JP2020173063A - Air sending system - Google Patents

Air sending system Download PDF

Info

Publication number
JP2020173063A
JP2020173063A JP2019075349A JP2019075349A JP2020173063A JP 2020173063 A JP2020173063 A JP 2020173063A JP 2019075349 A JP2019075349 A JP 2019075349A JP 2019075349 A JP2019075349 A JP 2019075349A JP 2020173063 A JP2020173063 A JP 2020173063A
Authority
JP
Japan
Prior art keywords
pressure
control valve
flow velocity
rate
valve opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019075349A
Other languages
Japanese (ja)
Other versions
JP7181830B2 (en
Inventor
泰平 飛田
Taihei Tobita
泰平 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2019075349A priority Critical patent/JP7181830B2/en
Publication of JP2020173063A publication Critical patent/JP2020173063A/en
Application granted granted Critical
Publication of JP7181830B2 publication Critical patent/JP7181830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

To shorten rise time of an air sending system while suppressing the generation of a water hammer.SOLUTION: An air sending system 100 includes piping 10 in which steam circulates, a control valve 20, and a control portion 30. The control portion 30 controls a valve opening of the control valve 20 within a range in which a flow rate of a fluid on a downstream side of the control valve 20 is an upper limit flow rate or less, thereby performing air sending control that raises secondary pressure that is the pressure of the fluid on the downstream side of the control valve 20 to a predetermined target pressure. The control portion 30 corrects the valve opening within a range in which the flow rate of the fluid on the downstream side of the control valve 20 exceeds the upper limit flow rate on the basis of a change rate of secondary temperature that is the temperature of the fluid on the downstream side of the control valve 20 at the time of changing the valve opening in the air sending control or a change rate of the secondary pressure.SELECTED DRAWING: Figure 1

Description

ここに開示された技術は、蒸気の送気システムに関する。 The technology disclosed herein relates to a steam insufflation system.

例えば、配管を介して蒸気を送気する送気システムが知られている。例えば、特許文献1には、スチームヘッダに貯留された蒸気を蒸気使用機器へ配管を介して送気する送気システムが開示されている。 For example, an air supply system that supplies steam through piping is known. For example, Patent Document 1 discloses an air supply system that supplies steam stored in a steam header to a steam-using device via a pipe.

特開2008−224148号公報Japanese Unexamined Patent Publication No. 2008-224148

ところで、このような送気システムにおいて送気を開始する際に、蒸気を急激に流通させると配管においてウォータハンマが発生する虞がある。一方、ウォータハンマの発生を回避するために蒸気を少しずつ流通させると、送気システムの立ち上がり時間、即ち、蒸気使用機器における蒸気の圧力が所定の目標圧力に達するまでの時間が長くなってしまう。 By the way, when steam is rapidly circulated when starting air supply in such an air supply system, water hammer may occur in the piping. On the other hand, if steam is circulated little by little to avoid the occurrence of water hammer, the rise time of the air supply system, that is, the time until the steam pressure in the steam-using equipment reaches a predetermined target pressure becomes long. ..

ここに開示された技術は、かかる点に鑑みてなされたものであり、その目的とするところは、ウォータハンマの発生を抑制しつつ、送気システムの立ち上がり時間を短縮することにある。 The technique disclosed herein has been made in view of this point, and the purpose thereof is to shorten the start-up time of the air supply system while suppressing the occurrence of water hammer.

ここに開示された送気システムは、蒸気が流通する配管と、前記配管に設けられ、前記配管を流通する蒸気の流量を調節する制御弁と、前記制御弁の開度を制御する制御部とを備え、前記制御部は、蒸気の送気を開始する際に、前記制御弁の下流側における流体の流速が所定の上限流速以下となる範囲で前記制御弁の弁開度を制御することによって、前記制御弁の下流側の流体の圧力である二次圧力を所定の目標圧力まで上昇させる送気制御を行い、前記送気制御における前記弁開度の変更時の前記制御弁の下流側の流体の温度である二次温度の変化率又は前記二次圧力の変化率に基づいて前記弁開度を前記制御弁の下流側の流体の流速が前記上限流速を超える範囲で補正する。 The air supply system disclosed here includes a pipe through which steam flows, a control valve provided in the pipe for adjusting the flow rate of the steam flowing through the pipe, and a control unit for controlling the opening degree of the control valve. The control unit controls the valve opening degree of the control valve in a range in which the flow velocity of the fluid on the downstream side of the control valve is equal to or less than a predetermined upper limit flow rate when starting the air supply of steam. , The air supply control that raises the secondary pressure, which is the pressure of the fluid on the downstream side of the control valve, to a predetermined target pressure is performed, and the downstream side of the control valve when the valve opening degree is changed in the air supply control. The valve opening degree is corrected in the range where the flow velocity of the fluid on the downstream side of the control valve exceeds the upper limit flow velocity based on the rate of change of the secondary temperature which is the temperature of the fluid or the rate of change of the secondary pressure.

前記送気システムによれば、ウォータハンマの発生を抑制しつつ、送気システムの立ち上がり時間を短縮することができる。 According to the air supply system, it is possible to shorten the start-up time of the air supply system while suppressing the occurrence of water hammer.

図1は、送気システムの概略的な配管図である。FIG. 1 is a schematic piping diagram of an air supply system. 図2は、送気制御のフローチャートである。FIG. 2 is a flowchart of air supply control.

以下、例示的な実施形態を図面に基づいて詳細に説明する。図1は、送気システム100の概略的な配管図である。 Hereinafter, exemplary embodiments will be described in detail with reference to the drawings. FIG. 1 is a schematic piping diagram of the air supply system 100.

送気システム100は、蒸気が流通する配管10と、配管10に設けられ、配管10を流通する蒸気の(体積)流量を調節する制御弁20と、制御弁20の開度を制御する制御部30とを備えている。 The air supply system 100 includes a pipe 10 through which steam flows, a control valve 20 provided in the pipe 10 that adjusts the (volume) flow rate of steam flowing through the pipe 10, and a control unit that controls the opening degree of the control valve 20. It has 30 and.

配管10の上流端は、スチームヘッダ11に接続されている。スチームヘッダ11には、蒸気流入管12を介してボイラ(図示省略)からの蒸気が供給され、供給された蒸気を貯留している。配管10の下流端は、蒸気使用機器(図示省略)に接続されている。 The upstream end of the pipe 10 is connected to the steam header 11. Steam from a boiler (not shown) is supplied to the steam header 11 via a steam inflow pipe 12, and the supplied steam is stored. The downstream end of the pipe 10 is connected to a steam-using device (not shown).

制御弁20は、弁開度を変更することによって配管10を流通する流体の流量(体積流量又は質量流量)を調節する。制御弁20は、弁開度を全閉から全開まで連続的又は段階的に変更する。制御弁20は、制御部30からの指令(電気信号)に基づいて弁開度を変更する。例えば、制御弁20は、電動弁又は電磁弁である。 The control valve 20 adjusts the flow rate (volume flow rate or mass flow rate) of the fluid flowing through the pipe 10 by changing the valve opening degree. The control valve 20 continuously or stepwise changes the valve opening degree from fully closed to fully open. The control valve 20 changes the valve opening degree based on a command (electric signal) from the control unit 30. For example, the control valve 20 is an electric valve or a solenoid valve.

スチームヘッダ11には、スチームヘッダ11に貯留される蒸気の圧力を検出する第1圧力センサ13が設けられている。スチームヘッダ11に貯留される蒸気の圧力は、制御弁20の上流側の流体の圧力である一次圧力に相当する。すなわち、第1圧力センサ13は、一次圧力を検出する。 The steam header 11 is provided with a first pressure sensor 13 that detects the pressure of the steam stored in the steam header 11. The pressure of the steam stored in the steam header 11 corresponds to the primary pressure which is the pressure of the fluid on the upstream side of the control valve 20. That is, the first pressure sensor 13 detects the primary pressure.

配管10のうち制御弁20の下流側の部分には、制御弁20の下流側の流体の圧力である二次圧力を検出する第2圧力センサ14が設けられている。また、配管10のうち制御弁20の下流側の部分には、制御弁20の下流側の流体の温度である二次温度を検出する温度センサ15が設けられている。 A second pressure sensor 14 for detecting the secondary pressure, which is the pressure of the fluid on the downstream side of the control valve 20, is provided in the portion of the pipe 10 on the downstream side of the control valve 20. Further, a temperature sensor 15 for detecting the secondary temperature, which is the temperature of the fluid on the downstream side of the control valve 20, is provided in the portion of the pipe 10 on the downstream side of the control valve 20.

制御部30は、第1圧力センサ13、第2圧力センサ14及び温度センサ15の検出結果が入力される。制御部30は、制御弁20に指令を出力し、制御弁20の弁開度を制御する。制御部30は、処理部31と記憶部32とを有している。処理部31は、例えばCPU(Central Processing Unit)等のプロセッサで構成されている。処理部31は、記憶部32に記憶されているプログラムに基づいて制御弁20を制御する。尚、処理部31は、プロセッサと同様の機能を有するLSI(Large Scale Integration)等のハードウェアによって実現されてもよい。 The control unit 30 inputs the detection results of the first pressure sensor 13, the second pressure sensor 14, and the temperature sensor 15. The control unit 30 outputs a command to the control valve 20 to control the valve opening degree of the control valve 20. The control unit 30 has a processing unit 31 and a storage unit 32. The processing unit 31 is composed of a processor such as a CPU (Central Processing Unit), for example. The processing unit 31 controls the control valve 20 based on the program stored in the storage unit 32. The processing unit 31 may be realized by hardware such as an LSI (Large Scale Integration) having the same function as the processor.

このように構成された送気システム100においては、ボイラによって生成された蒸気が蒸気流入管12を介してスチームヘッダ11に流入し、スチームヘッダ11に貯留される。スチームヘッダ11に貯留された蒸気は、配管10を介して蒸気使用機器へ供給される。蒸気使用機器へ供給される蒸気の圧力は、制御弁20によって調節される。 In the air supply system 100 configured in this way, the steam generated by the boiler flows into the steam header 11 via the steam inflow pipe 12 and is stored in the steam header 11. The steam stored in the steam header 11 is supplied to the steam-using equipment via the pipe 10. The pressure of steam supplied to the steam-using equipment is adjusted by the control valve 20.

ここで、送気システム100による蒸気の送気が停止された状態から蒸気の送気を開始する際には、制御部30は、制御弁20の下流側における流体の流速が所定の上限流速(例えば、20m/s)以下となる範囲で制御弁20の弁開度を制御することによって、二次圧力を所定の目標圧力まで上昇させる送気制御を行う。このとき、制御部30は、送気制御における弁開度の変更時の二次温度の変化率又は二次圧力の変化率に基づいて制御弁20の弁開度を制御弁20の下流側における流体の流速が上限流速を超える範囲内で補正する。 Here, when starting the steam supply from the state where the steam supply by the air supply system 100 is stopped, the control unit 30 determines that the flow velocity of the fluid on the downstream side of the control valve 20 is a predetermined upper limit flow velocity ( For example, by controlling the valve opening degree of the control valve 20 within a range of 20 m / s) or less, air supply control for raising the secondary pressure to a predetermined target pressure is performed. At this time, the control unit 30 sets the valve opening of the control valve 20 on the downstream side of the control valve 20 based on the rate of change of the secondary temperature or the rate of change of the secondary pressure when the valve opening in the air supply control is changed. Correct within the range where the flow velocity of the fluid exceeds the upper limit flow velocity.

以下、制御部30による送気制御について詳しく説明する。図2は、送気制御のフローチャートである。 Hereinafter, the air supply control by the control unit 30 will be described in detail. FIG. 2 is a flowchart of air supply control.

まず、制御部30は、ステップS1において、現在の二次温度又は二次圧力に応じて次回の二次温度又は二次圧力を設定する。設定すべき二次温度又は二次圧力は、記憶部32に段階的に記憶されている。例えば、記憶部32には、設定すべき二次温度が5℃おきに記憶され、設定すべき二次圧力が50kPaおきに記憶されている。現在の二次温度又は二次圧力は、第2圧力センサ14又は温度センサ15によって検出される。次回の設定値として二次温度及び二次圧力の何れを用いるかは、現在の二次温度又は二次圧力に基づいて制御部30が判断する。現在の二次温度が100℃以下の場合又は現在の二次圧力が大気圧以下の場合には、制御部30は、次回の二次温度を設定する。一方、現在の二次温度が100℃よりも大きい場合又は現在の二次圧力が大気圧より大きい場合には、制御部30は、次回の二次圧力を設定する。制御部30は、記憶部32に記憶された二次温度又は二次圧力の中から現在の二次温度又は二次圧力よりも大きく且つ最も近い二次温度又は二次圧力を選択する。以下、次回の二次温度を「設定二次温度」、次回の二次圧力を「設定二次圧力」とも称する。 First, in step S1, the control unit 30 sets the next secondary temperature or secondary pressure according to the current secondary temperature or secondary pressure. The secondary temperature or secondary pressure to be set is stored in the storage unit 32 step by step. For example, the storage unit 32 stores the secondary temperature to be set every 5 ° C. and the secondary pressure to be set every 50 kPa. The current secondary temperature or secondary pressure is detected by the second pressure sensor 14 or the temperature sensor 15. The control unit 30 determines whether to use the secondary temperature or the secondary pressure as the next set value based on the current secondary temperature or the secondary pressure. When the current secondary temperature is 100 ° C. or lower, or when the current secondary pressure is atmospheric pressure or lower, the control unit 30 sets the next secondary temperature. On the other hand, when the current secondary temperature is higher than 100 ° C. or when the current secondary pressure is higher than the atmospheric pressure, the control unit 30 sets the next secondary pressure. The control unit 30 selects a secondary temperature or secondary pressure larger than and closest to the current secondary temperature or secondary pressure from the secondary temperature or secondary pressure stored in the storage unit 32. Hereinafter, the next secondary temperature is also referred to as "set secondary temperature", and the next secondary pressure is also referred to as "set secondary pressure".

ステップS2において、制御部30は、加算流速が設定されているか否かを判定する。加算流速は、送気制御の開始時にはゼロに設定されている。後述するステップS8において加算流速がゼロ以外の値に設定される場合がある。加算流速が設定されていない(即ち、加算流速がゼロ)場合には、制御部30は、ステップS3へ進む。一方、加算流速が設定されている(即ち、加算流速がゼロ以外)場合には、制御部30は、ステップS4へ進む。 In step S2, the control unit 30 determines whether or not the additional flow velocity is set. The additional flow velocity is set to zero at the start of air supply control. In step S8 described later, the added flow velocity may be set to a value other than zero. If the additional flow velocity is not set (that is, the additional flow velocity is zero), the control unit 30 proceeds to step S3. On the other hand, when the additional flow velocity is set (that is, the additional flow velocity is other than zero), the control unit 30 proceeds to step S4.

ステップS3において、制御部30は、通常の弁開度を算出する。ここで、「通常の弁開度」とは、配管10の流体の流速が所定の上限流速に制限された条件下での弁開度を意味する。上限流速は、配管10においてウォータハンマが発生しない程度の流速に設定されている。 In step S3, the control unit 30 calculates the normal valve opening degree. Here, the "normal valve opening degree" means the valve opening degree under the condition that the flow velocity of the fluid in the pipe 10 is limited to a predetermined upper limit flow velocity. The upper limit flow velocity is set to such a flow velocity that water hammer does not occur in the pipe 10.

制御部30は、現在の制御弁20の前後の圧力条件の下で配管10のうち制御弁20の下流側における流体の流速が上限流速となるような制御弁20の弁開度を求める。例えば、制御部30は、現在の一次圧力、現在の二次温度、現在の二次圧力、配管10の径、制御弁20のCv値と弁開度との関係、及び、配管10の上限流速に基づいて弁開度を算出する。例えば、現在の二次圧力が大気圧以下の場合には、計算の簡略化のため、現在の二次温度を飽和温度とした場合の飽和蒸気圧を、制御弁20の下流側の蒸気の圧力とみなし、その圧力に対応する蒸気の比体積が求められる。一方、現在の二次圧力が大気圧よりも大きい場合には、制御弁20の下流側の蒸気の圧力が現在の二次圧力であるとし、二次圧力に対応する蒸気の比体積が求められる。また、配管10の径及び上限流速から蒸気の体積流量が求められる。求められた蒸気の比体積及び体積流量から蒸気の質量流量が求められる。現在の一次圧力、現在の二次圧力及び求められた蒸気の質量流量から制御弁20のCv値が求められる。制御弁20のCv値と弁開度との関係及び求められたCv値から弁開度が求められる。 The control unit 30 obtains a valve opening degree of the control valve 20 such that the flow velocity of the fluid on the downstream side of the control valve 20 in the pipe 10 becomes the upper limit flow rate under the pressure conditions before and after the current control valve 20. For example, the control unit 30 has the current primary pressure, the current secondary temperature, the current secondary pressure, the diameter of the pipe 10, the relationship between the Cv value of the control valve 20 and the valve opening, and the upper limit flow velocity of the pipe 10. The valve opening is calculated based on. For example, when the current secondary pressure is atmospheric pressure or less, for simplification of calculation, the saturated vapor pressure when the current secondary temperature is the saturation temperature is the pressure of the steam on the downstream side of the control valve 20. Therefore, the specific volume of steam corresponding to the pressure is obtained. On the other hand, when the current secondary pressure is larger than the atmospheric pressure, it is assumed that the pressure of the steam on the downstream side of the control valve 20 is the current secondary pressure, and the specific volume of the steam corresponding to the secondary pressure can be obtained. .. Further, the volumetric flow rate of steam can be obtained from the diameter of the pipe 10 and the upper limit flow velocity. The mass flow rate of steam can be obtained from the obtained specific volume and volume flow rate of steam. The Cv value of the control valve 20 can be obtained from the current primary pressure, the current secondary pressure, and the obtained mass flow rate of steam. The valve opening degree is obtained from the relationship between the Cv value of the control valve 20 and the valve opening degree and the obtained Cv value.

続いて、ステップS5において、制御部30は、制御弁20の弁開度を算出された弁開度に変更する。 Subsequently, in step S5, the control unit 30 changes the valve opening degree of the control valve 20 to the calculated valve opening degree.

その後、制御部30は、ステップS6において、二次温度の変化率又は二次圧力の変化率が所定の判定基準以上か否かを判定する。ステップS1において設定二次温度が設定されている場合には、制御部30は、二次温度の変化率を判定する。一方、ステップS1において設定二次圧力が設定されている場合には、制御部30は、二次圧力の変化率を判定する。具体的には、制御部30は、制御弁20の弁開度をステップS5において変更してから、現在の二次温度又は二次圧力が設定二次温度又は設定二次圧力に達するまでの時間(以下、「到達時間」と称する)を計測する。記憶部32には、制御弁20の弁開度を変更してから設定二次温度又は設定二次圧力に達すると想定される時間が判定時間として設定二次温度又は設定二次圧力ごとに記憶されている。制御部30は、ステップS1で設定した設定二次温度又は設定二次圧力に対応する判定時間を記憶部32から読み出し、読み出した判定時間と到達時間とを比較する。到達時間が判定時間以下の場合には、制御部30は、二次温度の変化率又は二次圧力の変化率が判定基準以上であると判定する。一方、到達時間が判定時間よりも長い場合には、制御部30は、二次温度の変化率又は二次圧力の変化率が判定基準よりも小さいと判定する。 After that, in step S6, the control unit 30 determines whether or not the rate of change in the secondary temperature or the rate of change in the secondary pressure is equal to or higher than a predetermined determination criterion. When the set secondary temperature is set in step S1, the control unit 30 determines the rate of change of the secondary temperature. On the other hand, when the set secondary pressure is set in step S1, the control unit 30 determines the rate of change of the secondary pressure. Specifically, the control unit 30 changes the valve opening degree of the control valve 20 in step S5, and then the time until the current secondary temperature or secondary pressure reaches the set secondary temperature or set secondary pressure. (Hereinafter referred to as "arrival time") is measured. In the storage unit 32, the time estimated to reach the set secondary temperature or the set secondary pressure after changing the valve opening degree of the control valve 20 is stored as the determination time for each set secondary temperature or the set secondary pressure. Has been done. The control unit 30 reads out the determination time corresponding to the set secondary temperature or the set secondary pressure set in step S1 from the storage unit 32, and compares the read determination time with the arrival time. When the arrival time is less than or equal to the determination time, the control unit 30 determines that the rate of change in the secondary temperature or the rate of change in the secondary pressure is equal to or greater than the determination standard. On the other hand, when the arrival time is longer than the determination time, the control unit 30 determines that the rate of change in the secondary temperature or the rate of change in the secondary pressure is smaller than the determination criterion.

二次温度の変化率又は二次圧力の変化率が判定基準以上である場合には、制御部30は、ステップS7において、加算流速をゼロに設定する。 When the rate of change of the secondary temperature or the rate of change of the secondary pressure is equal to or higher than the determination criterion, the control unit 30 sets the additional flow velocity to zero in step S7.

一方、二次温度の変化率又は二次圧力の変化率が判定基準よりも小さい場合には、制御部30は、ステップS8において、加算流速をゼロ以外の値に設定する。例えば、制御部30は、到達時間と判定時間との偏差に基づいて加算流速を設定する。例えば、制御部30は、(到達時間−判定時間)/判定時間を超過率として、超過率が大きくなるほど加算流速が段階的に大きくなるように加算流速を設定する。超過率が1〜10%の場合には加算流速を1m/sに、超過率が11〜20%の場合には加算流速を2m/sに、超過率が21〜30%の場合には加算流速を3m/sに、超過率が31〜40%の場合には加算流速を4m/sに、超過率が41%〜の場合には加算流速を5m/sに設定され得る。加算流速には、最大加算流速が設定されている。前述の例では、5m/sが最大加算流速に設定されている。 On the other hand, when the rate of change of the secondary temperature or the rate of change of the secondary pressure is smaller than the determination criterion, the control unit 30 sets the addition flow velocity to a value other than zero in step S8. For example, the control unit 30 sets the additional flow velocity based on the deviation between the arrival time and the determination time. For example, the control unit 30 sets (arrival time-determination time) / determination time as an excess rate, and sets the addition flow velocity so that the addition flow velocity gradually increases as the excess rate increases. When the excess rate is 1 to 10%, the additional flow velocity is 1 m / s, when the excess rate is 11 to 20%, the additional flow velocity is 2 m / s, and when the excess rate is 21 to 30%, the addition flow velocity is added. The flow velocity can be set to 3 m / s, the additional flow velocity can be set to 4 m / s when the excess rate is 31 to 40%, and the additional flow velocity can be set to 5 m / s when the excess rate is 41% or more. The maximum additional flow velocity is set as the additional flow velocity. In the above example, 5 m / s is set as the maximum additional flow velocity.

その後、ステップS9において、制御部30は、現在の二次圧力が最終的な目標となる二次圧力(以下、「目標二次圧力」という)に達したか否かを判定する。現在の二次圧力が目標二次圧力に達していない場合には、制御部30は、ステップS1へ戻る。一方、現在の二次圧力が目標二次圧力に達した場合には、制御部30は、送気制御を終了する。 After that, in step S9, the control unit 30 determines whether or not the current secondary pressure has reached the final target secondary pressure (hereinafter, referred to as “target secondary pressure”). If the current secondary pressure has not reached the target secondary pressure, the control unit 30 returns to step S1. On the other hand, when the current secondary pressure reaches the target secondary pressure, the control unit 30 ends the air supply control.

ステップS8において加算流速が設定された場合には、次回のステップS2において加算流速が設定されていると判定される。その場合、制御部30は、ステップS4において、配管10の上限流速を超える範囲で通常の弁開度を補正した補正後の弁開度を算出する。 When the additional flow velocity is set in step S8, it is determined that the additional flow velocity is set in the next step S2. In that case, in step S4, the control unit 30 calculates the corrected valve opening degree after correcting the normal valve opening degree in the range exceeding the upper limit flow velocity of the pipe 10.

具体的には、制御部30は、ステップS3における通常の弁開度の場合と基本的には同じ手順で補正後の弁開度を算出する。このとき、制御部30は、現在の制御弁20の前後の圧力条件の下で制御弁20の下流側における流体の流速が上限流速に加算流速を付加した流速となるような制御弁20の弁開度を求める。例えば、ステップS3の説明で例示した手順においては、体積流量を求める際に上限流速に代えて、上限流速に加算流速を付加した補正後の流速が用いられる。これにより、通常の弁開度よりも大きな弁開度が補正後の弁開度として算出される。 Specifically, the control unit 30 calculates the corrected valve opening degree in basically the same procedure as in the case of the normal valve opening degree in step S3. At this time, the control unit 30 is a valve of the control valve 20 such that the flow velocity of the fluid on the downstream side of the control valve 20 is a flow velocity obtained by adding an additional flow velocity to the upper limit flow velocity under the pressure conditions before and after the current control valve 20. Find the opening. For example, in the procedure illustrated in the description of step S3, a corrected flow velocity obtained by adding an additional flow velocity to the upper limit flow velocity is used instead of the upper limit flow velocity when determining the volume flow rate. As a result, a valve opening larger than the normal valve opening is calculated as the corrected valve opening.

その後のステップS5では、算出された補正後の弁開度に制御弁20の開度が制御される。それ以降のステップにおける処理は、前述の通りである。 In the subsequent step S5, the opening degree of the control valve 20 is controlled by the calculated corrected valve opening degree. The processing in the subsequent steps is as described above.

このような送気制御においては、制御部30は、設定二次温度又は設定二次圧力を段階的に増加させ、それと共に実際の二次温度又は二次圧力が設定二次温度又は設定二次圧力になるように制御弁20の弁開度を段階的に増大させる。このとき、配管10内においてウォータハンマが発生しないように制御弁20の下流側における流体の流速が上限流速に制限されている。弁開度が変更される度に二次温度又は二次圧力が適切な変化率(即ち、速度)で変化しているか否かが判定される。制御部30は、二次温度又は二次圧力の変化率が所定の判定基準以上の場合には制御弁20の弁開度を補正せず、二次温度又は二次圧力の変化率が判定基準よりも小さい場合に制御弁20の弁開度を制御弁20の下流側における流体の流速が上限流速を超えるように、即ち、通常算出される弁開度よりも大きくなるように弁開度を補正する。このように、流体の流速の制限が一時的に解除され、流体の流速が上限流速を超えるようになるので、二次温度又は二次圧力の変化が一時的に速くなる。 In such air supply control, the control unit 30 gradually increases the set secondary temperature or the set secondary pressure, and at the same time, the actual secondary temperature or the secondary pressure is set as the set secondary temperature or the set secondary pressure. The valve opening degree of the control valve 20 is gradually increased so as to reach the pressure. At this time, the flow velocity of the fluid on the downstream side of the control valve 20 is limited to the upper limit flow velocity so that water hammer does not occur in the pipe 10. Each time the valve opening is changed, it is determined whether the secondary temperature or secondary pressure is changing at an appropriate rate of change (ie, speed). When the rate of change of the secondary temperature or the secondary pressure is equal to or higher than the predetermined determination standard, the control unit 30 does not correct the valve opening degree of the control valve 20, and the rate of change of the secondary temperature or the secondary pressure is the determination standard. When it is smaller than, the valve opening of the control valve 20 is adjusted so that the flow velocity of the fluid on the downstream side of the control valve 20 exceeds the upper limit flow velocity, that is, becomes larger than the normally calculated valve opening. to correct. In this way, the restriction on the flow velocity of the fluid is temporarily lifted, and the flow velocity of the fluid exceeds the upper limit flow velocity, so that the change in the secondary temperature or the secondary pressure is temporarily accelerated.

送気システム100においては、ボイラの運転条件に応じて一次圧力が変動し、蒸気使用機器の運転条件に応じて二次圧力が変動し得る。その結果、流体の流速が速くなり過ぎるとウォータハンマが発生する可能性が高くなる一方、流体の流速が遅くなり過ぎると送気システム100の立ち上がり時間が長くなってしまう。それに対し、送気システム100においては流体の流速が基本的には上限流速に制限されるので、ウォータハンマの発生が抑制される。それに加えて、二次温度又は二次圧力の変化が遅い場合には流体の流速が上限流速を超える範囲で弁開度が補正されるため、流体の流速が一時的に速くなり、送気システム100の立ち上がり時間が短縮される。このときの流体の流速の上昇は一時的であるため、ウォータハンマが発生する可能性はそれほど高くならない。 In the air supply system 100, the primary pressure may fluctuate according to the operating conditions of the boiler, and the secondary pressure may fluctuate according to the operating conditions of the steam-using equipment. As a result, if the flow velocity of the fluid becomes too high, the possibility of water hammer is high, while if the flow velocity of the fluid becomes too slow, the start-up time of the air supply system 100 becomes long. On the other hand, in the air supply system 100, the flow velocity of the fluid is basically limited to the upper limit flow velocity, so that the generation of water hammer is suppressed. In addition, when the secondary temperature or secondary pressure changes slowly, the valve opening is corrected within the range where the fluid flow rate exceeds the upper limit flow rate, so the fluid flow rate temporarily increases and the air supply system The rise time of 100 is shortened. Since the increase in the flow velocity of the fluid at this time is temporary, the possibility of water hammer occurring is not so high.

以上のように、送気システム100は、蒸気が流通する配管10と、配管10に設けられ、配管10を流通する蒸気の流量を調節する制御弁20と、制御弁20の開度を制御する制御部30とを備え、制御部30は、蒸気の送気を開始する際に、制御弁20の下流側における流体の流速が所定の上限流速以下となる範囲で制御弁20の弁開度を制御することによって、制御弁20の下流側の流体の圧力である二次圧力を所定の目標圧力まで上昇させる送気制御を行い、送気制御における弁開度の変更時の制御弁20の下流側の流体の温度である二次温度の変化率又は二次圧力の変化率に基づいて弁開度を制御弁20の下流側の流体の流速が上限流速を超える範囲で補正する。 As described above, the air supply system 100 controls the opening degree of the pipe 10 through which the steam flows, the control valve 20 provided in the pipe 10 and adjusting the flow rate of the steam flowing through the pipe 10, and the control valve 20. A control unit 30 is provided, and when the control unit 30 starts supplying steam, the control valve 20 adjusts the valve opening degree of the control valve 20 within a range in which the flow velocity of the fluid on the downstream side of the control valve 20 is equal to or less than a predetermined upper limit flow rate. By controlling, air supply control is performed to raise the secondary pressure, which is the pressure of the fluid on the downstream side of the control valve 20, to a predetermined target pressure, and the downstream side of the control valve 20 when the valve opening degree is changed in the air supply control. The valve opening is corrected in the range where the flow velocity of the fluid on the downstream side of the control valve 20 exceeds the upper limit flow velocity based on the rate of change of the secondary temperature which is the temperature of the fluid on the side or the rate of change of the secondary pressure.

この構成によれば、蒸気の送気開始時には、制御部30が制御弁20の弁開度を制御することによって(具体的には、制御弁20の弁開度を少しずつ大きくすることによって)、二次圧力を所定の目標圧力まで上昇させる。その際、基本的には、制御弁20の下流側の流体の流速が上限流速以下となる範囲で制御弁20の弁開度が少しずつ大きくさせられる。これにより、送気開始時のウォータハンマの発生が抑制される。それに加えて、二次温度又は二次圧力の変化が遅い場合には、制御弁20の下流側の流体の流速が上限流速を超える範囲で制御弁20の弁開度が補正される。これにより、二次温度又は二次圧力の変化が促進され、送気システム100の立ち上がり時間が短縮される。この弁開度の補正は一時的であるため、ウォータハンマの発生の可能性もそれほど大きくならない。その結果、ウォータハンマの発生を抑制しつつ、送気システム100の立ち上がり時間を短縮することができる。 According to this configuration, at the start of steam supply, the control unit 30 controls the valve opening of the control valve 20 (specifically, by gradually increasing the valve opening of the control valve 20). , Raise the secondary pressure to a predetermined target pressure. At that time, basically, the valve opening degree of the control valve 20 is gradually increased within a range in which the flow velocity of the fluid on the downstream side of the control valve 20 is equal to or less than the upper limit flow velocity. As a result, the generation of water hammer at the start of air supply is suppressed. In addition, when the change in the secondary temperature or the secondary pressure is slow, the valve opening degree of the control valve 20 is corrected within the range where the flow velocity of the fluid on the downstream side of the control valve 20 exceeds the upper limit flow velocity. This promotes changes in the secondary temperature or secondary pressure and shortens the rise time of the air supply system 100. Since this correction of the valve opening is temporary, the possibility of water hammer is not so large. As a result, it is possible to shorten the start-up time of the air supply system 100 while suppressing the occurrence of water hammer.

また、制御部30は、二次温度の変化率又は二次圧力の変化率が所定の判定基準以上の場合には弁開度を補正せず、二次温度の変化率又は二次圧力の変化率が判定基準よりも小さい場合に弁開度を制御弁20の下流側における流体の流速が上限流速を超えるように補正する。 Further, the control unit 30 does not correct the valve opening degree when the rate of change of the secondary temperature or the rate of change of the secondary pressure is equal to or higher than a predetermined determination standard, and the rate of change of the secondary temperature or the change of the secondary pressure is changed. When the rate is smaller than the determination criterion, the valve opening is corrected so that the flow velocity of the fluid on the downstream side of the control valve 20 exceeds the upper limit flow velocity.

この構成によれば、二次温度又は二次圧力の変化率が判定基準以上の場合には、制御弁20の下流側における流体の流速が上限流速を超えない範囲で制御弁20の弁開度が制御される。一方、二次温度又は二次圧力の変化率が判定基準よりも小さい場合、即ち、二次温度又は二次圧力の変化が想定される基準よりも遅い場合には、制御弁20の下流側における流体の流速が上限流速を超えるように制御弁20の弁開度が制御される。つまり、制御弁20の弁開度は、制御弁20の下流側における流体の流速が上限流速を超えない範囲で制御された開度よりも大きくなるように補正される。その結果、制御弁20の下流側における流体の流速が一時的に速くなり、送気システム100の立ち上がりが促進される。 According to this configuration, when the rate of change of the secondary temperature or the secondary pressure is equal to or higher than the judgment standard, the valve opening degree of the control valve 20 does not exceed the upper limit flow velocity of the fluid flow velocity on the downstream side of the control valve 20. Is controlled. On the other hand, when the rate of change of the secondary temperature or the secondary pressure is smaller than the criterion, that is, when the change of the secondary temperature or the secondary pressure is slower than the expected reference, it is on the downstream side of the control valve 20. The valve opening degree of the control valve 20 is controlled so that the flow velocity of the fluid exceeds the upper limit flow velocity. That is, the valve opening degree of the control valve 20 is corrected so that the flow velocity of the fluid on the downstream side of the control valve 20 is larger than the controlled opening degree within a range not exceeding the upper limit flow velocity. As a result, the flow velocity of the fluid on the downstream side of the control valve 20 is temporarily increased, and the start-up of the air supply system 100 is promoted.

さらに、制御部30は、段階的に設定された二次温度又は二次圧力である設定二次温度又は設定二次圧力に実際の二次温度又は二次圧力がなるように制御弁20の弁開度を段階的に変更し、制御弁20の弁開度を変更してから実際の二次温度又は二次圧力が設定二次温度又は設定二次圧力になるまでの時間が所定の判定時間よりも長い場合に、二次圧力又は二次温度の変化率が判定基準よりも小さいと判定する。 Further, the control unit 30 is a valve of the control valve 20 so that the actual secondary temperature or secondary pressure becomes the set secondary temperature or set secondary pressure which is the secondary temperature or secondary pressure set stepwise. The time from when the opening degree is changed stepwise and the valve opening degree of the control valve 20 is changed until the actual secondary temperature or secondary pressure becomes the set secondary temperature or set secondary pressure is the predetermined determination time. If it is longer than, it is determined that the rate of change of the secondary pressure or the secondary temperature is smaller than the criterion.

この構成によれば、実際の二次温度又は二次圧力が設定二次温度又は設定二次圧力になるまでの時間に基づいて二次温度又は二次温度の変化率を判定する。そのため、制御弁20の弁開度を変更してから実際の二次温度又は二次圧力が設定二次温度又は設定二次圧力になるまでの時間を計時するだけで、複雑な計算をすることなく、二次圧力又は二次温度の変化率を判定することができる。 According to this configuration, the rate of change of the secondary temperature or the secondary temperature is determined based on the time until the actual secondary temperature or the secondary pressure becomes the set secondary temperature or the set secondary pressure. Therefore, a complicated calculation can be performed only by measuring the time from changing the valve opening degree of the control valve 20 until the actual secondary temperature or secondary pressure reaches the set secondary temperature or set secondary pressure. It is possible to determine the rate of change of secondary pressure or secondary temperature.

さらに、制御部30は、二次圧力が大気圧以下の領域においては二次温度に基づいて制御弁20の弁開度を制御する一方、二次圧力が大気圧よりも大きい領域においては二次圧力に基づいて制御弁20の弁開度を制御する。 Further, the control unit 30 controls the valve opening degree of the control valve 20 based on the secondary temperature in the region where the secondary pressure is below the atmospheric pressure, while the control unit 30 controls the valve opening degree in the region where the secondary pressure is higher than the atmospheric pressure. The valve opening degree of the control valve 20 is controlled based on the pressure.

この構成によれば、二次圧力が大気圧以下の領域においては、二次温度に基づいて制御弁20の下流側の蒸気の圧力を推定することができる。つまり、二次圧力が大気圧以下の領域においては、二次圧力に基づいて制御弁20の下流側の蒸気の圧力を評価することが難しい。二次温度を用いることによって、二次温度を飽和温度とする蒸気の圧力を求めることができる。求めた蒸気の圧力を制御弁20の下流側の蒸気の圧力とみなすことによって、制御弁20の下流側の実際の蒸気の状態を評価することができる。その結果、二次圧力が大気圧以下の領域においても、二次圧力が目標圧力に到達するように制御弁20の弁開度を制御することができる。 According to this configuration, in the region where the secondary pressure is atmospheric pressure or less, the pressure of the steam on the downstream side of the control valve 20 can be estimated based on the secondary temperature. That is, in the region where the secondary pressure is atmospheric pressure or less, it is difficult to evaluate the pressure of the steam on the downstream side of the control valve 20 based on the secondary pressure. By using the secondary temperature, the pressure of steam having the secondary temperature as the saturation temperature can be obtained. By regarding the obtained steam pressure as the pressure of the steam on the downstream side of the control valve 20, the actual state of the steam on the downstream side of the control valve 20 can be evaluated. As a result, the valve opening degree of the control valve 20 can be controlled so that the secondary pressure reaches the target pressure even in the region where the secondary pressure is atmospheric pressure or lower.

また、制御部30は、制御弁20の上流側の流体の圧力である一次圧力を検出する第1圧力センサ13、制御弁20の下流側の流体の圧力である二次圧力を検出する第2圧力センサ14、及び、制御弁20の下流側の流体の温度である二次温度を検出する温度センサ15の検出結果に基づいて制御弁20の弁開度を制御する。 Further, the control unit 30 detects the primary pressure which is the pressure of the fluid on the upstream side of the control valve 20 and the secondary pressure which is the pressure of the fluid on the downstream side of the control valve 20. The valve opening degree of the control valve 20 is controlled based on the detection results of the pressure sensor 14 and the temperature sensor 15 that detects the secondary temperature which is the temperature of the fluid on the downstream side of the control valve 20.

この構成によれば、送気システム100は、制御弁20の下流側の流体の体積流量を検出する体積流量センサを設けることなく、制御弁20によって蒸気の体積流量を調節することができる。つまり、簡易な構成で蒸気の流量制御を実現することができる。 According to this configuration, the air supply system 100 can adjust the volumetric flow rate of steam by the control valve 20 without providing a volumetric flow rate sensor that detects the volumetric flow rate of the fluid on the downstream side of the control valve 20. That is, it is possible to realize the flow rate control of steam with a simple configuration.

《その他の実施形態》
以上のように、本出願において開示する技術の例示として、前記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、前記実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、前記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
<< Other Embodiments >>
As described above, the above-described embodiment has been described as an example of the technology disclosed in the present application. However, the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. are made as appropriate. It is also possible to combine the components described in the above-described embodiment into a new embodiment. In addition, among the components described in the attached drawings and the detailed description, not only the components essential for solving the problem but also the components not essential for solving the problem in order to illustrate the above-mentioned technology. Can also be included. Therefore, the fact that these non-essential components are described in the accompanying drawings or detailed description should not immediately determine that those non-essential components are essential.

例えば、送気システム100の構成は、前述の構成に限定されない。例えば、配管10の上流端は、スチームヘッダ11以外の部分に接続されていてもよい。 For example, the configuration of the air supply system 100 is not limited to the above-mentioned configuration. For example, the upstream end of the pipe 10 may be connected to a portion other than the steam header 11.

制御弁20の弁開度を制御する際に流体の流速が上限流速となるように弁開度を調節しているが、流体の流速に相関がある他のパラメータ、例えば、流体の体積流量等に上限を設けて弁開度を調節してもよい。 When controlling the valve opening of the control valve 20, the valve opening is adjusted so that the flow rate of the fluid becomes the upper limit flow rate, but other parameters that correlate with the flow velocity of the fluid, such as the volume flow rate of the fluid, etc. The valve opening may be adjusted by setting an upper limit.

二次温度又は二次圧力の変化率の判定は、前述の方法に限定されない。例えば、制御弁20の弁開度を変更してから所定の判定時間が経過したときの二次温度又は二次圧力が設定二次温度又は設定二次圧力に到達している場合に、二次温度又は二次圧力の変化率が判定基準以上であると判定し、そうでない場合に、二次温度又は二次圧力の変化率が判定基準よりも小さいと判定してもよい。その場合、設定二次温度又は設定二次圧力に応じた判定時間を表す関数が記憶部32に記憶されていてもよい。新たに設定される設定二次温度又は設定二次圧力が前記関数に代入されることによって設定二次温度又は設定二次圧力に応じた判定時間が求められる。 The determination of the rate of change of the secondary temperature or the secondary pressure is not limited to the above-mentioned method. For example, when the secondary temperature or the secondary pressure when a predetermined determination time has elapsed after changing the valve opening degree of the control valve 20 has reached the set secondary temperature or the set secondary pressure, the secondary is secondary. It may be determined that the rate of change of temperature or secondary pressure is equal to or higher than the criterion, and if not, it may be determined that the rate of change of secondary temperature or secondary pressure is smaller than the criterion. In that case, a function representing the determination time according to the set secondary temperature or the set secondary pressure may be stored in the storage unit 32. By substituting the newly set set secondary temperature or set secondary pressure into the function, the determination time according to the set secondary temperature or set secondary pressure can be obtained.

加算流速の設定は、前述の方法に限定されない。例えば、前記超過率が大きくなるほど加算流速が連続的に大きくなるように加算流速を設してもよい。あるいは、到達時間と判定時間との偏差が大きくなるほど加算流速が連続的又は段階的に大きくなるように加算流速を設定してもよい。あるいは、到達時間と判定時間との偏差の大きさにかかわらず、一定値の加算流速を設定してもよい。 The setting of the additional flow velocity is not limited to the above-mentioned method. For example, the additional flow velocity may be set so that the additional flow velocity continuously increases as the excess rate increases. Alternatively, the additional flow velocity may be set so that the additional flow velocity increases continuously or stepwise as the deviation between the arrival time and the determination time increases. Alternatively, a constant value of additional flow velocity may be set regardless of the magnitude of the deviation between the arrival time and the determination time.

弁開度の補正は、上限流速に加算流速を付加した上で弁開度を算出する方法に限定されない。例えば、流体の流速が上限流速以下となる範囲で求められた弁開度を所定量だけ又は所定割合だけ増加させることによって弁開度を補正してもよい。 The correction of the valve opening is not limited to the method of calculating the valve opening after adding the additional flow velocity to the upper limit flow velocity. For example, the valve opening may be corrected by increasing the valve opening degree obtained in the range where the flow velocity of the fluid is equal to or less than the upper limit flow velocity by a predetermined amount or a predetermined ratio.

また、第1圧力センサ13、第2圧力センサ14及び温度センサ15の一部又は全部を、配管10のうち制御弁20の下流側の流体の体積流量を検出する流量センサに置き換えてもよい。その場合、弁開度を算出する際に、流量センサの検出結果が用いられる。 Further, a part or all of the first pressure sensor 13, the second pressure sensor 14, and the temperature sensor 15 may be replaced with a flow rate sensor that detects the volumetric flow rate of the fluid on the downstream side of the control valve 20 in the pipe 10. In that case, the detection result of the flow rate sensor is used when calculating the valve opening degree.

以上説明したように、ここに開示された技術は、送気システムについて有用である。 As described above, the techniques disclosed herein are useful for insufflation systems.

100 送気システム
10 配管
20 制御弁
30 制御部

100 Air supply system 10 Piping 20 Control valve 30 Control unit

Claims (4)

蒸気が流通する配管と、
前記配管に設けられ、前記配管を流通する蒸気の流量を調節する制御弁と、
前記制御弁の開度を制御する制御部とを備え、
前記制御部は、
蒸気の送気を開始する際に、前記制御弁の下流側における流体の流速が所定の上限流速以下となる範囲で前記制御弁の弁開度を制御することによって、前記制御弁の下流側の流体の圧力である二次圧力を所定の目標圧力まで上昇させる送気制御を行い、
前記送気制御における前記弁開度の変更時の前記制御弁の下流側の流体の温度である二次温度の変化率又は前記二次圧力の変化率に基づいて前記弁開度を前記制御弁の下流側の流体の流速が前記上限流速を超える範囲で補正する送気システム。
Piping through which steam flows and
A control valve provided in the pipe and adjusting the flow rate of steam flowing through the pipe,
A control unit for controlling the opening degree of the control valve is provided.
The control unit
When the steam supply is started, the valve opening of the control valve is controlled within a range in which the flow velocity of the fluid on the downstream side of the control valve is equal to or less than a predetermined upper limit flow velocity, thereby causing the downstream side of the control valve. Air supply control is performed to raise the secondary pressure, which is the pressure of the fluid, to a predetermined target pressure.
The control valve is adjusted based on the rate of change of the secondary temperature, which is the temperature of the fluid on the downstream side of the control valve, or the rate of change of the secondary pressure when the valve opening degree is changed in the air supply control. An air supply system that corrects the flow velocity of the fluid on the downstream side of the above in a range exceeding the upper limit flow velocity.
請求項1に記載の送気システムにおいて、
前記制御部は、前記二次温度の変化率又は前記二次圧力の変化率が所定の判定基準以上の場合には前記弁開度を補正せず、前記二次温度の変化率又は前記二次圧力の変化率が前記判定基準よりも小さい場合に前記弁開度を前記制御弁の下流側における流体の流速が前記上限流速を超えるように補正する送気システム。
In the air supply system according to claim 1,
When the rate of change of the secondary temperature or the rate of change of the secondary pressure is equal to or higher than a predetermined determination criterion, the control unit does not correct the valve opening degree, and the rate of change of the secondary temperature or the secondary. An air supply system that corrects the valve opening degree so that the flow velocity of the fluid on the downstream side of the control valve exceeds the upper limit flow velocity when the rate of change in pressure is smaller than the determination criterion.
請求項2に記載の送気システムにおいて、
前記制御部は、
段階的に設定された二次温度又は二次圧力である設定二次温度又は設定二次圧力に実際の前記二次温度又は前記二次圧力がなるように前記制御弁の弁開度を段階的に変更し、
前記制御弁の弁開度を変更してから実際の前記二次温度又は前記二次圧力が前記設定二次温度又は前記設定二次圧力になるまでの時間が所定の判定時間よりも長い場合に、前記二次温度又は前記二次圧力の変化率が前記判定基準よりも小さいと判定する送気システム。
In the air supply system according to claim 2,
The control unit
The valve opening degree of the control valve is gradually adjusted so that the actual secondary temperature or secondary pressure becomes the set secondary temperature or set secondary pressure which is the secondary temperature or secondary pressure set in stages. Change to
When the time from changing the valve opening degree of the control valve until the actual secondary temperature or the secondary pressure reaches the set secondary temperature or the set secondary pressure is longer than the predetermined determination time. , An air supply system that determines that the rate of change of the secondary temperature or the secondary pressure is smaller than the determination criterion.
請求項1乃至3の何れか1つに記載の送気システムにおいて、
前記制御部は、前記二次圧力が大気圧以下の領域においては前記二次温度に基づいて前記制御弁の弁開度を制御する一方、前記二次圧力が大気圧よりも大きい領域においては前記二次圧力に基づいて前記制御弁の弁開度を制御する送気システム。

In the air supply system according to any one of claims 1 to 3.
The control unit controls the valve opening degree of the control valve based on the secondary temperature in the region where the secondary pressure is equal to or lower than the atmospheric pressure, while the control unit controls the valve opening degree in the region where the secondary pressure is higher than the atmospheric pressure. An air supply system that controls the valve opening degree of the control valve based on the secondary pressure.

JP2019075349A 2019-04-11 2019-04-11 air supply system Active JP7181830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019075349A JP7181830B2 (en) 2019-04-11 2019-04-11 air supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019075349A JP7181830B2 (en) 2019-04-11 2019-04-11 air supply system

Publications (2)

Publication Number Publication Date
JP2020173063A true JP2020173063A (en) 2020-10-22
JP7181830B2 JP7181830B2 (en) 2022-12-01

Family

ID=72831153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019075349A Active JP7181830B2 (en) 2019-04-11 2019-04-11 air supply system

Country Status (1)

Country Link
JP (1) JP7181830B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7485425B1 (en) 2023-06-27 2024-05-16 株式会社ミヤワキ Steam Control Valve System
JP7485424B1 (en) 2023-06-27 2024-05-16 株式会社ミヤワキ Steam Control Valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179310A (en) * 1981-04-28 1982-11-04 Mitsubishi Heavy Ind Ltd Boiler change-over system for additional switching-in and disconnection in combined plant
JPS59221410A (en) * 1983-06-01 1984-12-13 Hitachi Ltd Starting method of combined plant
JPH0325201A (en) * 1989-06-22 1991-02-04 Babcock Hitachi Kk Boiler starting control device
JPH07332603A (en) * 1994-06-02 1995-12-22 Babcock Hitachi Kk Boiler starting control device
JPH1163403A (en) * 1997-08-19 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd Steam delivering unit at start up of boiler
JPH11211005A (en) * 1998-01-30 1999-08-06 Miura Co Ltd Steam feeding system
JP2017096519A (en) * 2015-11-19 2017-06-01 レンゴー株式会社 Steam system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179310A (en) * 1981-04-28 1982-11-04 Mitsubishi Heavy Ind Ltd Boiler change-over system for additional switching-in and disconnection in combined plant
JPS59221410A (en) * 1983-06-01 1984-12-13 Hitachi Ltd Starting method of combined plant
JPH0325201A (en) * 1989-06-22 1991-02-04 Babcock Hitachi Kk Boiler starting control device
JPH07332603A (en) * 1994-06-02 1995-12-22 Babcock Hitachi Kk Boiler starting control device
JPH1163403A (en) * 1997-08-19 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd Steam delivering unit at start up of boiler
JPH11211005A (en) * 1998-01-30 1999-08-06 Miura Co Ltd Steam feeding system
JP2017096519A (en) * 2015-11-19 2017-06-01 レンゴー株式会社 Steam system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7485425B1 (en) 2023-06-27 2024-05-16 株式会社ミヤワキ Steam Control Valve System
JP7485424B1 (en) 2023-06-27 2024-05-16 株式会社ミヤワキ Steam Control Valve

Also Published As

Publication number Publication date
JP7181830B2 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP6330835B2 (en) Fuel cell system and control method thereof
CN106322639B (en) The delivery temperature frequency limit of air conditioner protects control method
JP6002029B2 (en) Flow rate calculation device and flow rate control device
JP2020173063A (en) Air sending system
EP3312523A1 (en) Gas water heater and safety control system and method therefor
EP3309473A1 (en) Gas water heater and security control system and method therefor
JP6330423B2 (en) Flash steam generator and boiler system
JP6082620B2 (en) Boiler supply water amount control system and supply water amount control method
CN110594991B (en) Heating bias flow control method and system for multi-split air conditioner and multi-split air conditioner system
JP6212281B2 (en) Turbine control device and turbine control method
US10775078B2 (en) Gas water heater and safety control method and system therefor
JP2017027389A (en) Control device and control method
JP2016514324A5 (en)
JP6585997B2 (en) Steam system
JP7345370B2 (en) Gas appliance flow rate estimation device and gas appliance flow rate estimation method
JP6225833B2 (en) GAS TURBINE FUEL CONTROL METHOD, CONTROL DEVICE FOR EXECUTING THE METHOD, GAS TURBINE EQUIPMENT HAVING THE CONTROL DEVICE
JP6036376B2 (en) Boiler system
JP2013181739A (en) Device and method for controlling water level of feed water heater
JP2021189514A (en) Mass flow controller and hunting suppressing method
JP2016102597A (en) Boiler system
JP7474541B1 (en) Flow Control Device
JP6209979B2 (en) Boiler system
JP2010261660A (en) Combustion control method and control system for boiler
JP6485186B2 (en) Boiler system
JP2023005123A (en) Pressure reduction system and pressure reduction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221118

R150 Certificate of patent or registration of utility model

Ref document number: 7181830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150