JP2020165665A - 回転角検出装置 - Google Patents

回転角検出装置 Download PDF

Info

Publication number
JP2020165665A
JP2020165665A JP2019063505A JP2019063505A JP2020165665A JP 2020165665 A JP2020165665 A JP 2020165665A JP 2019063505 A JP2019063505 A JP 2019063505A JP 2019063505 A JP2019063505 A JP 2019063505A JP 2020165665 A JP2020165665 A JP 2020165665A
Authority
JP
Japan
Prior art keywords
rotation angle
output voltage
magnetic sensor
magnetic
absolute rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019063505A
Other languages
English (en)
Inventor
伊藤 浩義
Hiroyoshi Ito
浩義 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2019063505A priority Critical patent/JP2020165665A/ja
Publication of JP2020165665A publication Critical patent/JP2020165665A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】単極対形の磁気ドラムの一回転に亘って正確に絶対回転角度を特定可能な磁気式の回転角検出装置を提供する。【解決手段】磁気センサ8aは、磁気ドラムの絶対回転角度0°からの一回転に伴う磁界の変化を、絶対回転角度の増加に応じて最低電圧まで降圧し、続く絶対回転角度の増加に応じて最低電圧から最高電圧まで昇圧し、更に続く絶対回転角度の増加に応じて最高電圧から降圧するような出力電圧Vaの変化に変換する。磁気センサ8bは、前記磁界の変化を出力電圧Vaの降圧する絶対回転角度の範囲で絶対回転角度の増加に応じて昇圧するように磁気センサ8aの出力電圧変化に対して位相差をもった出力電圧Vbの変化に変換する。コンピュータ8cは、リアルタイムに入力された出力電圧Va,Vbと、予めメモリ部8dに記憶済みの出力電圧Va,Vb、絶対回転角度間の関係に基づいて絶対回転角度を求める。【選択図】図1

Description

この発明は、絶対回転角度を検出するために使用される回転角検出装置に関する。
一般に、建設機械のアームやブーム、ロボットアームのように軸線回りに回転する可動体では、その駆動制御、状態監視等のため、その回転角度の測定が行われている。その回転角度の検出として、ポテンショメータや磁気式の回転角検出装置が使用されている。
一般に、回転角検出装置からの出力は、回転角度を示す電気信号である。その出力方式としては、インクリメンタル方式と、アブソリュート方式がある。インクリメンタル方式では、検出開始時点からの相対回転角度を検出することができ、アブソリュート方式では、一定の原点(0°位置)からの絶対回転角度を検出することができる。ロボットアーム等の可動体では、起動時に初期化が不要なアブソリュート方式が適する。
例えば、特許文献1に開示されたポテンショメータは、回転軸の端面にブラシを取付け、対向する固定側に電気抵抗体基板を取り付け、電気抵抗体を円周方向の一部が欠けた有端リング状とし、その電気抵抗体の両端に端子を設け、電気抵抗体と同心円状に無端リングを設け、その無端リングの一部に端子を設けた構造であって、電気抵抗体の表面をブラシが摺動することにより、電気抵抗の変化に対応した電圧が出力されるようになっている。この種のポテンショメータでは、電気抵抗の変化を有端リング状の電気抵抗体にて発生させるため、回転角度の検出範囲が限定されることになり、360°以上の広範囲の回転角度検出を行うことができない。
一方、360°以上の広範囲の回転角度検出に対応可能な磁気式の回転角検出装置として、径方向に着磁された単極対形の磁気ドラムと、磁気ドラムと軸方向に対向する位置に配置された磁気センサとを備え、磁気センサが磁気ドラムの回転に伴う磁界の変化を電気的な信号に変換し、その信号に基づいて回転角度を求めるものがある(例えば、特許文献2)。
前述の磁気センサとしては、磁気ドラムの回転に伴う磁界の変化を軸線回りに90度の位相差をもった二相のアナログ信号(sin信号,cos信号)に変換するセンサアレイと、それらsin信号,cos信号のA/D変換を行うA/Dコンバータと、A/D変換されたcosθの関数とsinθの関数から逆三角関数であるarctan関数を演算して出力する演算回路とを含み、その演算結果に基づく出力電圧を生成するセンサチップが一般的である。
特許第3942801号公報 特開2010−66222号公報
前述のような磁気センサの出力電圧は、図6に示すように、磁気ドラムが絶対回転角度0°から360°までの全範囲で、その絶対回転角度の増加に比例的に(一次関数で又は一次関数に近似して)変化することが理想的である。
しかしながら、実際には、図7に示すように、磁気センサの出力電圧は、絶対回転角度360°(0°)付近で急激に変化する。すなわち、磁気ドラムの絶対回転角度0°からの一回転において、磁気センサの出力電圧は、磁気ドラムの絶対回転角度0°からの絶対回転角度の増加に比例的に最低電圧まで降圧し(第一区間の出力電圧変化)、続く絶対回転角度の増加に比例的に最低電圧から最高電圧まで昇圧し(第二区間の出力電圧変化)、更に続く絶対回転角度の増加に比例的に最高電圧から降圧する(第三区間の出力電圧変化)ように変化し、一回転を超える場合、第一区間から第三区間の出力電圧変化の順に繰り返すことになる。なお、図7のグラフでは、横軸(絶対回転角度)の360°(0°)付近(第一区間及び第三区間)だけスケールを変更し、360°付近での出力電圧変化を拡大して表示している。
したがって、磁気ドラムの絶対回転角度360°(0°)付近の僅かな絶対回転角度の範囲においては、磁気センサの出力電圧の電圧値が、第二区間の出力電圧変化を成す絶対回転角度の範囲における電圧値と同じ値を示すことになる。このため、磁気ドラムの絶対回転角度360°(0°)付近では、磁気センサの出力電圧から磁気ドラムの絶対回転角度を正確に特定することができず、磁気センサの分解能は、その第一区間及び第三区間を成す絶対回転角度の角度幅よりも大きな角度に限定される問題がある。
上述の背景に鑑み、この発明が解決しようとする課題は、単極対形の磁気ドラムの一回転に亘って正確に絶対回転角度を特定可能な磁気式の回転角検出装置にすることである。
上記の課題を達成するため、この発明は、径方向に着磁された単極対形の磁気ドラムと、前記磁気ドラムの絶対回転角度0°からの一回転に伴う磁界の変化を、前記磁気ドラムの絶対回転角度の増加に応じて最低電圧まで降圧する第一区間の出力電圧変化と、続く絶対回転角度の増加に応じて最低電圧から最高電圧まで昇圧する第二区間の出力電圧変化と、更に続く絶対回転角度の増加に応じて最高電圧から降圧する第三区間の出力電圧変化とに変換する第一系統の磁気センサと、前記磁気ドラムの絶対回転角度0°からの一回転に伴う磁界の変化を、前記第一区間及び前記第三区間の出力電圧変化を成す絶対回転角度の範囲で絶対回転角度の増加に応じて昇圧するように前記第一系統の磁気センサの出力電圧変化に対して位相差をもった出力電圧変化に変換する第二系統の磁気センサと、前記第一系統の磁気センサの出力電圧と前記第二系統の磁気センサの出力電圧との関係に基づいて前記磁気ドラムの絶対回転角度を求めるコンピュータと、を備える回転角検出装置に構成した。
上記構成によれば、第一系統の磁気センサの出力電圧が第一区間又は第三区間の出力電圧変化を成すとき(磁気ドラムの絶対回転角度が360°(0°)付近のとき)、第一系統の出力電圧のみに基づいて絶対回転角度を特定することは不可である。このとき、第一系統の出力電圧変化に対して位相差をもった出力電圧変化に変換する第二系統の磁気センサの出力電圧は、磁気ドラムの絶対回転角度に応じて増加する。このため、第一系統の出力電圧と、第二系統の出力電圧との関係に基づけば、その関係を知るコンピュータにより、磁気ドラムの一回転に亘って絶対回転角度を正確に求めることができる。
具体的には、前記コンピュータが、前記第一系統の磁気センサの出力電圧と前記第二系統の磁気センサの出力電圧と前記磁気ドラムの絶対回転角度との関係を予め記憶しているメモリ部と、リアルタイムに出力される前記第一系統の磁気センサの出力電圧及び前記第二系統の磁気センサの出力電圧を前記メモリ部に照合し、その照合結果に基づいて対応の前記磁気ドラムの絶対回転角度を求める演算部と、を有するとよい。このようにすると、リアルタイムで出力される第一系統の出力電圧及び第二系統の出力電圧をコンピュータでメモリ部と照合し、記憶されている関係性から両系統の出力電圧の電圧値に対応の絶対回転角度を特定することができる。
前記第一系統の磁気センサの出力電圧変化と前記第二系統の磁気センサの出力電圧変化との位相差は、例えば、90°に設定されている。
前記第一系統の磁気センサと前記第二系統の磁気センサは、例えば、それぞれ前記磁気ドラムの回転に伴う磁界の変化を三角波状の出力電圧変化に変換するものである。
軸方向両側に開口した筒状のハウジング本体と、前記ハウジング本体の一方側の開口を閉じる蓋と、前記蓋と軸方向に対向する一端面と、前記ハウジング本体の他方側の開口から露出する他端面とを有する軸と、前記ハウジング本体に対して前記軸を回転自在に支持する軸受と、前記蓋の内部側に固定された回路基板と、前記回路基板に実装されたセンサICと、をさらに備え、前記磁気ドラムが、前記軸の一端面上に同軸に配置されており、前記センサICが、前記第一系統の磁気センサと前記第二系統の磁気センサと前記コンピュータとを含んでいるとよい。このようにすると、センサICの実装で第一、第二系統の磁気センサやコンピュータを回路基板上にまとめて配置することができ、また、蓋と軸受と軸とハウジング本体による位置決めでセンサICと磁気ドラムを適切に対向配置させた状態にユニット化された回転角検出装置にすることができる。
上述のように、この発明は、上記構成の採用により、単極対形の磁気ドラムの一回転に亘って正確に絶対回転角度を検出可能な磁気式の回転角検出装置にすることができる。
この発明の実施形態に係る回転角検出装置に備わるセンサICの機能ブロック図 この発明の実施形態に係る回転角検出装置の全体構成を示す断面図 図1のセンサICと磁気ドラムとの位置関係を示す概念図 図1の第二系統の磁気センサの出力電圧と絶対回転角度との関係を示すグラフ 図1の第一系統の磁気センサの出力電圧と第二系統の磁気センサの出力電圧間の位相差と絶対回転角度との関係を示すグラフ 磁気センサ(第一系統の磁気センサ)の出力電圧と絶対回転角度との理想的な関係を示すグラフ 磁気センサ(第一系統の磁気センサ)の出力電圧と絶対回転角度との実際的な関係を示すグラフ
この発明の一例としての実施形態に係る回転角検出装置を添付図面に基づいて説明する。
図2に示すように、実施形態に係る回転角検出装置は、ハウジング本体1と、ハウジング本体1に取り付けられた蓋2と、ハウジング本体1の内方に配置された軸3と、ハウジング本体1に対して軸3を回転自在に支持する軸受4,5と、軸3と一体かつ同心に回転可能に配置された磁気ドラム6と、蓋2の内部側に固定された回路基板7と、回路基板7に実装されたセンサIC8と、を備える。
ここで、軸方向は、軸3の回転軸線に沿った方向のことをいう。以下、径方向は、軸3の回転軸線に対して直角な方向のことをいい、周方向は、軸3の回転軸線回りの円周方向のことをいう。
ハウジング本体1は、軸方向両側に開口した筒状である。ハウジング本体1は、相対回転する二部材(図示省略)の一方との連結に用いられるフランジ1aを有する。フランジ1aには、その連結に使用する軸方向の貫通孔1bが周方向の複数箇所に形成されている。
蓋2は、ハウジング本体1の一方側の開口を閉じるカップ状である。蓋2は、ハウジング本体1の一方側に形成された凹部1cに嵌合され、凹部1cとボルトで締結されている。
ハウジング本体1と蓋2との締結面間は、シール9で密封されている。シール9は、Oリングを例示している。ハウジング本体1の他方側には、軸3とハウジング本体1との間をシールするオイルシール10が設けられている。更に、ハウジング本体1の他方側の側面には、軸3の外周直近まで延びるシールワッシャ11が取り付けられている。これらシール構造は、外部からの異物侵入を防止するためのものである。
軸3は、蓋2と軸方向に対向する一端面3aと、ハウジング本体1の他方側の開口から露出する他端面3bとを有する。軸3の他端面3bから軸方向一方側に向かって複数のタップ穴3cが形成されている。タップ穴3cは、前述の相対回転する二部材の他方との連結に用いられる。
軸受4,5は、ハウジング本体1の軸方向中央付近に一定の間隔で配置されている。軸受4,5は、それぞれ深溝玉軸受からなる。これら二列の軸受4,5は、ハウジング本体1の他方側に形成された肩部1dと、軸3の軸方向中間部に形成された軸肩部3dと、蓋2とにより径方向及び軸方向に位置決めされている。なお、蓋2をハウジング本体1に締結することにより、軸受4,5に予圧が与えられている。
磁気ドラム6は、径方向に着磁された単極対形、すなわち、径方向に着磁された単極対で磁界を発生するものであり、永久磁石の単体、又は永久磁石と強磁性材の複合体からなる。磁気ドラム6で発生する磁界は、周方向に異方性を有する。図示例の磁気ドラム6は、単体の円板状の永久磁石からなり、半円板状のN極とS極とを有する。
磁気ドラム6は、磁石ホルダ12の中央部に保持されている。磁石ホルダ12の外周は、磁気ドラム6と軸3を所定の同軸度に配置するため、一方側の軸受5の内輪の内周に嵌合されている。磁気ドラム6を保持する磁石ホルダ12は、軸3の一端面3aにねじ止めされている。これにより、磁気ドラム6は、軸3の一端面3a上に同軸に配置され、軸3と一体に周方向の右回り及び左回りのいずれにも回転可能に固定されている。
なお、軸3は、磁気ドラム6の磁束の流れを安定させるため、強磁性体(軟質磁性体又は硬質磁性体)であることが好ましい。また、磁石ホルダ12は、磁気ドラム6の磁束の流れを妨げないようにするため、非磁性体であることが好ましく、特に安価な熱可塑性樹脂であることが好ましい。磁気ドラム6を構成する永久磁石としては、例えば、フェライト系を採用することが可能である。
回路基板7は、カップ状の蓋2の内部側に形成された凹部2aに嵌合され、さらにねじ止めされている。回路基板7としては、例えば、ガラス入りエポキシ樹脂製のものを採用することが可能である。
センサIC8は、回路基板7の他方側の板面上に表面実装されている。複数本の電線15のそれぞれの一端部は、回路基板7に接続されている。複数本の電線15として、センサIC8への供給電源用1本、GND用1本、センサIC8の出力送信用2本が使用されている。各電線15は、蓋2に形成された貫通孔2bに通されており、各電線15の他端部は、中継コネクタ13に接続されている。
モールド樹脂14が貫通孔2bの隙間に充填され、また、回路基板7の通電部を覆っている。モールド樹脂14としては、例えば、シリコン樹脂、ウレタン樹脂、及びエポキシ樹脂の中の少なくとも1種を採用することが可能である。
センサIC8は、図1に示すように、第一系統の磁気センサ8aと、第二系統の磁気センサ8bと、コンピュータ8cとを1パッケージに含んだ集積回路からなる。
図3に示すように、第一系統の磁気センサ8aは、磁気ドラム6の半円側と軸方向に対向するように配置され、第二系統の磁気センサ8bは、第一系統の磁気センサ8aとは反対側の磁気ドラム6の半円側と軸方向に対向するように配置されている。
第一系統の磁気センサ8aは、磁気ドラム6の絶対回転角度0°からの一回転に伴う磁界の変化を、図7に示すように、0°からの絶対回転角度の増加に応じて最低電圧まで降圧する第一区間の出力電圧変化と、続く絶対回転角度の増加に応じて最低電圧から最高電圧まで昇圧する第二区間の出力電圧変化と、更に続く絶対回転角度の増加に応じて最高電圧から降圧する第三区間の出力電圧変化とに変換する集積回路部からなる。なお、同図において、第一区間は、0°(360°)〜0.2°であり、第二区間は、0.2°〜359.8°であり、第三区間は、359.8°〜360°(0°)である。
一方、図3に示す第二系統の磁気センサ8bは、第一系統の磁気センサ8aと同様の回路構造をもった集積回路部からなり、また、第一系統の磁気センサ8aとは周方向に異なる位置で磁気ドラム6と軸方向に対向する。このため、第二系統の磁気センサ8bは、磁気ドラム6の絶対回転角度0°からの一回転に伴う磁界の変化を、図4に示すように、0°からの絶対回転角度の増加に応じて最高電圧まで昇圧し、続く絶対回転角度の増加に応じて最高電圧から最低電圧まで降圧し、更に続く絶対回転角度の増加に応じて最低電圧から昇圧するような出力電圧の変化に変換することになる。すなわち、第二系統の磁気センサ8bの出力電圧は、第一系統の磁気センサ8aの出力電圧に対して位相差をもち、かつアナログ信号として同等の波形を示す出力電圧変化になる。なお、図4のグラフでは、横軸(磁気ドラムの絶対回転角度)の第二系統の磁気センサ8bの出力電圧において最高電圧から最低電圧まで降圧する出力電圧変化を成す区間(絶対回転角度270°付近)だけスケールを変更し、この区間での出力電圧変化を拡大して表示している。
ここで、図5に、第一系統の磁気センサの出力電圧Vaと第二系統の磁気センサの出力電圧Vb間の相対的な位相差を示す。この位相差は、第一系統の磁気センサの出力電圧Vaが第一区間及び第三区間の出力電圧変化を成す絶対回転角度の範囲359.8°〜0.2°において、第二系統の磁気センサの出力電圧Vbが絶対回転角度の増加に応じて昇圧するように設定されている。
図5では、第一系統の磁気センサの出力電圧Vaと第二系統の磁気センサの出力電圧Vb間の相対的な位相差が90°に設定されている場合を例示している。なお、図5のグラフは、図4と図7を合成したものであり、横軸(磁気ドラムの絶対回転角度)の0°(360°)、270°付近だけスケールを変更し、これら付近での出力電圧変化を拡大して表示している。
図3に示す第一系統の磁気センサ8aと第二系統の磁気センサ8bは、図5から明らかなように、それぞれ磁気ドラム6の回転に伴う磁界の変化を三角波状の出力電圧変化に変換するものである。このような磁気センサとしては、パッケージの内部に複数の磁電変換素子、例えばホール素子を内蔵したセンサアレイタイプのものであって、絶対回転角度に対する出力電圧の直線性を補正するものが挙げられる。この種の磁気センサは、様々なものが公知であるので、適宜に選択すればよい。一般に、この種の磁気センサは、cos相検出用回路部、sin相検出用回路部、cos相検出用回路部からの出力に基づいてアナログのcos信号を生成するアンプ、sin相検出用回路部からの出力に基づいてアナログのsin信号を生成するアンプ、アンプで生成されたアナログ信号をデジタル信号に変換する各A/Dコンバータ及び、各A/Dコンバータに接続される演算処理部、及び演算処理部で算出されたデジタル信号をアナログ信号に変換するD/Aコンバータを備える。これら検出用回路部は、複数の磁電変換素子を備えるブリッジ回路で構成されており、磁気ドラムの回転に伴う磁界の変化に基づいて各検出用回路部の各出力端の電位が変動し、cos相検出用回路部から得られるアナログ出力と、sin相検出用回路部から得られるアナログ出力とでは位相が90°ずれている。その演算処理部では、cos信号からA/D変換されたcosθの関数と、sin信号からA/D変換されたsinθの関数から、逆三角関数であるarctan関数が算出される。D/Aコンバータは、演算処理部で算出されたデジタル信号のD/A変換を行って出力電圧を生成する。演算処理部では、直線近似計算等による適宜の補正処理が行われ、これにより、磁気ドラムの絶対回転角度の変化に比例する出力電圧の変化、例えば、図7の第一区間と第三区間の範囲に亘る一次関数的な直線状の出力変化や、第二区間の範囲に亘る一次関数的な直線状の出力変化が得られるようになっている。
図1に示すように、第一系統の磁気センサ8aと第二系統の磁気センサ8bは、出力電圧Va,Vbをリアルタイムに同時出力する。それら出力電圧Va,Vbは、図1に示すコンピュータ8cに入力される。コンピュータ8cは、不揮発性メモリに情報を記憶するメモリ部8dと、情報処理を行う演算部8eとを有する。メモリ部8dは、関係情報A,Bを予め記憶している。演算部8eは、入力された第一系統の磁気センサ8aの出力電圧Vaと関係情報Aを照合する第一の照合部8fと、入力された第二系統の磁気センサ8bの出力電圧Vbと関係情報Bを照合する第二の照合部8gと、これら照合部8f,8gでの照合結果を比較して絶対回転角度を特定する比較部8hとを有する。
関係情報Aは、第一系統の磁気センサ8aの出力電圧Vaと絶対回転角度との対応関係を示す情報である。関係情報Aは、第一の照合部8fで読み取り可能なグラフ(図7のグラフ相当)を示すデータ等としてメモリ部8dに予め記憶されている。関係情報Bは、第二系統の磁気センサ8bの出力電圧Vbと絶対回転角度との対応関係を示す情報である。関係情報Bは、第二の照合部8gで読み取り可能なグラフ(図4のグラフ相当)を示すデータ等としてメモリ部8dに予め記憶されている。このような情報は、予め前述の対応関係を実験的に求め、メモリ部8dに書き込まれる。なお、グラフ読み取りに代えて、同様の対応関係をテーブル形式で保持してもよい。
第一の照合部8fは、第一系統の磁気センサ8aの出力電圧Vaが入力されると、その電圧値を読み取り、その電圧値をメモリ部8dから呼び出した関係情報Aと照合し、その照合結果を比較部8hに通知する。
第二の照合部8gは、第二系統の磁気センサ8bの出力電圧Vbが入力されると、その電圧値を読み取り、その電圧値に基づいて関係情報Bから対応の絶対回転角度を照合し、関係情報Bから求めた絶対回転角度を比較部8hに通知する。
比較部8hは、同タイミングで第一の照合部8fから入力された照合結果と第二の照合部8gから入力された照合結果とを比較して絶対回転角度に変換し、その変換した絶対回転角度を示す角度データを送出する。
ここで、図5から明らかなように、絶対回転角度359.8°〜0.2°の範囲においては、第一系統の磁気センサ8aの出力電圧Vaが最高電圧(5V)から最低電圧(0V)まで降圧するが、第二系統の磁気センサ8bの出力電圧Vbが昇圧する関係になる。その他の絶対回転角度の範囲においては、前述の関係が発生しない。このため、第一系統の磁気センサ8aの出力電圧Vaが不安定な360°(0°)付近では、第二系統の磁気センサ8bの出力電圧Vbが補完する関係にある(すなわち、絶対回転角度は、両出力電圧Va、Vbを読み取って演算することで正確に特定することが可能である。)。
図1に示す比較部8hは、第一の照合部8fからの照合結果(図5において第一系統の磁気センサ8aの出力電圧Vaの電圧値に対応の絶対回転角度)を基本として、第二の照合部8gからの照合結果(図5において第二系統の磁気センサ8bの出力電圧Vbの電圧値に対応の絶対回転角度)と比較し、両者の関係から一の絶対回転角度を特定する。
例えば、図1、図5において、第一系統の磁気センサ8aの出力電圧Vaが略2.5Vのとき、関係情報Aから候補となる絶対回転角度は、略360°(0°)と、略180°である。このとき、第二系統の磁気センサ8bの出力電圧Vbは略1.2Vであり、関係情報Bから候補となる絶対回転角度は、略360°(0°)と、略90°である。比較部8hは、基本の第一系統の磁気センサ8aの出力電圧Vaに対応の略360°(0°)と略180°のうち、第二系統の磁気センサ8bの出力電圧Vbに対応の略360°(0°)と略90°と一致する絶対回転角度略360°(0°)に特定する。
なお、メモリ部8dに予め記憶された第一系統の磁気センサ8aの出力電圧Vaと第二系統の磁気センサ8bの出力電圧Vbと磁気ドラム6の絶対回転角度との関係に基づけば、他のアルゴリズムで絶対回転角度を特定することも可能である。例えば、演算部8eは、入力された第一系統の磁気センサ8aの出力電圧Vaが略2.5Vのとき、関係情報Aから候補となる絶対回転角度が略360°(0°)又は略180°であることを知る。このとき、絶対回転角度が真に略360°(0°)である場合、第一系統の磁気センサ8aの出力電圧Vaである略2.5Vと演算部8eに同時入力された第二系統の磁気センサ8bの出力電圧Vbは略1.2Vとなり、絶対回転角度が真に略180°である場合、同時入力された第二系統の磁気センサ8bの出力電圧Vbは略3.8Vとなる。演算部8eは、関係情報Bから絶対回転角度:略360°(0°)に対応の電圧値(略1.2V)と、略180°に対応の電圧値(略3.8V)とを読み取り、同時入力された第二系統の磁気センサ8bの出力電圧Vbの電圧値(略1.2V又は略3.8V)と、関係情報Bから読み取った電圧値とが一致した対応の絶対回転角度に特定することができる。
また、第一系統の磁気センサ8aの出力電圧Vaの電圧値と第二系統の磁気センサ8bの出力電圧Vbの電圧値と絶対回転角度の値とをテーブル形式でメモリ部に保持する場合、演算部8eは、同時入力された第一系統の磁気センサ8aの出力電圧Vaの電圧値と第二系統の磁気センサ8bの出力電圧Vbの電圧値との組み合わせに対応のレコードをメモリ部のテーブルから検索し、該当するレコードに記述された絶対回転角度に特定することができる。
このように、実施形態に係る回転角検出装置は(図1、図3、図5参照)、第一系統の磁気センサ8aの出力電圧Vaが第一区間又は第三区間の出力電圧変化を成すとき(磁気ドラム6の絶対回転角度が360°(0°)付近のとき)、第一系統の磁気センサ8aの出力電圧Vaのみに基づいて絶対回転角度を特定することは不可であるが、第一系統の磁気センサ8aの出力電圧Vaの変化に対して位相差をもった出力電圧変化に変換する第二系統の磁気センサ8bの出力電圧Vbが磁気ドラムの絶対回転角度に応じて増加するため、第一系統の磁気センサ8aの出力電圧Vaと第二系統の磁気センサ8bの出力電圧Vbとの関係に基づき、その関係を知るコンピュータにより、磁気ドラム6の一回転に亘って絶対回転角度を正確に求めることができる。
したがって、実施形態に係る回転角検出装置は、第一系統の磁気センサ8aの出力電圧Vaが最高電圧から最低電圧まで急激に降圧する絶対回転角度360°(0°)付近においても正確に絶対回転角度を検出することが可能なため、比較的単純な単極対形の磁気ドラム6を備えるものでありながら、より高い分解能を実現することができる。図5例では、絶対回転角度359.8°〜0.2°でも正確に絶対回転角度を検出することが可能なため、0.4°以下の分解能で絶対回転角度を検出することできる。
今回開示された各実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 ハウジング本体
2 蓋
3 軸
4,5 軸受
6 磁気ドラム
7 回路基板
8 センサIC
8a 第一系統の磁気センサ
8b 第二系統の磁気センサ
8c コンピュータ
8d メモリ部
8e 演算部
8f 第一の照合部
8g 第二の照合部
8h 比較部

Claims (5)

  1. 径方向に着磁された単極対形の磁気ドラムと、
    前記磁気ドラムの絶対回転角度0°からの一回転に伴う磁界の変化を、前記磁気ドラムの絶対回転角度の増加に応じて最低電圧まで降圧する第一区間の出力電圧変化と、続く絶対回転角度の増加に応じて最低電圧から最高電圧まで昇圧する第二区間の出力電圧変化と、更に続く絶対回転角度の増加に応じて最高電圧から降圧する第三区間の出力電圧変化とに変換する第一系統の磁気センサと、
    前記磁気ドラムの絶対回転角度0°からの一回転に伴う磁界の変化を、前記第一区間及び前記第三区間の出力電圧変化を成す絶対回転角度の範囲で絶対回転角度の増加に応じて昇圧するように前記第一系統の磁気センサの出力電圧変化に対して位相差をもった出力電圧変化に変換する第二系統の磁気センサと、
    前記第一系統の磁気センサの出力電圧と前記第二系統の磁気センサの出力電圧との関係に基づいて前記磁気ドラムの絶対回転角度を求めるコンピュータと、
    を備える回転角検出装置。
  2. 前記コンピュータが、前記第一系統の磁気センサの出力電圧と前記第二系統の磁気センサの出力電圧と前記磁気ドラムの絶対回転角度との関係を予め記憶しているメモリ部と、リアルタイムに出力される前記第一系統の磁気センサの出力電圧及び前記第二系統の磁気センサの出力電圧を前記メモリ部に照合し、その照合結果に基づいて対応の前記磁気ドラムの絶対回転角度を求める演算部と、を有する請求項1に記載の回転角検出装置。
  3. 前記第一系統の磁気センサの出力電圧変化と前記第二系統の磁気センサの出力電圧変化との位相差が90°に設定されている請求項1又は2に記載の回転角検出装置。
  4. 前記第一系統の磁気センサと前記第二系統の磁気センサが、それぞれ前記磁気ドラムの回転に伴う磁界の変化を三角波状の出力電圧変化に変換するものである請求項1から3のいずれか1項に記載の回転角検出装置。
  5. 軸方向両側に開口した筒状のハウジング本体と、
    前記ハウジング本体の一方側の開口を閉じる蓋と、
    前記蓋と軸方向に対向する一端面と、前記ハウジング本体の他方側の開口から露出する他端面とを有する軸と、
    前記ハウジング本体に対して前記軸を回転自在に支持する軸受と、
    前記蓋の内部側に固定された回路基板と、
    前記回路基板に実装されたセンサICと、
    をさらに備え、
    前記磁気ドラムが、前記軸の一端面上に同軸に配置されており、
    前記センサICが、前記第一系統の磁気センサと前記第二系統の磁気センサと前記コンピュータとを含んでいる請求項1から4のいずれか1項に記載の回転角検出装置。
JP2019063505A 2019-03-28 2019-03-28 回転角検出装置 Pending JP2020165665A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019063505A JP2020165665A (ja) 2019-03-28 2019-03-28 回転角検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019063505A JP2020165665A (ja) 2019-03-28 2019-03-28 回転角検出装置

Publications (1)

Publication Number Publication Date
JP2020165665A true JP2020165665A (ja) 2020-10-08

Family

ID=72717276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019063505A Pending JP2020165665A (ja) 2019-03-28 2019-03-28 回転角検出装置

Country Status (1)

Country Link
JP (1) JP2020165665A (ja)

Similar Documents

Publication Publication Date Title
JP5480967B2 (ja) 多周期的絶対位置検出器
JP5613839B2 (ja) 移動する物体の絶対的な位置特定のための方法及び装置
JP6154401B2 (ja) 高分解能アブソリュート・エンコーダ
JP5666886B2 (ja) ロータリエンコーダ
JP4470577B2 (ja) 回転角度検出装置
US7771121B2 (en) Bearing assembly with built-in absolute encoder
WO2006090588A1 (ja) 回転検出装置付き軸受
US20040263155A1 (en) Magnetic array position sensor
JPWO2009116365A1 (ja) 原点位置信号検出器
JP2007509336A (ja) 高分解能の多回転測定システム及びこのシステムを有する軸受
US20190086238A1 (en) Linear motion and rotation detector, linear motion and rotation detector unit, and linear motion and rotation drive device
JP4275444B2 (ja) アブソリュートエンコーダ付軸受
RU2615612C2 (ru) Бесконтактный истинно двухосевой датчик угла поворота вала
US7710110B2 (en) Rotary sensor with rotary sensing element and rotatable hollow magnet
US6496002B1 (en) Rotation detector having a plurality of magnetism detection elements, a plurality of magnetic resistors which are able to switch the resistance from great to small and vice-versa
JP2020165665A (ja) 回転角検出装置
JP7114315B2 (ja) エンコーダ
JP4925389B2 (ja) エンコーダ
JP2001255335A (ja) 回転検出機能付軸受
JP4869760B2 (ja) 回転検出装置付き軸受
JP4521808B2 (ja) エンコーダ
US8212551B2 (en) Bearing with absolute angle sensor
RU2317522C2 (ru) Программируемый бесконтактный датчик углового положения с линейным угловым диапазоном в пределах 360°
Guyol AMR Angle Sensors
JP5042510B2 (ja) 回転速度信号出力付き回転角度検出装置および検出装置付き軸受