecting amount of hydrogen occlusion in hydrogen occlusion tank
US9029028B2 (en) 2003-12-29 2015-05-12 Honeywell International Inc. Hydrogen and electrical power generator
US7879472B2 (en) * 2003-12-29 2011-02-01 Honeywell International Inc. Micro fuel cell
US8153285B2 (en) 2003-12-29 2012-04-10 Honeywell International Inc. Micro fuel cell
US8168338B2 (en) 2006-07-13 2012-05-01 Olympus Imaging Corp. Mobile terminal equipment using fuel battery and fuel battery system for mobile terminal equipment
WO2008045736A3 (en) * 2006-10-06 2008-06-19 Honeywell Int Inc Power generation capacity indicator
US7713653B2 (en) 2006-10-06 2010-05-11 Honeywell International Inc. Power generation capacity indicator
US7972738B2 (en) 2006-10-18 2011-07-05 Olympus Imaging Corp. Residual capacity detection method and residual capacity detection system for fuel cell battery
US8656793B2 (en) * 2006-12-22 2014-02-25 Societe Bic State of charge indicator and methods related thereto
CN102519562A (en) * 2006-12-22 2012-06-27 法商Bic公司 State of charge indicator and methods related thereto
US20120198917A1 (en) * 2006-12-22 2012-08-09 Societe Bic State of charge indicator and methods related thereto
TWI449908B (en) * 2007-01-26 2014-08-21 Japan Steel Works Ltd Hydrogen residual sensor
US8011223B2 (en) 2007-01-26 2011-09-06 The Japan Steel Works, Ltd. Remaining hydrogen sensor
WO2008090932A1 (en) * 2007-01-26 2008-07-31 The Japan Steel Works, Ltd. Sensor for residual amount of hydrogen
US9065128B2 (en) 2008-12-15 2015-06-23 Honeywell International Inc. Rechargeable fuel cell
US9219287B2 (en) 2008-12-15 2015-12-22 Honeywell International Inc. Fuel cell
CN107543033A (en) * 2017-09-29 2018-01-05 吉林科领科技有限公司 A kind of metal hydride hydrogen storage unit
CN107702759A (en) * 2017-09-29 2018-02-16 吉林科领科技有限公司 A kind of metal hydride hydrogen storage unit and its hydrogen content measuring method
JP2020176693A (en) * 2019-04-19 2020-10-29 清水建設株式会社 Hydrogen storage state estimation device, hydrogen storage state estimation program and hydrogen storage state estimation method
JP2020197248A (en) * 2019-06-04 2020-12-10 清水建設株式会社 Hydrogen storage state estimation device, hydrogen storage state estimation program and hydrogen storage state estimation method
WO2022091379A1 (en) * 2020-10-30 2022-05-05 株式会社辰巳菱機 Electric power/hydrogen supply station, and electric power/hydrogen supply system
WO2022091459A1 (en) * 2020-10-30 2022-05-05 株式会社辰巳菱機 Power and hydrogen supply station and power and hydrogen supply system
JP7141670B1 (en) * 2020-10-30 2022-09-26 株式会社辰巳菱機 Power/hydrogen supply station, power/hydrogen supply system
US11735929B1 (en) 2020-10-30 2023-08-22 Tatsumi Ryoki Co., Ltd Power supply station

Also Published As

Publication number Publication date
JP3203062B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
JPH0666787A (en) Measuring method for residual amount of hydrogen in hydrogen storage alloy container
CN1242257C (en) Method and appts. for determining amount of hydrogen in vessel
Brace Effect of pressure on electric-resistance strain gages: Strain-gage behavior under pressure is observed by attaching gages to a variety of materials whose linear compressibility is known precisely
EP2107359A1 (en) Sensor for residual amount of hydrogen
JPS61128139A (en) Pressure gauge
US3898882A (en) Flow measuring apparatus
US6285179B1 (en) Detecting apparatus and detecting method of absorbed hydrogen amount in hydrogen absorbing tank
US7082826B2 (en) Gas flow meter and method for measuring gas flow rate
JPH08194037A (en) Residual capacity measuring method of alkali battery and its device
Molinar et al. The mercury melting line up to 1200 MPa
US3843489A (en) Method of determining surface area and meter therefor
JPH11183231A (en) Integrating flow meter and gas meter using it
Oguchi et al. A Magnetostrictive Load Cell for Use under High Hydrostatic Pressures
Bui-Quoc et al. Comparison of low-cycle fatigue results with axial and diametral extensometers: Comparison is made between fatigue results obtained from tests on cylindrical and on hourglass specimens; discrepancies between computed and measured axial strains during a fatigue test are also discussed
JPS63125898A (en) Hydrogen storage apparatus and method for detecting quantity of stored hydrogen in hydrogen storage apparatus
Palmer et al. Thermal-conductivity method for the analysis of gases
DE19927841A1 (en) Temperature measuring device has piezo-resistive pressure sensor for detecting change in pressure of gas in capillary tube
Quandt et al. Experimental and theoretical analysis of the transient response of surface bonded thermocouples
KR100285490B1 (en) Method for measuring residual capacity of battery in electric vehicle
JP3057949B2 (en) Flowmeter
JP2000032622A (en) Soundness diagnosing method of gas pressure detecting apparatus, gas pressure detecting apparatus, gas density detecting apparatus, and gas density monitoring apparatus
Hofstoetter Calibration of high-temperature strain gages with the aid of a clamping device: The purpose of the method described is to use high-temperature strain gages for precise measurements on nuclear-power-plant components during start-up and in service
SU932282A1 (en) Method of determination of temperature and deformation force
JPH01242957A (en) Method of deciding remaining life of gas sensor
Crabb An uncertainty analysis for the Structural Mechanics Laboratory

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees