JP2020174579A - Microalga culture method and microalga culture device - Google Patents

Microalga culture method and microalga culture device Download PDF

Info

Publication number
JP2020174579A
JP2020174579A JP2019079394A JP2019079394A JP2020174579A JP 2020174579 A JP2020174579 A JP 2020174579A JP 2019079394 A JP2019079394 A JP 2019079394A JP 2019079394 A JP2019079394 A JP 2019079394A JP 2020174579 A JP2020174579 A JP 2020174579A
Authority
JP
Japan
Prior art keywords
microalgae
culture
culture solution
unit
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019079394A
Other languages
Japanese (ja)
Inventor
中嶋 祐二
Yuji Nakajima
祐二 中嶋
鵜飼 展行
Nobuyuki Ukai
展行 鵜飼
泰介 塚本
Taisuke Tsukamoto
泰介 塚本
大司 上野
Daiji Ueno
大司 上野
武夫 圷
Takeo Akutsu
武夫 圷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Original Assignee
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Machinery Systems Co Ltd filed Critical Mitsubishi Heavy Industries Machinery Systems Co Ltd
Priority to JP2019079394A priority Critical patent/JP2020174579A/en
Publication of JP2020174579A publication Critical patent/JP2020174579A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To maintain the culture environment of microalga in a sound state.SOLUTION: The microalga culture method includes a step (S12) of detecting nitrate respiration of microalga in a culture tank that stores culture medium containing microalga, and a step (S14) of promoting the flow of the culture medium of the culture tank on the basis of the detection of nitrate respiration of microalga.SELECTED DRAWING: Figure 4

Description

本発明は、微細藻培養方法および微細藻培養装置に関する。 The present invention relates to a microalgae culturing method and a microalgae culturing apparatus.

例えば、特許文献1は、下水処理プロセスに有害化学物質が流入したとき、最初に有害物質の影響を受けるのは硝化細菌の呼吸量阻害であるが、硝化プロセスに関連するアンモニア酸化細菌と亜硝酸酸化細菌のどちらが阻害を受けているかが判らず、有害物質の検出感度が悪い問題を解決することを目的としている。そこで、特許文献1では、純粋培養したアンモニア酸化細菌を固定化した膜、担体、または微生物センサと、純粋培養した亜硝酸酸化細菌を固定化した膜、担体、または微生物センサと、を用い、これらの通過前と通過後の溶存酸素濃度または亜硝酸性窒素濃度を測定し、硝化阻害物質を検出する。 For example, in Patent Document 1, when a toxic chemical substance flows into a sewage treatment process, the first effect of the toxic substance is inhibition of respiration of nitrifying bacteria, but ammonia-oxidizing bacteria and nitrite related to the nitrifying process. The purpose is to solve the problem of poor detection sensitivity of harmful substances because it is not known which of the oxidizing bacteria is being inhibited. Therefore, Patent Document 1 uses a membrane, carrier, or microbial sensor on which purely cultured ammonia-oxidizing bacteria are immobilized, and a membrane, carrier, or microbial sensor on which purely cultured nitrite-oxidizing bacteria are immobilized. The nitrification inhibitor is detected by measuring the dissolved oxygen concentration or the nitrite nitrogen concentration before and after the passage.

特開2000−206087号公報Japanese Unexamined Patent Publication No. 2000-206087

ところで、近年、珪藻などの微細藻は、その高い増殖特性や細胞から取り出すことのできる有用物を利用することについて、食糧やエネルギー等の各種の分野において多くの期待が寄せられている。 By the way, in recent years, there are many expectations for microalgae such as diatoms in various fields such as food and energy for utilizing their high growth characteristics and useful substances that can be extracted from cells.

微細藻は、窒素、リン、微量成分が増殖に必要である。窒素は、微細藻の活動の根幹に位置するタンパク質やデオキシリボ核酸(DNA)の合成に使われるため、微細藻の増殖において欠乏しないように注意が必要である。光合成を行う一部の微細藻では、大気中の窒素を固定する能力を有するが、大多数の微細藻では、培養に窒素をNO などの形態で供給される。一部の微細藻では、NO を体内に蓄積し、暗所などの光合成ができない場合に呼吸に利用する性質があることが確認されている。これは、細菌などで行われている硝酸呼吸であり、硝酸の酸素を消費して呼吸に利用する嫌気呼吸の一種である。硝酸呼吸は、NO をNO に変える反応で、このNO が何らかの理由で微生物環境に蓄積すると、微生物の機能に障害が起こる。例えば、排水処理設備(活性汚泥)などでは、排水処理の性能低下が起こる。 Microalgae require nitrogen, phosphorus, and trace components for growth. Nitrogen is used for the synthesis of proteins and deoxyribonucleic acids (DNA), which are the basis of microalgae activity, so care must be taken not to be deficient in the growth of microalgae. Some microalgae performing photosynthesis, have the ability to fix atmospheric nitrogen, in the majority of microalgae, nitrogen NO 3 in culture - is supplied in the form of such. It has been confirmed that some microalgae have the property of accumulating NO 3 in the body and using it for respiration when photosynthesis is not possible in dark places. This is nitric acid respiration performed by bacteria and the like, and is a type of anaerobic respiration that consumes nitric acid oxygen and uses it for respiration. Nitric acid respiration is a reaction that changes NO 3 to NO 2 , and if this NO 2 accumulates in the microbial environment for some reason, the function of the microorganism is impaired. For example, in wastewater treatment equipment (activated sludge), the performance of wastewater treatment deteriorates.

本発明は、上述した課題を解決するものであり、微細藻の培養環境を健全な状態に維持することのできる微細藻培養方法および微細藻培養装置を提供することを目的とする。 The present invention solves the above-mentioned problems, and an object of the present invention is to provide a microalgae culturing method and a microalgae culturing apparatus capable of maintaining a healthy state for culturing microalgae.

上述の目的を達成するために、本発明の一態様に係る微細藻培養方法は、微細藻を含む培養液を収容した培養槽において前記微細藻の硝酸呼吸を検出する工程と、前記微細藻の硝酸呼吸の検出に基づいて前記培養槽の前記培養液の流動を促進する工程と、を含む。 In order to achieve the above-mentioned object, the microalgae culture method according to one aspect of the present invention includes a step of detecting nitrate respiration of the microalgae in a culture tank containing a culture solution containing the microalgae and a step of detecting the nitrate respiration of the microalgae. It comprises a step of promoting the flow of the culture solution in the culture tank based on the detection of nitrate respiration.

本発明の一態様に係る微細藻培養方法では、前記微細藻の硝酸呼吸を検出する工程は、前記培養液の亜硝酸イオン濃度を計測することが好ましい。 In the microalgae culture method according to one aspect of the present invention, it is preferable to measure the nitrite ion concentration of the culture solution in the step of detecting nitrate respiration of the microalgae.

本発明の一態様に係る微細藻培養方法では、前記微細藻の硝酸呼吸を検出する工程は、前記培養液の酸化還元電位を計測することが好ましい。 In the microalgae culture method according to one aspect of the present invention, it is preferable to measure the oxidation-reduction potential of the culture solution in the step of detecting nitrate respiration of the microalgae.

本発明の一態様に係る微細藻培養方法では、前記培養液の流動を促進する工程は、攪拌羽根により前記培養液の流動を促進することが好ましい。 In the microalgae culture method according to one aspect of the present invention, it is preferable that the step of promoting the flow of the culture solution is to promote the flow of the culture solution with a stirring blade.

本発明の一態様に係る微細藻培養方法では、前記培養液の流動を促進する工程は、気泡により前記培養液の流動を促進することが好ましい。 In the microalgae culture method according to one aspect of the present invention, it is preferable that the step of promoting the flow of the culture solution is to promote the flow of the culture solution by means of bubbles.

上述の目的を達成するために、本発明の一態様に係る微細藻養装置は、微細藻を含む培養液を収容する培養槽と、前記微細藻の硝酸呼吸を検出する検出手段と、前記培養液の流動を促進する促進手段と、前記検出手段の検出結果に基づいて前記促進手段を制御する制御部と、を備える。 In order to achieve the above object, the microalgae culture apparatus according to one aspect of the present invention includes a culture tank containing a culture solution containing microalgae, a detection means for detecting nitrate respiration of the microalgae, and the culture. It includes a promoting means for promoting the flow of the liquid and a control unit for controlling the promoting means based on the detection result of the detecting means.

本発明の一態様に係る微細藻培養装置では、前記検出手段は、前記培養液の亜硝酸イオン濃度を計測する亜硝酸イオン計測部であり、前記制御部は、前記亜硝酸イオン計測部で計測された結果に基づいて前記促進手段を制御することが好ましい。 In the microalgae culture apparatus according to one aspect of the present invention, the detection means is a nitrite ion measuring unit for measuring the nitrite ion concentration of the culture solution, and the control unit measures with the nitrite ion measuring unit. It is preferable to control the promotion means based on the results obtained.

本発明の一態様に係る微細藻培養装置では、前記検出手段は、前記培養液の酸化還元電位を計測する酸化還元電位計測部であり、前記制御部は、前記酸化還元電位計測部で計測された結果に基づいて前記促進手段を制御することが好ましい。 In the microalgae culture apparatus according to one aspect of the present invention, the detection means is an oxidation-reduction potential measuring unit that measures the redox potential of the culture solution, and the control unit is measured by the redox potential measuring unit. It is preferable to control the promotion means based on the result.

本発明の一態様に係る微細藻培養装置では、前記促進手段は、前記培養液の中に配置される攪拌羽根と、前記攪拌羽根を駆動する攪拌駆動部と、を有した羽根攪拌装置であり、前記制御部は、前記検出手段の検出結果に基づいて前記羽根攪拌装置の前記攪拌駆動部を制御することが好ましい。 In the microalgae culture apparatus according to one aspect of the present invention, the promoting means is a blade stirrer having a stirring blade arranged in the culture solution and a stirring driving unit for driving the stirring blade. It is preferable that the control unit controls the stirring drive unit of the blade stirring device based on the detection result of the detecting means.

本発明の一態様に係る微細藻培養装置では、前記促進手段は、前記培養液の中に配置されて気泡を発生させる気泡発生部と、前記気泡発生部に空気を供給する空気供給部と、を有した気泡攪拌装置であり、前記制御部は、前記検出手段の検出結果に基づいて前記気泡攪拌装置の前記空気供給部を制御することが好ましい。 In the microalgae culture apparatus according to one aspect of the present invention, the promoting means includes a bubble generating portion arranged in the culture solution to generate bubbles, an air supply portion for supplying air to the bubble generating portion, and the like. It is preferable that the control unit controls the air supply unit of the bubble agitator based on the detection result of the detection means.

本発明によれば、微細藻の硝酸呼吸の検出に基づいて、培養槽の培養液の流動を促進することで、培養槽の底部などに蓄積・沈殿して嫌気状態になり硝酸呼吸をしていた微細藻が培養液と共に流動する。これにより、微細藻が光合成と酸素呼吸を行う健全な状態に戻る。この結果、本発明によれば、微細藻の培養環境を健全な状態に維持できる。 According to the present invention, by promoting the flow of the culture solution in the culture tank based on the detection of nitrate respiration of microalgae, it accumulates and precipitates at the bottom of the culture tank and becomes anaerobic, and nitrate respiration is performed. Fine algae flow with the culture medium. This returns the microalgae to a healthy state of photosynthesis and oxygen respiration. As a result, according to the present invention, the culture environment for microalgae can be maintained in a healthy state.

図1は、本発明の実施形態に係る微細藻培養方法に関する培養日数と細胞濃度の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the number of culture days and the cell concentration in relation to the microalgae culture method according to the embodiment of the present invention. 図2は、本発明の実施形態に係る微細藻培養方法に関する培養日数と亜硝酸濃度の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the number of culture days and the nitrite concentration in relation to the microalgae culture method according to the embodiment of the present invention. 図3は、本発明の実施形態1に係る微細藻培養装置を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing a microalgae culture apparatus according to the first embodiment of the present invention. 図4は、本発明の実施形態1に係る微細藻培養方法を示すフローチャートである。FIG. 4 is a flowchart showing a microalgae culture method according to the first embodiment of the present invention. 図5は、本発明の実施形態2に係る微細藻培養装置を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing a microalgae culture apparatus according to the second embodiment of the present invention. 図6は、本発明の実施形態2に係る微細藻培養方法を示すフローチャートである。FIG. 6 is a flowchart showing a microalgae culturing method according to the second embodiment of the present invention. 図7は、本発明の実施形態3に係る微細藻培養装置を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing a microalgae culture apparatus according to the third embodiment of the present invention. 図8は、本発明の実施形態3に係る微細藻培養方法を示すフローチャートである。FIG. 8 is a flowchart showing the microalgae culture method according to the third embodiment of the present invention. 図9は、本発明の実施形態4に係る微細藻培養装置を示す概略構成図である。FIG. 9 is a schematic configuration diagram showing a microalgae culture apparatus according to the fourth embodiment of the present invention. 図10は、本発明の実施形態4に係る微細藻培養方法を示すフローチャートである。FIG. 10 is a flowchart showing the microalgae culture method according to the fourth embodiment of the present invention.

以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment. In addition, the components in the following embodiments include those that can be easily replaced by those skilled in the art, or those that are substantially the same.

図1は、本実施形態に係る微細藻培養方法に関する培養日数と細胞濃度の関係を示すグラフである。図2は、本実施形態に係る微細藻培養方法に関する培養日数と亜硝酸濃度の関係を示すグラフである。 FIG. 1 is a graph showing the relationship between the number of culture days and the cell concentration of the microalgae culture method according to the present embodiment. FIG. 2 is a graph showing the relationship between the number of culture days and the nitrite concentration related to the microalgae culture method according to the present embodiment.

図1および図2において、珪藻を含む培養液を培養槽に収容した培養装置を2種類用意して培養した。培養装置は、ビールタンクを改良した大型の光照射方式の培養装置である。培養装置の一方は、培養槽の底部などに珪藻の蓄積が生じないように、例えば攪拌を行った培養A(●)であり、培養装置の他方は珪藻の蓄積の対策を行っていない培養B(○)である。 In FIGS. 1 and 2, two types of culture devices containing a culture solution containing diatoms in a culture tank were prepared and cultured. The culture device is a large-scale light irradiation type culture device that is an improved beer tank. One of the culture devices is culture A (●) in which, for example, stirring is performed so that diatom accumulation does not occur at the bottom of the culture tank, and the other of the culture devices is culture B in which measures against diatom accumulation are not taken. (○).

培養B(○)は、培養槽の底部などに珪藻の蓄積が生じない対策をしていない場合、図2に示すように、亜硝酸濃度が高くなると、図1に示すように珪藻の細胞濃度が急速に低下している。培養B(○)は、亜硝酸濃度の上昇と、珪藻の細胞濃度の低下とが同期している。 In culture B (○), when measures are not taken to prevent the accumulation of diatoms at the bottom of the culture tank, as shown in FIG. 2, when the nitrite concentration becomes high, the cell concentration of diatoms is shown in FIG. Is declining rapidly. In culture B (◯), the increase in nitrite concentration and the decrease in diatom cell concentration are synchronized.

一方、培養A(●)は、培養槽の底部などに珪藻の蓄積が生じないように対策しており、図2に示すように、亜硝酸濃度は上昇しない。培養A(●)は、図1に示すように珪藻の細胞濃度が増加している。 On the other hand, in culture A (●), measures are taken to prevent the accumulation of diatoms at the bottom of the culture tank and the like, and as shown in FIG. 2, the nitrite concentration does not increase. In culture A (●), the cell concentration of diatoms is increased as shown in FIG.

このように、培養槽の底部などに珪藻が蓄積した状況では、培養液中の珪藻の細胞濃度の低下が発生している。培養槽の底部などに蓄積した珪藻は、死滅したわけではなく、沈殿して密集している状況で、光エネルギーを利用できなくなるため嫌気状態に陥り、亜硝酸濃度が上昇していることから硝酸呼吸をしているものと考えられる。 As described above, in the situation where diatoms are accumulated at the bottom of the culture tank or the like, the cell concentration of diatoms in the culture solution is lowered. The diatoms that have accumulated at the bottom of the culture tank are not dead, but in a densely precipitated state, they become anaerobic due to the inability to use light energy, and the nitrite concentration is rising, so nitric acid. It is thought that he is breathing.

このように、微細藻の培養において、亜硝酸濃度と微細藻の細胞濃度とは密接な関係があり、微細藻を健全な状態で培養するには、硝酸呼吸をしないような培養環境とする必要がある。 In this way, in the culture of microalgae, the nitrite concentration and the cell concentration of the microalgae are closely related, and in order to cultivate the microalgae in a healthy state, it is necessary to create a culture environment that does not breathe nitric acid. There is.

[実施形態1]
図3は、実施形態1に係る微細藻培養装置を示す概略構成図である。図4は、実施形態1に係る微細藻培養方法を示すフローチャートである。
[Embodiment 1]
FIG. 3 is a schematic configuration diagram showing the microalgae culture apparatus according to the first embodiment. FIG. 4 is a flowchart showing the microalgae culture method according to the first embodiment.

図3に示すように、実施形態1の微細藻培養装置11は、培養槽2と、羽根攪拌装置3と、亜硝酸イオン計測部4と、制御部5と、を有する。 As shown in FIG. 3, the microalgae culture device 11 of the first embodiment includes a culture tank 2, a blade stirring device 3, a nitrite ion measuring unit 4, and a control unit 5.

培養槽2は、微細藻(例えば、微細藻である珪藻(キートセロス等のケイ素の殻を持つ微細藻))を含む培養液10を収容する。培養槽2は、レースウエイ培養を行うもので、トラック状の周回路2Aを有している。培養槽2は、例えば、培地である培養液10の高さが例えば20cm〜30cmであり、上部が開口されて内部が大気開放された状態であってもよいし、上部が蓋部材により塞がれて密閉された状態であってもよい。ただし、上部を蓋部材で塞ぐ場合、蓋部材は、微細藻が光合成を行う波長の光を透過する素材で形成される。従って、培養槽2の中の培養液10には、太陽光が供給される。培養槽2は、太陽光を取り込みやすくするために、蓋部材に限らず、側面部分が光を透過する素材で形成されてもよい。また、培養槽2は、底面が光を反射させる素材で形成されてもよい。なお、培養槽2は、図には明示しないが、培養槽2に収容された培養液10の中に光を照射する人口照明である光源装置を備えていてもよい。 The culture tank 2 contains a culture solution 10 containing microalgae (for example, diatoms that are microalgae (microalgae having a silicon shell such as keet cellos)). The culture tank 2 is for performing raceway culture, and has a track-shaped peripheral circuit 2A. In the culture tank 2, for example, the height of the culture medium 10 which is a medium may be, for example, 20 cm to 30 cm, the upper part may be opened and the inside may be open to the atmosphere, or the upper part may be closed by a lid member. It may be in a sealed state. However, when the upper part is closed with a lid member, the lid member is formed of a material that transmits light having a wavelength at which microalgae photosynthesize. Therefore, sunlight is supplied to the culture solution 10 in the culture tank 2. The culture tank 2 is not limited to the lid member, and the side surface portion may be formed of a material that transmits light in order to facilitate the intake of sunlight. Further, the culture tank 2 may be formed of a material whose bottom surface reflects light. Although not explicitly shown in the drawing, the culture tank 2 may be provided with a light source device that is artificial lighting that irradiates the culture solution 10 contained in the culture tank 2 with light.

培養槽2は、図には明示しないが、微細藻を供給する微細藻供給部や、培養液を供給する培養液供給部や、収容する微細藻を含む培養液10に大気を供給するガス供給部を備えてもよい。また、培養槽2は、その他に、培養液10の液面レベルを計測するレベル計や、培養液10の温度を調整する温度調整部や、培養液10の回収部や、培養槽2の洗浄時に培養液10を排出する排出部等を備えてもよい。 Although not clearly shown in the figure, the culture tank 2 is a gas supply unit that supplies air to a microalgae supply unit that supplies microalgae, a culture solution supply unit that supplies a culture solution, and a culture solution 10 that contains microalgae. It may be provided with a part. In addition, the culture tank 2 also includes a level meter for measuring the liquid level of the culture solution 10, a temperature control unit for adjusting the temperature of the culture solution 10, a recovery unit for the culture solution 10, and cleaning of the culture tank 2. A discharge unit or the like that sometimes discharges the culture solution 10 may be provided.

羽根攪拌装置3は、培養槽2の周回路2Aにおいて培養液10を攪拌する。羽根攪拌装置3は、攪拌羽根3Aと、攪拌駆動部3Bと、を有している。攪拌羽根3Aは、培養槽2の周回路2Aに回転可能に設けられている。攪拌駆動部3Bは、攪拌羽根3Aを駆動するもので、例えば、攪拌羽根3Aを回転するモータを有する。羽根攪拌装置3により培養液10を攪拌することで、図3に矢印で示すように微細藻を含む培養液10が培養槽2の周回路2Aにおいて周回される。 The blade stirrer 3 stirs the culture solution 10 in the peripheral circuit 2A of the culture tank 2. The blade stirring device 3 includes a stirring blade 3A and a stirring driving unit 3B. The stirring blade 3A is rotatably provided in the peripheral circuit 2A of the culture tank 2. The stirring drive unit 3B drives the stirring blade 3A, and has, for example, a motor that rotates the stirring blade 3A. By stirring the culture solution 10 with the blade stirrer 3, the culture solution 10 containing microalgae is circulated in the peripheral circuit 2A of the culture tank 2 as shown by the arrow in FIG.

亜硝酸イオン計測部4は、培養液10の亜硝酸イオン濃度を計測する。亜硝酸イオン計測部4は、例えば、亜硝酸イオンメータが適用される。 The nitrite ion measuring unit 4 measures the nitrite ion concentration of the culture solution 10. For example, a nitrite ion meter is applied to the nitrite ion measuring unit 4.

制御部5は、例えば、コンピュータであり、図には明示しないが、CPU(Central Processing Unit)のようなマイクロプロセッサを含む演算処理装置などにより実現される。制御部5は、羽根攪拌装置3の攪拌駆動部3Bを制御する。 The control unit 5 is, for example, a computer, and is realized by an arithmetic processing unit including a microprocessor such as a CPU (Central Processing Unit), which is not specified in the figure. The control unit 5 controls the stirring drive unit 3B of the blade stirring device 3.

制御部5による制御、即ち、微細藻培養方法について説明する。 The control by the control unit 5, that is, the microalgae culture method will be described.

図4に示すように、制御部5は、羽根攪拌装置3の攪拌駆動部3Bを低速運転する(ステップS11)。制御部5は、攪拌駆動部3Bの低速運転することにより、攪拌羽根3Aを低速回転させ培養槽2に収容された培養液10を攪拌させて周回路2Aに低流速で周回させる。低流速とは、培養液10に含まれる微細藻が培養液10と共に周回路2Aに、通常、淀みなく周回できる速度であり、例えば、0.3m/secが好ましく、攪拌駆動部3Bの消費電力を抑えた速度である。 As shown in FIG. 4, the control unit 5 operates the stirring drive unit 3B of the blade stirring device 3 at a low speed (step S11). By operating the stirring drive unit 3B at a low speed, the control unit 5 rotates the stirring blade 3A at a low speed to stir the culture solution 10 contained in the culture tank 2 and causes the peripheral circuit 2A to rotate at a low flow velocity. The low flow rate is a speed at which the microalgae contained in the culture solution 10 can orbit around the circuit 2A together with the culture solution 10 without stagnation. For example, 0.3 m / sec is preferable, and the power consumption of the stirring drive unit 3B is preferable. It is a speed that suppresses.

制御部5は、亜硝酸イオン計測部4から連続または定期的に亜硝酸イオン濃度を取得し、攪拌駆動部3Bの低速運転時(ステップS11)において、亜硝酸イオン濃度が上限値以上であるかを判断する(ステップS12)。亜硝酸イオン濃度の上限値は、制御部5において予め設定されるものある。亜硝酸イオン濃度の上限値は、例えば、2mg/L以上であり、2mg/L以上の場合に、硝酸呼吸が発生する状況になり微細藻の細胞濃度が下がることを実験により得た数値である。 The control unit 5 continuously or periodically acquires the nitrite ion concentration from the nitrite ion measurement unit 4, and whether the nitrite ion concentration is equal to or higher than the upper limit value during the low-speed operation (step S11) of the stirring drive unit 3B. Is determined (step S12). The upper limit of the nitrite ion concentration is preset in the control unit 5. The upper limit of the nitrite ion concentration is, for example, 2 mg / L or more, and when it is 2 mg / L or more, it is a numerical value obtained by an experiment that nitric acid respiration occurs and the cell concentration of microalgae decreases. ..

そして、ステップS12において、亜硝酸イオン濃度が上限値以上の場合(ステップS12:Yes)、制御部5は、羽根攪拌装置3の攪拌駆動部3Bを高速運転する(ステップS13)。制御部5は、攪拌駆動部3Bを高速運転することにより、攪拌羽根3Aを高速回転させ培養槽2に収容された培養液10を攪拌させて周回路2Aに高流速で周回させる。高流速とは、培養液10に含まれる微細藻が培養槽2の底部などに蓄積している場合、蓄積を剥離させ培養液10と共に周回路2Aに周回できる速度であり、例えば、1.0m/secが好ましい。従って、攪拌駆動部3Bの高速運転により、培養槽2の底部などに蓄積している微細藻を底部などから剥離して培養液10と共に周回路2Aに周回させる。なお、ステップS12において、亜硝酸イオン濃度が上限値以上ではない場合(ステップS12:No)、制御部5は、羽根攪拌装置3の攪拌駆動部3Bの低速運転を継続する(ステップS11)。 Then, in step S12, when the nitrite ion concentration is equal to or higher than the upper limit value (step S12: Yes), the control unit 5 operates the stirring drive unit 3B of the blade stirring device 3 at high speed (step S13). By operating the stirring drive unit 3B at high speed, the control unit 5 rotates the stirring blade 3A at high speed to stir the culture solution 10 contained in the culture tank 2 and causes the peripheral circuit 2A to rotate at a high flow velocity. The high flow velocity is a speed at which when the microalgae contained in the culture solution 10 are accumulated in the bottom of the culture tank 2 or the like, the accumulation can be peeled off and orbited in the peripheral circuit 2A together with the culture solution 10, for example, 1.0 m. / Sec is preferable. Therefore, by the high-speed operation of the stirring drive unit 3B, the microalgae accumulated in the bottom of the culture tank 2 and the like are peeled off from the bottom and the like, and the microalgae are circulated in the peripheral circuit 2A together with the culture solution 10. In step S12, when the nitrite ion concentration is not equal to or higher than the upper limit value (step S12: No), the control unit 5 continues the low-speed operation of the stirring drive unit 3B of the blade stirring device 3 (step S11).

培養槽2の底部などに蓄積している微細藻が培養液10と共に周回路2Aに周回すると、図1および図2の実験による見地から、微細藻の嫌気状態が解消されて微細藻の培養環境が健全となるため硝酸呼吸をしなくなり亜硝酸イオンの減少と共に微細藻の細胞濃度が増加することになる。 When the microalgae accumulated in the bottom of the culture tank 2 or the like orbit around the circuit 2A together with the culture solution 10, the anaerobic state of the microalgae is eliminated from the viewpoint of the experiments of FIGS. 1 and 2, and the culture environment of the microalgae is eliminated. Because it becomes healthy, it stops breathing nitrate, and the cell concentration of microalgae increases as the number of nitrite ions decreases.

制御部5は、亜硝酸イオン計測部4から連続または定期的に亜硝酸イオン濃度を取得し、攪拌駆動部3Bの高速運転時(ステップS13)において、亜硝酸イオン濃度が下限値以下であるかを判断する(ステップS14)。亜硝酸イオン濃度の下限値は、制御部5において予め設定される。亜硝酸イオン濃度の下限値は、例えば、1.5mg/L以下であり、1.5mg/L以下の場合に、硝酸呼吸が発生する状況が解消され微細藻の細胞濃度が上がることを実験により得た数値である。 The control unit 5 continuously or periodically acquires the nitrite ion concentration from the nitrite ion measurement unit 4, and whether the nitrite ion concentration is below the lower limit value during high-speed operation (step S13) of the stirring drive unit 3B. Is determined (step S14). The lower limit of the nitrite ion concentration is preset in the control unit 5. The lower limit of the nitrite ion concentration is, for example, 1.5 mg / L or less, and when it is 1.5 mg / L or less, the situation where nitrate respiration occurs is eliminated and the cell concentration of microalgae increases. It is the obtained numerical value.

そして、ステップS14において、亜硝酸イオン濃度が下限値以下の場合(ステップS14:Yes)、制御部5は、羽根攪拌装置3の攪拌駆動部3Bを低速運転する(ステップS15)。即ち、制御部5は、攪拌駆動部3Bを低速運転し、培養液10を周回路2Aに低流速(例えば、0.3m/sec)で周回させる。ステップS15の後、本制御を終了し、再びステップS11から本制御を行う。なお、ステップS14において、亜硝酸イオン濃度が下限値以下ではない場合(ステップS14:No)、制御部5は、羽根攪拌装置3の攪拌駆動部3Bの高速運転を継続する(ステップS13)。 Then, in step S14, when the nitrite ion concentration is equal to or lower than the lower limit value (step S14: Yes), the control unit 5 operates the stirring drive unit 3B of the blade stirring device 3 at a low speed (step S15). That is, the control unit 5 operates the stirring drive unit 3B at a low speed to circulate the culture solution 10 in the peripheral circuit 2A at a low flow velocity (for example, 0.3 m / sec). After step S15, this control is terminated, and this control is performed again from step S11. In step S14, when the nitrite ion concentration is not equal to or lower than the lower limit value (step S14: No), the control unit 5 continues the high-speed operation of the stirring drive unit 3B of the blade stirring device 3 (step S13).

なお、上述した微細藻培養方法は、微細藻培養装置11において制御部5により自動で羽根攪拌装置3を制御するものであるが、制御部5を用いない場合、即ち、手動で羽根攪拌装置3を操作する微細藻培養方法であっても同様にステップS11〜S15を行う。 In the above-mentioned microalgae culturing method, the control unit 5 automatically controls the blade stirring device 3 in the microalgae culturing device 11, but when the control unit 5 is not used, that is, the blade stirring device 3 is manually operated. Steps S11 to S15 are similarly performed even in the microalgae culture method in which the above is operated.

このように、実施形態1の微細藻培養方法は、微細藻を含む培養液10を収容した培養槽2において微細藻の硝酸呼吸を検出する工程と、微細藻の硝酸呼吸の検出に基づいて培養槽2の培養液10の流動を促進する工程と、を含む。 As described above, the microalgae culturing method of the first embodiment is based on the step of detecting the nitrate respiration of the microalgae in the culture tank 2 containing the culture solution 10 containing the microalgae and the detection of the nitrate respiration of the microalgae. The step of promoting the flow of the culture solution 10 in the tank 2 is included.

具体的に、実施形態1の微細藻培養方法では、微細藻の硝酸呼吸を検出する工程は、培養液10の亜硝酸イオン濃度を計測する。また、培養液10の流動を促進する工程は、攪拌羽根3Aにより培養液10の流動を促進する。 Specifically, in the microalgae culture method of Embodiment 1, the step of detecting nitrate respiration of microalgae measures the nitrite ion concentration of the culture solution 10. Further, in the step of promoting the flow of the culture solution 10, the flow of the culture solution 10 is promoted by the stirring blade 3A.

実施形態1の微細藻培養装置11は、微細藻を含む培養液10を収容する培養槽2と、微細藻の硝酸呼吸を検出する検出手段と、培養液10の流動を促進する促進手段と、検出手段の検出結果に基づいて促進手段を制御する制御部5と、を備える。 The microalgae culture device 11 of the first embodiment includes a culture tank 2 containing a culture solution 10 containing microalgae, a detection means for detecting nitrate respiration of the microalgae, and a promotion means for promoting the flow of the culture solution 10. It includes a control unit 5 that controls the promotion means based on the detection result of the detection means.

具体的に、実施形態1の微細藻培養装置11では、検出手段は、培養液10の亜硝酸イオン濃度を計測する亜硝酸イオン計測部4であり、制御部5は、亜硝酸イオン計測部4で計測された結果に基づいて促進手段を制御する。また、促進手段は、培養液10の中に配置される攪拌羽根3Aと、攪拌羽根3Aを駆動する攪拌駆動部3Bと、を有した羽根攪拌装置3であり、培養槽2の内部で培養液10が収容される箇所において、培養槽2中に培養液10を移動させるものである。制御部5は、検出手段の検出結果に基づいて羽根攪拌装置3の攪拌駆動部3Bを制御する。 Specifically, in the microalgae culture apparatus 11 of the first embodiment, the detection means is the nitrite ion measuring unit 4 for measuring the nitrite ion concentration of the culture solution 10, and the control unit 5 is the nitrite ion measuring unit 4. Control the facilitator based on the results measured in. Further, the promoting means is a blade stirring device 3 having a stirring blade 3A arranged in the culture solution 10 and a stirring driving unit 3B for driving the stirring blade 3A, and the culture solution is inside the culture tank 2. The culture solution 10 is moved into the culture tank 2 at the place where the 10 is housed. The control unit 5 controls the stirring drive unit 3B of the blade stirring device 3 based on the detection result of the detecting means.

従って、実施形態1によれば、微細藻の硝酸呼吸の検出に基づいて、培養槽2の培養液10の流動を促進することで、培養槽2の底部などに蓄積・沈殿して嫌気状態になり硝酸呼吸をしていた微細藻が培養液10と共に流動する。これにより、微細藻が光合成と酸素呼吸を行う健全な状態に戻る。この結果、実施形態1によれば、微細藻の培養環境を健全な状態に維持できる。 Therefore, according to the first embodiment, by promoting the flow of the culture solution 10 in the culture tank 2 based on the detection of nitric acid respiration of microalgae, it accumulates and precipitates at the bottom of the culture tank 2 and becomes anaerobic. The microalgae that had been breathing nitric acid flow together with the culture solution 10. This returns the microalgae to a healthy state of photosynthesis and oxygen respiration. As a result, according to the first embodiment, the culture environment of the microalgae can be maintained in a healthy state.

また、微細藻の硝酸呼吸の検出は、亜硝酸イオン濃度を計測すること、亜硝酸イオン計測部4を用いて制御部5で判断することで実施できる。 Further, the detection of nitric acid respiration of microalgae can be carried out by measuring the nitrite ion concentration and determining by the control unit 5 using the nitrite ion measuring unit 4.

また、培養液10の流動の促進は、攪拌羽根3Aにより行うこと、攪拌羽根3Aと攪拌駆動部3Bとを有した羽根攪拌装置3を用い制御部5で制御することで実施できる。 Further, the flow of the culture solution 10 can be promoted by the stirring blade 3A or controlled by the control unit 5 using the blade stirring device 3 having the stirring blade 3A and the stirring driving unit 3B.

なお、亜硝酸イオン計測部4は、培養槽2において微細藻が蓄積し易い場所の培養液10をサンプリングすることで微細藻の硝酸呼吸の検出精度を向上できる。また、培養槽2に微細藻が蓄積し易い凹部や凸部を設けてもよく、亜硝酸イオン計測部4は、この凹部や凸部付近の培養液10をサンプリングすることで微細藻の硝酸呼吸の検出精度を向上できる。 The nitrite ion measuring unit 4 can improve the detection accuracy of nitrate respiration of microalgae by sampling the culture solution 10 in a place where microalgae easily accumulate in the culture tank 2. Further, the culture tank 2 may be provided with a concave portion or a convex portion where microalgae are likely to accumulate, and the nitrite ion measuring unit 4 samples the culture solution 10 in the vicinity of the concave portion or the convex portion to allow nitrate respiration of the fine algae. Detection accuracy can be improved.

[実施形態2]
図5は、実施形態2に係る微細藻培養装置を示す概略構成図である。図6は、実施形態2に係る微細藻培養方法を示すフローチャートである。
[Embodiment 2]
FIG. 5 is a schematic configuration diagram showing a microalgae culture apparatus according to the second embodiment. FIG. 6 is a flowchart showing the microalgae culture method according to the second embodiment.

実施形態2の微細藻培養装置12は、上述した実施形態1の微細藻培養装置11に対し、亜硝酸イオン計測部4に代えて酸化還元電位計測部6を備える点で異なる。その他の構成は、実施形態1の微細藻培養装置11と同じであり、同一の符号を付して説明を省略する。 The microalgae culturing device 12 of the second embodiment is different from the microalgae culturing device 11 of the first embodiment in that the redox potential measuring unit 6 is provided instead of the nitrite ion measuring unit 4. Other configurations are the same as those of the microalgae culture apparatus 11 of the first embodiment, and the same reference numerals are given and the description thereof will be omitted.

酸化還元電位計測部6は、酸化還元電位(ORP:Oxidation Reduction Potential)を計測する。酸化還元電位は、酸化(Oxidation)と還元(Reduction)が起こる際に電子の移動が生じた電位(potential)である。 The redox potential measuring unit 6 measures the redox potential (ORP: Oxidation Reduction Potential). The redox potential is the potential at which electron transfer occurs when oxidation and reduction occur.

制御部5による制御、即ち、微細藻培養方法について説明する。 The control by the control unit 5, that is, the microalgae culture method will be described.

図6に示すように、制御部5は、羽根攪拌装置3の攪拌駆動部3Bを低速運転する(ステップS21)。制御部5は、攪拌駆動部3Bの低速運転することにより、攪拌羽根3Aを低速回転させ培養槽2に収容された培養液10を攪拌させて周回路2Aに低流速(例えば、0.3m/sec)で周回させる。 As shown in FIG. 6, the control unit 5 operates the stirring drive unit 3B of the blade stirring device 3 at a low speed (step S21). By operating the stirring drive unit 3B at a low speed, the control unit 5 rotates the stirring blade 3A at a low speed to stir the culture solution 10 contained in the culture tank 2 and causes the peripheral circuit 2A to have a low flow velocity (for example, 0.3 m / m /). Make it go around in sec).

制御部5は、酸化還元電位計測部6から連続または定期的に酸化還元電位を取得し、攪拌駆動部3Bの低速運転時(ステップS21)において、酸化還元電位が下限値以下であるかを判断する(ステップS22)。酸化還元電位の下限値は、制御部5において予め設定されるものある。酸化還元電位の下限値は、例えば、−50mV以下であり、−50mV〜−200mVで、硝酸呼吸が発生する状況になり微細藻の細胞濃度が下がることを実験により得た数値である。 The control unit 5 continuously or periodically acquires the redox potential from the redox potential measurement unit 6, and determines whether the redox potential is below the lower limit value during the low-speed operation (step S21) of the stirring drive unit 3B. (Step S22). The lower limit of the redox potential is preset in the control unit 5. The lower limit of the redox potential is, for example, −50 mV or less, and −50 mV to −200 mV, which is a numerical value obtained by an experiment in which nitric acid respiration occurs and the cell concentration of microalgae decreases.

そして、ステップS22において、酸化還元電位が下限値以下の場合(ステップS22:Yes)、制御部5は、羽根攪拌装置3の攪拌駆動部3Bを高速運転する(ステップS23)。制御部5は、攪拌駆動部3Bを高速運転することにより、攪拌羽根3Aを高速回転させ培養槽2に収容された培養液10を攪拌させて周回路2Aに高流速(例えば、1.0m/sec)で周回させる。従って、攪拌駆動部3Bの高速運転により、培養槽2の底部などに蓄積している微細藻を底部などから剥離して培養液10と共に周回路2Aに周回させる。なお、ステップS22において、酸化還元電位が下限値以下ではない場合(ステップS22:No)、制御部5は、羽根攪拌装置3の攪拌駆動部3Bの低速運転を継続する(ステップS21)。 Then, in step S22, when the redox potential is equal to or lower than the lower limit value (step S22: Yes), the control unit 5 operates the stirring drive unit 3B of the blade stirring device 3 at high speed (step S23). By operating the stirring drive unit 3B at high speed, the control unit 5 rotates the stirring blade 3A at high speed to stir the culture solution 10 contained in the culture tank 2 and causes the peripheral circuit 2A to have a high flow velocity (for example, 1.0 m / m /). Make it go around in sec). Therefore, by the high-speed operation of the stirring drive unit 3B, the microalgae accumulated in the bottom of the culture tank 2 and the like are peeled off from the bottom and the like, and the microalgae are circulated in the peripheral circuit 2A together with the culture solution 10. In step S22, when the redox potential is not equal to or lower than the lower limit value (step S22: No), the control unit 5 continues the low-speed operation of the stirring drive unit 3B of the blade stirring device 3 (step S21).

培養槽2の底部などに蓄積している微細藻が培養液10と共に周回路2Aに周回すると、上述したように、微細藻の嫌気状態が解消されて微細藻の培養環境が健全となるため硝酸呼吸をしなくなり亜硝酸イオンの減少と共に微細藻の細胞濃度が増加することになる。 When the microalgae accumulated in the bottom of the culture tank 2 or the like orbit around the circuit 2A together with the culture solution 10, the anaerobic state of the microalgae is eliminated and the culture environment of the microalgae becomes healthy, so that nitrate is used. It stops breathing and the cell concentration of microalgae increases as the nitrite ion decreases.

制御部5は、酸化還元電位計測部6から連続または定期的に酸化還元電位を取得し、攪拌駆動部3Bの高速運転時(ステップS23)において、酸化還元電位が上限値以上であるかを判断する(ステップS24)。酸化還元電位の上限値は、制御部5において予め設定される。酸化還元電位の上限値は、+値であって、例えば、200mV以上であり、200mV以上の場合に、硝酸呼吸が発生する状況が解消され微細藻の細胞濃度が上がることを実験により得た数値である。 The control unit 5 continuously or periodically acquires the redox potential from the redox potential measurement unit 6, and determines whether the redox potential is equal to or higher than the upper limit value during high-speed operation (step S23) of the stirring drive unit 3B. (Step S24). The upper limit of the redox potential is preset in the control unit 5. The upper limit of the redox potential is a + value, for example, when it is 200 mV or more and 200 mV or more, the situation where nitric acid respiration occurs is eliminated and the cell concentration of microalgae increases. Is.

そして、ステップS24において、酸化還元電位が上限値以上の場合(ステップS24:Yes)、制御部5は、羽根攪拌装置3の攪拌駆動部3Bを低速運転する(ステップS25)。即ち、制御部5は、攪拌駆動部3Bを低速運転し、培養液10を周回路2Aに低流速(例えば、0.3m/sec)で周回させる。ステップS25の後、本制御を終了し、再びステップS21から本制御を行う。なお、ステップS24において、酸化還元電位が上限値以上ではない場合(ステップS24:No)、制御部5は、羽根攪拌装置3の攪拌駆動部3Bの高速運転を継続する(ステップS23)。 Then, in step S24, when the redox potential is equal to or higher than the upper limit value (step S24: Yes), the control unit 5 operates the stirring drive unit 3B of the blade stirring device 3 at a low speed (step S25). That is, the control unit 5 operates the stirring drive unit 3B at a low speed to circulate the culture solution 10 in the peripheral circuit 2A at a low flow velocity (for example, 0.3 m / sec). After step S25, this control is terminated, and this control is performed again from step S21. In step S24, when the redox potential is not equal to or higher than the upper limit value (step S24: No), the control unit 5 continues the high-speed operation of the stirring drive unit 3B of the blade stirring device 3 (step S23).

なお、上述した微細藻培養方法は、微細藻培養装置12において制御部5により自動で羽根攪拌装置3を制御するものであるが、制御部5を用いない場合、即ち、手動で羽根攪拌装置3を操作する微細藻培養方法であっても同様にステップS21〜S25を行う。 In the above-mentioned microalgae culturing method, the control unit 5 automatically controls the blade stirring device 3 in the microalgae culturing device 12, but when the control unit 5 is not used, that is, the blade stirring device 3 is manually operated. Steps S21 to S25 are similarly performed even in the microalgae culture method in which the above is operated.

このように、実施形態2の微細藻培養方法は、微細藻を含む培養液10を収容した培養槽2において微細藻の硝酸呼吸を検出する工程と、微細藻の硝酸呼吸の検出に基づいて培養槽2の培養液10の流動を促進する工程と、を含む。 As described above, the microalgae culturing method of the second embodiment is based on the step of detecting the nitrate respiration of the microalgae in the culture tank 2 containing the culture solution 10 containing the microalgae and the detection of the nitrate respiration of the microalgae. The step of promoting the flow of the culture solution 10 in the tank 2 is included.

具体的に、実施形態2の微細藻培養方法では、微細藻の硝酸呼吸を検出する工程は、培養液10の酸化還元電位を計測する。また、培養液10の流動を促進する工程は、攪拌羽根3Aにより培養液10の流動を促進する。 Specifically, in the microalgae culture method of the second embodiment, the step of detecting nitric acid respiration of the microalgae measures the oxidation-reduction potential of the culture solution 10. Further, in the step of promoting the flow of the culture solution 10, the flow of the culture solution 10 is promoted by the stirring blade 3A.

実施形態2の微細藻培養装置12は、微細藻を含む培養液10を収容する培養槽2と、微細藻の硝酸呼吸を検出する検出手段と、培養液10の流動を促進する促進手段と、検出手段の検出結果に基づいて促進手段を制御する制御部5と、を備える。 The microalgae culture apparatus 12 of the second embodiment includes a culture tank 2 containing a culture solution 10 containing microalgae, a detection means for detecting nitrate respiration of the microalgae, and a promotion means for promoting the flow of the culture solution 10. It includes a control unit 5 that controls the promotion means based on the detection result of the detection means.

具体的に、実施形態2の微細藻培養装置12では、検出手段は、培養液10の酸化還元電位を計測する酸化還元電位計測部6であり、制御部5は、酸化還元電位計測部6で計測された結果に基づいて促進手段を制御する。また、促進手段は、培養液10の中に配置される攪拌羽根3Aと、攪拌羽根3Aを駆動する攪拌駆動部3Bと、を有した羽根攪拌装置3であり、培養槽2の内部で培養液10が収容される箇所において、培養槽2中に培養液10を移動させるものである。制御部5は、検出手段の検出結果に基づいて羽根攪拌装置3の攪拌駆動部3Bを制御する。 Specifically, in the microalgae culture apparatus 12 of the second embodiment, the detection means is the redox potential measuring unit 6 for measuring the redox potential of the culture solution 10, and the control unit 5 is the redox potential measuring unit 6. Control the facilitator based on the measured results. Further, the promoting means is a blade stirring device 3 having a stirring blade 3A arranged in the culture solution 10 and a stirring driving unit 3B for driving the stirring blade 3A, and the culture solution is inside the culture tank 2. The culture solution 10 is moved into the culture tank 2 at the place where the 10 is housed. The control unit 5 controls the stirring drive unit 3B of the blade stirring device 3 based on the detection result of the detecting means.

従って、実施形態2によれば、微細藻の硝酸呼吸の検出に基づいて、培養槽2の培養液10の流動を促進することで、培養槽2の底部などに蓄積・沈殿して嫌気状態になり硝酸呼吸をしていた微細藻が培養液10と共に流動する。これにより、微細藻が光合成と酸素呼吸を行う健全な状態に戻る。この結果、実施形態2によれば、微細藻の培養環境を健全な状態に維持できる。 Therefore, according to the second embodiment, by promoting the flow of the culture solution 10 in the culture tank 2 based on the detection of nitric acid respiration of microalgae, it accumulates and precipitates in the bottom of the culture tank 2 and becomes anaerobic. The microalgae that had been breathing nitric acid flow together with the culture solution 10. This returns the microalgae to a healthy state of photosynthesis and oxygen respiration. As a result, according to the second embodiment, the culture environment of the microalgae can be maintained in a healthy state.

また、微細藻の硝酸呼吸の検出は、酸化還元電位を計測すること、酸化還元電位計測部6を用いて制御部5で判断することで実施できる。 Further, the detection of nitric acid respiration of microalgae can be carried out by measuring the redox potential and determining by the control unit 5 using the redox potential measuring unit 6.

また、培養液10の流動の促進は、攪拌羽根3Aにより行うこと、攪拌羽根3Aと攪拌駆動部3Bとを有した羽根攪拌装置3を用い制御部5で制御することで実施できる。 Further, the flow of the culture solution 10 can be promoted by the stirring blade 3A or controlled by the control unit 5 using the blade stirring device 3 having the stirring blade 3A and the stirring driving unit 3B.

なお、酸化還元電位計測部6は、培養槽2において微細藻が蓄積し易い場所の培養液10の酸化還元電位を計測することで微細藻の硝酸呼吸の検出精度を向上できる。また、培養槽2に微細藻が蓄積し易い凹部や凸部を設けてもよく、酸化還元電位計測部6は、この凹部や凸部付近の培養液10の酸化還元電位を計測することで微細藻の硝酸呼吸の検出精度を向上できる。 The redox potential measuring unit 6 can improve the detection accuracy of nitric acid respiration of microalgae by measuring the redox potential of the culture solution 10 in a place where microalgae are likely to accumulate in the culture tank 2. Further, the culture tank 2 may be provided with a concave portion or a convex portion where microalgae are likely to accumulate, and the redox potential measuring unit 6 measures the redox potential of the culture solution 10 in the vicinity of the concave portion or the convex portion to make fine particles. The detection accuracy of nitrate respiration of algae can be improved.

[実施形態3]
図7は、実施形態3に係る微細藻培養装置を示す概略構成図である。図8は、実施形態3に係る微細藻培養方法を示すフローチャートである。
[Embodiment 3]
FIG. 7 is a schematic configuration diagram showing the microalgae culture apparatus according to the third embodiment. FIG. 8 is a flowchart showing the microalgae culture method according to the third embodiment.

図7に示すように、実施形態3の微細藻培養装置13は、培養槽21と、気泡攪拌装置31と、亜硝酸イオン計測部41と、制御部51と、を有する。 As shown in FIG. 7, the microalgae culture device 13 of the third embodiment includes a culture tank 21, a bubble agitator 31, a nitrite ion measurement unit 41, and a control unit 51.

培養槽21は、微細藻(例えば、珪藻(キートセロス等のケイ素の殻を持つ微細藻))を含む培養液10を収容する。培養槽21は、フォトバイオリアクター型の培養システムに用いられる。培養槽21は、例えば、矩形の槽状に形成され、上部が開口されて内部が大気開放された状態であってもよいし、上部が蓋部材により塞がれて密閉された状態であってもよい。ただし、上部を蓋部材で塞ぐ場合、蓋部材は、微細藻が光合成を行う波長の光を透過する素材で形成される。また、培養槽21は、光源装置71を備えている。光源装置71は、培養槽21の中に光を照射する人口照明である。すなわち、光源装置71は、培養槽21に収容された培養液10の中に光を照射する。培養槽21は、太陽光を取り込みやすくするために、蓋部材に限らず、側面部分が光を透過する素材で形成されてもよい。また、培養槽21は、底面が光を反射させる素材で形成されてもよい。 The culture tank 21 contains a culture solution 10 containing microalgae (for example, diatoms (microalgae having a silicon shell such as keet cellos)). The culture tank 21 is used in a photobioreactor type culture system. The culture tank 21 may be formed in a rectangular tank shape, for example, in a state in which the upper portion is opened and the inside is open to the atmosphere, or in a state in which the upper portion is closed by a lid member and sealed. May be good. However, when the upper part is closed with a lid member, the lid member is formed of a material that transmits light having a wavelength at which microalgae photosynthesize. In addition, the culture tank 21 includes a light source device 71. The light source device 71 is artificial lighting that irradiates the inside of the culture tank 21 with light. That is, the light source device 71 irradiates the culture solution 10 contained in the culture tank 21 with light. The culture tank 21 is not limited to the lid member, and the side surface portion may be formed of a material that transmits light in order to facilitate the intake of sunlight. Further, the culture tank 21 may be formed of a material whose bottom surface reflects light.

培養槽21は、図には明示しないが、微細藻を供給する微細藻供給部や、培養液を供給する培養液供給部や、培養液10の液面レベルを計測するレベル計や、培養液10の温度を調整する温度調整部や、培養液10の回収部や、培養槽2の洗浄時に培養液10を排出する排出部等を備えてもよい。 Although not clearly shown in the figure, the culture tank 21 is a micro-algae supply unit that supplies micro-algae, a culture solution supply unit that supplies a culture solution, a level meter that measures the liquid level of the culture solution 10, and a culture solution. A temperature adjusting unit for adjusting the temperature of the culture solution 10, a collecting unit for the culture solution 10, a discharging unit for discharging the culture solution 10 when the culture tank 2 is washed, and the like may be provided.

気泡攪拌装置31は、培養槽21において培養液10を攪拌する。気泡攪拌装置31は、気泡発生部31Aと、空気供給部31Bと、を有する。気泡発生部31Aは、培養槽21の内部に設けられている。気泡発生部31Aは、培養槽21の底部に設けられていても、側部に設けられていてもよい。気泡発生部31Aは、空気が供給されることで培養液10に気泡を噴出する。空気供給部31Bは、気泡発生部31Aに空気を供給するもので、例えば、コンプレッサーを有する。即ち、気泡攪拌装置31は、気泡発生部31Aから噴出した気泡により培養液10を攪拌する。気泡攪拌装置31は、通常、培養液10に含まれる微細藻に曝気を行う曝気装置として機能する。 The bubble agitator 31 agitates the culture solution 10 in the culture tank 21. The bubble agitator 31 has a bubble generating section 31A and an air supply section 31B. The bubble generating portion 31A is provided inside the culture tank 21. The bubble generating portion 31A may be provided at the bottom of the culture tank 21 or may be provided at the side portion. The bubble generating unit 31A ejects bubbles into the culture solution 10 by supplying air. The air supply unit 31B supplies air to the bubble generation unit 31A, and has, for example, a compressor. That is, the bubble agitator 31 agitates the culture solution 10 with the bubbles ejected from the bubble generation unit 31A. The bubble agitator 31 usually functions as an aeration device that aerates the microalgae contained in the culture solution 10.

亜硝酸イオン計測部41は、培養液10の亜硝酸イオン濃度を計測する。亜硝酸イオン計測部41は、例えば、亜硝酸イオンメータが適用される。 The nitrite ion measuring unit 41 measures the nitrite ion concentration of the culture solution 10. For example, a nitrite ion meter is applied to the nitrite ion measuring unit 41.

制御部51は、例えば、コンピュータであり、図には明示しないが、CPU(Central Processing Unit)のようなマイクロプロセッサを含む演算処理装置などにより実現される。制御部51は、気泡攪拌装置31の空気供給部31Bを制御する。 The control unit 51 is, for example, a computer, and although not specified in the figure, it is realized by an arithmetic processing unit including a microprocessor such as a CPU (Central Processing Unit). The control unit 51 controls the air supply unit 31B of the bubble agitator 31.

制御部5による制御、即ち、微細藻培養方法について説明する。 The control by the control unit 5, that is, the microalgae culture method will be described.

図8に示すように、制御部51は、気泡攪拌装置31の空気供給部31Bを低圧運転する(ステップS31)。制御部51は、空気供給部31Bを低圧運転することにより、気泡発生部31Aに供給する空気量を少なくし気泡発生部31Aから少量の気泡を噴出させ、培養槽21に収容された培養液10を攪拌させて低流速で循環させる。低流速とは、培養液10に含まれる微細藻が培養液10と共に培養槽21に、通常、淀みなく循環できる速度であり、例えば、0.3m/secが好ましく、空気供給部31Bの消費電力を抑えた速度である。 As shown in FIG. 8, the control unit 51 operates the air supply unit 31B of the bubble agitator 31 at a low pressure (step S31). The control unit 51 operates the air supply unit 31B at a low pressure to reduce the amount of air supplied to the bubble generation unit 31A and eject a small amount of air bubbles from the bubble generation unit 31A, and the culture solution 10 contained in the culture tank 21. Is agitated and circulated at a low flow rate. The low flow rate is a speed at which the microalgae contained in the culture solution 10 can normally circulate in the culture tank 21 together with the culture solution 10 without stagnation. For example, 0.3 m / sec is preferable, and the power consumption of the air supply unit 31B is preferable. It is a speed that suppresses.

制御部51は、亜硝酸イオン計測部41から連続または定期的に亜硝酸イオン濃度を取得し、空気供給部31Bの低圧運転時(ステップS31)において、亜硝酸イオン濃度が上限値以上であるかを判断する(ステップS32)。亜硝酸イオン濃度の上限値は、制御部51において予め設定される。亜硝酸イオン濃度の上限値は、実施形態1と同様であり、例えば、2mg/L以上である。 The control unit 51 continuously or periodically acquires the nitrite ion concentration from the nitrite ion measurement unit 41, and whether the nitrite ion concentration is equal to or higher than the upper limit value during the low pressure operation (step S31) of the air supply unit 31B. Is determined (step S32). The upper limit of the nitrite ion concentration is preset in the control unit 51. The upper limit of the nitrite ion concentration is the same as that of the first embodiment, and is, for example, 2 mg / L or more.

そして、ステップS32において、亜硝酸イオン濃度が上限値以上の場合(ステップS32:Yes)、制御部51は、気泡攪拌装置31の空気供給部31Bを高圧運転する(ステップS33)。制御部51は、空気供給部31Bを高圧運転することにより、気泡発生部31Aに供給する空気量を多くし気泡発生部31Aから多量の気泡を噴出させ、培養槽21に収容された培養液10を攪拌させて高流速で循環させる。高流速とは、培養液10に含まれる微細藻が培養槽21の底部などに蓄積している場合、蓄積を剥離させ培養液10と共に循環できる速度であり、例えば、1.0m/secが好ましい。従って、空気供給部31Bの高圧運転により、培養槽21の底部などに蓄積している微細藻を底部などから剥離して培養液10と共に循環させる。なお、ステップS32において、亜硝酸イオン濃度が上限値以上ではない場合(ステップS32:No)、制御部51は、気泡攪拌装置31の空気供給部31Bの低圧運転を継続する(ステップS31)。 Then, in step S32, when the nitrite ion concentration is equal to or higher than the upper limit value (step S32: Yes), the control unit 51 operates the air supply unit 31B of the bubble agitator 31 at high pressure (step S33). The control unit 51 operates the air supply unit 31B at high pressure to increase the amount of air supplied to the bubble generation unit 31A, eject a large amount of air bubbles from the bubble generation unit 31A, and the culture solution 10 contained in the culture tank 21. Is stirred and circulated at a high flow velocity. The high flow velocity is a speed at which the microalgae contained in the culture solution 10 can be exfoliated and circulated together with the culture solution 10 when they are accumulated in the bottom of the culture tank 21, for example, 1.0 m / sec is preferable. .. Therefore, by high-pressure operation of the air supply unit 31B, the microalgae accumulated in the bottom of the culture tank 21 and the like are peeled off from the bottom and the like and circulated together with the culture solution 10. In step S32, when the nitrite ion concentration is not equal to or higher than the upper limit value (step S32: No), the control unit 51 continues the low-pressure operation of the air supply unit 31B of the bubble agitator 31 (step S31).

培養槽21の底部などに蓄積している微細藻が培養液10と共に循環すると、図1および図2の実験による見地から、微細藻の嫌気状態が解消されて微細藻の培養環境が健全となるため硝酸呼吸をしなくなり亜硝酸イオンの減少と共に微細藻の細胞濃度が増加することになる。 When the microalgae accumulated in the bottom of the culture tank 21 and the like circulate together with the culture solution 10, the anaerobic state of the microalgae is eliminated and the culture environment of the microalgae becomes healthy from the viewpoint of the experiments of FIGS. 1 and 2. Therefore, nitrate respiration is stopped and the cell concentration of microalgae increases as the nitrite ion decreases.

制御部51は、亜硝酸イオン計測部41から連続または定期的に亜硝酸イオン濃度を取得し、空気供給部31Bの高圧運転時(ステップS33)において、亜硝酸イオン濃度が下限値以下であるかを判断する(ステップS34)。亜硝酸イオン濃度の下限値は、制御部5において予め設定される。亜硝酸イオン濃度の下限値は、実施形態1と同様であり、例えば、1.5mg/L以下である。 The control unit 51 continuously or periodically acquires the nitrite ion concentration from the nitrite ion measurement unit 41, and is the nitrite ion concentration below the lower limit value during the high-pressure operation (step S33) of the air supply unit 31B? Is determined (step S34). The lower limit of the nitrite ion concentration is preset in the control unit 5. The lower limit of the nitrite ion concentration is the same as that of the first embodiment, and is, for example, 1.5 mg / L or less.

そして、ステップS34において、亜硝酸イオン濃度が下限値以下の場合(ステップS34:Yes)、制御部51は、気泡攪拌装置31の空気供給部31Bを低圧運転する(ステップS35)。即ち、制御部51は、空気供給部31Bを低圧運転し、培養液10を低流速(例えば、0.3m/sec)で循環させる。ステップS35の後、本制御を終了し、再びステップS31から本制御を行う。なお、ステップS34において、亜硝酸イオン濃度が下限値以下ではない場合(ステップS34:No)、制御部5は、気泡攪拌装置31の空気供給部31Bの高圧運転を継続する(ステップS33)。 Then, in step S34, when the nitrite ion concentration is equal to or lower than the lower limit value (step S34: Yes), the control unit 51 operates the air supply unit 31B of the bubble agitator 31 at a low pressure (step S35). That is, the control unit 51 operates the air supply unit 31B at a low pressure to circulate the culture solution 10 at a low flow velocity (for example, 0.3 m / sec). After step S35, this control is terminated, and this control is performed again from step S31. In step S34, when the nitrite ion concentration is not equal to or lower than the lower limit value (step S34: No), the control unit 5 continues the high-pressure operation of the air supply unit 31B of the bubble agitator 31 (step S33).

なお、上述した微細藻培養方法は、微細藻培養装置13において制御部51により自動で気泡攪拌装置31を制御するものであるが、制御部51を用いない場合、即ち、手動で羽根攪拌装置31を操作する微細藻培養方法であっても同様にステップS31〜S35を行う。 In the above-mentioned microalgae culturing method, the control unit 51 automatically controls the bubble stirring device 31 in the microalgae culturing device 13, but when the control unit 51 is not used, that is, the blade stirring device 31 is manually operated. Steps S31 to S35 are similarly performed even in the microalgae culture method in which the above is operated.

このように、実施形態3の微細藻培養方法は、実施形態1と異なる培養槽21において微細藻の硝酸呼吸を検出する工程と、微細藻の硝酸呼吸の検出に基づいて培養槽21の培養液10の流動を促進する工程と、を含む。 As described above, the microalgae culturing method of the third embodiment is based on the step of detecting the nitrate respiration of the microalgae in the culture tank 21 different from the first embodiment and the culture solution of the culture tank 21 based on the detection of the nitrate respiration of the microalgae. Includes 10 steps to promote flow.

具体的に、実施形態3の微細藻培養方法では、微細藻の硝酸呼吸を検出する工程は、培養液10の亜硝酸イオン濃度を計測する。また、培養液10の流動を促進する工程は、気泡発生部31Aにより培養液10の流動を促進する。 Specifically, in the microalgae culture method of Embodiment 3, the step of detecting nitrate respiration of microalgae measures the nitrite ion concentration of the culture solution 10. Further, in the step of promoting the flow of the culture solution 10, the bubble generation unit 31A promotes the flow of the culture solution 10.

実施形態3の微細藻培養装置13は、実施形態1とは異なる培養槽21と、微細藻の硝酸呼吸を検出する検出手段と、培養液10の流動を促進する促進手段と、検出手段の検出結果に基づいて促進手段を制御する制御部51と、を備える。 The microalgae culture apparatus 13 of the third embodiment has a culture tank 21 different from that of the first embodiment, a detection means for detecting nitric acid respiration of the microalgae, a promotion means for promoting the flow of the culture solution 10, and a detection means for the detection means. A control unit 51 that controls the promotion means based on the result is provided.

具体的に、実施形態3の微細藻培養装置13では、検出手段は、培養液10の亜硝酸イオン濃度を計測する亜硝酸イオン計測部41であり、制御部51は、亜硝酸イオン計測部41で計測された結果に基づいて促進手段を制御する。また、促進手段は、培養液10の中に配置される気泡発生部31Aと、気泡発生部31Aに空気を供給する空気供給部31Bと、を有した気泡攪拌装置31であり、培養槽21の内部で培養液10が収容される箇所において、培養槽21中に培養液10を移動させるものである。制御部51は、検出手段の検出結果に基づいて気泡攪拌装置31の空気供給部31Bを制御する。 Specifically, in the microalgae culture apparatus 13 of the third embodiment, the detection means is the nitrite ion measuring unit 41 for measuring the nitrite ion concentration of the culture solution 10, and the control unit 51 is the nitrite ion measuring unit 41. Control the facilitator based on the results measured in. Further, the accelerating means is a bubble stirring device 31 having a bubble generating section 31A arranged in the culture solution 10 and an air supply section 31B for supplying air to the bubble generating section 31A, and the culture tank 21. The culture solution 10 is moved into the culture tank 21 at a place where the culture solution 10 is housed inside. The control unit 51 controls the air supply unit 31B of the bubble agitator 31 based on the detection result of the detection means.

従って、実施形態3によれば、微細藻の硝酸呼吸の検出に基づいて、培養槽21の培養液10の流動を促進することで、培養槽21の底部などに蓄積・沈殿して嫌気状態になり硝酸呼吸をしていた微細藻が培養液10と共に流動する。これにより、微細藻が光合成と酸素呼吸を行う健全な状態に戻る。この結果、実施形態3によれば、微細藻の培養環境を健全な状態に維持できる。 Therefore, according to the third embodiment, by promoting the flow of the culture solution 10 in the culture tank 21 based on the detection of nitric acid respiration of microalgae, it accumulates and precipitates in the bottom of the culture tank 21 and becomes anaerobic. The microalgae that had been breathing nitric acid flow together with the culture solution 10. This returns the microalgae to a healthy state of photosynthesis and oxygen respiration. As a result, according to the third embodiment, the culture environment of the microalgae can be maintained in a healthy state.

また、微細藻の硝酸呼吸の検出は、亜硝酸イオン濃度を計測すること、亜硝酸イオン計測部41を用いて制御部51で判断することで実施できる。 Further, the detection of nitric acid respiration of microalgae can be carried out by measuring the nitrite ion concentration and determining by the control unit 51 using the nitrite ion measuring unit 41.

また、培養液10の流動の促進は、気泡発生部31Aにより行うこと、気泡発生部31Aと空気供給部31Bとを有した気泡攪拌装置31を用い制御部51で制御することで実施できる。 Further, the flow of the culture solution 10 can be promoted by the bubble generating unit 31A or by being controlled by the control unit 51 using the bubble stirring device 31 having the bubble generating unit 31A and the air supply unit 31B.

なお、亜硝酸イオン計測部41は、培養槽21において微細藻が蓄積し易い場所の培養液10をサンプリングすることで微細藻の硝酸呼吸の検出精度を向上できる。また、培養槽21に微細藻が蓄積し易い凹部や凸部を設けてもよく、亜硝酸イオン計測部41は、この凹部や凸部付近の培養液10をサンプリングすることで微細藻の硝酸呼吸の検出精度を向上できる。 The nitrite ion measuring unit 41 can improve the detection accuracy of nitrate respiration of microalgae by sampling the culture solution 10 in a place where microalgae are likely to accumulate in the culture tank 21. Further, the culture tank 21 may be provided with a concave portion or a convex portion where microalgae are likely to accumulate, and the nitrite ion measuring unit 41 samples the culture solution 10 in the vicinity of the concave portion or the convex portion to allow nitrate respiration of the fine algae. Detection accuracy can be improved.

[実施形態4]
図9は、実施形態4に係る微細藻培養装置を示す概略構成図である。図10は、実施形態4に係る微細藻培養方法を示すフローチャートである。
[Embodiment 4]
FIG. 9 is a schematic configuration diagram showing a microalgae culture apparatus according to the fourth embodiment. FIG. 10 is a flowchart showing the microalgae culture method according to the fourth embodiment.

実施形態4の微細藻培養装置14は、上述した実施形態3の微細藻培養装置13に対し、亜硝酸イオン計測部41に代えて酸化還元電位計測部61を備える点で異なる。その他の構成は、実施形態3の微細藻培養装置13と同じであり、同一の符号を付して説明を省略する。 The microalgae culturing device 14 of the fourth embodiment is different from the microalgae culturing device 13 of the third embodiment in that the redox potential measuring unit 61 is provided in place of the nitrite ion measuring unit 41. Other configurations are the same as those of the microalgae culture apparatus 13 of the third embodiment, and the same reference numerals are given and the description thereof will be omitted.

酸化還元電位計測部61は、実施形態2と同様に、酸化還元電位(ORP:Oxidation Reduction Potential)を計測する。 The redox potential measuring unit 61 measures the redox potential (ORP: Oxidation Reduction Potential) as in the second embodiment.

制御部51による制御、即ち、微細藻培養方法について説明する。 The control by the control unit 51, that is, the microalgae culture method will be described.

図9に示すように、制御部51は、気泡攪拌装置31の空気供給部31Bを低圧運転する(ステップS41)。制御部51は、空気供給部31Bを低圧運転することにより、気泡発生部31Aに供給する空気量を少なくし気泡発生部31Aから少量の気泡を噴出させ、培養槽21に収容された培養液10を攪拌させて低流速(例えば、0.3m/sec)で循環させる。 As shown in FIG. 9, the control unit 51 operates the air supply unit 31B of the bubble agitator 31 at a low pressure (step S41). The control unit 51 operates the air supply unit 31B at a low pressure to reduce the amount of air supplied to the bubble generation unit 31A and eject a small amount of air bubbles from the bubble generation unit 31A, and the culture solution 10 contained in the culture tank 21. Is stirred and circulated at a low flow rate (for example, 0.3 m / sec).

制御部51は、酸化還元電位計測部61から連続または定期的に酸化還元電位を取得し、空気供給部31Bの低圧運転時(ステップS41)において、酸化還元電位が下限値以下であるかを判断する(ステップS42)。酸化還元電位の下限値は、実施形態2と同様で、例えば、−50mV以下であり、−50mV〜−200mVである。 The control unit 51 continuously or periodically acquires the redox potential from the redox potential measuring unit 61, and determines whether the redox potential is equal to or lower than the lower limit value during the low pressure operation (step S41) of the air supply unit 31B. (Step S42). The lower limit of the redox potential is the same as that of the second embodiment, for example, −50 mV or less, and −50 mV to −200 mV.

そして、ステップS42において、酸化還元電位が下限値以下の場合(ステップS42:Yes)、制御部51は、気泡攪拌装置31の空気供給部31Bを高圧運転する(ステップS43)。制御部5は、空気供給部31Bを高圧運転することにより、気泡発生部31Aに供給する空気量を多くし気泡発生部31Aから多量の気泡を噴出させ、培養槽21に収容された培養液10を攪拌させて高流速(例えば、1.0m/sec)で循環させる。従って、空気供給部31Bの高圧運転により、培養槽21の底部などに蓄積している微細藻を底部などから剥離して培養液10と共に循環させる。なお、ステップS42において、酸化還元電位が下限値以下ではない場合(ステップS42:No)、制御部51は、気泡攪拌装置31の空気供給部31Bの低圧運転を継続する(ステップS41)。 Then, in step S42, when the redox potential is equal to or lower than the lower limit value (step S42: Yes), the control unit 51 operates the air supply unit 31B of the bubble agitator 31 at high pressure (step S43). The control unit 5 operates the air supply unit 31B at high pressure to increase the amount of air supplied to the bubble generation unit 31A, eject a large amount of air bubbles from the bubble generation unit 31A, and the culture solution 10 contained in the culture tank 21. Is agitated and circulated at a high flow velocity (for example, 1.0 m / sec). Therefore, by high-pressure operation of the air supply unit 31B, the microalgae accumulated in the bottom of the culture tank 21 and the like are peeled off from the bottom and the like and circulated together with the culture solution 10. In step S42, when the redox potential is not equal to or lower than the lower limit value (step S42: No), the control unit 51 continues the low-pressure operation of the air supply unit 31B of the bubble agitator 31 (step S41).

培養槽21の底部などに蓄積している微細藻が培養液10と共に循環すると、上述したように、微細藻の嫌気状態が解消されて微細藻の培養環境が健全となるため硝酸呼吸をしなくなり亜硝酸イオンの減少と共に微細藻の細胞濃度が増加することになる。 When the microalgae accumulated in the bottom of the culture tank 21 or the like circulate together with the culture solution 10, as described above, the anaerobic state of the microalgae is eliminated and the culture environment of the microalgae becomes healthy, so that nitrate breathing is stopped. As the number of nitrite ions decreases, the cell concentration of microalgae increases.

制御部51は、酸化還元電位計測部61から連続または定期的に酸化還元電位を取得し、空気供給部31Bの高圧運転時(ステップS43)において、酸化還元電位が上限値以上であるかを判断する(ステップS44)。酸化還元電位の上限値は、制御部51において予め設定される。酸化還元電位の上限値は、実施形態2と同様に、+値であって、例えば、200mV以上である。 The control unit 51 continuously or periodically acquires the redox potential from the redox potential measuring unit 61, and determines whether the redox potential is equal to or higher than the upper limit value during the high-pressure operation (step S43) of the air supply unit 31B. (Step S44). The upper limit of the redox potential is preset in the control unit 51. The upper limit of the redox potential is a + value, for example, 200 mV or more, as in the second embodiment.

そして、ステップS44において、酸化還元電位が上限値以上の場合(ステップS44:Yes)、制御部51は、気泡攪拌装置31の空気供給部31Bを低圧運転する(ステップS45)。即ち、制御部51は、空気供給部31Bを低圧運転し、培養液10を低流速(例えば、0.3m/sec)で循環させる。ステップS45の後、本制御を終了し、再びステップS41から本制御を行う。なお、ステップS44において、酸化還元電位が上限値以上ではない場合(ステップS44:No)、制御部51は、気泡攪拌装置31の空気供給部31Bの高圧運転を継続する(ステップS43)。 Then, in step S44, when the redox potential is equal to or higher than the upper limit value (step S44: Yes), the control unit 51 operates the air supply unit 31B of the bubble agitator 31 at a low pressure (step S45). That is, the control unit 51 operates the air supply unit 31B at a low pressure to circulate the culture solution 10 at a low flow velocity (for example, 0.3 m / sec). After step S45, this control is terminated, and this control is performed again from step S41. In step S44, when the redox potential is not equal to or higher than the upper limit value (step S44: No), the control unit 51 continues the high-pressure operation of the air supply unit 31B of the bubble agitator 31 (step S43).

なお、上述した微細藻培養方法は、微細藻培養装置14において制御部51により自動で気泡攪拌装置31を制御するものであるが、制御部51を用いない場合、即ち、手動で羽根攪拌装置31を操作する微細藻培養方法であっても同様にステップS41〜S45を行う。 In the above-mentioned microalgae culturing method, the control unit 51 automatically controls the bubble stirring device 31 in the microalgae culturing device 14, but when the control unit 51 is not used, that is, the blade stirring device 31 is manually operated. Steps S41 to S45 are similarly performed even in the microalgae culture method in which the above is operated.

このように、実施形態4の微細藻培養方法は、実施形態1と異なる培養槽21において微細藻の硝酸呼吸を検出する工程と、微細藻の硝酸呼吸の検出に基づいて培養槽2の培養液10の流動を促進する工程と、を含む。 As described above, the microalgae culturing method of the fourth embodiment is based on the step of detecting the nitrate respiration of the microalgae in the culture tank 21 different from the first embodiment and the culture solution of the culture tank 2 based on the detection of the nitrate respiration of the microalgae. Includes 10 steps to promote flow.

具体的に、実施形態4の微細藻培養方法では、微細藻の硝酸呼吸を検出する工程は、培養液10の酸化還元電位を計測する。また、培養液10の流動を促進する工程は、気泡発生部31Aにより培養液10の流動を促進する。 Specifically, in the microalgae culture method of the fourth embodiment, the step of detecting nitric acid respiration of the microalgae measures the oxidation-reduction potential of the culture solution 10. Further, in the step of promoting the flow of the culture solution 10, the bubble generation unit 31A promotes the flow of the culture solution 10.

実施形態4の微細藻培養装置14は、実施形態1とは異なる培養槽21と、微細藻の硝酸呼吸を検出する検出手段と、培養液10の流動を促進する促進手段と、検出手段の検出結果に基づいて促進手段を制御する制御部51と、を備える。 The microalgae culture apparatus 14 of the fourth embodiment has a culture tank 21 different from that of the first embodiment, a detection means for detecting nitrate respiration of the microalgae, a promoting means for promoting the flow of the culture solution 10, and a detection means for detecting the microalgae. A control unit 51 that controls the promotion means based on the result is provided.

具体的に、実施形態4の微細藻培養装置14では、検出手段は、培養液10の酸化還元電位を計測する酸化還元電位計測部61であり、制御部51は、酸化還元電位計測部61で計測された結果に基づいて促進手段を制御する。また、促進手段は、培養液10の中に配置される気泡発生部31Aと、気泡発生部31Aに空気を供給する空気供給部31Bと、を有した気泡攪拌装置31であり、培養槽21の内部で培養液10が収容される箇所において、培養槽21中に培養液10を移動させるものである。制御部51は、検出手段の検出結果に基づいて気泡攪拌装置31の空気供給部31Bを制御する。 Specifically, in the microalgae culture apparatus 14 of the fourth embodiment, the detection means is the redox potential measuring unit 61 for measuring the redox potential of the culture solution 10, and the control unit 51 is the redox potential measuring unit 61. Control the facilitator based on the measured results. Further, the accelerating means is a bubble stirring device 31 having a bubble generating section 31A arranged in the culture solution 10 and an air supply section 31B for supplying air to the bubble generating section 31A, and the culture tank 21. The culture solution 10 is moved into the culture tank 21 at a place where the culture solution 10 is housed inside. The control unit 51 controls the air supply unit 31B of the bubble agitator 31 based on the detection result of the detection means.

従って、実施形態4によれば、微細藻の硝酸呼吸の検出に基づいて、培養槽21の培養液10の流動を促進することで、培養槽21の底部などに蓄積・沈殿して嫌気状態になり硝酸呼吸をしていた微細藻が培養液10と共に流動する。これにより、微細藻が光合成と酸素呼吸を行う健全な状態に戻る。この結果、実施形態4によれば、微細藻の培養環境を健全な状態に維持できる。 Therefore, according to the fourth embodiment, by promoting the flow of the culture solution 10 in the culture tank 21 based on the detection of nitric acid respiration of microalgae, it accumulates and precipitates in the bottom of the culture tank 21 and becomes anaerobic. The microalgae that had been breathing nitric acid flow together with the culture solution 10. This returns the microalgae to a healthy state of photosynthesis and oxygen respiration. As a result, according to the fourth embodiment, the culture environment of the microalgae can be maintained in a healthy state.

また、微細藻の硝酸呼吸の検出は、酸化還元電位を計測すること、酸化還元電位計測部61を用いて制御部5で判断することで実施できる。 Further, the detection of nitric acid respiration of microalgae can be carried out by measuring the redox potential and determining by the control unit 5 using the redox potential measuring unit 61.

また、培養液10の流動の促進は、気泡発生部31Aにより行うこと、気泡発生部31Aと空気供給部31Bとを有した気泡攪拌装置31を用い制御部51で制御することで実施できる。 Further, the flow of the culture solution 10 can be promoted by the bubble generating unit 31A or by being controlled by the control unit 51 using the bubble stirring device 31 having the bubble generating unit 31A and the air supply unit 31B.

なお、酸化還元電位計測部61は、培養槽21において微細藻が蓄積し易い場所の培養液10の酸化還元電位を計測することで微細藻の硝酸呼吸の検出精度を向上できる。また、培養槽21に微細藻が蓄積し易い凹部や凸部を設けてもよく、酸化還元電位計測部61は、この凹部や凸部付近の培養液10の酸化還元電位を計測することで微細藻の硝酸呼吸の検出精度を向上できる。 The redox potential measuring unit 61 can improve the detection accuracy of nitric acid respiration of microalgae by measuring the redox potential of the culture solution 10 in a place where microalgae are likely to accumulate in the culture tank 21. Further, the culture tank 21 may be provided with a concave portion or a convex portion where microalgae are likely to accumulate, and the redox potential measuring unit 61 measures the redox potential of the culture solution 10 in the vicinity of the concave portion or the convex portion to make fine particles. The detection accuracy of nitrate respiration of algae can be improved.

10 培養液
11,12,13,14 微細藻培養装置
2,21 培養槽
2A 周回路
3 羽根攪拌装置
3A 攪拌羽根
3B 攪拌駆動部
31 気泡攪拌装置
31A 気泡発生部
31B 空気供給部
4,41 亜硝酸イオン計測部
5,51 制御部
6,61 酸化還元電位計測部
71 光源装置
10 Culture solution 11, 12, 13, 14 Micro-algae culture device 2,21 Culture tank 2A Circumferential circuit 3 Blade stirrer 3A Stirrer blade 3B Stirring drive unit 31 Bubble stirrer 31A Bubble generator 31B Air supply section 4,41 Nitrogen Ion measurement unit 5,51 Control unit 6,61 Oxidation-reduction potential measurement unit 71 Light source device

Claims (10)

微細藻を含む培養液を収容した培養槽において前記微細藻の硝酸呼吸を検出する工程と、
前記微細藻の硝酸呼吸の検出に基づいて前記培養槽の前記培養液の流動を促進する工程と、
を含む、微細藻培養方法。
A step of detecting nitrate respiration of the microalgae in a culture tank containing a culture solution containing microalgae, and
A step of promoting the flow of the culture solution in the culture tank based on the detection of nitrate respiration of the microalgae, and
A method for culturing microalgae, including.
前記微細藻の硝酸呼吸を検出する工程は、前記培養液の亜硝酸イオン濃度を計測する、請求項1に記載の微細藻培養方法。 The microalgae culture method according to claim 1, wherein the step of detecting nitrate respiration of the microalgae is a step of measuring the nitrite ion concentration of the culture solution. 前記微細藻の硝酸呼吸を検出する工程は、前記培養液の酸化還元電位を計測する、請求項1に記載の微細藻培養方法。 The microalgae culture method according to claim 1, wherein the step of detecting nitric acid respiration of the microalgae is to measure the oxidation-reduction potential of the culture solution. 前記培養液の流動を促進する工程は、攪拌羽根により前記培養液の流動を促進する、請求項1〜3のいずれか1つに記載の微細藻培養方法。 The microalgae culture method according to any one of claims 1 to 3, wherein the step of promoting the flow of the culture solution is to promote the flow of the culture solution with a stirring blade. 前記培養液の流動を促進する工程は、気泡により前記培養液の流動を促進する、請求項1〜3のいずれか1つに記載の微細藻培養方法。 The microalgae culture method according to any one of claims 1 to 3, wherein the step of promoting the flow of the culture solution is to promote the flow of the culture solution by means of bubbles. 微細藻を含む培養液を収容する培養槽と、
前記微細藻の硝酸呼吸を検出する検出手段と、
前記培養液の流動を促進する促進手段と、
前記検出手段の検出結果に基づいて前記促進手段を制御する制御部と、
を備える、微細藻培養装置。
A culture tank containing a culture solution containing microalgae and
A detection means for detecting nitric acid respiration of the microalgae and
As a means for promoting the flow of the culture solution,
A control unit that controls the promotion means based on the detection result of the detection means,
A microalgae culturing device.
前記検出手段は、前記培養液の亜硝酸イオン濃度を計測する亜硝酸イオン計測部であり、前記制御部は、前記亜硝酸イオン計測部で計測された結果に基づいて前記促進手段を制御する、請求項6に記載の微細藻培養装置。 The detection means is a nitrite ion measuring unit that measures the nitrite ion concentration of the culture solution, and the control unit controls the promoting means based on the result measured by the nitrite ion measuring unit. The microalgae culture apparatus according to claim 6. 前記検出手段は、前記培養液の酸化還元電位を計測する酸化還元電位計測部であり、前記制御部は、前記酸化還元電位計測部で計測された結果に基づいて前記促進手段を制御する、請求項6に記載の微細藻培養装置。 The detection means is an oxidation-reduction potential measuring unit that measures the redox potential of the culture solution, and the control unit controls the promotion means based on the result measured by the oxidation-reduction potential measuring unit. Item 6. The microalgae culture apparatus according to Item 6. 前記促進手段は、前記培養液の中に配置される攪拌羽根と、前記攪拌羽根を駆動する攪拌駆動部と、を有した羽根攪拌装置であり、前記制御部は、前記検出手段の検出結果に基づいて前記羽根攪拌装置の前記攪拌駆動部を制御する、請求項6〜8のいずれか1つに記載の微細藻培養装置。 The accelerating means is a blade stirring device having a stirring blade arranged in the culture solution and a stirring driving unit for driving the stirring blade, and the control unit determines the detection result of the detection means. The microalgae culture apparatus according to any one of claims 6 to 8, which controls the stirring driving unit of the blade stirring apparatus based on the above. 前記促進手段は、前記培養液の中に配置されて気泡を発生させる気泡発生部と、前記気泡発生部に空気を供給する空気供給部と、を有した気泡攪拌装置であり、前記制御部は、前記検出手段の検出結果に基づいて前記気泡攪拌装置の前記空気供給部を制御する、請求項6〜8のいずれか1つに記載の微細藻培養装置。 The promoting means is a bubble agitator having a bubble generating unit arranged in the culture solution to generate bubbles and an air supply unit for supplying air to the bubble generating unit, and the control unit is The microalgae culture apparatus according to any one of claims 6 to 8, wherein the air supply unit of the bubble agitator is controlled based on the detection result of the detection means.
JP2019079394A 2019-04-18 2019-04-18 Microalga culture method and microalga culture device Pending JP2020174579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019079394A JP2020174579A (en) 2019-04-18 2019-04-18 Microalga culture method and microalga culture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079394A JP2020174579A (en) 2019-04-18 2019-04-18 Microalga culture method and microalga culture device

Publications (1)

Publication Number Publication Date
JP2020174579A true JP2020174579A (en) 2020-10-29

Family

ID=72936075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079394A Pending JP2020174579A (en) 2019-04-18 2019-04-18 Microalga culture method and microalga culture device

Country Status (1)

Country Link
JP (1) JP2020174579A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207154A (en) * 2007-02-28 2008-09-11 Livestock Industry's Environmental Improvement Organization Digestion liquid processing method and its device
JP2010161979A (en) * 2009-01-16 2010-07-29 Kimigafuchigakuen Sojo Univ Microorganism culture apparatus
JP2012183002A (en) * 2011-03-03 2012-09-27 Research Institute Of Tsukuba Bio-Tech Corp Apparatus for continuous culture of microalgae and method for continuous culture of microalgae using the apparatus
CN106754390A (en) * 2016-12-30 2017-05-31 山东宝来利来生物工程股份有限公司 The albuminiferous chlorella of one plant height and its cultural method and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207154A (en) * 2007-02-28 2008-09-11 Livestock Industry's Environmental Improvement Organization Digestion liquid processing method and its device
JP2010161979A (en) * 2009-01-16 2010-07-29 Kimigafuchigakuen Sojo Univ Microorganism culture apparatus
JP2012183002A (en) * 2011-03-03 2012-09-27 Research Institute Of Tsukuba Bio-Tech Corp Apparatus for continuous culture of microalgae and method for continuous culture of microalgae using the apparatus
CN106754390A (en) * 2016-12-30 2017-05-31 山东宝来利来生物工程股份有限公司 The albuminiferous chlorella of one plant height and its cultural method and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AQUATIC MICROBIAL ECOLOGY, vol. 79, JPN6022052305, 2017, pages 85 - 99, ISSN: 0005075954 *
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 108, no. 14, JPN6022052299, 2011, pages 5649 - 5654, ISSN: 0005075955 *

Similar Documents

Publication Publication Date Title
JP5127200B2 (en) Wastewater treatment equipment containing ammonia nitrogen
CN102643742B (en) Autotrophic bacteria kinetic parameter measurement device and method
CN106630147B (en) Device and method based on biofilm reactor removal water body nitrate
Capson-Tojo et al. Purple phototrophic bacteria are outcompeted by aerobic heterotrophs in the presence of oxygen
CN1185583A (en) Method for continuously and quickly measuring biochemical oxygen demand and apparatus thereof
JP2022536668A (en) Methods for controlling fermentation processes
JP4835536B2 (en) Removal of organic substances and nitrogen from liquid to be treated
JP3301428B2 (en) Wastewater treatment test method
JP4949873B2 (en) Biological reaction method and biological reaction apparatus
Beyenal et al. Mass‐transport dynamics, activity, and structure of sulfate‐reducing biofilms
JP2020174579A (en) Microalga culture method and microalga culture device
Chen et al. Measure microbial activity driven oxygen transfer in membrane aerated biofilm reactor from supply side
CN101815678A (en) Process for mixed chemical/electrochemical treatment of a liquid medium loaded with nitrates, device for treating such a liquid medium and applications
CN107827232A (en) One kind is with N2O is the cultural method of the denitrifying bacterium of end-product
JP2000504215A (en) Methods for monitoring biological activity in liquids
CN211620509U (en) Activated sludge aerobic respiration rate on-line detection equipment in sewage treatment system
Wang et al. Low-intensity electromagnetic field as a new engineering oriented bioaugmentation strategy for anammox granules
JP3391835B2 (en) Gas dissolving apparatus and reaction apparatus including the same
JP2004041093A (en) Apparatus and method for cell culture
JP4240525B2 (en) Cell culture and recovery method and apparatus
JP7231425B2 (en) Culture system, culture method and method for producing cultured product
JP2012245479A (en) Wastewater treatment apparatus and wastewater treatment method
CN216837309U (en) Device for treating organic wastewater difficult to degrade
JP4835580B2 (en) Nitrogen-containing waste liquid treatment method
JP5857430B2 (en) Control method of chemical injection to water system

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20211210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230606