JP2020165270A - Seashell pile and ground improvement method - Google Patents

Seashell pile and ground improvement method Download PDF

Info

Publication number
JP2020165270A
JP2020165270A JP2019069482A JP2019069482A JP2020165270A JP 2020165270 A JP2020165270 A JP 2020165270A JP 2019069482 A JP2019069482 A JP 2019069482A JP 2019069482 A JP2019069482 A JP 2019069482A JP 2020165270 A JP2020165270 A JP 2020165270A
Authority
JP
Japan
Prior art keywords
crushed
shell
scallop
pile
shells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019069482A
Other languages
Japanese (ja)
Other versions
JP7175828B2 (en
Inventor
正美 遠藤
Masami Endo
正美 遠藤
孝道 中村
Takamichi Nakamura
孝道 中村
惠梨 谷口
Eri Taniguchi
惠梨 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2019069482A priority Critical patent/JP7175828B2/en
Publication of JP2020165270A publication Critical patent/JP2020165270A/en
Application granted granted Critical
Publication of JP7175828B2 publication Critical patent/JP7175828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

To provide a seashell pile capable of saving resources and reducing the cost by using shells that become waste, and a ground improvement method using seashell piles.SOLUTION: Disclosed a seashell pile is formed by supplying unbaked crushed shells and microorganisms into a pile hole formed in the ground. A ground improvement method includes the steps of forming a pile hole in the ground, and supplying unbaked crushed shells and microorganisms into the pile hole; thereby, a compacted sea shell pile is constructed. Scallop shells are crashed and used as the crushed shells.SELECTED DRAWING: Figure 2

Description

本発明は、貝殻と微生物の代謝作用(微生物反応)とを利用した貝殻杭、及び、当該貝殻杭を用いた地盤改良方法に関する。 The present invention relates to a shell pile utilizing the metabolic action of a shell and a microorganism (microbial reaction), and a ground improvement method using the shell pile.

従来、液状化対策として、液状化対策を要する地盤に杭孔を形成し、この杭孔に投入した砂を締固めた砂杭を構築することにより地盤を改良する、サンドコンパクションパイル工法と呼ばれる地盤改良方法が知られている(特許文献1参照)。 Conventionally, as a countermeasure against liquefaction, a pile hole is formed in the ground requiring liquefaction countermeasures, and the ground is improved by constructing a sand pile in which the sand put into the pile hole is compacted, which is called a sand compaction pile method. An improvement method is known (see Patent Document 1).

特許第4332569号公報Japanese Patent No. 4332569

上述した砂杭、及び、地盤改良方法では、資源である砂を大量に使用するため、省資源化及び低コスト化を図ることができないという課題があった。
本発明は、廃棄物となる貝殻を利用できて省資源化及び低コスト化を実現できる貝殻杭、及び、当該貝殻杭を用いた地盤改良方法を提供するものである。
Since the sand pile and the ground improvement method described above use a large amount of sand as a resource, there is a problem that resource saving and cost reduction cannot be achieved.
The present invention provides a shell pile that can realize resource saving and cost reduction by utilizing a shell that becomes waste, and a ground improvement method using the shell pile.

本発明に係る貝殻杭は、地盤に形成された杭孔に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給して形成されたことを特徴とするので、液状化対策に効果的で、かつ、廃棄物となる貝殻を利用した省資源化及び低コスト化を実現できる貝殻杭を提供できる。
本発明に係る地盤改良方法は、地盤に杭孔を形成し、当該杭孔に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給して締固めた貝殻杭を構築したことを特徴とするので、液状化対策に効果的で、かつ、廃棄物となる貝殻を利用した省資源化及び低コスト化を実現できる地盤改良方法を提供できる。
また、本発明に係る地盤改良方法は、地盤に杭孔を形成した後、当該杭孔に未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを一緒に供給する供給ステップと当該杭孔に供給された当該貝殻粉砕物を締固める締固めステップとを交互に繰り返して貝殻杭を構築したことを特徴とするので、液状化対策に効果的で、かつ、廃棄物となる貝殻を利用した省資源化及び低コスト化を実現できる地盤改良方法を提供できる。
また、貝殻粉砕物として、ホタテ貝殻を粉砕したものを用いたことを特徴とするので、液状化対策に効果的で、かつ、廃棄物となるホタテ貝殻を利用した省資源化及び低コスト化を実現できる地盤改良方法を提供できる。
The shell pile according to the present invention is characterized in that it is formed by supplying crushed shells obtained by crushing unburned shells and microorganisms into a pile hole formed in the ground, and is therefore effective as a countermeasure against liquefaction. In addition, it is possible to provide a shell pile that can realize resource saving and cost reduction by using shells that become waste.
The ground improvement method according to the present invention is characterized in that a pile hole is formed in the ground, and a crushed shell product obtained by crushing unburned shells and a microorganism are supplied to the pile hole to construct a compacted shell pile. Therefore, it is possible to provide a ground improvement method that is effective as a countermeasure against liquefaction and that can realize resource saving and cost reduction using shells that are waste.
Further, in the ground improvement method according to the present invention, after forming a pile hole in the ground, a supply step of supplying crushed shells obtained by crushing unburned shells into the pile hole and microorganisms together and supplying the pile hole. Since the shell pile is constructed by alternately repeating the compaction step of compacting the crushed shell, it is effective as a countermeasure against liquefaction and saves resources by using the shell as waste. It is possible to provide a ground improvement method that can realize low cost and low cost.
In addition, since crushed scallop shells are used as the crushed shells, it is effective as a countermeasure against liquefaction, and resource saving and cost reduction using scallop shells as waste can be achieved. It is possible to provide a feasible ground improvement method.

地盤改良方法の手順を示す断面図(実施形態1)。The cross-sectional view which shows the procedure of the ground improvement method (Embodiment 1). 地盤改良方法の手順を示す断面図(実施形態1)。The cross-sectional view which shows the procedure of the ground improvement method (Embodiment 1). 実験1に用いた各試験体の成分比を示す図。The figure which shows the component ratio of each test piece used in Experiment 1. 実験1の実験結果を示す数値表。Numerical table showing the experimental results of Experiment 1. 実験1の実験結果を示すグラフ。The graph which shows the experimental result of Experiment 1. 実験2に用いた各試験体の成分比を示す図。The figure which shows the component ratio of each test piece used in Experiment 2. 実験2の実験結果を示すグラフ。The graph which shows the experimental result of Experiment 2. 実験2の実験結果を示す数値表及びグラフ。Numerical table and graph showing the experimental results of Experiment 2.

図1,図2に示すように、実施形態1に係る貝殻杭5Xは、地盤1に形成された杭孔に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給して形成されたものである。
また、実施形態1に係る貝殻杭5Xを利用した地盤改良方法は、地盤1に杭孔を形成し、当該杭孔に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給して締固めた貝殻杭5Xを構築した。
即ち、砂杭の代わりに、貝殻杭5Xを構築した。
As shown in FIGS. 1 and 2, the shell pile 5X according to the first embodiment was formed by supplying a crushed shell product obtained by crushing an unfired shell and a microorganism into a pile hole formed in the ground 1. It is a thing.
Further, in the ground improvement method using the shell pile 5X according to the first embodiment, a pile hole is formed in the ground 1, and a crushed shell product obtained by crushing an unburned shell and a microorganism are supplied to the pile hole for tightening. A hardened shell pile 5X was constructed.
That is, instead of the sand pile, a shell pile 5X was constructed.

尚、貝殻粉砕物とは、貝殻をほぼ等しい大きさに砕いて(割って)形成された欠片、貝殻を粒径の大きい粗粒状に砕いて形成された粗粒体、貝殻を粉状に砕いて形成された粉体等を言う。 The crushed shells are fragments formed by crushing (splitting) shells to almost the same size, coarse particles formed by crushing shells into coarse particles with a large particle size, and crushing shells into powder. Refers to the powder formed in the above.

未焼成の貝殻は、約95質量%の無機成分と5質量%程度の有機成分とからなる無機−有機複合体であり、無機成分は炭酸カルシウム、有機成分はコンキオリンとよばれるタンパク質とキチンから構成される。
そして、未焼成の貝殻の構造は、板状の炭酸カルシウム層間にバインダーとして有機質シートが存在し、炭酸カルシウム層と有機質シートとが結合した積層構造となっている。
The unbaked shell is an inorganic-organic complex composed of about 95% by mass of an inorganic component and about 5% by mass of an organic component. The inorganic component is calcium carbonate, and the organic component is composed of a protein called conchiolin and chitin. Will be done.
The structure of the unfired shell is such that an organic sheet exists as a binder between the plate-shaped calcium carbonate layers, and the calcium carbonate layer and the organic sheet are bonded to each other.

従って、地盤1に形成された杭孔に、未焼成の貝殻粉砕物と微生物とを供給することにより、微生物の代謝作用により生成される二酸化炭素(炭酸イオン)と未焼成の貝殻粉砕物中の炭酸カルシウム以外のカルシウムイオンとが反応する鉱物化反応により貝殻粉砕物の粒子間に炭酸カルシウムが析出されて、貝殻粉砕物の粒子間(炭酸カルシウム層間)の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻杭5Xが形成されると考えられる。
さらに、微生物の代謝作用により生成される二酸化炭素と、土壌中に存在するか、あるいは、土壌に供給されたカルシウムイオンとが反応(鉱物化反応)して、土粒子間に析出される炭酸塩により、土壌が固化すると考えられる。
Therefore, by supplying the unburned crushed shell and the microorganism to the pile hole formed in the ground 1, carbon dioxide (calcium ion) generated by the metabolic action of the microbial and the crushed shell in the unburned shell. Calcium carbonate is precipitated between the particles of the crushed shell by the mineralization reaction that reacts with calcium ions other than calcium carbonate, and the bond between the particles of the crushed shell (between the calcium carbonate layers) becomes stronger, and the crushed shell It is considered that the shell piles 5X are formed by being bonded to each other and solidified.
Furthermore, carbon dioxide produced by the metabolic action of microorganisms reacts with calcium ions present in the soil or supplied to the soil (mineralization reaction), and carbonates precipitated between soil particles. It is thought that the soil will solidify.

例えば、液状化対策の必要な粘性土地盤1に形成された杭孔に、未焼成の貝殻粉砕物と微生物とを供給することによって貝殻杭5Xが形成された場合、粘性土地盤1のせん断抵抗力が向上するとともに、貝殻杭5Xは貝殻粉砕物同士間の隙間が多い多孔質体となり、透水性及び耐水性に優れたものとなるので、貝殻杭5Xの周囲の間隙水圧が低下することにより、粘性土地盤1の沈下を早期に安定させ、圧密沈下量を低減させる効果が得られると考えられる。
また、液状化対策の必要な砂質土地盤1に形成された杭孔に、未焼成の貝殻粉砕物と微生物とを供給することによって貝殻杭5Xが形成された場合、当該砂質土地盤1の相対密度が高まり、当該砂質土地盤1のせん断強度が向上する効果が得られると考えられる。
For example, when the shell pile 5X is formed by supplying unburned crushed shells and microorganisms to the pile holes formed in the consolidated land 1 that requires liquefaction countermeasures, the shear resistance of the consolidated ground 1 As the force is improved, the shell pile 5X becomes a porous body with many gaps between the crushed shells, and has excellent water permeability and water resistance. Therefore, the pore water pressure around the shell pile 5X decreases. It is considered that the effect of stabilizing the subsidence of the viscous ground 1 at an early stage and reducing the amount of consolidation settlement can be obtained.
Further, when the shell pile 5X is formed by supplying unburned crushed shell shells and microorganisms to the pile holes formed in the sandy ground 1 that requires liquefaction countermeasures, the sandy ground 1 It is considered that the relative density of the sandy land 1 is increased and the shear strength of the sandy land 1 is improved.

具体的には、図1(a)〜(c)、図2(a),(b)に示すステップを経て貝殻杭5Xを形成するようにすればよい。 Specifically, the shell pile 5X may be formed through the steps shown in FIGS. 1 (a) to 1 (c) and 2 (a) and 2 (b).

例えば、図1に示すように、ケーシングパイプ2と、ケーシングパイプ2をケーシングパイプ2の中心軸を回転中心として回転させるとともに、ケーシングパイプ2をケーシングパイプ2の中心軸に沿って昇降させる駆動装置3と、ケーシングパイプ2内にホタテ貝殻粉砕物5及び酵母液を投入するための投入口4とを備えた機械を用い、後述する(1)削孔ステップ、(2)ホタテ貝殻粉砕物及び酵母液投入ステップ、(3)締固めステップ、(4)貝殻杭構築ステップを経て、図2に示すような貝殻杭5Xを構築する。 For example, as shown in FIG. 1, a driving device 3 that rotates the casing pipe 2 and the casing pipe 2 around the central axis of the casing pipe 2 and raises and lowers the casing pipe 2 along the central axis of the casing pipe 2. Using a machine equipped with a scallop shell crushed product 5 and an input port 4 for charging the yeast liquid into the casing pipe 2, (1) drilling step, (2) scallop shell crushed product and yeast liquid described later. The shell pile 5X as shown in FIG. 2 is constructed through the loading step, (3) compaction step, and (4) shell pile construction step.

(1)削孔ステップ
図1(a)に示すように、ケーシングパイプ2を回転させながら地盤1中を降下させて、ケーシングパイプ2の先端を所定深度まで到達させて杭孔を形成する。
(2)ホタテ貝殻粉砕物及び酵母液投入ステップ
未焼成のホタテ貝殻を粉砕したホタテ貝殻粉砕物5を、投入口4を介して、ケーシングパイプ2内に投入した後、図1(b)に示すように、ケーシングパイプ2を引き上げてホタテ貝殻粉砕物5を地盤1に形成された杭孔中に排出するとともに、ケーシングパイプ2に付随する図外の供給管を介してケーシングパイプ2の先端よりホタテ貝殻粉砕物5に酵母液を供給する。
尚、酵母液は、例えば、イースト菌(微生物)とグルコース(当該微生物によって代謝される栄養源)とを純水に溶かして作製すればよい。
(3)締固めステップ
杭孔中に排出したホタテ貝殻粉砕物5を、ケーシングパイプ2を昇降させることによって、杭孔中で締固めることにより、図1(c)に示すような、拡径杭部5Aを形成する。
(4)貝殻杭構築ステップ
(2)ホタテ貝殻粉砕物及び酵母液投入ステップと(3)締固めステップとを交互に繰り返して、地盤1の所定深度から地表面まで延長する、図2(a)に示すような貝殻杭5Xを構築し、さらに、地盤1の地盤改良範囲に応じて、図2(b)に示すように、貝殻杭5Xを複数構築する。
(1) Drilling Step As shown in FIG. 1A, the casing pipe 2 is rotated and lowered in the ground 1 to reach the tip of the casing pipe 2 to a predetermined depth to form a pile hole.
(2) Scallop shell crushed product and yeast solution charging step The scallop shell crushed product 5 obtained by crushing unbaked scallop shells is charged into the casing pipe 2 through the charging port 4, and then shown in FIG. 1 (b). As described above, the casing pipe 2 is pulled up to discharge the scallop shell crushed product 5 into the pile hole formed in the ground 1, and the scallop is scalloped from the tip of the casing pipe 2 via the supply pipe (not shown) attached to the casing pipe 2. The yeast solution is supplied to the crushed shell product 5.
The yeast solution may be prepared, for example, by dissolving yeast (microorganism) and glucose (nutrient source metabolized by the microorganism) in pure water.
(3) Compaction step The scallop shell crushed material 5 discharged into the pile hole is compacted in the pile hole by moving the casing pipe 2 up and down, thereby expanding the diameter of the pile as shown in FIG. 1 (c). Part 5A is formed.
(4) Seashell pile construction step (2) Seashell crushed and yeast solution injection step and (3) Compaction step are alternately repeated to extend from a predetermined depth of the ground 1 to the ground surface, FIG. 2 (a). As shown in FIG. 2B, a plurality of shell piles 5X are constructed, and a plurality of shell piles 5X are further constructed according to the ground improvement range of the ground 1.

実施形態1に係る貝殻杭5X、及び、貝殻杭5Xを利用した地盤改良方法によれば、液状化対策に効果的で、かつ、廃棄物となる貝殻を利用した省資源化及び低コスト化を実現できる貝殻杭5X、及び、貝殻杭5Xを利用した地盤改良方法を提供できる。 According to the shell pile 5X and the ground improvement method using the shell pile 5X according to the first embodiment, it is effective for liquefaction countermeasures, and resource saving and cost reduction using shells as waste are achieved. It is possible to provide a feasible shell pile 5X and a ground improvement method using the shell pile 5X.

尚、上記では、ホタテ貝殻粉砕物5と酵母液とを一緒に杭孔に供給するようにしたが、ホタテ貝殻粉砕物5と酵母液とを別々に杭孔に供給するようにしてもよい。例えば、ホタテ貝殻粉砕物5を杭孔に供給し、ホタテ貝殻粉砕物5を締固めながら当該ホタテ貝殻粉砕物5に酵母液を供給するようにしたり、杭孔に酵母液を供給した後に、ホタテ貝殻粉砕物5を杭孔に供給して、当該ホタテ貝殻粉砕物5を締固めるようにしてもよい。 In the above, the scallop shell crushed product 5 and the yeast liquid are supplied to the pile hole together, but the scallop shell crushed product 5 and the yeast liquid may be supplied to the pile hole separately. For example, the scallop shell crushed product 5 is supplied to the scallop hole, and the scallop shell crushed product 5 is compacted to supply the yeast solution to the scallop shell crushed product 5, or after the yeast solution is supplied to the scallop hole, the scallop The crushed scallop shell 5 may be supplied to the pile hole to compact the crushed scallop shell 5.

また、ホタテ貝殻粉砕物と酵母液と土砂とを混合して作製された混合剤を杭孔に供給するようにしてもよい。
この場合、土砂としては、例えば、後述する実験で用いたような、山砂や赤土等を用いればよい。
Further, a mixture prepared by mixing scallop shell crushed product, yeast solution and earth and sand may be supplied to the pile hole.
In this case, as the earth and sand, for example, mountain sand, red earth, or the like as used in the experiment described later may be used.

また、微生物としてイースト菌を例示したが、その他の微生物を用いてもよい。
また、微生物によって代謝される栄養源としてグルコースを例示したが、その他の栄養源を用いてもよい。
Moreover, although yeast was exemplified as a microorganism, other microorganisms may be used.
Moreover, although glucose was exemplified as a nutrient source metabolized by microorganisms, other nutrient sources may be used.

また、ホタテ貝殻粉砕物が、水分を含んだ状態のものであれば、水分を供給しなくてもよい。
また、地盤1の土壌が、水分、栄養分等を含む場合、未焼成のホタテ貝殻粉砕物と微生物とだけを杭孔に供給するようにしてもよい。
Further, as long as the scallop shell crushed product contains water, it is not necessary to supply water.
Further, when the soil of the ground 1 contains water, nutrients and the like, only unfired scallop shell crushed products and microorganisms may be supplied to the pile holes.

また、上述したように、杭孔に、未焼成のホタテ貝殻粉砕物と微生物と当該微生物によって代謝されるグルコース等の栄養源とを供給することが好ましいが、必ずしも栄養源を供給しなくても構わない。例えば、培養して活性化させた微生物と未焼成の貝殻粉砕物とを供給するだけでもよい。 Further, as described above, it is preferable to supply unbaked scallop shell crushed products, microorganisms, and nutrient sources such as glucose metabolized by the microorganisms to the pile holes, but it is not always necessary to supply the nutrient sources. I do not care. For example, it may be sufficient to simply supply the cultured and activated microorganisms and the unbaked crushed shells.

また、杭孔に、カルシウムイオンを含む硝酸カルシウムや塩化カルシウム等を供給すれば、鉱物化反応が促進されるので、より好ましい貝殻杭、及び、地盤改良効果を得ることができる。 Further, if calcium nitrate or calcium chloride containing calcium ions is supplied to the pile hole, the mineralization reaction is promoted, so that a more preferable shell pile and a ground improvement effect can be obtained.

また、杭孔に、pH調整剤を供給すれば、微生物反応により発生する炭酸イオンとカルシウムイオンとが反応する鉱物化反応を促進できて、より好ましい貝殻杭、及び、地盤改良効果を得ることができる。
即ち、微生物反応により発生する炭酸イオンとカルシウムイオンとが反応する鉱物化反応を促進させるための土壌のpH環境は、pH8〜9であることが好ましいとされており、上述したミネカル、又は、ケイカル、又は、ミネカルとケイカルとを混合した混合肥料を用いて、土壌のpH環境をpH8〜9に維持することにより、鉱物化反応を促進できて、より好ましい貝殻杭、及び、地盤改良効果を得ることができる。
Further, if a pH adjuster is supplied to the pile hole, a mineralization reaction in which carbonate ions and calcium ions generated by a microbial reaction react can be promoted, and a more preferable shell pile and a ground improvement effect can be obtained. it can.
That is, it is said that the pH environment of the soil for accelerating the mineralization reaction in which carbonate ions and calcium ions generated by the microbial reaction react with each other is preferably pH 8 to 9, and the above-mentioned minecal or caucal Alternatively, by maintaining the pH environment of the soil at pH 8 to 9 by using a mixed fertilizer in which minekal and caucal are mixed, the mineralization reaction can be promoted, and a more preferable shell pile and ground improvement effect can be obtained. be able to.

また、上記では、未焼成の貝殻粉砕物として、ホタテ貝殻粉砕物を使用した例を示したが、例えば、ホタテ貝殻以外の貝殻、たとえば、アワビ、サザエ、カキ、タイラギガイ等の未焼成の貝殻を用いてもよい。 Further, in the above, an example in which a scallop shell crushed product is used as the uncooked shell crushed product has been shown. You may use it.

尚、本発明において、「地盤に形成された杭孔に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給」とは、杭孔に、貝殻粉砕物と微生物とを混合したものを供給すること、あるいは、杭孔に、貝殻粉砕物と微生物とを、同時に、又は、別々に供給することを言う。 In the present invention, "supplying crushed shells and microorganisms obtained by crushing unburned shells to the pile holes formed in the ground" means that the pile holes are a mixture of crushed shells and microorganisms. Supplying, or supplying crushed shells and microorganisms to the pile holes at the same time or separately.

実験1
貝殻粉砕物の大きさの違いによって形成される貝殻粉砕物固化体の支持強度の違いを確認するための実験を行った。
尚、貝殻粉砕物として、未焼成のホタテ(帆立)の貝殻粉砕物を用いた。
Experiment 1
An experiment was conducted to confirm the difference in the supporting strength of the solidified shell crushed material formed by the difference in the size of the crushed shell material.
As the crushed shell, an unfired crushed scallop (scallop) shell was used.

図3に示すように、試験体は、以下のものを用いた。
・試験体1は、粗い粒子のホタテ貝殻粉砕物350gに、硝酸カルシウム8g+酵母液150mlを供給した試験体とした。当該粗い粒子のホタテ貝殻粉砕物350gは、粒径10mm〜2mmのホタテ貝殻粉砕物80〜90%+粒径0.85mm〜0.1mmのホタテ貝殻粉砕物10〜20%であり、当該粗い粒子のホタテ貝殻粉砕物としては、商品名「ホタテチップ」、青森エコサイクル産業共同組合会社製を使用した。
・試験体2は、中粒子のホタテ貝殻粉砕物350gに、硝酸カルシウム8g+酵母液150mlを供給した試験体とした。当該中粒子のホタテ貝殻粉砕物350gは、粒径2mm〜0.85mmのホタテ貝殻粉砕物が55〜60%+粒径0.85mm〜0.005mmのホタテ貝殻粉砕物が40〜45%であり、当該中粒子のホタテ貝殻粉砕物としては、商品名「ホタテで元気」、青森エコサイクル産業共同組合会社製を使用した。
・試験体3は、粉状のホタテ貝殻粉砕物400gに、硝酸カルシウム8g+酵母液150mlを供給した試験体とした。当該粉状のホタテ貝殻粉砕物400gは、粒径0.106mm〜0.005mmのホタテ貝殻粉砕物が100%であり、当該粉状のホタテ貝殻粉砕物としては、商品名「スキャロップマーカー」、青森エコサイクル産業共同組合会社製を使用した。
尚、酵母液150mlは、イースト菌8gとグルコース8gとを純水に溶かして作製した。
また、各試験体1,2,3は、所定の容器の底に、ホタテ貝殻粉砕物を、深さ20mmとなるように敷き詰めた後に、酵母液150mlを注ぐことで作製した。
そして、各試験体1,2,3を数日間、室温環境下(温度30℃、湿度60%)で放置して、1日経過する毎に、各試験体1,2,3の支持強度の状況を測定した。
支持強度の測定方法は、山中式硬度計により測定した。
As shown in FIG. 3, the following test specimens were used.
-The test body 1 was a test body in which 8 g of calcium nitrate + 150 ml of yeast solution was supplied to 350 g of crushed scallop shells having coarse particles. 350 g of the coarse-grained scallop crushed product is 80 to 90% of the scallop shell crushed product having a particle size of 10 mm to 2 mm + 10 to 20% of the scallop shell crushed product having a particle size of 0.85 mm to 0.1 mm. As the crushed scallop shell, the trade name "scallop chip" and the product of Aomori Eco Cycle Industry Cooperative Company were used.
-The test body 2 was a test body in which 8 g of calcium nitrate + 150 ml of yeast solution was supplied to 350 g of crushed scallop shells having medium particles. 350 g of the medium-particle crushed scallop shell is 55 to 60% of the crushed scallop shell having a particle size of 2 mm to 0.85 mm + 40 to 45% of the crushed scallop shell having a particle size of 0.85 mm to 0.005 mm. As the crushed scallop shells of the medium particles, the trade name "Scallops and Genki" and the product of Aomori Eco Cycle Industry Cooperative Company were used.
-The test body 3 was a test body in which 8 g of calcium nitrate + 150 ml of yeast solution was supplied to 400 g of powdered scallop shell crushed product. The powdered scallop crushed product (400 g) is 100% scallop shell crushed product having a particle size of 0.106 mm to 0.005 mm. Made by Eco Cycle Industry Cooperative Company.
The yeast solution 150 ml was prepared by dissolving 8 g of yeast and 8 g of glucose in pure water.
Further, each of the test bodies 1, 2 and 3 was prepared by spreading scallop shell crushed material on the bottom of a predetermined container to a depth of 20 mm and then pouring 150 ml of yeast solution.
Then, each test body 1, 2, 3 is left in a room temperature environment (temperature 30 ° C., humidity 60%) for several days, and every day, the support strength of each test body 1, 2, 3 is increased. The situation was measured.
The support strength was measured by a Yamanaka hardness tester.

・実験結果
図4;図5からわかるように、各試験体1、2、3は、固化し、特に、中粒子のホタテ貝殻粉砕物にイースト菌を供給した試験体2では、3日後に、支持強度117.1N/mmとなる支持強度の大きい貝殻粉砕物固化体を得ることができた。
-Experimental results As can be seen from Fig. 4; Fig. 5, each of the test bodies 1, 2 and 3 was solidified, and in particular, the test body 2 in which the yeast was supplied to the medium-sized scallop shell crushed product was supported after 3 days. A solidified shell crushed product having a strength of 117.1 N / mm 2 and a high supporting strength could be obtained.

実験から、未焼成のホタテ貝殻粉砕物に、イースト菌8gとグルコース8gとを純水に溶かして作製した酵母液150mlを供給することによって、ホタテ貝殻粉砕物を固化させることができるという事実を立証できた。 From the experiment, it can be proved that the crushed scallop shell can be solidified by supplying 150 ml of the yeast solution prepared by dissolving 8 g of yeast and 8 g of glucose in pure water to the crushed scallop shell. It was.

実験のように、ホタテ貝殻粉砕物を固化させることができた原因としては、第1に、未焼成の貝殻を粉砕した貝殻粉砕物に、微生物を供給したことにより、微生物の代謝作用により生成される二酸化炭素(炭酸イオン)と未焼成の貝殻粉砕物中の炭酸カルシウム以外のカルシウムイオンとが反応する鉱物化反応により貝殻粉砕物の粒子間に炭酸カルシウムが析出されて、貝殻粉砕物の粒子間(炭酸カルシウム層間)の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化体が形成されたと考えられる。
第2に、実験では、未焼成の貝殻を粉砕した貝殻粉砕物に、微生物を供給するととともに、硝酸カルシウムを供給したので、当該硝酸カルシウム中のカルシウムイオンと微生物の代謝作用により生成される二酸化炭素とが反応する鉱物化反応が促進されて貝殻粉砕物の粒子間に炭酸カルシウムが析出されることにより、貝殻粉砕物の粒子間(炭酸カルシウム層間)の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化体が形成されたと考えられる。
As in the experiment, the reason why the crushed scallop shells could be solidified was firstly that they were produced by the metabolic action of the microorganisms by supplying the crushed shells of unbaked shells with microorganisms. Calcium carbonate is precipitated between the particles of the crushed shell by the mineralization reaction in which the carbon dioxide (carbonate ion) reacts with calcium ions other than calcium carbonate in the crushed shell, and the particles of the crushed shell It is considered that the bond between (calcium carbonate layers) became stronger, and the crushed shells were bonded to each other to form a solidified crushed shell.
Second, in the experiment, the crushed shells of unbaked shells were supplied with microorganisms and calcium nitrate, so that calcium ions in the calcium nitrate and carbon dioxide produced by the metabolic action of the microorganisms were supplied. By promoting the mineralization reaction that reacts with and depositing calcium carbonate between the particles of the crushed shell, the bond between the particles of the crushed shell (calcium carbonate layer) becomes stronger, and the crushed shells become stronger. It is considered that a solidified body of crushed shell was formed by combining and solidifying.

特に、試験体2のように、ホタテ貝殻粉砕物が中粒子(例えば粒径2mm〜0.85mmのホタテ貝殻粉砕物が55〜60%+粒径0.85mm〜0.005mmのホタテ貝殻粉砕物が40〜45%)である場合、ホタテ貝殻粉砕物の中粒子間の隙間が密になり、炭酸カルシウム層間の結合がより強固になって、支持強度の大きい貝殻粉砕物固化体が形成されたと考えられる。
また、試験体1のように、ホタテ貝殻粉砕物が粗い粒子(例えば粒径10mm〜2mmのホタテ貝殻粉砕物80〜90%+粒径0.85mm〜0.1mmのホタテ貝殻粉砕物10〜20%)である場合、ホタテ貝殻粉砕物の粗い粒子間の隙間が大きくなるため、炭酸カルシウム層間の結合が弱くなって、形成された貝殻粉砕物固化体の支持強度が大きくならなかったと考えられる。
さらに、試験体3のように、ホタテ貝殻粉砕物が粉状粒子(例えば粒径0.106mm〜0.005mmのホタテ貝殻粉砕物が100%)である場合、ホタテ貝殻粉砕物の粉状粒子自体の支持強度が弱いため、形成された貝殻粉砕物固化体の支持強度が大きくならなかったと考えられる。
In particular, like Test Body 2, the scallop crushed product has medium particles (for example, the scallop shell crushed product having a particle size of 2 mm to 0.85 mm is 55 to 60% + the scallop shell crushed product having a particle size of 0.85 mm to 0.005 mm). When it is 40 to 45%), the gaps between the medium particles of the scallop shell crushed product become dense, the bond between the calcium carbonate layers becomes stronger, and a solidified body of the scallop shell crushed product having high supporting strength is formed. Conceivable.
Further, like the test body 1, the scallop crushed product has coarse particles (for example, scallop shell crushed product having a particle size of 10 mm to 2 mm 80 to 90% + scallop shell crushed product having a particle size of 0.85 mm to 0.1 mm 10 to 20). %), It is considered that the gap between the coarse particles of the scallop crushed scallop was large, so that the bond between the calcium carbonate layers was weakened and the supporting strength of the formed scallop crushed solidified body was not increased.
Further, when the scallop shell crushed product is powder particles (for example, the scallop shell crushed product having a particle size of 0.106 mm to 0.005 mm is 100%) as in the test body 3, the scallop shell crushed product itself is powdery particles. It is probable that the supporting strength of the formed crushed shell material did not increase because the supporting strength of the scallop was weak.

実験2
土壌の違い、供給する貝殻粉砕物の大きさの違いに基づく、土壌改良効果の違いを確認するための実験を行った。
Experiment 2
An experiment was conducted to confirm the difference in soil improvement effect based on the difference in soil and the difference in the size of crushed shells to be supplied.

図6に示すように、試験体は、以下のものを用いた。
1.試験体名「山砂」は、山砂400gに、硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル19.5g)を供給した試験体とした。
2.試験体名「赤土」は、赤土350gに、硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル12.0g)を供給した試験体とした。
As shown in FIG. 6, the following test specimens were used.
1. 1. The test piece name "Yamasago" was a test piece obtained by supplying 8 g of calcium nitrate + 150 ml of yeast solution + a pH adjuster (0.5 g of Keikal + 19.5 g of Minekal) to 400 g of mountain sand.
2. The test piece name "red clay" was a test piece obtained by supplying 350 g of red clay with 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of caical + 12.0 g of minecal).

3.試験体名「山砂+帆中」は、山砂400gに、中粒のホタテ貝殻粉砕物40g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル19.5g)を供給した試験体とした。
4.試験体名「山砂+帆粉」は、山砂400gに、粉状のホタテ貝殻粉砕物40g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル1.5g)を供給した試験体とした。
5.試験体名「山砂+帆荒」は、山砂380gに、荒粒(欠片状)のホタテ貝殻粉砕物80g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル5.5g)を供給した試験体とした。
3. 3. The test piece name "Yamasago + Hochu" was a test piece in which 400 g of mountain sand was supplied with 40 g of crushed medium-grain scallop shells + 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of Keikal + 19.5 g of Minekal). ..
4. The test piece name "mountain sand + sail powder" was a test body in which powdered scallop shell crushed product 40 g + calcium nitrate 8 g + yeast solution 150 ml + pH adjuster (Keikaru 0.5 g + Minekal 1.5 g) was supplied to 400 g of mountain sand. ..
5. The test piece name "mountain sand + sail rough" supplied 380 g of mountain sand with 80 g of crushed scallop shells in the form of coarse grains (fragment) + 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of Keikal + 5.5 g of Minekal). It was used as a test body.

6.試験体名「赤土+帆粉」は、赤土200gに、粉状のホタテ貝殻粉砕物100g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル12.0g)を供給した試験体とした。
7.試験体名「赤土+帆中」は、赤土200gに、中粒のホタテ貝殻粉砕物100g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル12.0g)を供給した試験体とした。
8.試験体名「赤土+帆荒」は、赤土200gに、荒粒(欠片状)のホタテ貝殻粉砕物100g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル12.0g)を供給した試験体とした。
6. The test piece name "red clay + sail powder" was prepared by supplying 200 g of red clay with 100 g of powdered scallop shell crushed product + 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of caical + 12.0 g of minecal).
7. The test piece name "red clay + sailing" was a test piece in which 200 g of red clay was supplied with 100 g of crushed medium-grain scallop shells + 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of caical + 12.0 g of minecal).
8. The test piece name "red clay + sail rough" is a test body in which coarse grain (fragment) scallop shell crushed product 100 g + calcium nitrate 8 g + yeast solution 150 ml + pH adjuster (Keikaru 0.5 g + Minekal 12.0 g) is supplied to 200 g of red clay. And said.

山砂は、粒径5mm〜0.125mm程度のものであり、商品名「山砂」、中島砂利の会社製を使用した。
赤土(粘土質の土)は、粒径0.074mm〜0.005mm程度のものであり、商品名「山砂」、中島砂利の会社製を使用した。
ホタテ貝殻粉砕物は、未焼成のホタテ貝殻を粉砕したホタテ貝殻粉砕物を用いた。
中粒のホタテ貝殻粉砕物は、粒径2mm〜0.85mmのホタテ貝殻粉砕物が55〜60%+粒径0.85mm〜0.005mmのホタテ貝殻粉砕物が40〜45%であり、商品名「ホタテで元気」、青森エコサイクル産業共同組合会社製を使用した。
粉状のホタテ貝殻粉砕物は、粒径0.106mm〜0.005mmのホタテ貝殻粉砕物が100%であり、商品名「スキャロップマーカー」、青森エコサイクル産業共同組合会社製を使用した。
荒粒(欠片状)のホタテ貝殻粉砕物は、粒径10mm〜2mmのホタテ貝殻粉砕物が80〜90%+粒径0.85mm〜0.1mmのホタテ貝殻粉砕物が10〜20%であり、商品名「ホタテチップ」、青森エコサイクル産業共同組合会社製を使用した。
pH調整剤としての転炉石灰肥料である上述したミネカルは、商品名「くみあいミネカル」、産業振興株式会社製を用いた。
pH調整剤としての鉱さい珪酸質肥料である上述したケイカルは、商品名「くみあいケイカル」、村樫石灰工業株式会社製を使用した。
また、酵母液150mlは、イースト菌8gとグルコース8gとを純水に溶かして作製した。
また、山砂を用いた試験体は、所定の容器の底に、山砂又は山砂とホタテ貝殻粉砕物とを、深さ40mmとなるように敷き詰めた後に、酵母液150mlを注ぐことで作製した。
また、赤土(粘土)を用いた試験体は、所定の容器の底に、赤土又は赤土とホタテ貝殻粉砕物とを、深さ10mmとなるように敷き詰めた後に、酵母液150mlを注ぐことで作製した。
そして、各試験体を7日間、室温環境下(温度30℃、湿度60%)で放置して、1日経過する毎に、各試験体の支持強度を測定した。
支持強度の測定方法は、山中式硬度計により測定した。
The mountain sand had a particle size of about 5 mm to 0.125 mm, and the trade name "mountain sand", manufactured by Nakajima Gravel, was used.
The red soil (clay soil) had a particle size of about 0.074 mm to 0.005 mm, and was used under the trade name "Yamasago" and manufactured by Nakajima Gravel.
As the crushed scallop shell, a crushed scallop shell obtained by crushing an unbaked scallop shell was used.
The medium-grain crushed scallop shells are 55-60% crushed scallops with a particle size of 2 mm to 0.85 mm + 40-45% crushed scallop shells with a particle size of 0.85 mm to 0.005 mm. The name "Scallops are fine", made by Aomori Eco Cycle Industry Cooperative Company.
The powdered scallop crushed product was 100% scallop shell crushed product having a particle size of 0.106 mm to 0.005 mm, and the trade name "scallop marker", manufactured by Aomori Eco Cycle Industry Cooperative Company was used.
The coarse-grained (fragment-like) scallop crushed product is 80 to 90% of the scallop shell crushed product having a particle size of 10 mm to 2 mm + 10 to 20% of the scallop shell crushed product having a particle size of 0.85 mm to 0.1 mm. , The product name "scallop chip", made by Aomori Eco Cycle Industry Cooperative Company was used.
As the above-mentioned Minekal, which is a converter lime fertilizer as a pH adjuster, the trade name "Kumiai Minekal", manufactured by Sangyo Shinko Co., Ltd. was used.
The above-mentioned silicic acid fertilizer as a pH adjuster used the trade name "Kumiai Silicic" and manufactured by Murakashi Lime Industry Co., Ltd.
Further, 150 ml of yeast solution was prepared by dissolving 8 g of yeast and 8 g of glucose in pure water.
A test piece using mountain sand is prepared by spreading mountain sand or mountain sand and crushed scallop shells on the bottom of a predetermined container to a depth of 40 mm, and then pouring 150 ml of yeast solution. did.
A test piece using red clay (clay) is prepared by spreading red clay or red clay and crushed scallop shells on the bottom of a predetermined container to a depth of 10 mm, and then pouring 150 ml of yeast solution. did.
Then, each test piece was left in a room temperature environment (temperature 30 ° C., humidity 60%) for 7 days, and the supporting strength of each test piece was measured every day.
The support strength was measured by a Yamanaka hardness tester.

・実験結果
貝殻粉砕物を供給しなかった試験体、即ち、図6の試験体名「山砂」、及び、「赤土」の経時に伴って得られた支持強度の推移の結果を図7に示す。
図7に示すグラフからわかるように、貝殻粉砕物を供給せずに酵母液を供給しただけの試験体である「山砂」及び「赤土」では、十分な支持強度は得らず、期待した土壌改良効果は得られなかった。
-Experimental results Fig. 7 shows the results of changes in the supporting strength of the test specimens that did not supply the crushed shells, that is, the specimen names "mountain sand" and "red clay" in Fig. 6 over time. Shown.
As can be seen from the graph shown in FIG. 7, sufficient support strength was not obtained with the test specimens "mountain sand" and "red soil", which were only supplied with yeast solution without supplying crushed shells, and were expected. No soil improvement effect was obtained.

山砂に、それぞれ大きさの異なる貝殻粉砕物を供給した試験体「山砂+帆(中)」、試験体「山砂+帆(粉)」、試験体「山砂+帆(荒)」、及び、赤土に、それぞれ大きさの異なる貝殻粉砕物を供給した試験体「赤土+帆(粉)」、試験体「赤土+帆(中)」、試験体「赤土+帆(荒)」の経時に伴って得られた支持強度の推移の結果を示す数値を図8(a)に示し、支持強度の推移の結果を示すグラフを図8(b),(c)に示す。 Specimen "mountain sand + sail (medium)", test body "mountain sand + sail (powder)", test body "mountain sand + sail (rough)" in which crushed shells of different sizes were supplied to mountain sand. , And the test body "red soil + sail (powder)", the test body "red soil + sail (medium)", and the test body "red soil + sail (rough)", in which crushed shells of different sizes were supplied to the red soil. Figures 8 (a) show the numerical values showing the results of the transition of the support strength obtained with time, and FIGS. 8 (b) and 8 (c) show the graphs showing the results of the transition of the support strength.

図8(a),(b)からわかるように、試験体「山砂+帆(中)」、試験体「山砂+帆(粉)」、試験体「山砂+帆(荒)」は、いずれも、5日目には、支持強度が117.1N/mmまでになるという優れた土壌改良効果が得られた。 As can be seen from FIGS. 8 (a) and 8 (b), the test body "mountain sand + sail (middle)", the test body "mountain sand + sail (powder)", and the test body "mountain sand + sail (rough)" On the 5th day, an excellent soil improvement effect was obtained in which the supporting strength reached 117.1 N / mm 2 .

また、図8(a),(c)からわかるように、試験体「赤土+帆(粉)」では、3日目には、支持強度が480.6N/mmまでになるという顕著に優れた土壌改良効果が得られることが分かった。 Further, as can be seen from FIGS. 8 (a) and 8 (c), the test body "red soil + sail (powder)" is remarkably excellent in that the supporting strength reaches 480.6 N / mm 2 on the third day. It was found that the soil improvement effect was obtained.

上述した土壌改良効果が得られた原因としては、第1に、土壌に、未焼成の貝殻粉砕物と微生物とを供給したことによって、微生物の代謝作用により生成される二酸化炭素(炭酸イオン)と未焼成の貝殻粉砕物中の炭酸カルシウム以外のカルシウムイオンとが反応する鉱物化反応により貝殻粉砕物の粒子間に炭酸カルシウムが析出されて、貝殻粉砕物の粒子間(炭酸カルシウム層間)の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化体が形成されたと考えられる。
第2に、実験では、硝酸カルシウムを供給したため、硝酸カルシウム中のカルシウムイオンと微生物の代謝作用により生成される二酸化炭素とが反応する鉱物化反応が促進されて貝殻粉砕物の粒子間に炭酸カルシウムが析出されることにより、貝殻粉砕物の粒子間の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化体が形成されたと考えられる推測される。
第3に、微生物の代謝作用により生成される二酸化炭素と、土壌中に存在するカルシウムイオン、あるいは、土壌に供給された硝酸カルシウム中のカルシウムイオンとが反応(鉱物化反応)して、土粒子間に析出される炭酸塩により、土壌が固化したと考えられる。
即ち、土壌に、未焼成の貝殻粉砕物と微生物とを供給した場合、貝殻粉砕物の固化と土壌の固化との相乗効果によって、土壌改良効果が向上したと考えられる。
The first reason why the above-mentioned soil improvement effect was obtained is that carbon dioxide (calcium ion) produced by the metabolic action of microorganisms by supplying unburned crushed shells and microorganisms to the soil. Calcium carbonate is precipitated between the particles of the crushed shell by the mineralization reaction that reacts with calcium ions other than calcium carbonate in the crushed shell, and the bonds between the particles of the crushed shell (calcium carbonate layers) are formed. It is considered that the crushed shells became stronger and the crushed shells were bonded to each other to form a solidified crushed shell.
Secondly, in the experiment, since calcium nitrate was supplied, the mineralization reaction in which calcium ions in calcium nitrate react with carbon dioxide produced by the metabolic action of microorganisms was promoted, and calcium carbonate was promoted between the particles of the crushed shell. It is presumed that the precipitation of calcium nitrate strengthened the bonds between the particles of the crushed shells, and the crushed shells were bonded to each other to form a solidified crushed shell.
Thirdly, carbon dioxide produced by the metabolic action of microorganisms reacts with calcium ions existing in the soil or calcium ions in calcium nitrate supplied to the soil (mineralization reaction) to produce soil particles. It is considered that the soil was solidified by the carbonates precipitated between them.
That is, when unburned crushed shells and microorganisms are supplied to the soil, it is considered that the soil improvement effect is improved by the synergistic effect of the solidification of the crushed shells and the solidification of the soil.

また、山砂は、粒径5mm〜0.125mmであるのに対して、粉状のホタテ貝殻粉砕物は、粒径0.106mm〜0.005mm、中粒のホタテ貝殻粉砕物は、粒径2mm〜0.005mm、荒粒(欠片状)のホタテ貝殻粉砕物は、粒径10mm〜0.1mmである。
即ち、実験では、山砂の粒径よりも小さい粒径のホタテ貝殻粉砕物を供給しているため、山砂の粒子間にホタテ貝殻粉砕物が入り込んで、山砂の粒子間の結合がより強固になり、支持強度の大きい土壌となったものと推測される。
Further, the mountain sand has a particle size of 5 mm to 0.125 mm, whereas the powdered scallop shell crushed product has a particle size of 0.106 mm to 0.005 mm, and the medium grain scallop shell crushed product has a particle size. The crushed scallop shells having a size of 2 mm to 0.005 mm and coarse grains (fragments) have a particle size of 10 mm to 0.1 mm.
That is, in the experiment, since the scallop shell crushed product having a particle size smaller than that of the mountain sand is supplied, the scallop shell crushed product enters between the mountain sand particles, and the bond between the mountain sand particles becomes stronger. It is presumed that the soil became stronger and had a high supporting strength.

また、赤土は、粒径0.074mm〜0.005mmであるのに対して、粉状のホタテ貝殻粉砕物は、粒径0.106mm〜0.005mm、中粒のホタテ貝殻粉砕物は、粒径2mm〜0.005mm、荒粒(欠片状)のホタテ貝殻粉砕物は、粒径10mm〜0.1mmである。 The red clay has a particle size of 0.074 mm to 0.005 mm, whereas the powdered scallop shell crushed product has a particle size of 0.106 mm to 0.005 mm, and the medium grain scallop shell crushed product has a grain size. The crushed scallop shells having a diameter of 2 mm to 0.005 mm and coarse grains (fragments) have a particle size of 10 mm to 0.1 mm.

即ち、試験体「赤土+帆(粉)」は、赤土の土粒子の粒径と粉状のホタテ貝殻粉砕物の粉粒子の粒径とが対応した大きさである。言い換えれば、赤土の土粒子の粒径と粉状のホタテ貝殻粉砕物の粉粒子の粒径とがほぼ同じである割合が大きい(高い)ので、粒子間の微小間隔の均等化が図られ、この均等化した粒子間の微小間隔に鉱物化反応による炭酸塩が析出されて硬化することによって、赤土全体が一体となって固化し、支持強度の著しく大きい土壌となったものと考えられる。
即ち、実験から、土壌の土粒子の大きさに対応した大きさのホタテ貝殻粉砕物と微生物とを土壌に供給することにより、土壌の支持強度を向上できることがわかった。
That is, the test body "red clay + sail (powder)" has a size corresponding to the particle size of the soil particles of red clay and the particle size of the powder particles of the powdered scallop shell crushed product. In other words, since the particle size of the soil particles of red soil and the particle size of the powder particles of the powdered scallop shell crushed product are almost the same (high), the fine spacing between the particles can be equalized. It is considered that the carbonates formed by the mineralization reaction were precipitated and hardened at the minute intervals between the equalized particles, so that the entire red soil was solidified as one and the soil had a remarkably high supporting strength.
That is, from the experiment, it was found that the supporting strength of the soil can be improved by supplying the soil with crushed scallop shells and microorganisms having a size corresponding to the size of the soil particles in the soil.

また、実験で用いた粉状のホタテ貝殻粉砕物は、粒径が0.106mm〜0.005mmであり、中粒のホタテ貝殻粉砕物や荒粒(欠片状)のホタテ貝殻粉砕物と比べて、赤土の粒径の上限0.074mmよりも小さい粒径の粉を多く含んでいると推測されるため、赤土の粒子間に粉状のホタテ貝殻粉砕物が入り込みやすくなり、赤土の粒子間の結合がより強固になることで、赤土全体が一体となって固化し、支持強度の著しく大きい土壌となったものと推測される。 The powdery scallop shell crushed product used in the experiment has a particle size of 0.106 mm to 0.005 mm, which is compared with the medium-grain scallop shell crushed product and the coarse-grained (fragment-like) scallop shell crushed product. Since it is presumed that a large amount of powder having a particle size smaller than the upper limit of 0.074 mm of the particle size of red soil is contained, powdery scallop shell crushed matter easily enters between the particles of red soil, and between the particles of red soil. It is presumed that as the bond became stronger, the entire red soil became one and solidified, resulting in a soil with extremely high supporting strength.

特に、土壌に、土壌の土粒子の大きさに対応した大きさの未焼成貝殻粉砕物と微生物とを供給する方法を採用することにより、支持強度を著しく向上できる顕著に優れた土壌改良効果が得られることがわかった。
例えば、粒径0.074mm〜0.005mm程度の粘土である赤土に、粒径が0.106mm〜0.005mmの粉状のホタテ貝殻粉砕物を供給すること、即ち、土壌の土粒子の粒径以下の大きさのホタテ貝殻粉砕物と微生物とを赤土(土壌)に供給することによって、赤土の粒子間に粉状のホタテ貝殻粉砕物が入り込みやすくなり、赤土の粒子間の結合がより強固になることから、支持強度を著しく向上できる顕著に優れた土壌改良効果が得られることがわかった。
In particular, by adopting a method of supplying unfired crushed shells and microorganisms having a size corresponding to the size of soil particles of the soil to the soil, a remarkably excellent soil improvement effect capable of significantly improving the supporting strength can be obtained. It turned out to be obtained.
For example, supplying powdered scallop shell crushed material having a particle size of 0.106 mm to 0.005 mm to red soil which is clay having a particle size of about 0.074 mm to 0.005 mm, that is, grains of soil particles in the soil. By supplying crushed scallop shells with a size smaller than the diameter and microorganisms to red soil (soil), powdered scallop crushed products can easily enter between the particles of red soil, and the bond between the particles of red soil becomes stronger. Therefore, it was found that a remarkably excellent soil improvement effect capable of significantly improving the supporting strength can be obtained.

一方で、試験体「赤土+帆(中)」や試験体「赤土+帆(荒)」では、赤土の土粒子の粒径とホタテ貝殻粉砕物の径とが大きく異なる。
即ち、赤土とホタテ貝殻粉砕物との間の間隔が大きくてばらばらな配置となってしまう。このため、赤土とホタテ貝殻粉砕物との結合が弱くなり、支持強度が得られなかったものと考えられる。
On the other hand, in the test body "red clay + sail (medium)" and the test body "red clay + sail (rough)", the particle size of the soil particles of red clay and the diameter of the scallop shell crushed material are significantly different.
That is, the distance between the red clay and the crushed scallop shell is large and the arrangement is disjointed. For this reason, it is probable that the bond between the red clay and the crushed scallop shell was weakened, and the supporting strength could not be obtained.

従って、実験から、土壌の土粒子の粒径以下の大きさのホタテ貝殻粉砕物と微生物とを土壌に供給することにより、土壌の支持強度を向上できることがわかった。 Therefore, from the experiment, it was found that the supporting strength of the soil can be improved by supplying the soil with crushed scallop shells having a size smaller than the particle size of the soil particles of the soil and microorganisms.

換言すれば、土壌が粘土質の土壌である場合、当該粘土質の土壌に粉状のホタテ貝殻粉砕物と微生物とを供給することによって、粘土質の土壌の支持強度を向上でき、土壌改良効果が得られることがわかった。 In other words, when the soil is clayey soil, the supporting strength of the clayey soil can be improved by supplying powdered scallop shell crushed material and microorganisms to the clayey soil, and the soil improvement effect can be achieved. Was found to be obtained.

1 地盤、5 貝殻粉砕物、5X 貝殻杭。
1 Ground, 5 crushed shells, 5X shell piles.

Claims (4)

地盤に形成された杭孔に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給して形成されたことを特徴とする貝殻杭。 A shell pile characterized in that it is formed by supplying crushed shells obtained by crushing unfired shells and microorganisms into a pile hole formed in the ground. 地盤に杭孔を形成し、当該杭孔に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給して締固めた貝殻杭を構築したことを特徴とする地盤改良方法。 A method for improving the ground, characterized in that a pile hole is formed in the ground, and a shell pile obtained by supplying crushed shells obtained by crushing unburned shells and microorganisms to the pile hole and compacting the pile hole. 地盤に杭孔を形成した後、当該杭孔に未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを一緒に供給する供給ステップと当該杭孔に供給された当該貝殻粉砕物を締固める締固めステップとを交互に繰り返して貝殻杭を構築したことを特徴とする地盤改良方法。 After forming a pile hole in the ground, a supply step of supplying the crushed shell crushed unburned shell and microorganisms together to the pile hole and compaction of the crushed shell material supplied to the pile hole. A ground improvement method characterized in that shell piles are constructed by alternately repeating steps. 貝殻粉砕物として、ホタテ貝殻を粉砕したものを用いたことを特徴とする請求項2又は請求項3に記載の地盤改良方法。
The ground improvement method according to claim 2 or 3, wherein a crushed scallop shell is used as the crushed shell.
JP2019069482A 2019-03-30 2019-03-30 Shell pile and ground improvement method Active JP7175828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019069482A JP7175828B2 (en) 2019-03-30 2019-03-30 Shell pile and ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019069482A JP7175828B2 (en) 2019-03-30 2019-03-30 Shell pile and ground improvement method

Publications (2)

Publication Number Publication Date
JP2020165270A true JP2020165270A (en) 2020-10-08
JP7175828B2 JP7175828B2 (en) 2022-11-21

Family

ID=72717151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019069482A Active JP7175828B2 (en) 2019-03-30 2019-03-30 Shell pile and ground improvement method

Country Status (1)

Country Link
JP (1) JP7175828B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104811A (en) * 1988-10-12 1990-04-17 Toda Constr Co Ltd Compaction pile construction for crushed limestone
JPH09235723A (en) * 1996-03-04 1997-09-09 Nakatomi Kurimoto Method for improving construction of weak ground
JP2004156290A (en) * 2002-11-06 2004-06-03 Nippon Steel Corp Soil improving material and soft ground improving method
JP2006169940A (en) * 2004-11-17 2006-06-29 Hokkaido Univ Soil improving method and grout used for soil improvement method
JP2007074906A (en) * 2005-09-09 2007-03-29 Toppan Printing Co Ltd Shellfishes having ic tag, system for administrating shellfish and method for attaching ic tag to shellfish
JP2014109179A (en) * 2012-12-04 2014-06-12 Shimizu Corp Sand compaction pile construction method
JP3199107U (en) * 2015-05-26 2015-08-06 日本富升環保開発 有限会社 Solution preparation equipment
JP2017055693A (en) * 2015-09-16 2017-03-23 株式会社サン・シャレーヌ Pearl ball and its manufacturing method
JP6489569B1 (en) * 2018-06-29 2019-03-27 強化土エンジニヤリング株式会社 Ground improvement method
JP2019119637A (en) * 2017-12-28 2019-07-22 バイオシェル株式会社 Calcium-based burned product

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104811A (en) * 1988-10-12 1990-04-17 Toda Constr Co Ltd Compaction pile construction for crushed limestone
JPH09235723A (en) * 1996-03-04 1997-09-09 Nakatomi Kurimoto Method for improving construction of weak ground
JP2004156290A (en) * 2002-11-06 2004-06-03 Nippon Steel Corp Soil improving material and soft ground improving method
JP2006169940A (en) * 2004-11-17 2006-06-29 Hokkaido Univ Soil improving method and grout used for soil improvement method
JP2007074906A (en) * 2005-09-09 2007-03-29 Toppan Printing Co Ltd Shellfishes having ic tag, system for administrating shellfish and method for attaching ic tag to shellfish
JP2014109179A (en) * 2012-12-04 2014-06-12 Shimizu Corp Sand compaction pile construction method
JP3199107U (en) * 2015-05-26 2015-08-06 日本富升環保開発 有限会社 Solution preparation equipment
JP2017055693A (en) * 2015-09-16 2017-03-23 株式会社サン・シャレーヌ Pearl ball and its manufacturing method
JP2019119637A (en) * 2017-12-28 2019-07-22 バイオシェル株式会社 Calcium-based burned product
JP6489569B1 (en) * 2018-06-29 2019-03-27 強化土エンジニヤリング株式会社 Ground improvement method

Also Published As

Publication number Publication date
JP7175828B2 (en) 2022-11-21

Similar Documents

Publication Publication Date Title
CA2591097C (en) Microbial biocementation
Achal et al. Biogrout: A novel binding material for soil improvement and concrete repair
Luhar et al. A review on the performance evaluation of autonomous self-healing bacterial concrete: mechanisms, strength, durability, and microstructural properties
JP2003531715A (en) Composite particles and method of using the same
RU2491135C1 (en) Soil slurry-ground mixture (versions) for remediation of disturbed lands and method of remediation of borrow pits and disturbed lands
JP6974050B2 (en) Viscous land improvement method
Deng et al. Experimental study on the mechanical properties and consolidation mechanism of microbial grouted backfill
JP2020165270A (en) Seashell pile and ground improvement method
JP7175827B2 (en) Slope protection layer and slope protection method
JPH0782984A (en) Fluidization treatment method
Gitanjali et al. Bio-cementation of sand using enzyme-induced calcite precipitation: Mechanical behavior and microstructural analysis
Wang et al. Garlic extract addition for soil improvement at various temperatures using enzyme-induced carbonate precipitation (EICP) method
JP3729160B2 (en) Environmental improvement method and environmental improvement materials for underwater or beach
Dubey et al. Erosion mitigation with biocementation: a review on applications, challenges, & future perspectives
KR101152295B1 (en) Natural soil-binder using natural bean and its use for soil cementation
JP2007154646A (en) Construction method for placing steel slag under water
KR20110087141A (en) Method for improving soft ground using urease-producing microorganism
JP7273593B2 (en) Soil improvement method
JP2008081951A (en) Impervious structure at joint part of impervious wall and impervious method
Ivanov et al. Biotechnological improvement of construction ground and construction materials
JP6631945B2 (en) Purification promoting material for oil-contaminated soil and purification treatment method using the same
CN105647503A (en) Nanoparticle static blasting agent for exploiting shale gas and preparation method of nanoparticle static blasting agent
Onyelowe et al. Waste combustion and lime induced calcite precipitation for problematic soils stabilization; an applied review
Putri et al. Effect of urease enzyme and clay mixture in shear strength properties of sand
Lateef Efficacy of EICP (Enzyme Induced Carbonate Precipitation) Techniques for Tropical Soils Geotechnical and Geoenvironmental Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221109

R150 Certificate of patent or registration of utility model

Ref document number: 7175828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150