JP2020173982A - Airtight terminal - Google Patents

Airtight terminal Download PDF

Info

Publication number
JP2020173982A
JP2020173982A JP2019075428A JP2019075428A JP2020173982A JP 2020173982 A JP2020173982 A JP 2020173982A JP 2019075428 A JP2019075428 A JP 2019075428A JP 2019075428 A JP2019075428 A JP 2019075428A JP 2020173982 A JP2020173982 A JP 2020173982A
Authority
JP
Japan
Prior art keywords
glass
layer material
airtight terminal
inner layer
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019075428A
Other languages
Japanese (ja)
Other versions
JP7325214B2 (en
Inventor
西脇 進
Susumu Nishiwaki
進 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Priority to JP2019075428A priority Critical patent/JP7325214B2/en
Priority to CN202020511202.3U priority patent/CN212162147U/en
Publication of JP2020173982A publication Critical patent/JP2020173982A/en
Application granted granted Critical
Publication of JP7325214B2 publication Critical patent/JP7325214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Connections Arranged To Contact A Plurality Of Conductors (AREA)

Abstract

To provide an airtight terminal using composite glass suitable for increasing current capacity.SOLUTION: An airtight terminal 10 includes a metal outer ring 12 having at least one through-hole 11, a lead 13 including at least a low resistance conductor inserted through the through-hole of the metal outer ring, and an insulating glass 14 for sealing the metal outer ring and the lead. The insulating glass is made of composite glass composed of a high-expansion glass inner layer material and an outer layer material of low expansion glass rather than the inner layer material disposed to cover the inner layer material. The inner layer material is made of a glass material selected from a group of, for example, boric acid-based glass, boron silicate-based glass, zinc boric acid-based glass, alkaline boron silicate-based glass, alkaline earth silicate-based glass, and phosphoric acid-based glass.SELECTED DRAWING: Figure 1

Description

本発明は、絶縁材に複合ガラス材を用いた気密端子に関する。 The present invention relates to an airtight terminal using a composite glass material as an insulating material.

気密端子は、金属外環の挿通孔に絶縁材を介してリードを気密に封着したもので、気密容器内に収容された電気機器や素子に電流を供給したり、電気機器や素子から信号を外部に導出したりする場合に用いられる。特に金属外環とリードを絶縁ガラスで封着するGTMS(Glass−to−Metal−Seal)タイプの気密端子は、整合封止型と圧縮封止型の2種類に大別される。前述の気密端子において信頼性の高い気密封止を確保するには、外環およびリードの金属材と絶縁ガラスの熱膨張係数を適正に選択することが重要となる。封止用の絶縁ガラスは、金属外環とリードの素材、要求温度プロファイルおよびその熱膨張係数によって決定されている。整合封止の場合、金属材と絶縁ガラスの熱膨張係数が可能な限り一致するように封止素材を選定する。一方、圧縮封止は、金属外環が絶縁ガラスおよびリードを圧縮するように意図的に異なる熱膨張係数の金属材と絶縁ガラスの材料が選択されている。 An airtight terminal is an airtight terminal in which a lead is airtightly sealed in an insertion hole of a metal outer ring via an insulating material, and a current is supplied to an electric device or element housed in the airtight container, or a signal is sent from the electric device or element. Is used when deriving to the outside. In particular, GTMS (Glass-to-Metal-Seal) type airtight terminals that seal the metal outer ring and leads with insulating glass are roughly classified into two types, a matching sealing type and a compression sealing type. In order to ensure highly reliable airtight sealing in the above-mentioned airtight terminals, it is important to properly select the coefficient of thermal expansion of the metal material of the outer ring and the lead and the insulating glass. The insulating glass for sealing is determined by the material of the metal outer ring and lead, the required temperature profile and its coefficient of thermal expansion. In the case of matching sealing, the sealing material is selected so that the coefficients of thermal expansion of the metal material and the insulating glass match as much as possible. On the other hand, for compression sealing, a metal material and an insulating glass material having intentionally different coefficients of thermal expansion are selected so that the metal outer ring compresses the insulating glass and the lead.

従来の気密端子は高い気密信頼性ならびに電気絶縁性を確保するため、整合封止型気密端子においては、金属外環およびリード材に広い温度範囲でガラス材と熱膨張係数が一致しているコバール合金(Fe54%、Ni28%、Co18%)を使用して、両者をホウケイ酸ガラスからなる絶縁ガラスで封着し、圧縮封止型気密端子においては、使用温度範囲においてガラスに同心円状の圧縮応力が加わるように、炭素鋼またはステンレス鋼などの鋼製の金属外環と、鉄ニッケル合金(Fe50%、Ni50%)や鉄クロム合金(Fe72%、Cr28%)などの鉄合金のリード材を使用して、両者をソーダバリウムガラスからなる絶縁ガラスで封着していた。 In order to ensure high airtight reliability and electrical insulation of conventional airtight terminals, Kovar has the same thermal expansion coefficient as the glass material over a wide temperature range for the metal outer ring and lead material in the matching sealed airtight terminal. Using an alloy (Fe 54%, Ni 28%, Co 18%), both are sealed with insulating glass made of borosilicate glass, and in the compression-sealed airtight terminal, the compressive stress concentric with the glass in the operating temperature range. Uses a metal outer ring made of steel such as carbon steel or stainless steel, and a lead material of an iron alloy such as an iron-nickel alloy (Fe50%, Ni50%) or an iron-chromium alloy (Fe72%, Cr28%). Then, both were sealed with insulating glass made of sodabarium glass.

特開昭61−260560号公報Japanese Unexamined Patent Publication No. 61-260560

近年、気密端子の大電流容量化が求められるようになっている。例えば、コンビニエンス・ストアのようなスペースが限られた店舗内に設置する冷凍機用に小型かつ高性能なコンプレッサーが求められるようになっている。このように業務用途を中心に近年のコンプレッサーは、従来サイズに比し小型化される傾向にあるが、冷凍機の能力向上に伴ってコンプレッサーに取り付けられた気密端子を通る最大電流値は上昇する傾向にある。従来、冷凍機用気密端子のリード・ピンには、機械的強度や耐熱性の観点からリード材に鉄合金などの高抵抗金属を用いることが多い。このため、特に大電力用途向けの気密端子においては、過負荷時にジュール熱によってリード材を封止する絶縁ガラスが溶融してしまう危険性が増してきたといえる。また、大電力用途の気密端子は、リードを従来の鉄合金製のリード材から、銅やアルミニウム合金などの低抵抗金属製のリード材に変更することも提案されている。 In recent years, there has been a demand for a large current capacity of airtight terminals. For example, there is a growing demand for small, high-performance compressors for refrigerators installed in stores with limited space, such as convenience stores. In this way, compressors in recent years, mainly for commercial use, tend to be smaller than conventional sizes, but the maximum current value that passes through the airtight terminals attached to the compressor increases as the capacity of the refrigerator increases. There is a tendency. Conventionally, for the lead pin of an airtight terminal for a refrigerator, a high resistance metal such as an iron alloy is often used as the lead material from the viewpoint of mechanical strength and heat resistance. For this reason, it can be said that the risk of melting the insulating glass that seals the lead material due to Joule heat at the time of overload has increased, especially in the airtight terminal for high power applications. It has also been proposed to change the lead material of the airtight terminal for high power use from the conventional lead material made of iron alloy to a lead material made of low resistance metal such as copper or aluminum alloy.

気密端子の電流容量を大きくするために、銅やアルミニウムなどの低抵抗導体からなる比較的大線径のリードを用いることできれば便利である。しかし、これら低抵抗導体は熱膨張率が大きく、これをより熱膨張率の小さいホウ珪酸ガラスやソーダライムガラスの絶縁ガラスで封止すると、低抵抗導体リードの膨張と収縮に伴い半径方向に引張り応力が生じ、その結果シール界面またはリード軸方向にガラス内部を貫通するクラックが発生しリーク不良となり易いという欠点があった。また、熱膨張を上記低抵抗導体に整合させるため、NaO、KO等の含有量を増やした高アルカリ金属ガラスを用いて絶縁ガラスの膨張率を上げた場合は、ガラスの化学的耐久性が著しく低下してしまうため実用できないという課題があった。 In order to increase the current capacity of the airtight terminal, it would be convenient if a lead with a relatively large wire diameter made of a low resistance conductor such as copper or aluminum could be used. However, these low-resistance conductors have a large coefficient of thermal expansion, and when they are sealed with insulating glass of borosilicate glass or soda lime glass, which has a lower coefficient of thermal expansion, they are pulled in the radial direction as the low-resistance conductor leads expand and contract. There is a drawback that stress is generated, and as a result, cracks penetrating the inside of the glass in the direction of the seal interface or the lead axis are generated, and leak defects are likely to occur. Further, in order to match the thermal expansion with the low resistance conductor, when the expansion coefficient of the insulating glass is increased by using a highly alkali metal glass having an increased content of Na 2 O, K 2 O, etc., the glass is chemically expanded. There was a problem that it could not be put into practical use because its durability was significantly reduced.

本発明の目的は、大電流容量化に適合した複合ガラスを用いた気密端子を提供することにある。 An object of the present invention is to provide an airtight terminal using a composite glass suitable for increasing the current capacity.

本発明によれば、少なくとも1個の貫通孔を有した金属外環と、この金属外環の貫通孔に挿通した低抵抗導体を含むリードと、金属外環とリードとを封着する絶縁ガラスとを備え、該絶縁ガラスは、高膨張ガラスの内層材と、少なくともこの内層材の外径部を覆った該内層材より低膨張ガラスの外層材から構成した複合ガラスからなる気密端子が提供される。上記絶縁ガラスは、高膨張ガラスの内層材の表面にこれより低膨張のガラスからなる外層材を設けたことで、化学的耐久性に劣る高膨張ガラスを気密端子の封止材に用いても、高膨張ガラスの露出表面を低膨張ガラスの外層材が被覆しているため、内層材ガラスの化学的耐久性を気にせずに使用できる。また、封止時の加熱から冷却する過程でこの内層材の収縮に伴い外層材に生じる大きな圧縮応力を利用して外層材のガラスを強化し、外層材ガラスの機械的強度を向上させる。 According to the present invention, a metal outer ring having at least one through hole, a lead including a low resistance conductor inserted through the through hole of the metal outer ring, and an insulating glass for sealing the metal outer ring and the lead. The insulating glass is provided with an airtight terminal composed of an inner layer material of a highly expanding glass and a composite glass composed of an outer layer material of a lower expansion glass than the inner layer material covering at least the outer diameter portion of the inner layer material. Glass. In the above insulating glass, a high expansion glass having inferior chemical durability is used as a sealing material for an airtight terminal by providing an outer layer material made of a glass having a lower expansion on the surface of the inner layer material of the high expansion glass. Since the exposed surface of the high expansion glass is covered with the outer layer material of the low expansion glass, it can be used without worrying about the chemical durability of the inner layer glass. Further, in the process of cooling from heating at the time of sealing, the glass of the outer layer material is strengthened by utilizing the large compressive stress generated in the outer layer material due to the shrinkage of the inner layer material, and the mechanical strength of the outer layer material glass is improved.

本発明に係る気密端子10の平面図を示す。The plan view of the airtight terminal 10 which concerns on this invention is shown. 本発明に係る気密端子10の正面図を示し、図1のD−D線に沿って切断した正面部分断面図を示す。A front view of the airtight terminal 10 according to the present invention is shown, and a front partial cross-sectional view cut along the DD line of FIG. 1 is shown. 本発明に係る気密端子10の下面図を示す。The bottom view of the airtight terminal 10 which concerns on this invention is shown. 本発明に係る気密端子20の平面図を示す。The plan view of the airtight terminal 20 which concerns on this invention is shown. 本発明に係る気密端子20の正面図を示し、図4のD−D線に沿って切断した正面部分断面図を示す。A front view of the airtight terminal 20 according to the present invention is shown, and a front partial cross-sectional view cut along the DD line of FIG. 4 is shown. 本発明に係る気密端子20の下面図を示す。The bottom view of the airtight terminal 20 which concerns on this invention is shown.

本発明に係る気密端子10は、図1ないし図3に示すように、少なくとも1個の貫通孔11を有した金属外環12と、この金属外環12の貫通孔11に挿通した少なくとも低抵抗導体を含むリード13と、金属外環12とリード13とを封着する絶縁ガラス14とを備え、絶縁ガラス14は、リード12の側に配置された高膨張ガラスの内層材14aと、内層材14aの外側を覆って金属外環12の側に配置されており内層材14aよりも低膨張ガラスの外層材14bとで構成した複合ガラスからなる。上記構成により、電流容量の向上に有利な銅、アルミニウムなどの低抵抗導体またはこれら低抵抗導体を含むリード13を使用しながら、その熱膨張率に整合し、かつ封止時の加熱から冷却する過程でこの内層材14aの収縮に伴い外層材に生じる大きな圧縮応力を利用して外層材14bのガラスを強化し、外層材ガラスの機械的強度を向上させた複合ガラス絶縁材を有する気密端子を提供する。 As shown in FIGS. 1 to 3, the airtight terminal 10 according to the present invention has a metal outer ring 12 having at least one through hole 11 and at least a low resistance inserted through the through hole 11 of the metal outer ring 12. A lead 13 including a conductor and an insulating glass 14 for sealing the metal outer ring 12 and the lead 13 are provided, and the insulating glass 14 includes an inner layer material 14a of a highly expanding glass arranged on the side of the lead 12 and an inner layer material. It is made of a composite glass that covers the outside of 14a and is arranged on the side of the metal outer ring 12 and is composed of an outer layer material 14b that is a lower expansion glass than the inner layer material 14a. With the above configuration, while using a low resistance conductor such as copper or aluminum which is advantageous for improving the current capacity or a lead 13 containing these low resistance conductors, the lead 13 is matched to the coefficient of thermal expansion and cooled from heating at the time of sealing. An airtight terminal having a composite glass insulating material in which the glass of the outer layer material 14b is strengthened by utilizing the large compressive stress generated in the outer layer material due to the shrinkage of the inner layer material 14a in the process and the mechanical strength of the outer layer material glass is improved. provide.

金属外環12は鉄または鉄基合金からなり、リード13は銅、銅合金、アルミニウム、アルミニウム合金などの低抵抗導体または図5に示すように鋼材の芯材23aに銅、銅合金、アルミニウム、アルミニウム合金など低抵抗導体の外被材23bを施した複合金属リード23からなる。鋼材は特に限定されないが、例えばJIS−SUH309、SUH310、SUH409、SUH409L、SUH446などが好ましい。 The metal outer ring 12 is made of iron or an iron-based alloy, and the lead 13 is a low resistance conductor such as copper, copper alloy, aluminum or aluminum alloy, or as shown in FIG. 5, a steel core material 23a is formed of copper, copper alloy, aluminum, etc. It is composed of a composite metal lead 23 provided with an outer cover material 23b of a low resistance conductor such as an aluminum alloy. The steel material is not particularly limited, but for example, JIS-SUH309, SUH310, SUH409, SUH409L, SUH446 and the like are preferable.

絶縁ガラス14を構成する内層材14aは、同外層材14bよりも高膨張のガラス材であれば何れの材料を使用してもよい。例えば、内層材14aの線膨張率は12〜18ppm/Kの範囲のホウ酸系ガラス(B)、ボロンシリケート系ガラス(B−SiO)、亜鉛ホウ酸系ガラス(B−ZnO)、アルカリボロンシリケート系ガラス(SiO−B−RO[Rはアルカリ金属])、アルカリ土類シリケート系ガラス(SiO−RO[Rはアルカリ土類金属])、リン酸系ガラス(P)の群から選択されたガラス材を用いることができ、より好ましくは線膨張率12〜16ppm/Kの範囲のホウ酸系ガラス(B)、ボロンシリケート系ガラス(B−SiO)、亜鉛ホウ酸系ガラス(B−ZnO)、アルカリボロンシリケート系ガラス(SiO−B−RO[Rはアルカリ金属])、アルカリ土類シリケート系ガラス(SiO−RO[Rはアルカリ土類金属])、リン酸系ガラス(P)の群から選択されたガラス材を用いると良い。内層材14aは、リード13を侵さず外層材14bに拡散し難く消失しないものが好ましい。絶縁ガラス14の外層材14bは、内層材14aよりも低膨張でかつ化学的耐久性、耐候性に優れたガラス材であれば何れの材料を使用してもよい。例えば、線膨張率が8〜8.5ppm/Kのソーダライムガラスが好適である。外層材14bは、絶縁ガラス14の封止時の冷却過程で内層材14aの収縮に伴う大きな圧縮応力を利用して強化ガラスとなる。 As the inner layer material 14a constituting the insulating glass 14, any material may be used as long as it is a glass material having a higher expansion than the outer layer material 14b. For example, the linear expansion rate of the inner layer material 14a is in the range of 12 to 18 ppm / K, borate-based glass (B 2 O 3 ), boron silicate-based glass (B 2 O 3- SiO 2 ), and zinc borate-based glass (B). 2 O 3- ZnO), alkaline boron silicate-based glass (SiO 2- B 2 O 3- R 2 O [R is alkali metal]), alkaline earth silicate-based glass (SiO 2- RO [R is alkaline earth metal] ]), A glass material selected from the group of phosphoric acid-based glass (P 2 O 5 ) can be used, and more preferably boric acid-based glass (B 2 O 3) having a linear expansion rate in the range of 12 to 16 ppm / K. ), boron silicate glass (B 2 O 3 -SiO 2) , zinc borate based glass (B 2 O 3 -ZnO), alkali borosilicate glass (SiO 2 -B 2 O 3 -R 2 O [R is It is preferable to use a glass material selected from the group of alkali metal]), alkaline earth silicate-based glass (SiO 2- RO [R is alkaline earth metal]), and phosphoric acid-based glass (P 2 O 5 ). The inner layer material 14a preferably does not invade the leads 13 and is difficult to diffuse into the outer layer material 14b and does not disappear. As the outer layer material 14b of the insulating glass 14, any material may be used as long as it is a glass material having lower expansion than the inner layer material 14a and having excellent chemical durability and weather resistance. For example, soda lime glass having a linear expansion coefficient of 8 to 8.5 ppm / K is suitable. The outer layer material 14b becomes tempered glass by utilizing a large compressive stress due to shrinkage of the inner layer material 14a in the cooling process at the time of sealing the insulating glass 14.

なお、本明細書において三端子の気密端子を例示するが、リードを外環にガラス封止した気密端子であれば何れの形態を用いてもよく、例示した気密端子に限定されない。 Although the three-terminal airtight terminal is illustrated in the present specification, any form may be used as long as the lead is glass-sealed in the outer ring, and the airtight terminal is not limited to the illustrated airtight terminal.

本発明に係る実施例1の気密端子10は、図1ないし図3に示すように、3個の貫通孔11を有した炭素鋼の金属外環12と、この金属外環12の貫通孔11に挿通した銅合金のリード13と、金属外環12とリード13とを封着する絶縁ガラス14とを備え、絶縁ガラス14は、リード12の側に配置された線膨張率が12ppm/Kのアルカリボロンシリケート系ガラス(SiO−B−RO)の内層材14aと、内層材14aの外側を覆って金属外環11の側に配置された線膨張率が8ppm/Kのソーダライムガラスの外層材14bとで構成した複合ガラスからなる。 As shown in FIGS. 1 to 3, the airtight terminal 10 of the first embodiment according to the present invention has a metal outer ring 12 of carbon steel having three through holes 11 and a through hole 11 of the metal outer ring 12. A copper alloy lead 13 inserted into the lead 13 and an insulating glass 14 for sealing the metal outer ring 12 and the lead 13 are provided, and the insulating glass 14 is arranged on the side of the lead 12 and has a linear expansion rate of 12 ppm / K. The linear expansion rate of the inner layer material 14a of the alkaline boron silicate-based glass (SiO 2- B 2 O 3- R 2 O) and the linear expansion rate of 8 ppm / K arranged on the side of the metal outer ring 11 covering the outside of the inner layer material 14a. It is made of a composite glass composed of an outer layer material 14b of soda lime glass.

本発明に係る実施例2の気密端子10は、図1ないし図3に示すように、3個の貫通孔11を有したステンレス鋼の金属外環12と、この金属外環12の貫通孔11に挿通した銅合金のリード12と、金属外環11とリード12とを封着する絶縁ガラス13とを備え、絶縁ガラス13は、リード12の側に配置された線膨張率が16ppm/Kのリン酸系ガラス(P)の内層材13aと、内層材13aの外側を覆って金属外環11の側に配置された線膨張率が8.3ppm/Kのソーダライムガラスの外層材13bとで構成した複合ガラスからなる。 As shown in FIGS. 1 to 3, the airtight terminal 10 of the second embodiment according to the present invention has a metal outer ring 12 of stainless steel having three through holes 11 and a through hole 11 of the metal outer ring 12. A copper alloy lead 12 inserted into the lead 12 and an insulating glass 13 for sealing the metal outer ring 11 and the lead 12 are provided, and the insulating glass 13 is arranged on the side of the lead 12 and has a linear expansion rate of 16 ppm / K. The inner layer material 13a of phosphoric acid-based glass (P 2 O 5 ) and the outer layer material of soda lime glass having a linear expansion ratio of 8.3 ppm / K arranged on the side of the metal outer ring 11 so as to cover the outside of the inner layer material 13a. It is made of a composite glass composed of 13b.

本発明に係る実施例3の気密端子20は、図4ないし図6に示すように、3個の貫通孔21を有したステンレス鋼の金属外環22と、この金属外環22の貫通孔21に挿通した鋼材の芯材23aに銅合金の外被材23bを施した複合金属リード23と、金属外環22とリード23とを封着する絶縁ガラス24とを備え、絶縁ガラス24は、リード23の側に配置された線膨張率が15ppm/Kのアルカリボロンシリケート系ガラス(SiO−B−RO)の内層材24aと、内層材24aの外側を覆って金属外環22の側に配置された線膨張率が8.3ppm/Kのソーダライムガラスの外層材24bとで構成した複合ガラスからなる。 As shown in FIGS. 4 to 6, the airtight terminal 20 of the third embodiment according to the present invention has a metal outer ring 22 of stainless steel having three through holes 21 and a through hole 21 of the metal outer ring 22. A composite metal lead 23 in which a copper alloy outer cover material 23b is applied to a core material 23a of a steel material inserted into the lead, and an insulating glass 24 for sealing the metal outer ring 22 and the lead 23 are provided. An inner layer material 24a of an alkali boron silicate-based glass (SiO 2- B 2 O 3- R 2 O) having a linear expansion rate of 15 ppm / K arranged on the side of 23 and a metal outer ring covering the outside of the inner layer material 24a. It is composed of a composite glass arranged on the side of 22 and composed of an outer layer material 24b of soda lime glass having a linear expansion rate of 8.3 ppm / K.

本発明に係る実施例4の気密端子20は、図4ないし図6に示すように、3個の貫通孔21を有したステンレス鋼の金属外環22と、この金属外環22の貫通孔21に挿通した鋼材の芯材23aに銅合金の外被材23bを施した複合金属リード23と、金属外環22とリード23とを封着する絶縁ガラス24とを備え、絶縁ガラス24は、リード23の側に配置された線膨張率が12ppm/Kの亜鉛ホウ酸系ガラス(B−ZnO)の内層材24aと、内層材24aの外側を覆って金属外環22の側に配置された線膨張率が8ppm/Kのソーダライムガラスの外層材24bとで構成した複合ガラスからなる。 As shown in FIGS. 4 to 6, the airtight terminal 20 of the fourth embodiment according to the present invention has a metal outer ring 22 of stainless steel having three through holes 21 and a through hole 21 of the metal outer ring 22. A composite metal lead 23 in which a copper alloy outer cover material 23b is applied to a core material 23a of a steel material inserted into the lead, and an insulating glass 24 for sealing the metal outer ring 22 and the lead 23, and the insulating glass 24 is a lead. and the inner layer member 24a of 23 side to arranged the linear expansion coefficient 12 ppm / K of zinc borate glass (B 2 O 3 -ZnO), covering the outside of the inner layer member 24a arranged on the side of the metal outer ring 22 It is composed of a composite glass composed of an outer layer material 24b of soda lime glass having a linear expansion ratio of 8 ppm / K.

本発明に係る気密端子の外被材は、表面にニッケル、ニッケル燐、ニッケルボロンなど所望の仕上げめっきを施したものも利用できる。また、上記実施例に記載の芯材は、外被材のベース構造を構成できれば何れの材料を用いてもよい、例えば、鋼材、ステンレス鋼に限らず、適宜、Fe−Ni合金、Fe−Cr合金等に変更してもよい。同様に実施例に記載の外層材は、内層材よりも低膨張でかつ化学的耐久性、耐候性に優れたガラス材であればソーダライムガラスに限らず任意のガラス材を用いることができ、例えば、ホウ珪酸ガラス、ソーダバリウムガラス、アルカリ土類アルミノシリケートガラス、ボロンシリケートガラス、アルカリボロンシリケートガラスなどが利用できる。本発明の気密端子のリードおよび金属外環の一部にシリコーン樹脂等の絶縁被覆を装着させても差し支えない。 As the outer cover material of the airtight terminal according to the present invention, a material having a desired finish plating such as nickel, nickel phosphorus, nickel boron, etc. can also be used. Further, the core material described in the above embodiment may be any material as long as it can form the base structure of the outer cover material. For example, the core material is not limited to steel material and stainless steel, and Fe—Ni alloy and Fe—Cr are appropriately used. It may be changed to an alloy or the like. Similarly, as the outer layer material described in the examples, any glass material can be used as long as it is a glass material having lower expansion than the inner layer material and having excellent chemical durability and weather resistance, not limited to soda-lime glass. For example, borosilicate glass, soda-lime glass, alkaline earth aluminosilicate glass, boron silicate glass, alkaline boron silicate glass and the like can be used. An insulating coating such as silicone resin may be attached to a part of the lead of the airtight terminal and the outer ring of the metal of the present invention.

本発明は、特に高電圧・高電流に耐久し、かつ高い気密性が要求される気密端子に利用できる。 INDUSTRIAL APPLICABILITY The present invention can be applied to an airtight terminal that is particularly durable against high voltage and high current and requires high airtightness.

気密端子10、貫通孔11、金属外環12、リード13、絶縁ガラス14、内層材14a、外層材14b、気密端子20、貫通孔21、金属外環22、リード23、芯材23a、外被材23b、絶縁ガラス24、内層材24a、外層材24b。
Airtight terminal 10, through hole 11, metal outer ring 12, lead 13, insulating glass 14, inner layer material 14a, outer layer material 14b, airtight terminal 20, through hole 21, metal outer ring 22, lead 23, core material 23a, outer cover Material 23b, insulating glass 24, inner layer material 24a, outer layer material 24b.

Claims (10)

少なくとも1個の貫通孔を有した金属外環と、この金属外環の前記貫通孔に挿通した少なくとも低抵抗導体を含むリードと、前記金属外環と前記リード12とを封着する絶縁ガラスを備え、前記絶縁ガラスは、高膨張ガラスの内層材と、この内層材を覆って配置された前記内層材よりも低膨張ガラスの外層材とで構成した複合ガラスからなる気密端子。 An insulating glass for sealing a metal outer ring having at least one through hole, a lead including at least a low resistance conductor inserted through the through hole of the metal outer ring, and the metal outer ring and the lead 12. The insulating glass is an airtight terminal made of a composite glass composed of an inner layer material of high-expansion glass and an outer layer material of lower expansion glass than the inner layer material arranged so as to cover the inner layer material. 前記内層材は、ホウ酸系ガラス、ボロンシリケート系ガラス、亜鉛ホウ酸系ガラス、アルカリボロンシリケート系ガラス、アルカリ土類シリケート系ガラス、リン酸系ガラスの群から選択されたガラス材からなる請求項1に記載の気密端子。 The inner layer material is a glass material selected from the group of boric acid-based glass, boron silicate-based glass, zinc boric acid-based glass, alkaline boron silicate-based glass, alkaline earth silicate-based glass, and phosphoric acid-based glass. The airtight terminal according to 1. 前記内層材は、線膨張率が12〜18ppm/Kの範囲の請求項1または請求項2に記載の気密端子。 The airtight terminal according to claim 1 or 2, wherein the inner layer material has a linear expansion coefficient in the range of 12 to 18 ppm / K. 前記リードは、芯材に低抵抗導体の外被材を施した複合金属リードからなる請求項1ないし請求項3の何れか1つに記載の気密端子。 The airtight terminal according to any one of claims 1 to 3, wherein the lead is a composite metal lead in which a core material is coated with a low resistance conductor outer cover material. 前記外被材の表面にめっきを施した請求項4に記載の気密端子。 The airtight terminal according to claim 4, wherein the surface of the outer cover material is plated. 前記めっきは、ニッケル、ニッケル燐、ニッケルボロンの何れかからなる請求項5に記載の気密端子。 The airtight terminal according to claim 5, wherein the plating is made of nickel, nickel phosphorus, or nickel boron. 前記芯材は、鋼材、ステンレス鋼、Fe−Ni合金、Fe−Cr合金の群から選択された金属材からなる請求項4ないし請求項6の何れか1つに記載の気密端子。 The airtight terminal according to any one of claims 4 to 6, wherein the core material is a metal material selected from the group of steel, stainless steel, Fe—Ni alloy, and Fe—Cr alloy. 前記低抵抗導体は、銅、銅合金、アルミニウム、アルミニウム合金の群から選択された金属材からなる請求項1ないし請求項7の何れか1つに記載の気密端子。 The airtight terminal according to any one of claims 1 to 7, wherein the low resistance conductor is made of a metal material selected from the group of copper, copper alloy, aluminum, and aluminum alloy. 前記外層材は、前記内層材よりも低膨張でかつ化学的耐久性、耐候性に優れたガラス材からなる請求項1ないし請求項8の何れか1つに記載の気密端子。 The airtight terminal according to any one of claims 1 to 8, wherein the outer layer material is made of a glass material having lower expansion than the inner layer material and having excellent chemical durability and weather resistance. 前記外層材は、ソーダライムガラス、ホウ珪酸ガラス、ソーダバリウムガラス、アルカリ土類アルミノシリケートガラス、ボロンシリケートガラス、アルカリボロンシリケートガラスの群から選択したガラス材からなる請求項9に記載の気密端子。
The airtight terminal according to claim 9, wherein the outer layer material is a glass material selected from the group of soda-lime glass, borosilicate glass, soda barium glass, alkaline earth aluminosilicate glass, boron silicate glass, and alkaline boron silicate glass.
JP2019075428A 2019-04-11 2019-04-11 airtight terminal Active JP7325214B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019075428A JP7325214B2 (en) 2019-04-11 2019-04-11 airtight terminal
CN202020511202.3U CN212162147U (en) 2019-04-11 2020-04-09 Airtight terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019075428A JP7325214B2 (en) 2019-04-11 2019-04-11 airtight terminal

Publications (2)

Publication Number Publication Date
JP2020173982A true JP2020173982A (en) 2020-10-22
JP7325214B2 JP7325214B2 (en) 2023-08-14

Family

ID=72831570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019075428A Active JP7325214B2 (en) 2019-04-11 2019-04-11 airtight terminal

Country Status (2)

Country Link
JP (1) JP7325214B2 (en)
CN (1) CN212162147U (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117074U (en) * 1988-01-30 1989-08-08
JPH04119965U (en) * 1991-04-15 1992-10-27 株式会社フジ電科 airtight terminal
JPH08162188A (en) * 1994-12-08 1996-06-21 Fuji Denka:Kk Airtight terminal
JP2017112082A (en) * 2015-12-15 2017-06-22 エヌイーシー ショット コンポーネンツ株式会社 Airtight terminal
JP2017124945A (en) * 2016-01-12 2017-07-20 日本電気硝子株式会社 Sealing material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117074U (en) * 1988-01-30 1989-08-08
JPH04119965U (en) * 1991-04-15 1992-10-27 株式会社フジ電科 airtight terminal
JPH08162188A (en) * 1994-12-08 1996-06-21 Fuji Denka:Kk Airtight terminal
JP2017112082A (en) * 2015-12-15 2017-06-22 エヌイーシー ショット コンポーネンツ株式会社 Airtight terminal
JP2017124945A (en) * 2016-01-12 2017-07-20 日本電気硝子株式会社 Sealing material

Also Published As

Publication number Publication date
CN212162147U (en) 2020-12-15
JP7325214B2 (en) 2023-08-14

Similar Documents

Publication Publication Date Title
CN103474831A (en) Glass sintered high temperature and high pressure sealing electric connector
US2458748A (en) Hermetic seal for electric terminals and the like
JP6385010B2 (en) Airtight terminal
KR102417281B1 (en) airtight terminal
JP7325214B2 (en) airtight terminal
US2300931A (en) Metal-porcelain-glass vacuumtight structure
US20070103080A1 (en) Glass sealing and electric lamps with such sealing
US2520663A (en) Glass to metal seal for high-frequency electric discharge tubes
US3637917A (en) Hermetic high-current therminal for electronic devices
JP2015064928A (en) Airtight terminal
JP2005353291A (en) Airtight terminal and manufacturing method of the same
JP7282059B2 (en) airtight terminal
US20220230787A1 (en) Hermetic Terminal
JP2017084954A (en) Airtight terminal
US1364080A (en) Ballasting device
JP2017084634A (en) Airtight terminal
US20200149635A1 (en) Hermetic glass-to-metal seal reinforced with a ceramic disc to prevent crack propagation
US2431308A (en) Arrangements for insulatingly leading electric conductors through metal casings
US10847288B2 (en) High fidelity feedthrough system
US3368024A (en) Glass semiconductor housing having its interior surfaces covered with an alkali-freesolder glass
JPH08162188A (en) Airtight terminal
US1872354A (en) Composite conductor
US3475144A (en) Composite metal conductor sealed to glass
JPS58218780A (en) Airtight terminal
Lindell Envelope design for semiconductor devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230801

R150 Certificate of patent or registration of utility model

Ref document number: 7325214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150