JP2013181739A - Device and method for controlling water level of feed water heater - Google Patents

Device and method for controlling water level of feed water heater Download PDF

Info

Publication number
JP2013181739A
JP2013181739A JP2012048239A JP2012048239A JP2013181739A JP 2013181739 A JP2013181739 A JP 2013181739A JP 2012048239 A JP2012048239 A JP 2012048239A JP 2012048239 A JP2012048239 A JP 2012048239A JP 2013181739 A JP2013181739 A JP 2013181739A
Authority
JP
Japan
Prior art keywords
water level
drift
signal
integrated value
opening command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012048239A
Other languages
Japanese (ja)
Other versions
JP5657589B2 (en
Inventor
Tatsuya Maruyama
達也 丸山
Masatoshi Koiwai
正俊 小岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012048239A priority Critical patent/JP5657589B2/en
Publication of JP2013181739A publication Critical patent/JP2013181739A/en
Application granted granted Critical
Publication of JP5657589B2 publication Critical patent/JP5657589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a feed water heater water level control device capable of maintaining a water level of a feed water heater to a target water level.SOLUTION: A feed water heater water level control device includes: a plurality of water level detection units 11, 12 for detecting a water level signal of a feed water heater 10; a water level adjustment valve 14 for adjusting a water level of the feed water heater 10; a control signal generation unit for finding an opening command signal of the water level adjustment valve 14, based on the water level signal detected by the water level detection units 11, 12 and a target water level; a multiplication unit 24 for multiplying the opening command signal found by the control signal generation unit for a predetermined acquisition period with a predetermined multiplication period and for acquiring a multiplication value; a drift diagnosis circuit 22 for diagnosing generation of drift in the water level detection units 11, 12, by comparing a normal multiplication value of the opening command signal found when the water level detection units 11 and 12 are normal, with the multiplication value created by the multiplication unit 24; and a switch selection circuit 25 for separating the water level detection unit generating the drift from the acquisition destination of the water level signal when a diagnosis is made that the drift has been generated.

Description

本発明は、発電プラントなどの給水加熱器の水位を制御する給水加熱器水位制御装置およびその制御方法に関する。   The present invention relates to a feed water heater water level control device that controls the water level of a feed water heater such as a power plant and a control method therefor.

原子力発電プラント、火力発電プラントなどの発電設備には、給水加熱器が設けられる。例えば原子力発電プラントにおいては、給水加熱器は、蒸気タービンからの抽気(蒸気)を用いて原子炉への給水を加熱し、タービンプラントの熱効率を向上させる目的で使用される。   A power supply facility such as a nuclear power plant or a thermal power plant is provided with a feed water heater. For example, in a nuclear power plant, a feed water heater is used for the purpose of heating the feed water to a nuclear reactor using extraction (steam) from a steam turbine to improve the thermal efficiency of the turbine plant.

蒸気は、給水との熱交換を終えるとドレンとなり、次段の給水加熱器での熱交換に用いられる。給水加熱器は、給水加熱器の水位を制御する水位制御装置を備える。水位制御装置は、給水加熱器の水位が目標水位となる様に水位調節弁の開度を制御する装置である。水位調節弁は、給水加熱器のドレンが次段の給水加熱器に入るまでの間に設置される(例えば、特許文献1参照。)。   When the heat exchange with the feed water is finished, the steam becomes drain and is used for heat exchange in the next stage feed water heater. The feed water heater includes a water level control device that controls the water level of the feed water heater. The water level control device is a device that controls the opening of the water level control valve so that the water level of the feed water heater becomes the target water level. The water level control valve is installed until the drain of the feed water heater enters the feed water heater of the next stage (see, for example, Patent Document 1).

給水加熱器は、水位を計測する複数(例えば二つ)の水位発信器を有する。各水位発信器から得られる水位信号は、制御回路へ入力される。制御回路は、各水位信号の平均値の水位信号と目標水位との偏差に基づいて、水位調節弁の弁開度指令を導出する。制御回路は、水位調節弁を制御することにより、給水加熱器の水位を目標水位に保つことができる。   The feed water heater has a plurality (for example, two) of water level transmitters for measuring the water level. The water level signal obtained from each water level transmitter is input to the control circuit. The control circuit derives a valve opening degree command for the water level control valve based on the deviation between the water level signal of the average value of each water level signal and the target water level. The control circuit can maintain the water level of the feed water heater at the target water level by controlling the water level control valve.

特公平4−23286号公報Japanese Patent Publication No. 4-23286

水位制御装置の水位発信器においては、水位信号の基準レベルが経時的に変化し、実際の水位と検出される水位との間にずれが生じるドリフトが発生する場合がある。ドリフトが発生した場合、制御回路は、誤った水位信号の平均値に基づいて水位調節弁を制御し、給水加熱器の水位を目標水位に保つ制御を行う。給水加熱器の水位は、目標水位とはならず、正しく制御できないという課題がある。   In the water level transmitter of the water level control device, the reference level of the water level signal changes with time, and a drift may occur in which a deviation occurs between the actual water level and the detected water level. When drift occurs, the control circuit controls the water level control valve based on the average value of the erroneous water level signal, and performs control to keep the water level of the feed water heater at the target water level. The water level of the feed water heater is not the target water level, and there is a problem that it cannot be controlled correctly.

例えば、検出水位が上昇方向にずれるドリフトが水位発信器に発生すると、実際の水位よりも大きい水位が検出される。制御回路は、給水加熱器の水位を下げるために水位調節弁を開動作させる。この水位の下降は、発電プラントの熱効率に影響を及ぼす恐れがある。   For example, when a drift in which the detected water level shifts in the upward direction occurs in the water level transmitter, a water level larger than the actual water level is detected. The control circuit opens the water level control valve to lower the water level of the feed water heater. This drop in water level can affect the thermal efficiency of the power plant.

また、検出水位が下降方向にずれるドリフトが水位発信器に発生すると、実際の水位よりも小さい水位が検出される。制御回路は、給水加熱器の水位を上げるために水位調節弁を閉動作させる。この水位の上昇は、タービン側に湿分を流入させる恐れがある。   Further, when a drift in which the detected water level shifts in the downward direction occurs in the water level transmitter, a water level smaller than the actual water level is detected. The control circuit closes the water level control valve to raise the water level of the feed water heater. This rise in water level may cause moisture to flow into the turbine.

本発明はこのような事情を考慮してなされたもので、給水加熱器の水位を目標水位に維持することができる給水加熱器水位制御装置およびその制御方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a feed water heater water level control device and a control method thereof that can maintain the water level of the feed water heater at a target water level.

本発明に係る給水加熱器水位制御装置は、上述した課題を解決するために、給水加熱器の水位に係る水位信号を検出する複数の水位検出部と、前記給水加熱器の水位を調節する水位調節弁と、前記水位検出部により検出された前記水位信号と目標水位とに基づいて前記水位調節弁の開度を指令する開度指令信号を求める制御信号生成部と、前記制御信号生成部により所定の取得周期毎に求められた前記開度指令信号を所定の積算周期で積算し積算値を取得する積算部と、前記水位検出部が正常である場合に得られる前記開度指令信号の正常積算値と、積算部により作成された前記積算値とを比較し、前記水位検出部におけるドリフトの発生を診断するドリフト診断部と、前記ドリフトが発生していると診断された場合、前記ドリフトが発生した水位検出部を前記水位信号の取得先から切り離す信号切替部とを備えたことを特徴とする。   In order to solve the above-described problem, the feed water heater water level control device according to the present invention includes a plurality of water level detection units that detect a water level signal related to the water level of the feed water heater, and a water level that adjusts the water level of the feed water heater. A control valve, a control signal generator for obtaining an opening command signal for commanding the opening of the water level control valve based on the water level signal detected by the water level detector and the target water level, and the control signal generator Normalization of the opening command signal obtained when the opening command signal obtained every predetermined acquisition cycle is integrated at a predetermined integration cycle and the integrated value is acquired, and the water level detection unit is normal A drift diagnosis unit that compares the integrated value with the integrated value created by the integrating unit and diagnoses the occurrence of drift in the water level detection unit, and when the drift is diagnosed, the drift is Occur Characterized in that a signal switching unit for disconnecting the water level detection unit from the acquisition source of the water level signal.

本発明に係る給水加熱器水位制御装置およびその制御方法においては、給水加熱器の水位を目標水位に維持することができる。   In the feed water heater water level control device and the control method thereof according to the present invention, the water level of the feed water heater can be maintained at the target water level.

本発明に係る給水加熱器水位制御装置の第1実施形態を示す構成図。The block diagram which shows 1st Embodiment of the feed water heater water level control apparatus which concerns on this invention. 一方の水位発信器に検出水位が上昇方向にずれるドリフトが発生した場合の水位信号の変化を示すグラフ。The graph which shows the change of a water level signal when the drift in which a detected water level shifts to an ascending direction generate | occur | produces in one water level transmitter. 図2に示す検出水位の変化が生じた場合の水位調節弁の制御に伴う水位の変化を示すグラフ。The graph which shows the change of the water level accompanying control of the water level control valve when the change of the detected water level shown in FIG. 2 arises. 一方の水位発信器に検出水位が上昇方向にずれるドリフトが発生した場合に積算回路が取得する弁開度指令信号の時間遷移を示すグラフ。The graph which shows the time transition of the valve opening degree command signal which an integration circuit acquires, when the drift from which a detected water level shifts to the raise direction generate | occur | produces in one water level transmitter. 一方の水位発信器に検出水位が上昇方向にずれるドリフトが発生した場合に積算回路が取得する弁開度指令信号の積算値の時間遷移を示すグラフ。The graph which shows the time transition of the integration value of the valve opening degree command signal which an integration circuit acquires when the drift from which a detected water level shifts to the raise direction generate | occur | produces in one water level transmitter. データベースに予め保存された、水位発信器が正常時における弁開度指令信号の積算値の時間推移を示すグラフ。The graph which shows the time transition of the integrated value of the valve opening degree command signal preserve | saved in the database previously when the water level transmitter is normal. 実際の弁開度指令信号の積算値と基準値とを比較する際の説明図。Explanatory drawing at the time of comparing the integrated value of an actual valve opening command signal, and a reference value. 第1実施形態における給水加熱器水位制御装置により実施されるドリフト診断処理を説明するフローチャート。The flowchart explaining the drift diagnostic process implemented by the feed water heater water level control apparatus in 1st Embodiment. 給水加熱器水位制御装置の第1実施形態の変形例を示す構成図。The block diagram which shows the modification of 1st Embodiment of a feed water heater water level control apparatus. 本発明に係る給水加熱器水位制御装置の第2実施形態を示す構成図。The block diagram which shows 2nd Embodiment of the feed water heater water level control apparatus which concerns on this invention. 検出水位が上昇方向にずれるドリフトの発生を判定回路が推定する前後における弁開度指令信号の積算値の時間遷移を示すグラフ。The graph which shows the time transition of the integrated value of the valve opening degree command signal before and after the determination circuit estimates the occurrence of drift in which the detected water level shifts in the upward direction. ドリフト発生前の弁開度指令信号の積算値の時間推移を示すグラフ。The graph which shows the time transition of the integrated value of the valve opening degree command signal before drift generation. ドリフト発生後の弁開度指令信号の積算値と基準値とを比較する際の説明図。Explanatory drawing at the time of comparing the integrated value of the valve opening degree command signal after drift generation, and a reference value. 第2実施形態における給水加熱器水位制御装置により実施されるドリフト診断処理を説明するフローチャート。The flowchart explaining the drift diagnostic process implemented by the feed water heater water level control apparatus in 2nd Embodiment.

[第1実施形態]
本発明に係る給水加熱器水位制御装置およびその制御方法の第1実施形態を添付図面を参照して説明する。
[First Embodiment]
A feed water heater water level control device and a control method thereof according to a first embodiment of the present invention will be described with reference to the accompanying drawings.

図1は、本発明に係る給水加熱器水位制御装置の第1実施形態を示す構成図である。   FIG. 1 is a configuration diagram showing a first embodiment of a feed water heater water level control device according to the present invention.

本実施形態における給水加熱器水位制御装置(以下、「水位制御装置」という。)1が原子力発電プラントに適用された場合を一例として説明する。水位制御装置1は、原子力発電プラントに複数段設けられる給水加熱器10に設けられる。給水加熱器10は、タービンプラントの熱効率を向上させる目的で使用される。   The case where the feed water heater water level control device (hereinafter referred to as “water level control device”) 1 in this embodiment is applied to a nuclear power plant will be described as an example. The water level control device 1 is provided in a feed water heater 10 provided in a plurality of stages in a nuclear power plant. The feed water heater 10 is used for the purpose of improving the thermal efficiency of the turbine plant.

給水加熱器10は、蒸気タービンからの抽気(蒸気)を用いて、原子炉へ供給される給水を加熱する。蒸気タービンからの抽気は、給水との熱交換を終えるとドレンとなり、次段の給水加熱器での熱交換に用いられる。   The feed water heater 10 heats the feed water supplied to the nuclear reactor using the extraction (steam) from the steam turbine. The bleed air from the steam turbine is drained when the heat exchange with the feed water is completed, and is used for heat exchange in the next stage feed water heater.

水位制御装置1は、水位発信器11、12、制御回路13、水位調節弁14、電空変換器15を主に備える。   The water level control device 1 mainly includes water level transmitters 11 and 12, a control circuit 13, a water level control valve 14, and an electropneumatic converter 15.

水位発信器11、12(水位検出部)は、給水加熱器10内で検出されたドレン17の水位を示す水位信号を生成し、制御回路13の平均値計算回路21およびドリフト診断回路22へ供給する。   The water level transmitters 11 and 12 (water level detection unit) generate a water level signal indicating the water level of the drain 17 detected in the feed water heater 10 and supply it to the average value calculation circuit 21 and the drift diagnosis circuit 22 of the control circuit 13. To do.

制御回路13は、平均値計算回路21、ドリフト診断回路22、データベース23、積算回路24、およびスイッチ切替回路25を有する。   The control circuit 13 includes an average value calculation circuit 21, a drift diagnosis circuit 22, a database 23, an integration circuit 24, and a switch switching circuit 25.

平均値計算回路21は、水位発信器11、12より得られたドレン17の水位データに基づいて、水位の平均値を求める。ドリフト診断回路22は、水位発信器11または水位発信器12にドリフトが発生しているか否かを診断する。積算回路24(積算部)は、給水加熱器10の目標水位と現在の水位との差分に基づいて生成され、弁開度を指令するために用いられる弁開度指令信号を周期Δt毎に取得する。積算回路24は、弁開度指令信号の積算値Yを周期t毎に取得する。   The average value calculation circuit 21 obtains an average value of the water level based on the water level data of the drain 17 obtained from the water level transmitters 11 and 12. The drift diagnosis circuit 22 diagnoses whether or not a drift has occurred in the water level transmitter 11 or the water level transmitter 12. The integrating circuit 24 (integrating unit) generates a valve opening command signal that is generated based on the difference between the target water level of the feed water heater 10 and the current water level and used to command the valve opening at every period Δt. To do. The integrating circuit 24 acquires the integrated value Y of the valve opening command signal every period t.

データベース23は、水位発信器11、12および機器側(水位調節弁14の流量特性変化など)が要因となるドリフトが発生していない時に得られる正常な弁開度指令の積算値(正常積算値)を予め保存する。   The database 23 is an integrated value (normal integrated value) of a normal valve opening command obtained when there is no drift caused by the water level transmitters 11 and 12 and the device side (change in flow characteristics of the water level control valve 14 or the like). ) In advance.

スイッチ切替回路25は、弁開度指令信号を得るために用いられる水位信号の取得先を切り替える。具体的には、スイッチ切替回路25は、水位信号の取得先を、平均値計算回路21、水位発信器11または水位発信器12のいずれかに切り替える。   The switch switching circuit 25 switches the acquisition source of the water level signal used for obtaining the valve opening degree command signal. Specifically, the switch switching circuit 25 switches the water level signal acquisition source to any one of the average value calculation circuit 21, the water level transmitter 11, and the water level transmitter 12.

電空変換器(E/P)15は、弁開度指令信号を空気圧力信号に変換し、水位調節弁14に供給する。水位調節弁14は、空気作動式の弁であり、給水加熱器10と次段の給水加熱器との間に設けられる。水位調節弁14は、弁開度指令信号に基づいて開度が調整されながら開閉動作を行う。   The electropneumatic converter (E / P) 15 converts the valve opening command signal into an air pressure signal and supplies it to the water level control valve 14. The water level control valve 14 is an air-operated valve, and is provided between the feed water heater 10 and the next stage feed water heater. The water level control valve 14 opens and closes while the opening is adjusted based on the valve opening command signal.

なお、弁開度指令信号は、水位調節弁14の開度量を示す信号である。また、スイッチ切替回路25から出力される水位信号と目標水位との差分を求める演算回路を弁制御信号生成部という。   The valve opening command signal is a signal indicating the opening amount of the water level control valve 14. An arithmetic circuit for obtaining a difference between the water level signal output from the switch switching circuit 25 and the target water level is referred to as a valve control signal generator.

次に、水位制御装置1において、一方の水位発信器11にドリフトが発生した場合の水位信号の変化について説明する。   Next, in the water level control device 1, a change in the water level signal when drift occurs in one of the water level transmitters 11 will be described.

図2は、一方の水位発信器11に検出水位が上昇方向にずれるドリフトが発生した場合の水位信号の変化を示すグラフである。   FIG. 2 is a graph showing a change in the water level signal when a drift in which the detected water level shifts in the upward direction occurs in one of the water level transmitters 11.

図3は、図2に示す検出水位の変化が生じた場合の水位調節弁14の制御に伴う水位の変化を示すグラフである。   FIG. 3 is a graph showing a change in the water level accompanying the control of the water level control valve 14 when the change in the detected water level shown in FIG. 2 occurs.

水位発信器12が正常である一方、水位発信器11に検出水位が上昇方向にずれるドリフトが発生した場合、水位の平均値は上昇方向へずれる。これに伴い、制御回路13は、目標水位よりも水位が上昇したと誤認し、給水加熱器10の水位を下降させるために水位調節弁14を開動作させる。   When the water level transmitter 12 is normal and the drift in which the detected water level shifts in the upward direction occurs in the water level transmitter 11, the average value of the water level shifts in the upward direction. Accordingly, the control circuit 13 mistakenly recognizes that the water level has risen above the target water level, and opens the water level adjustment valve 14 in order to lower the water level of the feed water heater 10.

ここで、制御回路13は、水位発信器11にドリフトが生じた場合であっても、給水加熱器10の水位を目標水位に維持する制御を好適に行うようになっている。   Here, the control circuit 13 suitably performs control to maintain the water level of the feed water heater 10 at the target water level even when drift occurs in the water level transmitter 11.

図4は、一方の水位発信器11に検出水位が上昇方向にずれるドリフトが発生した場合に積算回路24が取得する弁開度指令yの時間遷移を示すグラフである。   FIG. 4 is a graph showing a time transition of the valve opening degree command y acquired by the integrating circuit 24 when a drift in which the detected water level shifts in the upward direction occurs in one of the water level transmitters 11.

図5は、一方の水位発信器11に検出水位が上昇方向にずれるドリフトが発生した場合に積算回路24が取得する弁開度指令yの積算値Yの時間遷移を示すグラフである。   FIG. 5 is a graph showing a time transition of the integrated value Y of the valve opening degree command y acquired by the integrating circuit 24 when a drift in which the detected water level shifts upward occurs in one of the water level transmitters 11.

積算回路24は、給水加熱器10の目標水位と現在の水位との差分から生成され、弁開度を指令するための弁開度指令信号(弁開度指令)をサンプリング周期Δt毎に取得する。図4においては、積算回路24は、周期Δt毎に、弁開度指令信号yn(y1、y2、y3、…、yn)を取得する。また、積算回路24は、弁開度指令信号の積算値Y(y1+y2+y3+…+yn)を、周期t毎に取得する。積算回路24は、図5に示すように、時間t毎の積算値Yの時間推移を取得する。水位発信器11に検出水位が上昇方向にずれるドリフトが発生した場合、弁開度指令信号の積算値Yは時間経過に比例して大きくなる。   The integrating circuit 24 is generated from the difference between the target water level of the feed water heater 10 and the current water level, and acquires a valve opening command signal (valve opening command) for commanding the valve opening every sampling period Δt. . In FIG. 4, the integration circuit 24 acquires a valve opening command signal yn (y1, y2, y3,..., Yn) for each period Δt. Further, the integrating circuit 24 acquires the integrated value Y (y1 + y2 + y3 +... + Yn) of the valve opening command signal for each period t. As shown in FIG. 5, the integration circuit 24 acquires a time transition of the integration value Y for each time t. When a drift occurs in the water level transmitter 11 in which the detected water level shifts upward, the integrated value Y of the valve opening command signal increases in proportion to the passage of time.

図6は、データベース23に予め保存されたデータであり、水位発信器11、12が正常時における弁開度指令信号の積算値Yの時間推移を示すグラフである。   FIG. 6 is data that is stored in the database 23 in advance, and is a graph showing the time transition of the integrated value Y of the valve opening command signal when the water level transmitters 11 and 12 are normal.

データベース23は、水位発信器11、12が正常時(ドリフトが発生していない時)の積算値Yの時間推移を記憶する。ドリフト診断回路22は、データベース23に記憶されたデータに基づいて、基準値を取得する。基準値は、たとえば、弁開度指令信号の積算値Yの最小値Yaと最大値Ybとから求まる積算値の範囲(Ya≦Y≦Yb)である。ドリフト診断回路22は、図5に示す弁開度指令信号の積算値Yと、この基準値とを比較する。   The database 23 stores the time transition of the integrated value Y when the water level transmitters 11 and 12 are normal (when no drift occurs). The drift diagnostic circuit 22 acquires a reference value based on the data stored in the database 23. The reference value is, for example, an integrated value range (Ya ≦ Y ≦ Yb) obtained from the minimum value Ya and the maximum value Yb of the integrated value Y of the valve opening command signal. The drift diagnosis circuit 22 compares the integrated value Y of the valve opening command signal shown in FIG. 5 with this reference value.

図7は、実際の弁開度指令信号の積算値Yと基準値とを比較する際の説明図である。   FIG. 7 is an explanatory diagram when comparing the integrated value Y of the actual valve opening command signal with a reference value.

ドリフト診断回路22は、実際の弁開度指令信号の積算値Yが基準値内に収まるか否かの判定を行う。ドリフト診断回路22は、実際の弁開度指令信号の積算値Yが基準値内に収まる場合には、水位発信器にドリフトが発生していないと診断する。一方、ドリフト診断回路22は、実際の弁開度指令信号の積算値Yが基準値内に収まらない場合には、水位発信器にドリフトが発生していると診断する。   The drift diagnosis circuit 22 determines whether or not the integrated value Y of the actual valve opening command signal falls within the reference value. When the integrated value Y of the actual valve opening command signal falls within the reference value, the drift diagnosis circuit 22 diagnoses that no drift has occurred in the water level transmitter. On the other hand, when the integrated value Y of the actual valve opening command signal does not fall within the reference value, the drift diagnosis circuit 22 diagnoses that drift has occurred in the water level transmitter.

ドリフト診断回路22は、検出水位が上昇方向にずれるドリフトが発生していると判定した場合、水位発信器11および水位発信器12のうち、検出結果が高値となる水位発信器11にドリフトが発生していると診断する。   When the drift diagnosis circuit 22 determines that the drift in which the detected water level shifts in the upward direction occurs, the drift is generated in the water level transmitter 11 of which the detection result is high among the water level transmitter 11 and the water level transmitter 12. Diagnose that

スイッチ切替回路25は、ドリフト診断回路22の診断結果を受け、弁開度指令信号を生成するためのデータとなる水位の取得先を、正常な(ドリフトが発生していない)水位発信器12のみに切り替える。すなわち、スイッチ切替回路25は、ドリフトが発生した水位発信器11を切り離し、正常な水位発信器12のみから得られる水位を弁開度指令信号生成のために使用する。   The switch switching circuit 25 receives the diagnosis result of the drift diagnosis circuit 22 and uses only the normal (no drift) water level transmitter 12 as the water level acquisition source as data for generating the valve opening command signal. Switch to. That is, the switch switching circuit 25 disconnects the water level transmitter 11 in which the drift has occurred, and uses the water level obtained only from the normal water level transmitter 12 to generate the valve opening command signal.

なお、水位発信器11または水位発信器12に検出水位が下降方向にずれるドリフトが発生した場合、積算回路24に保存される周期t毎の弁開度指令信号の積算値Yは時間の経過とともに小さくなる。ドリフト診断回路22は、弁開度指令信号の積算値Yが基準値よりも小さくなる方向にずれた場合には、検出水位が下降方向にずれるドリフトが発生していると判定する。また、ドリフト診断回路22は、検出結果が低値となる水位発信器にドリフトが発生していると診断する。   In addition, when the drift which the detected water level shifts to the downward direction generate | occur | produces in the water level transmitter 11 or the water level transmitter 12, the integrated value Y of the valve opening degree command signal for every period t preserve | saved at the integration circuit 24 is with time progress. Get smaller. When the integrated value Y of the valve opening command signal deviates in a direction that becomes smaller than the reference value, the drift diagnosis circuit 22 determines that a drift occurs in which the detected water level is shifted downward. Further, the drift diagnosis circuit 22 diagnoses that a drift has occurred in the water level transmitter whose detection result has a low value.

次に、水位制御装置1により実行されるドリフト診断処理をフローチャートを用いて説明する。   Next, the drift diagnosis process executed by the water level control device 1 will be described using a flowchart.

図8は、第1実施形態における給水加熱器水位制御装置1により実施されるドリフト診断処理を説明するフローチャートである。   FIG. 8 is a flowchart illustrating the drift diagnosis process performed by the feed water heater water level control device 1 according to the first embodiment.

ステップS1において、積算回路24は、積算値Yを取得する。取得された積算値Yは、ドリフト診断回路22に供給される。ステップS2において、ドリフト診断回路22は、積算値取得ステップS1において得られた積算値Yと基準値とを比較する。ステップS3において、ドリフト診断回路22は、得られた積算値Yが基準値外であるか否かの判定を行う。すなわち、ドリフト診断回路22は、データベース23に記憶された正常時の弁開度指令信号の積算値Yの最小値Yaと最大値Ybとから求まる積算値の範囲から、積算値取得ステップS1で得られた積算値Yが外れるか否かの判定を行う。ドリフト診断回路22は、得られた積算値Yが基準値の範囲に含まれると判定した場合(ステップS3のNO)、ステップS4において水位発信器11、12にドリフトが発生していないと判定する。   In step S1, the integration circuit 24 acquires the integration value Y. The acquired integrated value Y is supplied to the drift diagnosis circuit 22. In step S2, the drift diagnosis circuit 22 compares the integrated value Y obtained in the integrated value acquisition step S1 with the reference value. In step S3, the drift diagnosis circuit 22 determines whether or not the obtained integrated value Y is outside the reference value. That is, the drift diagnosis circuit 22 obtains the integrated value acquisition step S1 from the integrated value range obtained from the minimum value Ya and the maximum value Yb of the integrated value Y of the normal valve opening degree command signal stored in the database 23. It is determined whether or not the integrated value Y is off. If the drift diagnosis circuit 22 determines that the obtained integrated value Y is included in the reference value range (NO in step S3), it determines that no drift has occurred in the water level transmitters 11 and 12 in step S4. .

一方、ドリフト診断回路22は、得られた積算値Yが基準値の範囲外であると判定した場合、ステップS5において、積算値Yは、時間の経過とともに大きくなる方向に基準値から外れているか否かの判定を行う。ドリフト診断回路22は、積算値Yは積算値Yが大きくなる方向に基準値から外れていると判定した場合(ステップS5のYES)、ステップS6において、スイッチ切替回路25は、高い値を示す水位発信器を切り離す。すなわち、スイッチ切替回路25は、弁開度指令信号を生成するためのデータとなる水位の取得先を正常な水位発信器に切り替える。   On the other hand, if the drift diagnosis circuit 22 determines that the obtained integrated value Y is outside the range of the reference value, does the integrated value Y deviate from the reference value in a direction that increases with time in step S5? Determine whether or not. When the drift diagnosis circuit 22 determines that the integrated value Y deviates from the reference value in the direction in which the integrated value Y increases (YES in step S5), in step S6, the switch switching circuit 25 sets the water level indicating a high value. Disconnect the transmitter. That is, the switch switching circuit 25 switches the water level acquisition source, which is data for generating the valve opening command signal, to a normal water level transmitter.

一方、ドリフト診断回路22は、積算値Yは積算値Yが小さくなる方向に基準値から外れていると判定した場合(ステップS5のNO)、ステップS7において、スイッチ切替回路25は、低い値を示す水位発信器を切り離す。   On the other hand, when the drift diagnosis circuit 22 determines that the integrated value Y deviates from the reference value in the direction in which the integrated value Y decreases (NO in step S5), the switch switching circuit 25 sets a low value in step S7. Disconnect the water level transmitter shown.

以降、水位制御装置1は、正常な水位発信器から取得される水位に基づいて水位調節弁14を調節し、給水加熱器10の水位を目標値に維持する。   Thereafter, the water level control device 1 adjusts the water level adjustment valve 14 based on the water level acquired from the normal water level transmitter, and maintains the water level of the feed water heater 10 at the target value.

第1実施形態における水位制御装置1およびその制御方法は、正常時とドリフト発生時との弁開度指令信号の積算値の比較により、ドリフトの発生を診断することができる。また、水位制御装置1は、発生したドリフトが上昇方向または下降方向のいずれにずれるドリフトであるかを好適に診断することができ、その後、弁開度指令信号を生成するために利用する水位信号を正常な水位発信器から得られる信号だけに切り替えることができる。   The water level control device 1 and the control method thereof according to the first embodiment can diagnose the occurrence of drift by comparing the integrated values of the valve opening degree command signal between the normal time and the time when the drift occurs. Further, the water level control device 1 can preferably diagnose whether the generated drift is a drift that shifts in the upward direction or the downward direction, and thereafter, a water level signal that is used to generate a valve opening command signal Can be switched to only a signal obtained from a normal water level transmitter.

その結果、水位制御装置1は、給水加熱器10の水位を目標水位に維持することができる。   As a result, the water level control device 1 can maintain the water level of the feed water heater 10 at the target water level.

なお、スイッチ切替回路25は、弁開度指令信号の生成に利用する水位信号の取得先を、レートで切り替えてもよい。   The switch switching circuit 25 may switch the acquisition source of the water level signal used for generating the valve opening degree command signal at a rate.

図9は、給水加熱器水位制御装置の第1実施形態の変形例を示す構成図である。   FIG. 9: is a block diagram which shows the modification of 1st Embodiment of a feed water heater water level control apparatus.

この水位制御装置1aが図1の水位制御装置1と異なる点は、制御回路13aのスイッチ切替回路25に代えてレート切替回路25aを備える点である。第1実施形態の水位制御装置1と対応する構成および部分については同一の符号を付し、重複する説明を省略する。   This water level control device 1a is different from the water level control device 1 of FIG. 1 in that a rate switching circuit 25a is provided instead of the switch switching circuit 25 of the control circuit 13a. Configurations and portions corresponding to the water level control device 1 of the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

レート切替回路25aは、弁開度指令信号の生成に利用する水位信号を平均値計算回路21、水位発信器11または水位発信器12から得られる信号のいずれかに切り替える場合、滑らかで連続的に切り替える。レート切替回路25aは、水位信号の取得先の切替時における水位調節弁14の急開急閉動作による給水加熱器の水位外乱を防止し、プラント熱効率およびタービン本体への影響を軽減することができる。   The rate switching circuit 25a is smooth and continuous when switching the water level signal used for generating the valve opening command signal to any one of the signals obtained from the average value calculation circuit 21, the water level transmitter 11 or the water level transmitter 12. Switch. The rate switching circuit 25a can prevent the water level disturbance of the feed water heater due to the rapid opening and closing operation of the water level control valve 14 when switching the acquisition source of the water level signal, and can reduce the influence on the plant thermal efficiency and the turbine body. .

[第2実施形態]
本発明に係る給水加熱器水位制御装置およびその制御方法の第2実施形態を添付図面を参照して説明する。
[Second Embodiment]
2nd Embodiment of the feed water heater water level control apparatus and its control method which concern on this invention is described with reference to an accompanying drawing.

図10は、本発明に係る給水加熱器水位制御装置の第2実施形態を示す構成図である。   FIG. 10: is a block diagram which shows 2nd Embodiment of the feed water heater water level control apparatus which concerns on this invention.

第2実施形態の給水加熱器水位制御装置(水位制御装置)51が第1実施形態の水位制御装置1と異なる点は、制御回路53のドリフト診断回路62の前段に判定回路68を備える点である。第1実施形態と対応する構成および部分については同一の符号を付し、重複する説明を省略する。   The difference between the feed water heater water level control device (water level control device) 51 of the second embodiment and the water level control device 1 of the first embodiment is that a determination circuit 68 is provided before the drift diagnosis circuit 62 of the control circuit 53. is there. Components and parts corresponding to those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

判定回路68は、水位発信器11と水位発信器12との偏差を予め設けられた判定値と比較し、偏差が判定値を外れた場合には、いずれかの水位発信器11または水位発信器12においてドリフトが発生したと推定する。判定値は、水位発信器11、12が正常に機能している場合に取得される水位の偏差の最大値である。判定回路68は、水位発信器11、12が正常に機能している場合の偏差を予め保存しておき、この偏差を自動的に判定値に設定する。判定回路68は、ドリフトの発生を推定した場合には、ドリフト推定信号をドリフト診断回路62に供給する。   The determination circuit 68 compares the deviation between the water level transmitter 11 and the water level transmitter 12 with a predetermined determination value, and if the deviation deviates from the determination value, any of the water level transmitter 11 or the water level transmitter. 12, it is estimated that drift has occurred. The determination value is the maximum value of the water level deviation acquired when the water level transmitters 11 and 12 are functioning normally. The determination circuit 68 stores in advance a deviation when the water level transmitters 11 and 12 are functioning normally, and automatically sets the deviation as a determination value. The determination circuit 68 supplies a drift estimation signal to the drift diagnosis circuit 62 when the occurrence of drift is estimated.

図11は、検出水位が上昇方向にずれるドリフトの発生を判定回路68が推定する前後における弁開度指令信号の積算値Yの時間遷移を示すグラフである。   FIG. 11 is a graph showing the time transition of the integrated value Y of the valve opening command signal before and after the determination circuit 68 estimates the occurrence of drift in which the detected water level shifts in the upward direction.

ドリフト診断回路62は、ドリフト推定信号がドリフト診断回路62に供給された時間をドリフトが発生した時間とみなす。例えば、検出水位が上昇方向にずれるドリフトが発生する前後においては、弁開度指令信号の積算値Yが大きく異なる。 The drift diagnosis circuit 62 regards the time when the drift estimation signal is supplied to the drift diagnosis circuit 62 as the time when the drift has occurred. For example, the integrated value Y of the valve opening command signal is largely different before and after the drift in which the detected water level shifts in the upward direction.

図12は、ドリフト発生前の弁開度指令信号の積算値Yの時間推移を示すグラフである。   FIG. 12 is a graph showing the time transition of the integrated value Y of the valve opening command signal before the occurrence of drift.

ドリフト診断回路62は、ドリフト推定信号の検出前(ドリフト発生前)に積算回路24に保存した弁開度指令信号の積算値Yの傾向から、機器側要因(水位調節弁14の流量特性変化など)による弁開度指令信号の変化量を排除した基準値を設定する。   The drift diagnosis circuit 62 determines a device-side factor (change in flow characteristic of the water level control valve 14 or the like) from the tendency of the integrated value Y of the valve opening command signal stored in the integrating circuit 24 before the detection of the drift estimation signal (before the occurrence of drift). ) To set a reference value that excludes the amount of change in the valve opening command signal.

図12においては、ドリフト発生前であっても、機器側の要因により弁開度指令信号が緩やかに上昇している。ドリフト診断回路62は、このドリフト発生前の弁開度指令信号の積算値Yの傾きの近似値を求める。また、ドリフト診断回路62は、この傾きから所定範囲内の領域を基準値に設定する。   In FIG. 12, the valve opening command signal gradually rises due to factors on the device side even before the drift occurs. The drift diagnosis circuit 62 obtains an approximate value of the slope of the integrated value Y of the valve opening command signal before the occurrence of drift. The drift diagnosis circuit 62 sets a region within a predetermined range from this inclination as a reference value.

なお、ドリフト診断回路62は、機器側要因の弁開度指令信号の変化量を考慮せず、ドリフト発生前に得られた弁指令信号の積算値Yの最大値および最小値から基準値を設定してもよい。   The drift diagnosis circuit 62 sets the reference value from the maximum value and the minimum value of the integrated value Y of the valve command signal obtained before the occurrence of the drift without considering the change amount of the valve opening command signal as a factor on the equipment side. May be.

ドリフト診断回路62は、設定された基準値と、ドリフト推定信号の検出後(ドリフト発生後)に積算回路24に保存される弁開度指令信号の積算値Yとを比較する。   The drift diagnosis circuit 62 compares the set reference value with the integrated value Y of the valve opening command signal stored in the integrating circuit 24 after detection of the drift estimation signal (after the occurrence of drift).

図13は、ドリフト発生後の弁開度指令信号の積算値Yと基準値とを比較する際の説明図である。   FIG. 13 is an explanatory diagram when the integrated value Y of the valve opening command signal after the occurrence of the drift is compared with the reference value.

ドリフト診断回路62は、ドリフト発生後の積算値Yが基準値内に収まるか否かの判定を行う。ドリフト診断回路62は、実際の弁開度指令信号の積算値Yが基準値内に収まる場合には、水位発信器11、12はドリフトが発生していないと診断する。一方、ドリフト診断回路62は、実際の弁開度指令信号の積算値Yが基準値内に収まらない場合には、水位発信器11、12にドリフトが発生していると診断する。   The drift diagnosis circuit 62 determines whether or not the integrated value Y after the occurrence of drift falls within the reference value. When the integrated value Y of the actual valve opening command signal falls within the reference value, the drift diagnosis circuit 62 diagnoses that the water level transmitters 11 and 12 are not drifting. On the other hand, when the integrated value Y of the actual valve opening command signal does not fall within the reference value, the drift diagnosis circuit 62 diagnoses that drift has occurred in the water level transmitters 11 and 12.

ドリフト診断回路62がドリフトを検知した後の水位制御装置51の動作については、第1実施形態と同様であるためここでは説明を省略する。   Since the operation of the water level control device 51 after the drift diagnostic circuit 62 detects the drift is the same as in the first embodiment, the description thereof is omitted here.

次に、水位制御装置51により実行されるドリフト診断処理をフローチャートを用いて説明する。   Next, the drift diagnosis process executed by the water level control device 51 will be described using a flowchart.

図14は、第2実施形態における給水加熱器水位制御装置51により実施されるドリフト診断処理を説明するフローチャートである。   FIG. 14 is a flowchart illustrating a drift diagnosis process performed by the feed water heater water level control device 51 according to the second embodiment.

ステップS11において、判定回路68は、水位発信器11、12にドリフトが発生したか否かの判定を行う。ステップS12において、判定回路68は、ドリフトが発生していないと判定した場合、ステップS11に戻る。ステップS13において、判定回路68は、ドリフトが発生したと判定した場合、ドリフト推定信号を生成し、ドリフト診断回路62に供給する。   In step S <b> 11, the determination circuit 68 determines whether or not a drift has occurred in the water level transmitters 11 and 12. In step S12, when the determination circuit 68 determines that no drift has occurred, the determination circuit 68 returns to step S11. In step S <b> 13, when the determination circuit 68 determines that a drift has occurred, the determination circuit 68 generates a drift estimation signal and supplies the drift estimation signal to the drift diagnosis circuit 62.

ステップS14において、ドリフト診断回路62は、積算回路24に保存したドリフト発生前の弁開度指令信号の積算値Yに基づいて、基準値を設定する。ステップS15において、ドリフト診断回路62は、得られた積算値Yが基準値外であるか否かの判定を行う。ステップS15以降の処理については、第1実施形態において説明したドリフト診断処理のステップS2〜S7とほぼ同様であるため、図8と同一部分には同一符号を付し、ここでは説明を省略する。   In step S <b> 14, the drift diagnosis circuit 62 sets a reference value based on the integrated value Y of the valve opening command signal before the occurrence of drift stored in the integrating circuit 24. In step S15, the drift diagnosis circuit 62 determines whether or not the obtained integrated value Y is outside the reference value. Since the processing after step S15 is substantially the same as steps S2 to S7 of the drift diagnosis processing described in the first embodiment, the same parts as those in FIG.

第2実施形態における水位制御装置51およびその制御方法は、第1実施形態が奏する効果に加え、ドリフト発生前の弁開度指令信号の変化から、ドリフトの発生を診断するための基準値を設定することができる。これにより、水位制御装置51は、より正確に水位発信器11、12におけるドリフトの発生を診断することができる。   The water level control device 51 and its control method according to the second embodiment set a reference value for diagnosing the occurrence of drift from the change in the valve opening command signal before the occurrence of drift, in addition to the effects exhibited by the first embodiment. can do. Thereby, the water level control device 51 can diagnose the occurrence of drift in the water level transmitters 11 and 12 more accurately.

また、水位制御装置51は、水位調節弁14の流量特性変化などの機器側要因による弁開度指令の変化量が排除された基準値を設定することができる。水位制御装置51は、より正確に水位発信器11、12のドリフト発生を診断し、またドリフトが水位制御に与える影響を解消することができる。   In addition, the water level control device 51 can set a reference value from which the amount of change in the valve opening command due to equipment-side factors such as a change in the flow rate characteristic of the water level control valve 14 is excluded. The water level control device 51 can more accurately diagnose the occurrence of drift in the water level transmitters 11 and 12, and can eliminate the influence of drift on water level control.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

例えば、弁開度指令信号の実際の積算値と、正常時の積算値との比較方法は、上述した方法に限らない。また、水位発信器の個数も、2個に限らず適宜設定することができる。   For example, the method for comparing the actual integrated value of the valve opening command signal with the integrated value at normal time is not limited to the method described above. Further, the number of water level transmitters is not limited to two and can be set as appropriate.

1、1a、51 給水加熱器水位制御装置
10 給水加熱器
11,12 水位発信器
13,13a,53 制御回路
14 水位調節弁
21 平均値計算回路
22、62 ドリフト診断回路
23 データベース
24 積算回路
25 スイッチ切替回路
25a レート切替回路
68 判定回路
1, 1a, 51 Feed water heater water level control device 10 Feed water heater 11, 12 Water level transmitters 13, 13a, 53 Control circuit 14 Water level control valve 21 Average value calculation circuit 22, 62 Drift diagnosis circuit 23 Database 24 Integration circuit 25 Switch Switching circuit 25a rate switching circuit 68 determination circuit

Claims (5)

給水加熱器の水位に係る水位信号を検出する複数の水位検出部と、
前記給水加熱器の水位を調節する水位調節弁と、
前記水位検出部により検出された前記水位信号と目標水位とに基づいて前記水位調節弁の開度を指令する開度指令信号を求める制御信号生成部と、
前記制御信号生成部により所定の取得周期毎に求められた前記開度指令信号を所定の積算周期で積算し積算値を取得する積算部と、
前記水位検出部が正常である場合に得られる前記開度指令信号の正常積算値と、積算部により作成された前記積算値とを比較し、前記水位検出部におけるドリフトの発生を診断するドリフト診断部と、
前記ドリフトが発生していると診断された場合、前記ドリフトが発生した水位検出部を前記水位信号の取得先から切り離す信号切替部とを備えたことを特徴とする給水加熱器水位制御装置。
A plurality of water level detection units for detecting a water level signal related to the water level of the feed water heater;
A water level control valve for adjusting the water level of the feed water heater;
A control signal generator for obtaining an opening command signal for commanding the opening of the water level control valve based on the water level signal detected by the water level detector and the target water level;
An integration unit that integrates the opening command signal obtained for each predetermined acquisition period by the control signal generation unit at a predetermined integration period and acquires an integrated value;
Drift diagnosis for comparing the normal integrated value of the opening command signal obtained when the water level detecting unit is normal and the integrated value created by the integrating unit to diagnose the occurrence of drift in the water level detecting unit And
A feed water heater water level control device comprising: a signal switching unit that disconnects the water level detection unit in which the drift has occurred from the acquisition source of the water level signal when it is diagnosed that the drift has occurred.
複数の前記水位発信器の偏差と、前記水位発信器が正常時の偏差と比較し、前記水位発信器におけるドリフトの発生を推定する判定部をさらに備え、
前記ドリフト診断部は、前記判定部によるドリフト発生の推定前の前記開度指令信号の積算値に基づいて前記正常積算値を設定し、ドリフト発生の推定後の前記開度指令信号の積算値と前記正常時積算値とを比較し、前記水位検出部におけるドリフトの発生を診断する請求項1記載の給水加熱器水位制御装置。
Comparing a plurality of deviations of the water level transmitters with a deviation when the water level transmitters are normal, further comprising a determination unit that estimates the occurrence of drift in the water level transmitters,
The drift diagnosis unit sets the normal integrated value based on the integrated value of the opening command signal before estimation of drift occurrence by the determination unit, and the integrated value of the opening command signal after estimation of drift occurrence The feed water heater water level control apparatus according to claim 1, wherein the water level controller of the feed water heater diagnoses occurrence of drift in the water level detection unit by comparing the normal time integrated value.
前記ドリフト診断部は、前記判定部によるドリフト発生の推定前の弁開度指令の積算値に基づいて、前記水位発信器以外の機器の要因による弁開度指令の変化量を考慮して前記正常時基準値を設定する請求項1記載の給水加熱器水位制御装置。 The drift diagnostic unit considers the amount of change in the valve opening command due to a factor of a device other than the water level transmitter based on the integrated value of the valve opening command before the occurrence of drift generation by the determination unit. The feed water heater water level control device according to claim 1, wherein a time reference value is set. 前記信号切替部は、前記信号の取得先を切り替える際、レートで切り替える請求項1記載の給水加熱器水位制御装置。 The feed water heater water level control device according to claim 1, wherein the signal switching unit switches at a rate when switching the acquisition source of the signal. 給水加熱器の水位に係る水位信号を複数の水位検出部より検出する水位検出ステップと、
前記給水加熱器の水位を調節する水位調節ステップと、
前記水位信号と目標水位とに基づいて前記水位調節弁の開度を指令する開度指令信号を求める制御信号生成ステップと、
前記制御信号生成ステップにより所定の取得周期毎に求められた前記開度指令信号を所定の積算周期で積算し積算値を取得する積算ステップと、
前記水位検出部が正常である場合に得られる前記開度指令信号の正常積算値と、積算部により作成された前記積算値とを比較し、前記水位検出部におけるドリフトの発生を診断するドリフト診断ステップと、
前記ドリフトが発生していると診断された場合、前記ドリフトが発生した水位検出部を前記水位信号の取得先から切り離す信号切替ステップとを備えることを特徴とする給水加熱器水位制御方法。
A water level detection step of detecting a water level signal related to the water level of the feed water heater from a plurality of water level detection units;
A water level adjusting step for adjusting the water level of the feed water heater;
A control signal generation step for obtaining an opening command signal for commanding the opening of the water level control valve based on the water level signal and the target water level;
An integration step of integrating the opening degree command signal obtained for each predetermined acquisition cycle by the control signal generation step at a predetermined integration cycle and acquiring an integrated value;
Drift diagnosis for comparing the normal integrated value of the opening command signal obtained when the water level detecting unit is normal and the integrated value created by the integrating unit to diagnose the occurrence of drift in the water level detecting unit Steps,
A water supply heater water level control method comprising: a signal switching step of disconnecting the water level detection unit where the drift has occurred from the acquisition source of the water level signal when it is diagnosed that the drift has occurred.
JP2012048239A 2012-03-05 2012-03-05 Feed water heater water level control device and control method thereof Active JP5657589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012048239A JP5657589B2 (en) 2012-03-05 2012-03-05 Feed water heater water level control device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012048239A JP5657589B2 (en) 2012-03-05 2012-03-05 Feed water heater water level control device and control method thereof

Publications (2)

Publication Number Publication Date
JP2013181739A true JP2013181739A (en) 2013-09-12
JP5657589B2 JP5657589B2 (en) 2015-01-21

Family

ID=49272523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012048239A Active JP5657589B2 (en) 2012-03-05 2012-03-05 Feed water heater water level control device and control method thereof

Country Status (1)

Country Link
JP (1) JP5657589B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162024A (en) * 2015-02-27 2016-09-05 アズビル株式会社 Flow rate control system
JP2016162025A (en) * 2015-02-27 2016-09-05 アズビル株式会社 Flow rate control system
CN113031663A (en) * 2021-02-26 2021-06-25 中广核工程有限公司 Deaerator liquid level control method, deaerator liquid level control device and deaerator liquid level control equipment of nuclear power unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674711A (en) * 1979-11-22 1981-06-20 Toshiba Corp Water-level signal selecting method
JPS63113203A (en) * 1986-10-28 1988-05-18 株式会社東芝 Feedwater-heater level controller
JPH0198803A (en) * 1987-10-09 1989-04-17 Toshiba Corp Drain controller for feedwater heater
JPH01196403A (en) * 1988-01-30 1989-08-08 Toshiba Corp Drain controller for feed water heater
JPH01263402A (en) * 1988-04-12 1989-10-19 Toshiba Corp Drain water level control device for water supplying and heating device
JPH08255021A (en) * 1995-03-16 1996-10-01 Matsushita Electric Ind Co Ltd Self-running cleaner
JPH11257237A (en) * 1998-03-09 1999-09-21 Toshiba Corp Water level controller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674711A (en) * 1979-11-22 1981-06-20 Toshiba Corp Water-level signal selecting method
JPS63113203A (en) * 1986-10-28 1988-05-18 株式会社東芝 Feedwater-heater level controller
JPH0198803A (en) * 1987-10-09 1989-04-17 Toshiba Corp Drain controller for feedwater heater
JPH01196403A (en) * 1988-01-30 1989-08-08 Toshiba Corp Drain controller for feed water heater
JPH01263402A (en) * 1988-04-12 1989-10-19 Toshiba Corp Drain water level control device for water supplying and heating device
JPH08255021A (en) * 1995-03-16 1996-10-01 Matsushita Electric Ind Co Ltd Self-running cleaner
JPH11257237A (en) * 1998-03-09 1999-09-21 Toshiba Corp Water level controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162024A (en) * 2015-02-27 2016-09-05 アズビル株式会社 Flow rate control system
JP2016162025A (en) * 2015-02-27 2016-09-05 アズビル株式会社 Flow rate control system
CN113031663A (en) * 2021-02-26 2021-06-25 中广核工程有限公司 Deaerator liquid level control method, deaerator liquid level control device and deaerator liquid level control equipment of nuclear power unit
CN113031663B (en) * 2021-02-26 2023-07-07 中广核工程有限公司 Deaerator liquid level control method, deaerator liquid level control device and deaerator liquid level control equipment for nuclear power unit

Also Published As

Publication number Publication date
JP5657589B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
US8757105B2 (en) System and method for controlling liquid level in a vessel
JP3807263B2 (en) Fuel cell power generation control device
JP4820461B2 (en) Distributed power system
JP5657589B2 (en) Feed water heater water level control device and control method thereof
US20210397169A1 (en) Information processing apparatus and monitoring method
JP6599026B2 (en) Hot water storage water heater
US10821994B2 (en) On-board control device, on-board integrated circuit
EP3021408B1 (en) Fuel cell system and power generation monitoring method
US10101021B2 (en) Control method for operating a heat recovery steam generator
US20140177772A1 (en) Apparatus and method for controlling gain according to rate of change in water level of steam generator in nuclear power plants
JP6082620B2 (en) Boiler supply water amount control system and supply water amount control method
JP6238609B2 (en) Inverter
JP5618816B2 (en) Fuel cell power generation system
JP2007110755A (en) A/d conversion apparatus
JP2020173063A (en) Air sending system
CN107560782B (en) Water supply pipeline burst detection method and system
JP2009024577A (en) Method for judging abnormality in degree of vacuum and device thereof
JP2018087724A (en) Insulation resistance inspection device, power conversion device, and method for measuring insulation resistance
CN113531774A (en) Air conditioner external ring temperature calculation method and device, air conditioner and computer storage medium
JP6704517B2 (en) How to operate a turbine generator
US20160190983A1 (en) Notification Apparatus Usable With Cooling System or Other System
Yi et al. Fault detection and diagnosis for non-Gaussian singular stochastic distribution systems via output PDFs
JP5370918B2 (en) Boiler control system
JP6679374B2 (en) Control method, control device, and power generation system
JP2020008036A (en) Method and device for diagnosing abnormality of control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141126

R151 Written notification of patent or utility model registration

Ref document number: 5657589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151