JP2020167878A - Battery control device and battery control method - Google Patents

Battery control device and battery control method Download PDF

Info

Publication number
JP2020167878A
JP2020167878A JP2019068369A JP2019068369A JP2020167878A JP 2020167878 A JP2020167878 A JP 2020167878A JP 2019068369 A JP2019068369 A JP 2019068369A JP 2019068369 A JP2019068369 A JP 2019068369A JP 2020167878 A JP2020167878 A JP 2020167878A
Authority
JP
Japan
Prior art keywords
range
charge
amount
predicted
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019068369A
Other languages
Japanese (ja)
Other versions
JP7281945B2 (en
Inventor
松本 健
Takeshi Matsumoto
健 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP2019068369A priority Critical patent/JP7281945B2/en
Publication of JP2020167878A publication Critical patent/JP2020167878A/en
Application granted granted Critical
Publication of JP7281945B2 publication Critical patent/JP7281945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

To provide a battery control device and a battery control method, which can efficiently perform charge-discharge control while suppressing deterioration of a battery.SOLUTION: The battery control device is provided with: a calculation part; a prediction part and a determination part. The calculation part calculates the power storage residual amount of a storage battery which has a first range which is a predetermined ordinary power storage range, and a second range which is a power storage range other than the first range. The prediction part predicts a prediction charge-discharge amount in the current vehicle operation based on the learning result of a charge-discharge amount in the past vehicle operation. When a prediction power storage amount calculated based on the power storage residual amount and the prediction charge-discharge amount is out of the ordinary power storage range, the determination part determines a charge-discharge amount in the current vehicle operation based on a power storage range including the second range.SELECTED DRAWING: Figure 2

Description

本発明は、電池制御装置および電池制御方法に関する。 The present invention relates to a battery control device and a battery control method.

従来、例えば、走行用の動力源であるエンジンと、エンジンの動作を補助する電動機(いわゆるモータジェネレータ)とを備えたハイブリッド車両が知られている。かかるハイブリッド車両では、減速時には電動機を発電機として動作させることで蓄電池を充電するとともに、加速時には蓄電池の電力を電動機に供給して駆動させることでエンジンの動作を補助する電池制御装置が知られている。 Conventionally, for example, a hybrid vehicle including an engine which is a power source for traveling and an electric motor (so-called motor generator) which assists the operation of the engine is known. In such a hybrid vehicle, a battery control device that assists the operation of the engine by operating the electric motor as a generator during deceleration to charge the storage battery and supplying the electric power of the storage battery to the electric motor during acceleration is known. There is.

この種の電池制御装置では、地図情報等から走行中の消費電力量を予測し、消費電力量に余裕があれば電動機の駆動を優先させる技術がある(例えば、特許文献1参照)。 In this type of battery control device, there is a technique of predicting the amount of power consumption during traveling from map information or the like and giving priority to driving the electric motor if the amount of power consumption is sufficient (see, for example, Patent Document 1).

特開2015−113075号公報JP-A-2015-113075

しかしながら、蓄電池の蓄電範囲には、電池保護の観点から充放電の禁止範囲が設定されている場合が多く、さらに、フェールセーフとして通常範囲と禁止範囲との間にマージン分の範囲が設定される場合がある。 However, in many cases, a charge / discharge prohibition range is set for the storage range of the storage battery from the viewpoint of battery protection, and a margin range is set between the normal range and the prohibition range as a fail-safe. In some cases.

従って、従来は、通常範囲内で充放電を行うため、蓄電池を最大限活用しているとは言えず、効率良く充放電制御を行う点で改善の余地があった。 Therefore, conventionally, since charging / discharging is performed within a normal range, it cannot be said that the storage battery is fully utilized, and there is room for improvement in efficient charge / discharging control.

本発明は、上記に鑑みてなされたものであって、電池の劣化を抑えつつ、効率良く充放電制御を行うことができる電池制御装置および電池制御方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a battery control device and a battery control method capable of efficiently performing charge / discharge control while suppressing deterioration of the battery.

上述した課題を解決し、目的を達成するために、本発明に係る電池制御装置は、算出部と、予測部と、決定部とを備える。前記算出部は、所定の通常蓄電範囲である第1範囲と、前記第1範囲以外の蓄電範囲である第2範囲とを有する蓄電池の蓄電残量を算出する。前記予測部は、過去の車両動作における充放電量の学習結果に基づき、今回の車両動作における予測充放電量を予測する。前記決定部は、前記蓄電残量および前記予測充放電量に基づき算出した予測蓄電量が前記通常蓄電範囲から外れる場合、前記第2範囲を含めた蓄電範囲に基づいて今回の車両動作における充放電量を決定する。 In order to solve the above-mentioned problems and achieve the object, the battery control device according to the present invention includes a calculation unit, a prediction unit, and a determination unit. The calculation unit calculates the remaining charge of a storage battery having a first range which is a predetermined normal storage range and a second range which is a storage range other than the first range. The prediction unit predicts the predicted charge / discharge amount in the current vehicle operation based on the learning result of the charge / discharge amount in the past vehicle operation. When the predicted storage amount calculated based on the remaining charge amount and the predicted charge / discharge amount deviates from the normal storage range, the determination unit charges / discharges in the current vehicle operation based on the storage range including the second range. Determine the amount.

本発明によれば、電池の劣化を抑えつつ、効率良く充放電制御を行うことができる。 According to the present invention, charge / discharge control can be efficiently performed while suppressing deterioration of the battery.

図1Aは、実施形態に係る制御システムの構成を示すブロック図である。FIG. 1A is a block diagram showing a configuration of a control system according to an embodiment. 図1Bは、実施形態に係る電池制御方法の概要を示す図である。FIG. 1B is a diagram showing an outline of a battery control method according to an embodiment. 図2は、実施形態に係る電池制御装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a battery control device according to an embodiment. 図3は、実施形態に係る電池制御装置が実行する処理の処理手順を示すフローチャートである。FIG. 3 is a flowchart showing a processing procedure of processing executed by the battery control device according to the embodiment.

以下、添付図面を参照して、本願の開示する電池制御装置および電池制御方法の実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではない。 Hereinafter, embodiments of the battery control device and the battery control method disclosed in the present application will be described in detail with reference to the accompanying drawings. The present invention is not limited to this embodiment.

まず、図1Aおよび図1Bを用いて、実施形態に係る電池制御方法の概要について説明する。図1Aは、実施形態に係る制御システムの構成を示すブロック図である。図1Bは、実施形態に係る電池制御方法の概要を示す図である。 First, the outline of the battery control method according to the embodiment will be described with reference to FIGS. 1A and 1B. FIG. 1A is a block diagram showing a configuration of a control system according to an embodiment. FIG. 1B is a diagram showing an outline of a battery control method according to an embodiment.

図1Aに示す制御システムSは、例えば、ハイブリッド車両に搭載される制御システムである。制御システムSは、電池制御装置1と、エンジン11と、モータジェネレータ(MG)12と、リチウムイオンバッテリ(LiB)13と、DCDCコンバータ14と、鉛バッテリ15と、負荷16とを備える。 The control system S shown in FIG. 1A is, for example, a control system mounted on a hybrid vehicle. The control system S includes a battery control device 1, an engine 11, a motor generator (MG) 12, a lithium ion battery (LiB) 13, a DCDC converter 14, a lead battery 15, and a load 16.

エンジン11は、走行用の動力源であって、例えば、ガソリンや水素等の電気以外で駆動するエンジンである。MG12は、加速時において、LiB13から供給される電力によって駆動され、エンジン11の動作を補助する。また、MG12は、減速時において、発電機として機能することで、減速に伴う運動エネルギを電気エネルギに変換して、LiB13や鉛バッテリ15、負荷16へ電力を供給する。 The engine 11 is a power source for traveling, and is an engine driven by other than electricity such as gasoline and hydrogen, for example. The MG 12 is driven by the electric power supplied from the LiB 13 during acceleration to assist the operation of the engine 11. Further, the MG 12 functions as a generator during deceleration to convert the kinetic energy associated with the deceleration into electrical energy and supply electric power to the LiB 13, the lead battery 15, and the load 16.

LiB13は、例えば、48Vの蓄電池であり、電池制御装置1の制御に従って充放電を行う。なお、詳細は図1Bで後述するが、実施形態に係る電池制御装置1は、LiB13に設定されたマージン分の蓄電範囲を加味して充放電制御を行う。 LiB13 is, for example, a 48V storage battery, and charges and discharges according to the control of the battery control device 1. Although the details will be described later in FIG. 1B, the battery control device 1 according to the embodiment performs charge / discharge control in consideration of the storage range for the margin set in LiB13.

DCDCコンバータ14は、MG12やLiB13から供給される電力を降圧して、鉛バッテリ15や負荷16へ電力を供給する。鉛バッテリ15は、例えば、12Vの蓄電池であり、負荷16へ電力を供給したり、MG12やLiB13から供給される電力を蓄積したりする。 The DCDC converter 14 steps down the power supplied from the MG 12 and the LiB 13 to supply the power to the lead battery 15 and the load 16. The lead battery 15 is, for example, a 12V storage battery, which supplies electric power to the load 16 and stores electric power supplied from MG 12 and LiB 13.

負荷16は、電気機器であり、例えば、ナビゲーション装置やオーディオ、エアーコンディショナ等が挙げられる。あるいは、負荷16は、例えば、PCS(Pre-crash Safety System)やAEB(Advanced Emergency Braking System)などの車両制御を行う車両制御装置であってもよい。 The load 16 is an electric device, and examples thereof include a navigation device, audio, and an air conditioner. Alternatively, the load 16 may be a vehicle control device that controls the vehicle, such as a PCS (Pre-crash Safety System) or an AEB (Advanced Emergency Braking System).

ここで、図1Bを用いて、実施形態に係る電池制御方法の概要について説明する。図1Bに示すように、LiB13の蓄電範囲は、通常蓄電範囲(第1範囲)と、使用禁止の範囲(上限側および下限側)と、マージン分(第2範囲)の範囲(上限側および下限側)とが設定される場合が多い。 Here, the outline of the battery control method according to the embodiment will be described with reference to FIG. 1B. As shown in FIG. 1B, the storage range of LiB13 is the normal storage range (first range), the prohibited range (upper limit side and lower limit side), and the margin (second range) range (upper limit side and lower limit side). Side) and is often set.

従来は、通常蓄電範囲内で充放電制御を行うことで、蓄電残量の算出誤差があった場合でも、マージン分の範囲によって、使用禁止の範囲まで充放電しないようにしている。例えば、図1Bにおいて、MGが要求トルクとして「A」が要求された場合、通常蓄電範囲の蓄電残量に相当する実トルク「B+Y」をMGに指示していた。従って、従来は、通常蓄電範囲内で充放電を行うため、LiBを最大限活用しているとは言えず、効率良く充放電制御を行う点で改善の余地があった。 Conventionally, by performing charge / discharge control within the normal storage range, even if there is an error in calculating the remaining charge, the charge / discharge is prevented from being charged / discharged to the range of prohibition of use within the range of the margin. For example, in FIG. 1B, when the MG is required to have "A" as the required torque, the MG is instructed to the actual torque "B + Y" corresponding to the remaining charge remaining in the normal storage range. Therefore, in the past, since charging / discharging is normally performed within the storage range, it cannot be said that LiB is fully utilized, and there is room for improvement in efficient charging / discharging control.

そこで、実施形態に係る電池制御方法では、過去の走行から充放電量を予測することで、マージン分の範囲を充放電制御に用いることとした。 Therefore, in the battery control method according to the embodiment, it is decided to use the range of the margin for charge / discharge control by predicting the charge / discharge amount from the past running.

具体的には、図1Bに示すように、まず、実施形態に係る電池制御方法では、マージン分を除いた所定の通常蓄電範囲を有するLiB13の蓄電残量を算出する(S1)。具体的には、通常蓄電範囲の上限を100%、下限を0%とする蓄電残量を算出する。 Specifically, as shown in FIG. 1B, first, in the battery control method according to the embodiment, the remaining charge amount of LiB13 having a predetermined normal storage range excluding the margin is calculated (S1). Specifically, the remaining storage amount is calculated with the upper limit of the normal storage range being 100% and the lower limit being 0%.

つづいて、実施形態に係る電池制御方法では、過去の車両動作における充放電量の学習結果に基づき、今回の車両動作における予測充放電量を予測する(S2)。図1Bに示す例では、予測放電量を予測する場合を示している。 Subsequently, in the battery control method according to the embodiment, the predicted charge / discharge amount in the current vehicle operation is predicted based on the learning result of the charge / discharge amount in the past vehicle operation (S2). In the example shown in FIG. 1B, a case where the predicted discharge amount is predicted is shown.

そして、実施形態に係る電池制御方法では、蓄電残量および予測充放電量に基づき算出した予測蓄電量が通常蓄電範囲から外れる場合、マージン分を含めた蓄電範囲に基づいて今回の車両動作における充放電量を決定する(S3)。 Then, in the battery control method according to the embodiment, when the predicted storage amount calculated based on the remaining storage amount and the predicted charging / discharging amount deviates from the normal storage range, the charging in the current vehicle operation is based on the storage range including the margin. The amount of discharge is determined (S3).

具体的には、実施形態に係る電池制御方法では、MG12から要求トルクとして「A」が要求された場合、通常蓄電範囲の蓄電残量に相当する実トルク「B+Y」に、下限側のマージン分の電力量に相当する実トルク「Z」を加えた「B+Y+Z」でMG12に指示する。 Specifically, in the battery control method according to the embodiment, when "A" is requested as the required torque from MG12, the actual torque "B + Y" corresponding to the remaining storage amount in the normal storage range is combined with the margin on the lower limit side. Instruct MG12 with "B + Y + Z" to which the actual torque "Z" corresponding to the electric energy of is added.

このように、実施形態に係る電池制御方法では、マージン分の電力量を用いることで、従来に比べて、効率良く充放電制御を行うことができる。 As described above, in the battery control method according to the embodiment, by using the electric energy for the margin, charge / discharge control can be performed more efficiently than in the conventional case.

さらに、実施形態に係る電池制御方法では、過去の車両動作の学習結果に基づき予測充放電量を予測することで、使用禁止の範囲まで充放電されることを防止できる。すなわち、実施形態に係る電池制御方法によれば、電池の劣化を抑えつつ、効率良く充放電制御を行うことができる。 Further, in the battery control method according to the embodiment, by predicting the predicted charge / discharge amount based on the learning result of the past vehicle operation, it is possible to prevent the battery from being charged / discharged to the range of prohibition of use. That is, according to the battery control method according to the embodiment, charge / discharge control can be efficiently performed while suppressing deterioration of the battery.

なお、図1Bでは、実施形態に係る電池制御方法をLiB13の放電制御に適用した場合について説明したが、実施形態に係る電池制御方法をLiB13の充電制御にも適用可能である。 Although the case where the battery control method according to the embodiment is applied to the discharge control of LiB13 is described in FIG. 1B, the battery control method according to the embodiment can also be applied to the charge control of LiB13.

次に、図2を参照して、実施形態に係る電池制御装置1の構成について詳細に説明する。図2は、実施形態に係る電池制御装置1の構成を示すブロック図である。図2に示すように、実施形態に係る電池制御装置1は、各種センサ100、LiB13およびMG12に接続される。 Next, the configuration of the battery control device 1 according to the embodiment will be described in detail with reference to FIG. FIG. 2 is a block diagram showing the configuration of the battery control device 1 according to the embodiment. As shown in FIG. 2, the battery control device 1 according to the embodiment is connected to various sensors 100, LiB13 and MG12.

各種センサ100は、車両に搭載されるセンサであって、車両に関する情報を検出し、検出結果を電池制御装置1へ出力する。各種センサ100は、例えば、カメラ、位置情報検出装置、車速センサ、加速度センサ、ジャイロセンサ、レーダ等といった、車両動作に関する情報を検出するセンサを含む。 The various sensors 100 are sensors mounted on the vehicle, detect information about the vehicle, and output the detection result to the battery control device 1. The various sensors 100 include sensors that detect information related to vehicle operation, such as a camera, a position information detection device, a vehicle speed sensor, an acceleration sensor, a gyro sensor, and a radar.

実施形態に係る電池制御装置1は、制御部2と、記憶部3とを備える。制御部2は、算出部20、学習部21、予測部22および決定部23を備える。記憶部3は、学習情報30を記憶する。 The battery control device 1 according to the embodiment includes a control unit 2 and a storage unit 3. The control unit 2 includes a calculation unit 20, a learning unit 21, a prediction unit 22, and a determination unit 23. The storage unit 3 stores the learning information 30.

ここで、電池制御装置1は、たとえば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、データフラッシュ、入出力ポートなどを有するコンピュータや各種の回路を含む。 Here, the battery control device 1 includes, for example, a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a data flash, an input / output port, and various circuits.

コンピュータのCPUは、たとえば、ROMに記憶されたプログラムを読み出して実行することによって、制御部2の算出部20、学習部21、予測部22および決定部23として機能する。 The CPU of the computer functions as a calculation unit 20, a learning unit 21, a prediction unit 22, and a determination unit 23 of the control unit 2, for example, by reading and executing a program stored in the ROM.

また、制御部2の算出部20、学習部21、予測部22および決定部23の少なくともいずれか一つまたは全部をASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等のハードウェアで構成することもできる。 Further, at least one or all of the calculation unit 20, the learning unit 21, the prediction unit 22, and the determination unit 23 of the control unit 2 are used by hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). It can also be configured.

また、記憶部3は、たとえば、RAMやデータフラッシュに対応する。RAMやデータフラッシュは、学習情報30や、各種プログラムの情報等を記憶することができる。なお、電池制御装置1は、有線や無線のネットワークで接続された他のコンピュータや可搬型記録媒体を介して上記したプログラムや各種情報を取得することとしてもよい。 Further, the storage unit 3 corresponds to, for example, a RAM or a data flash. The RAM or data flash can store learning information 30, information on various programs, and the like. The battery control device 1 may acquire the above-mentioned program and various information via another computer or a portable recording medium connected by a wired or wireless network.

学習情報30は、後述する学習部21の学習結果として生成される情報である。学習情報30には、例えば、過去の車両動作と充放電量との関係を示す情報等が含まれる。 The learning information 30 is information generated as a learning result of the learning unit 21 described later. The learning information 30 includes, for example, information indicating the relationship between the past vehicle operation and the charge / discharge amount.

制御部2は、LiB13の蓄電残量を算出するとともに、予測充放電量を予測し、蓄電残量および予測充放電量に基づいて今回の車両動作における充放電量を決定する。 The control unit 2 calculates the remaining charge and discharge amount of LiB13, predicts the predicted charge and discharge amount, and determines the charge and discharge amount in the current vehicle operation based on the remaining charge and discharge amount and the predicted charge / discharge amount.

算出部20は、マージン分を除いた所定の通常蓄電範囲を有するLiB13の蓄電残量を算出する。具体的には、算出部20は、LiB13の電流値や電圧値を検出することで、蓄電残量を示すSOC(State Of Charge)を算出する。 The calculation unit 20 calculates the remaining charge of LiB13 having a predetermined normal charge range excluding the margin. Specifically, the calculation unit 20 calculates the SOC (State Of Charge) indicating the remaining charge by detecting the current value and the voltage value of the LiB13.

より具体的には、算出部20は、電流値(もしくは電圧値)と、SOCとの関係を示すマップ情報に基づいてSOCを算出する。算出部20は、算出した蓄電残量の情報を決定部23へ出力する。 More specifically, the calculation unit 20 calculates the SOC based on the map information indicating the relationship between the current value (or voltage value) and the SOC. The calculation unit 20 outputs the calculated remaining charge information to the determination unit 23.

なお、算出部20により蓄電残量の算出処理は、例えば、一定の間隔で行ってもよく、あるいは、LiB13の充放電を行うタイミング(例えば、加速や減速のタイミング)に行ってもよい。 The calculation process of the remaining charge amount by the calculation unit 20 may be performed at regular intervals, for example, or may be performed at the timing of charging / discharging the LiB13 (for example, the timing of acceleration or deceleration).

学習部21は、過去の車両動作における充放電量を学習し、学習結果を示す学習情報30として記憶部3に記憶する。具体的には、学習部21は、例えば、加速時においてLiB13からMG12へ供給した電力量である放電量と、加速時の状況に関する加速情報(加速度、車速、道路勾配等)とを対応付けて学習情報30として記憶する。 The learning unit 21 learns the amount of charge / discharge in the past vehicle operation, and stores it in the storage unit 3 as learning information 30 indicating the learning result. Specifically, the learning unit 21 associates, for example, the amount of discharge, which is the amount of electric power supplied from the LiB13 to the MG12 during acceleration, with acceleration information (acceleration, vehicle speed, road gradient, etc.) regarding the situation during acceleration. It is stored as learning information 30.

より具体的には、学習部21は、加速時に電力供給の開始から終了までの供給継続期間における電力量を放電量として学習する。なお、学習部21は、例えば、加速時に瞬間的にアクセルを開放して電力供給が一時的に停止する場合には、電力供給が停止する前後の電力量を合算した値を放電量として学習する。換言すれば、学習部21は、電力供給の停止期間が所定期間以上となった場合、供給継続期間を終了して放電量を学習する。 More specifically, the learning unit 21 learns the amount of electric power in the supply continuation period from the start to the end of the electric power supply at the time of acceleration as the discharge amount. For example, when the accelerator is momentarily released during acceleration and the power supply is temporarily stopped, the learning unit 21 learns the sum of the power amounts before and after the power supply is stopped as the discharge amount. .. In other words, when the power supply stop period exceeds a predetermined period, the learning unit 21 ends the supply continuation period and learns the discharge amount.

また、学習部21は、例えば、減速時においてMG12からLiB13へ供給した電力量である充電量と、減速時の状況に関する減速情報(加速度、車速、道路勾配等)とを対応付けて学習情報30として記憶する。 Further, for example, the learning unit 21 associates the charge amount, which is the amount of electric power supplied from the MG 12 to the LiB 13 during deceleration, with the deceleration information (acceleration, vehicle speed, road gradient, etc.) regarding the situation during deceleration, and the learning information 30. Remember as.

また、学習部21は、LiB13の電池特性を示す特性情報を充放電量に対応付けて学習情報30として記憶してもよい。具体的には、特性情報には、LiB13の電池温度や、外気温、充放電回数(総数)、電池交換日、充放電頻度等の情報が含まれてよい。なお、充放電頻度とは、一定期間における充放電回数を指す。 Further, the learning unit 21 may store the characteristic information indicating the battery characteristics of the LiB 13 as the learning information 30 in association with the charge / discharge amount. Specifically, the characteristic information may include information such as the battery temperature of LiB13, the outside air temperature, the number of charge / discharge cycles (total number), the battery replacement date, and the charge / discharge frequency. The charge / discharge frequency refers to the number of charges / discharges in a certain period.

なお、学習部21は、例えば、予測充放電量を示すスコアを出力するモデルを学習結果として生成してもよい。具体的には、学習部21は、過去の車両動作における充放電量を教師データとし、過去の車両動作を示す動作情報(加速情報や減速情報等)および特性情報を素性データとする機械学習により、予測充放電量を示すスコアを出力するモデルを生成し、学習情報30として記憶してもよい。 The learning unit 21 may generate, for example, a model that outputs a score indicating the predicted charge / discharge amount as a learning result. Specifically, the learning unit 21 uses machine learning in which the charge / discharge amount in the past vehicle operation is used as teacher data and the operation information (acceleration information, deceleration information, etc.) and characteristic information indicating the past vehicle operation are used as the elemental data. , A model that outputs a score indicating the predicted charge / discharge amount may be generated and stored as learning information 30.

予測部22は、過去の車両動作における充放電量の学習結果に基づき、今回の車両動作における予測充放電量を予測する。具体的には、予測部22は、今回の車両動作(加速や減速)が検出されたタイミングで、記憶部3に記憶された学習情報30に基づいて予測充放電量を予測する。 The prediction unit 22 predicts the predicted charge / discharge amount in the current vehicle operation based on the learning result of the charge / discharge amount in the past vehicle operation. Specifically, the prediction unit 22 predicts the predicted charge / discharge amount based on the learning information 30 stored in the storage unit 3 at the timing when the vehicle motion (acceleration or deceleration) this time is detected.

例えば、予測部22は、過去の車両動作における放電量の学習結果に基づき、今回の車両動作における予測放電量を予測する。具体的には、予測部22は、車両の加速動作(アクセルの踏込や、車速変化が所定値以上)が検出された場合、かかる加速動作の情報と、学習情報30とに基づき予測放電量を予測する。 For example, the prediction unit 22 predicts the predicted discharge amount in the current vehicle operation based on the learning result of the discharge amount in the past vehicle operation. Specifically, when the vehicle acceleration motion (accelerator depression or vehicle speed change is equal to or higher than a predetermined value) is detected, the prediction unit 22 determines the predicted discharge amount based on the acceleration motion information and the learning information 30. Predict.

また、例えば、予測部22は、過去の車両動作における充電量の学習結果に基づき、今回の車両動作における予測充電量を予測する。具体的には、予測部22は、車両の減速動作(アクセルの開放や、車速変化が所定値以上)が検出された場合、かかる減速動作の情報と、学習情報30とに基づき予測充電量を予測する。 Further, for example, the prediction unit 22 predicts the predicted charge amount in the current vehicle operation based on the learning result of the charge amount in the past vehicle operation. Specifically, when a vehicle deceleration operation (accelerator release or vehicle speed change is equal to or greater than a predetermined value) is detected, the prediction unit 22 determines the predicted charge amount based on the deceleration operation information and the learning information 30. Predict.

例えば、予測部22は、学習情報30に含まれる過去の車両動作における充放電量に基づき算出した代表値を予測充放電量として予測する。 For example, the prediction unit 22 predicts a representative value calculated based on the charge / discharge amount in the past vehicle operation included in the learning information 30 as the predicted charge / discharge amount.

代表値は、例えば、過去の所定期間における充放電量の平均値や、最高値等であってよい。このように、過去の充放電量から算出した代表値を用いることで、予測放電量の予測精度を高めることができる。 The representative value may be, for example, the average value of the charge / discharge amount in the past predetermined period, the maximum value, or the like. In this way, by using the representative value calculated from the past charge / discharge amount, the prediction accuracy of the predicted discharge amount can be improved.

また、予測部22は、学習情報30に含まれる過去の車両動作におけるLiB13の電池特性の学習結果に基づいて予測充放電量を予測してもよい。これにより、予測放電量の予測精度をさらに高めることができる。 Further, the prediction unit 22 may predict the predicted charge / discharge amount based on the learning result of the battery characteristics of LiB13 in the past vehicle operation included in the learning information 30. As a result, the prediction accuracy of the predicted discharge amount can be further improved.

なお、予測部22は、予測充放電量を予測する際に、走行道路に関する道路情報を加味してもよい。道路情報には、例えば、道路の位置や、距離、勾配等といった固定の情報(静的な情報)、および、走行当時の交通量や、天候、路面状態等といった動的な情報が含まれてよい。 The prediction unit 22 may add road information related to the traveling road when predicting the predicted charge / discharge amount. Road information includes, for example, fixed information (static information) such as road position, distance, and slope, and dynamic information such as traffic volume at the time of driving, weather, and road surface condition. Good.

決定部23は、算出部20によって算出された蓄電残量、および、予測部22によって予測された予測充放電量に基づいて今回の車両動作における充放電量を決定する。 The determination unit 23 determines the charge / discharge amount in the current vehicle operation based on the remaining charge amount calculated by the calculation unit 20 and the predicted charge / discharge amount predicted by the prediction unit 22.

具体的には、決定部23は、蓄電残量および予測充放電量に基づき算出した予測蓄電量が通常蓄電範囲から外れる場合、マージン分を含めた蓄電範囲に基づいて今回の車両動作における充放電量を決定する。 Specifically, when the predicted storage amount calculated based on the remaining storage amount and the predicted charging / discharging amount deviates from the normal storage range, the determination unit 23 charges / discharges in the current vehicle operation based on the storage range including the margin. Determine the amount.

例えば、決定部23は、蓄電残量から予測放電量を減算した予測蓄電量が通常蓄電範囲を下回る場合、下限側のマージン分を含めた蓄電範囲に基づいて今回の車両動作における放電量を決定する。これにより、マージン分を含めた電力量をMG12へ供給できるため、MG12で出力されるトルクを向上させることができる。すなわち、放電時における電力量を増加できるため、効率良く放電制御を行うことができる。 For example, when the predicted storage amount obtained by subtracting the predicted discharge amount from the remaining storage amount is less than the normal storage range, the determination unit 23 determines the discharge amount in the current vehicle operation based on the storage range including the margin on the lower limit side. To do. As a result, the amount of electric power including the margin can be supplied to the MG 12, so that the torque output by the MG 12 can be improved. That is, since the amount of electric power at the time of discharge can be increased, discharge control can be performed efficiently.

また、例えば、決定部23は、蓄電残量に予測放電量を加算した予測蓄電量が通常蓄電範囲を上回る場合、上限側のマージン分を含めた蓄電範囲に基づいて今回の車両動作における充電量を決定する。これにより、マージン分を含めた電力量をLiB13に充電できるため、MG12によって発電された電力を無駄なく蓄積できる。すなわち、充電時における電力量を増加できるため、効率良く充電制御を行うことができる。 Further, for example, when the predicted storage amount obtained by adding the predicted discharge amount to the remaining storage amount exceeds the normal storage range, the determination unit 23 determines the charge amount in the current vehicle operation based on the storage range including the margin on the upper limit side. To determine. As a result, the amount of electric power including the margin can be charged to the LiB13, so that the electric power generated by the MG 12 can be stored without waste. That is, since the amount of electric power at the time of charging can be increased, charging control can be performed efficiently.

なお、決定部23は、予測蓄電量が通常蓄電範囲の範囲内である場合には、現在の蓄電残量に基づいて、すなわち、通常蓄電範囲に基づいて充放電量を決定する。 When the predicted storage amount is within the normal storage range, the determination unit 23 determines the charge / discharge amount based on the current storage amount, that is, based on the normal storage range.

そして、決定部23は、決定した充放電量に基づいてMG12で出力する実トルクを算出し、かかる実トルクを示す情報をMG12へ出力する。 Then, the determination unit 23 calculates the actual torque to be output by the MG 12 based on the determined charge / discharge amount, and outputs information indicating the actual torque to the MG 12.

次に、図3を用いて、実施形態に係る電池制御装置1が実行する処理の処理手順について説明する。図3は、実施形態に係る電池制御装置1が実行する処理の処理手順を示すフローチャートである。 Next, the processing procedure of the processing executed by the battery control device 1 according to the embodiment will be described with reference to FIG. FIG. 3 is a flowchart showing a processing procedure of processing executed by the battery control device 1 according to the embodiment.

図3に示すように、まず、算出部20は、マージン分を除いた所定の通常蓄電範囲を有するLiB13の蓄電残量を算出する(S101)。 As shown in FIG. 3, first, the calculation unit 20 calculates the remaining charge of LiB13 having a predetermined normal charge range excluding the margin (S101).

つづいて、予測部22は、過去の車両動作における充放電量の学習結果に基づき、今回の車両動作における予測充放電量を予測する(S102)。 Subsequently, the prediction unit 22 predicts the predicted charge / discharge amount in the current vehicle operation based on the learning result of the charge / discharge amount in the past vehicle operation (S102).

つづいて、決定部23は、蓄電残量および予測充放電量に基づいて予測蓄電残量を算出する(S103)。 Subsequently, the determination unit 23 calculates the predicted remaining charge amount based on the remaining amount of electricity stored and the predicted amount of charged / discharged charge (S103).

つづいて、決定部23は、算出した予測蓄電残量が通常蓄電範囲から外れるか否かを判定する(S104)。 Subsequently, the determination unit 23 determines whether or not the calculated predicted remaining amount of electricity is out of the normal electricity storage range (S104).

つづいて、決定部23は、予測蓄電残量が通常蓄電範囲から外れる場合(S104:Yes)、マージン分を含めた蓄電範囲に基づいて充放電量を決定し(S105)、処理を終了する。 Subsequently, the determination unit 23 determines the charge / discharge amount based on the storage range including the margin when the predicted storage amount deviates from the normal storage range (S104: Yes), and ends the process.

一方、決定部23は、予測蓄電残量が通常蓄電範囲の範囲内であった場合(S104:No)、予測充放電量、すなわち、通常蓄電範囲に基づいて充放電量を決定し(S106)、処理を終了する。 On the other hand, when the predicted charge / discharge amount is within the range of the normal storage range (S104: No), the determination unit 23 determines the charge / discharge amount based on the predicted charge / discharge amount, that is, the normal storage range (S106). , End the process.

上述してきたように、実施形態に係る電池制御装置1は、算出部20と、予測部22と、決定部23とを備える。算出部20は、所定の通常蓄電範囲である第1範囲と、第1範囲以外の蓄電範囲である第2範囲とを有するLiB13の蓄電残量を算出する。予測部22は、過去の車両動作における充放電量の学習結果に基づき、今回の車両動作における予測充放電量を予測する。決定部23は、蓄電残量および予測充放電量に基づき算出した予測蓄電量が通常蓄電範囲から外れる場合、第2範囲を含めた蓄電範囲に基づいて今回の車両動作における充放電量を決定する。これにより、電池の劣化を抑えつつ、効率良く充放電制御を行うことができる。 As described above, the battery control device 1 according to the embodiment includes a calculation unit 20, a prediction unit 22, and a determination unit 23. The calculation unit 20 calculates the remaining storage amount of LiB13 having a first range which is a predetermined normal storage range and a second range which is a storage range other than the first range. The prediction unit 22 predicts the predicted charge / discharge amount in the current vehicle operation based on the learning result of the charge / discharge amount in the past vehicle operation. When the predicted storage amount calculated based on the remaining storage amount and the predicted charging / discharging amount deviates from the normal storage range, the determination unit 23 determines the charging / discharging amount in the current vehicle operation based on the storage range including the second range. .. As a result, charge / discharge control can be efficiently performed while suppressing deterioration of the battery.

さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and variations can be easily derived by those skilled in the art. For this reason, the broader aspects of the invention are not limited to the particular details and representative embodiments expressed and described as described above. Therefore, various modifications can be made without departing from the spirit or scope of the general concept of the invention as defined by the appended claims and their equivalents.

1 電池制御装置
2 制御部
3 記憶部
11 エンジン
12 モータジェネレータ
13 リチウムイオンバッテリ
14 DCDCコンバータ
15 鉛バッテリ
16 負荷
20 算出部
21 学習部
22 予測部
23 決定部
30 学習情報
100 各種センサ
S 制御システム
1 Battery control device 2 Control unit 3 Storage unit 11 Engine 12 Motor generator 13 Lithium-ion battery 14 DCDC converter 15 Lead battery 16 Load 20 Calculation unit 21 Learning unit 22 Prediction unit 23 Decision unit 30 Learning information 100 Various sensors S control system

Claims (6)

所定の通常蓄電範囲である第1範囲と、前記第1範囲以外の蓄電範囲である第2範囲とを有する蓄電池の前記第1範囲における蓄電残量を算出する算出部と、
過去の車両動作における充放電量の学習結果に基づき、今回の車両動作における予測充放電量を予測する予測部と、
前記蓄電残量および前記予測充放電量に基づき算出した予測蓄電量が前記通常蓄電範囲から外れる場合、前記第2範囲を含めた蓄電範囲に基づいて今回の車両動作における充放電量を決定する決定部と
を備えることを特徴とする電池制御装置。
A calculation unit for calculating the remaining storage amount in the first range of a storage battery having a first range which is a predetermined normal storage range and a second range which is a storage range other than the first range.
Based on the learning result of the charge / discharge amount in the past vehicle operation, the prediction unit that predicts the predicted charge / discharge amount in the current vehicle operation,
When the predicted storage amount calculated based on the remaining charge and the predicted charge / discharge amount deviates from the normal storage range, the determination to determine the charge / discharge amount in the current vehicle operation based on the storage range including the second range. A battery control device characterized by having a unit.
前記予測部は、
過去の車両動作における放電量の学習結果に基づき、今回の車両動作における予測放電量を予測し、
前記決定部は、
前記蓄電残量から前記予測放電量を減算した予測蓄電量が前記通常蓄電範囲を下回る場合、下限側の前記第2範囲を含めた蓄電範囲に基づいて今回の車両動作における放電量を決定すること
を特徴とする請求項1に記載の電池制御装置。
The prediction unit
Based on the learning result of the discharge amount in the past vehicle operation, the predicted discharge amount in the current vehicle operation is predicted,
The decision unit
When the predicted storage amount obtained by subtracting the predicted discharge amount from the remaining storage amount is lower than the normal storage range, the discharge amount in the current vehicle operation is determined based on the storage range including the second range on the lower limit side. The battery control device according to claim 1.
前記予測部は、
過去の車両動作における充電量の学習結果に基づき、今回の車両動作における予測充電量を予測し、
前記決定部は、
前記蓄電残量に前記予測充電量を加算した予測蓄電量が前記通常蓄電範囲を上回る場合、上限側の前記第2範囲を含めた蓄電範囲に基づいて今回の車両動作における充電量を決定すること
を特徴とする請求項1または2に記載の電池制御装置。
The prediction unit
Based on the learning result of the charge amount in the past vehicle operation, the predicted charge amount in the current vehicle operation is predicted,
The decision unit
When the predicted storage amount obtained by adding the predicted charge amount to the remaining charge exceeds the normal storage range, the charge amount in the current vehicle operation is determined based on the storage range including the second range on the upper limit side. The battery control device according to claim 1 or 2.
前記予測部は、
過去の車両動作における前記充放電量に基づき算出した代表値を前記予測充放電量として予測すること
を特徴とする請求項1〜3のいずれか1つに記載の電池制御装置。
The prediction unit
The battery control device according to any one of claims 1 to 3, wherein a representative value calculated based on the charge / discharge amount in the past vehicle operation is predicted as the predicted charge / discharge amount.
前記予測部は、
過去の車両動作における前記蓄電池の電池特性の学習結果に基づいて前記予測充放電量を予測すること
を特徴とする請求項1〜4のいずれか1つに記載の電池制御装置。
The prediction unit
The battery control device according to any one of claims 1 to 4, wherein the predicted charge / discharge amount is predicted based on the learning result of the battery characteristics of the storage battery in the past vehicle operation.
所定の通常蓄電範囲である第1範囲と、前記第1範囲以外の蓄電範囲である第2範囲とを有する蓄電池の前記第1範囲における蓄電残量を算出する算出工程と、
過去の車両動作における充放電量の学習結果に基づき、今回の車両動作における予測充放電量を予測する予測工程と、
前記蓄電残量および前記予測充放電量に基づき算出した予測蓄電量が前記通常蓄電範囲から外れる場合、前記第2範囲を含めた蓄電範囲に基づいて今回の車両動作における充放電量を決定する決定工程と
を含むことを特徴とする電池制御方法。
A calculation step for calculating the remaining storage amount in the first range of a storage battery having a first range which is a predetermined normal storage range and a second range which is a storage range other than the first range.
Based on the learning result of the charge / discharge amount in the past vehicle operation, the prediction process for predicting the predicted charge / discharge amount in the current vehicle operation, and
When the predicted storage amount calculated based on the remaining storage amount and the predicted charging / discharging amount deviates from the normal storage range, the determination to determine the charging / discharging amount in the current vehicle operation based on the storage range including the second range. A battery control method characterized by including steps.
JP2019068369A 2019-03-29 2019-03-29 Battery control device and battery control method Active JP7281945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019068369A JP7281945B2 (en) 2019-03-29 2019-03-29 Battery control device and battery control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019068369A JP7281945B2 (en) 2019-03-29 2019-03-29 Battery control device and battery control method

Publications (2)

Publication Number Publication Date
JP2020167878A true JP2020167878A (en) 2020-10-08
JP7281945B2 JP7281945B2 (en) 2023-05-26

Family

ID=72716531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019068369A Active JP7281945B2 (en) 2019-03-29 2019-03-29 Battery control device and battery control method

Country Status (1)

Country Link
JP (1) JP7281945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149238A1 (en) * 2021-01-07 2022-07-14 株式会社東芝 Storage battery control device and storage battery control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160269A (en) * 2003-11-28 2005-06-16 Equos Research Co Ltd Drive controller and hybrid vehicle
JP2009001049A (en) * 2007-06-19 2009-01-08 Mazda Motor Corp Battery control device for vehicle
JP2014111413A (en) * 2012-12-05 2014-06-19 Daimler Ag Travel control device of hybrid electric automobile
JP2015113075A (en) * 2013-12-13 2015-06-22 トヨタ自動車株式会社 Control apparatus of hybrid vehicle
JP2018023243A (en) * 2016-08-05 2018-02-08 トヨタ自動車株式会社 Electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160269A (en) * 2003-11-28 2005-06-16 Equos Research Co Ltd Drive controller and hybrid vehicle
JP2009001049A (en) * 2007-06-19 2009-01-08 Mazda Motor Corp Battery control device for vehicle
JP2014111413A (en) * 2012-12-05 2014-06-19 Daimler Ag Travel control device of hybrid electric automobile
JP2015113075A (en) * 2013-12-13 2015-06-22 トヨタ自動車株式会社 Control apparatus of hybrid vehicle
JP2018023243A (en) * 2016-08-05 2018-02-08 トヨタ自動車株式会社 Electric vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149238A1 (en) * 2021-01-07 2022-07-14 株式会社東芝 Storage battery control device and storage battery control method
AU2021416759B2 (en) * 2021-01-07 2023-12-21 Kabushiki Kaisha Toshiba Storage battery control device and storage battery control method

Also Published As

Publication number Publication date
JP7281945B2 (en) 2023-05-26

Similar Documents

Publication Publication Date Title
CN110869784B (en) Method and apparatus for estimating SOC-OCV curve
US7495417B2 (en) Accumulating system and method for processing abnormality of accumulating system
EP2555372B1 (en) Power source device for vehicle
JP5470829B2 (en) Discrimination device for discriminating the state of a lithium ion battery
US20100001693A1 (en) Deterioration determination circuit, power supply apparatus, and deterioration determination method of secondary battery
US20110202197A1 (en) Power supply system and power supply control method
JP2008059910A (en) Control system of secondary battery and hybrid vehicle mounting it
JP6558280B2 (en) Control system
JP2008228403A (en) Power supply device for vehicle
US9533675B2 (en) Method for controlling battery of mild hybrid vehicle
CN101842927B (en) Fuel cell output control device
JP2007221868A (en) Battery charging apparatus and battery charging method
JP2005261034A (en) Controller of electric storage mechanism
JP6186248B2 (en) Inverter abnormality determination device
JP7281945B2 (en) Battery control device and battery control method
US11198368B2 (en) Vehicular charging control system
JP3838233B2 (en) Storage device control device
JP2001033532A (en) Battery state detector and charge/discharge controller
JP6504100B2 (en) Battery discharge control device
KR20190013021A (en) Eco-friendly vehicle and method of controlling battery thereof
JP4888776B2 (en) Vehicle power generation control device
JP6019985B2 (en) Vehicle power supply
JP5978144B2 (en) Battery system
JP5169479B2 (en) Vehicle control device
JP4680949B2 (en) Control device for electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230516

R150 Certificate of patent or registration of utility model

Ref document number: 7281945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150