JP2020163402A - Manufacturing method of ferritic stainless steel sheet, and ferritic stainless steel sheet - Google Patents

Manufacturing method of ferritic stainless steel sheet, and ferritic stainless steel sheet Download PDF

Info

Publication number
JP2020163402A
JP2020163402A JP2019064283A JP2019064283A JP2020163402A JP 2020163402 A JP2020163402 A JP 2020163402A JP 2019064283 A JP2019064283 A JP 2019064283A JP 2019064283 A JP2019064283 A JP 2019064283A JP 2020163402 A JP2020163402 A JP 2020163402A
Authority
JP
Japan
Prior art keywords
stainless steel
steel sheet
ferritic stainless
less
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019064283A
Other languages
Japanese (ja)
Inventor
章博 大森
Akihiro Omori
章博 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2019064283A priority Critical patent/JP2020163402A/en
Publication of JP2020163402A publication Critical patent/JP2020163402A/en
Pending legal-status Critical Current

Links

Abstract

To provide a ferritic stainless steel sheet capable of reducing flaw formation on a sheet surface, for example, at a transportation time, and excellent in flaw resistance; and to provide its manufacturing method.SOLUTION: In a manufacturing method of a ferritic stainless steel sheet, an intermediate material having a thickness of 3.0 mm or less is subjected to a cold rolling step for performing cold rolling with rolling reduction of 5 to 45% and forward slip of 1 to 8%, and after the cold rolling step, a shape correction step with elongation of 0.1 to 0.8% is performed, to thereby obtain the ferritic stainless steel sheet having a thickness of 0.5 mm or less. The ferritic stainless steel sheet is also provided.SELECTED DRAWING: None

Description

本発明は、フェライト系ステンレス薄板の製造方法およびフェライト系ステンレス薄板に関するものである。 The present invention relates to a method for producing a ferritic stainless steel sheet and a ferritic stainless steel sheet.

SUS430等に代表されるフェライト系ステンレス薄板は、その良好な加工性と低コスト性から、様々な用途に使用されている。例えば特許文献1には、ステンレス基板の絶縁層が形成される面の平均粗さRaが85nm以下である、化合物系薄膜太陽電池について記載されている。この特許文献1に記載のステンレス基板は、フェライト系ステンレス基板であることが記載されており、基板材料に良好な素子特性を得るために、平均粗さRaを調整している旨が記載されている。 Ferritic stainless steel sheets typified by SUS430 and the like are used for various purposes because of their good workability and low cost. For example, Patent Document 1 describes a compound-based thin-film solar cell in which the average roughness Ra of the surface on which the insulating layer of the stainless steel substrate is formed is 85 nm or less. It is described that the stainless steel substrate described in Patent Document 1 is a ferritic stainless steel substrate, and it is described that the average roughness Ra is adjusted in order to obtain good element characteristics in the substrate material. There is.

特開2014−107510号公報Japanese Unexamined Patent Publication No. 2014-107510

近年電子部品の小型化などにより、フェライト系ステンレス薄板にもさらなる表面性状の高品位化が求めらている。一方でフェライト系ステンレス薄板を作製する際に、ライン通板時にワイパーに堆積した異物やロール表面の微小な凹凸により薄板表面に疵が形成される。この疵は様々な不具合の要因となり、例えば太陽電池等の電子部品の基板に使用した際に、寸法精度の変化により電子部品の性能を低下させる要因となる。このような表面疵は例えばグラインダー等の研磨機を使用することで除去することが可能であるが、工数増加による生産性低下や、逆に研磨により新たな疵を形成させる要因ともなる。そのため耐疵性が高く、表面性状や強度に優れるフェライト系ステンレス薄板が望まれている。特許文献1には上述したような耐疵性の向上については検討されていない。
そこで本発明の目的は、薄板表面の耐疵性に優れるフェライト系ステンレス薄板とその製造方法を提供することである。
In recent years, due to the miniaturization of electronic components and the like, ferritic stainless steel sheets are also required to have higher quality on the surface. On the other hand, when producing a ferritic stainless steel sheet, defects are formed on the surface of the sheet due to foreign matter accumulated on the wiper during line passing and minute irregularities on the roll surface. This defect causes various defects, and when used as a substrate for an electronic component such as a solar cell, it becomes a factor that deteriorates the performance of the electronic component due to a change in dimensional accuracy. Such surface defects can be removed by using a polishing machine such as a grinder, but it also causes a decrease in productivity due to an increase in man-hours and conversely a factor of forming new defects by polishing. Therefore, a ferrite-based stainless steel sheet having high flaw resistance and excellent surface properties and strength is desired. Patent Document 1 does not study the improvement of flaw resistance as described above.
Therefore, an object of the present invention is to provide a ferrite-based stainless steel sheet having excellent scratch resistance on the surface of the sheet and a method for producing the same.

本発明の一態様は、厚さが3.0mm以下の中間素材に対して、圧下率5〜45%、先進率1〜8%の冷間圧延を行う冷間圧延工程と、前記冷間圧延工程後に、伸び率0.1〜0.8%の形状矯正を行う形状矯正工程と、を備え、厚さが0.5mm以下のフェライト系ステンレス薄板を得る、フェライト系ステンレス薄板の製造方法である。 One aspect of the present invention includes a cold rolling step of performing cold rolling of an intermediate material having a thickness of 3.0 mm or less with a reduction rate of 5 to 45% and an advanced rate of 1 to 8%, and the cold rolling. A method for producing a ferritic stainless steel sheet, which comprises a shape straightening step of performing shape correction with an elongation rate of 0.1 to 0.8% after the process to obtain a ferritic stainless steel sheet having a thickness of 0.5 mm or less. ..

本発明の他の一態様は、厚さが0.5mm以下のフェライト系ステンレス薄板であって、スクラッチ試験において試験開始時の荷重を0.5N、試験終了時の荷重を2.0Nとし、荷重が0.5Nの際の疵の深さおよび幅を基準として、荷重が2.0Nの際の疵の深さ変化量をD[μm]、疵の幅変化量をW[μm]とした際、圧延方向および圧延直角方向のD×Wの値が15以下である、フェライト系ステンレス薄板である。 Another aspect of the present invention is a ferritic stainless steel thin plate having a thickness of 0.5 mm or less, in which the load at the start of the test is 0.5 N and the load at the end of the test is 2.0 N in the scratch test. When the amount of change in the depth of the flaw is D [μm] and the amount of change in the width of the flaw is W [μm] when the load is 2.0N, based on the depth and width of the flaw when is 0.5N. , A ferritic stainless steel thin plate having a D × W value of 15 or less in the rolling direction and the direction perpendicular to rolling.

本発明によれば、薄板表面の耐疵性に優れるフェライト系ステンレス薄板とその製造方法を提供することができる。 According to the present invention, it is possible to provide a ferrite-based stainless steel sheet having excellent scratch resistance on the surface of the sheet and a method for producing the same.

以下に本発明の実施形態について説明する。なお、本明細書中において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、本明細書において、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
まず、本発明のフェライト系ステンレス薄板に関する実施形態について説明する。なお本発明における薄板とは、コイル状に巻き回されている鋼帯や、その鋼帯を切断して作製された矩形状の薄板も含む。
An embodiment of the present invention will be described below. In the present specification, the numerical range represented by using "~" means a range including the numerical values before and after "~" as the lower limit value and the upper limit value. Further, in the present specification, the term "process" is used not only as an independent process but also as a term as long as the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. included.
First, an embodiment of the ferritic stainless steel sheet of the present invention will be described. The thin plate in the present invention also includes a steel strip wound in a coil shape and a rectangular thin plate produced by cutting the steel strip.

本実施形態のフェライト系ステンレス薄板の組成は、代表的な成分としては、例えば、JIS−G4305で示されるフェライト系ステンレス鋼やその改良合金であれば良い。好ましくは、質量%で、0.12%以下のC、0.75%以下のSi、1.0%以下のMn、16.0〜18.0%のCrを含み、残部はFe及び不可避的不純物から構成されるフェライト系ステンレスを使用する。 The composition of the ferrite-based stainless steel sheet of the present embodiment may be, for example, a ferritic stainless steel represented by JIS-G4305 or an improved alloy thereof as a typical component. Preferably, in mass%, it contains 0.12% or less of C, 0.75% or less of Si, 1.0% or less of Mn, 16.0 to 18.0% of Cr, and the balance is Fe and unavoidable. Use ferritic stainless steel composed of impurities.

本実施形態では、例えば前述した組成を有する中間素材に冷間圧延を行う。この中間素材は、熱間圧延材や熱間圧延材に予備冷間圧延を施した帯状の素材を使用することができる。また中間素材は、表面に酸化層が形成されている場合、その酸化層を、例えば、機械的、或いは化学的に除去することがよい。また、冷間圧延中の冷間圧延材のエッジから割れ等の不良が発生しないように、エッジをトリミングしてもよい。このような加工を行って中間素材とすることができる。この中間素材の厚みは、最終的に0.5mm以下のフェライト系ステンレス薄板を効率よく製造するために、3.0mm以下に調整する。好ましい中間素材の厚みは2.0mm以下であり、より好ましい中間素材の厚みは1.0mm以下である。 In the present embodiment, for example, cold rolling is performed on an intermediate material having the above-mentioned composition. As this intermediate material, a hot-rolled material or a strip-shaped material obtained by pre-cooling the hot-rolled material can be used. When an oxide layer is formed on the surface of the intermediate material, the oxide layer may be removed, for example, mechanically or chemically. Further, the edge may be trimmed so that defects such as cracks do not occur from the edge of the cold-rolled material during cold rolling. Such processing can be performed to obtain an intermediate material. The thickness of this intermediate material is adjusted to 3.0 mm or less in order to efficiently produce a ferritic stainless steel sheet of 0.5 mm or less in the end. The preferred thickness of the intermediate material is 2.0 mm or less, and the more preferable thickness of the intermediate material is 1.0 mm or less.

続いて本実施形態では、所望の板厚および表面性状を得るために、中間素材に冷間圧延を行う(冷間圧延工程)。この冷間圧延工程時の圧下率は、5〜45%に調整する。これにより薄板の厚さと後述する先進率を所望の値に制御することができる。圧下率が5%未満であると所望の各幅方向位置の伸び差を調整しきれずに所望の形状が得られない可能性がある。一方、圧下率が45%を超えると、各幅方向位置の伸び差がつき過ぎることにより、所望の形状が得られない可能性がある。好ましい圧下率の上限は40%であり、好ましい圧下率の下限は8%である。なお本冷間圧延においては、複数パスで実施してもよいが、表面疵を抑制しつつ所望の特性を得るために、1パスで圧延することが好ましい。 Subsequently, in the present embodiment, the intermediate material is cold-rolled (cold-rolling step) in order to obtain a desired plate thickness and surface texture. The rolling reduction during this cold rolling step is adjusted to 5 to 45%. Thereby, the thickness of the thin plate and the advanced rate described later can be controlled to desired values. If the reduction rate is less than 5%, it is possible that the desired shape cannot be obtained because the desired elongation difference at each width direction position cannot be adjusted. On the other hand, if the reduction rate exceeds 45%, there is a possibility that a desired shape cannot be obtained because the elongation difference between the respective width direction positions is too large. The upper limit of the preferable reduction rate is 40%, and the lower limit of the preferable reduction rate is 8%. Although this cold rolling may be carried out in a plurality of passes, it is preferable to roll in one pass in order to obtain desired characteristics while suppressing surface defects.

本実施形態の冷間圧延工程において、先進率を1%〜8%に調整することが好ましい。この先進率とは、冷間圧延ロール入口側と出口側とにおける、圧延材料の速度差を表す指標であり、先進率が大きいほど薄板表面の塑性流動が起こり、薄板の板断面中心部と薄板表面部との応力差が生じ易くなる傾向になる。この先進率を上述した範囲に調整して冷間圧延を行うことで、微細な疵から亀裂が発生することを抑制することができる。また薄板に付与される引張応力を小さくすることが可能であり、後述する形状矯正工程で薄板表面に大きな圧縮応力を付与し易くなる傾向にある。。好ましい先進率の下限は2%であり、好ましい先進率の上限は7.5%である。この先進率を上述した数値の範囲に収めるためには、圧下率、圧延速度、圧延ロール直径やロール粗さのパラメータを調整すればよい。 In the cold rolling step of the present embodiment, it is preferable to adjust the advanced ratio to 1% to 8%. This advanced rate is an index showing the speed difference of the rolled material between the inlet side and the outlet side of the cold rolling roll. The larger the advanced rate, the more plastic flow occurs on the surface of the thin sheet, and the center of the cross section of the thin sheet and the thin plate. There is a tendency for a stress difference from the surface portion to easily occur. By adjusting this advanced rate to the above-mentioned range and performing cold rolling, it is possible to suppress the generation of cracks from fine flaws. Further, it is possible to reduce the tensile stress applied to the thin plate, and it tends to be easy to apply a large compressive stress to the surface of the thin plate in the shape correction step described later. .. The lower limit of the preferred advanced rate is 2%, and the upper limit of the preferred advanced rate is 7.5%. In order to keep this advanced rate within the above-mentioned numerical range, the parameters of rolling rate, rolling speed, rolling roll diameter and roll roughness may be adjusted.

本実施形態の圧延形態を最適に発揮するために、冷間圧延後の厚さは0.5mm以下とする。好ましくは、0.2mm以下であり、さらに好ましくは0.1mm以下である。なお下限は特に限定しないが、材料が薄すぎると形状変化が生じやすくなる傾向にあるため、0.01mmと設定することができる。 In order to optimally exhibit the rolling form of the present embodiment, the thickness after cold rolling shall be 0.5 mm or less. It is preferably 0.2 mm or less, and more preferably 0.1 mm or less. Although the lower limit is not particularly limited, it can be set to 0.01 mm because the shape tends to change if the material is too thin.

本実施形態の製造方法では、冷間圧延を終えた薄板に形状矯正を行う(形状矯正工程)。これにより薄板に残存している耳波や中伸び等の波形状を矯正して平坦度を向上させるとともに、薄板に圧縮残留応力を付与し、耐疵性を向上させることができる。この形状矯正に用いる装置は、ローラレベラーやテンションレベラー等、従来から用いられている形状矯正装置を使用することができる(本実施形態ではテンションレベラーを使用する)。ここで形状矯正は、適切な圧縮残留応力を薄板に付与するために、伸び率を0.1〜0.8%に設定する。伸び率が上記数値の範囲外の場合、薄板に適切な圧縮残留応力が付与できない場合があり、薄板の平坦度も低下するため好ましくない。好ましい伸び率の下限は0.2%であり、好ましい伸び率の上限は0.75%である。より好ましい伸び率の下限は0.3%であり、より好ましい伸び率の上限は0.7%である。上述した本実施形態の製造方法で得られたフェライト系ステンレス薄板は、巻取り機によってコイル状に巻きとって薄板コイルとし、次工程に供給することができる。 In the manufacturing method of the present embodiment, shape correction is performed on a thin plate that has been cold-rolled (shape correction step). As a result, it is possible to correct the wave shape such as ear waves and medium elongation remaining on the thin plate to improve the flatness, and to apply compressive residual stress to the thin plate to improve the flaw resistance. As the device used for this shape straightening, a conventionally used shape straightening device such as a roller leveler or a tension leveler can be used (in the present embodiment, the tension leveler is used). Here, the shape correction sets the elongation rate to 0.1 to 0.8% in order to apply an appropriate compressive residual stress to the thin plate. If the elongation rate is out of the above numerical range, it may not be possible to apply an appropriate compressive residual stress to the thin plate, and the flatness of the thin plate is also lowered, which is not preferable. The lower limit of the preferable elongation rate is 0.2%, and the upper limit of the preferable elongation rate is 0.75%. The lower limit of the more preferable elongation rate is 0.3%, and the upper limit of the more preferable elongation rate is 0.7%. The ferritic stainless steel sheet obtained by the manufacturing method of the present embodiment described above can be wound into a coil by a winder to form a thin sheet coil, which can be supplied to the next step.

続いて本実施形態のフェライト系ステンレス薄板について説明する。本実施形態のフェライト系ステンレス薄板は、スクラッチ試験において試験開始時の荷重を0.5N、試験終了時の荷重を2.0Nとし、荷重が0.5Nの際の疵の深さおよび幅を基準として、荷重が2.0Nの際の疵の深さ変化量(2.0Nの際の疵の深さ−0.5Nの際の疵の深さ)をD[μm]、疵の幅変化量(2.0Nの際の疵の幅−0.5Nの際の疵の幅)をW[μm]とした際、圧延方向のD×Wの値が15以下、圧延直角方向のD×Wの値が15以下である。上記の特性を有する本実施形態のフェライト系ステンレス薄板はライン通板時にワイパーに堆積した異物やロール表面の微小な凹凸による疵が付きにくくなり、研磨工程を追加しなくても良好な表面性状を有する。これにより例えばメタルマスク等のエッチングに使用する用途では、エッチング性能の向上に寄与し、電子部品基板用途では、絶縁層との密着性をより高めることが可能になり、絶縁層以外にも、他部材との接合性を高める効果を向上させることができる傾向にある。ここでスクラッチ試験機は、一般的にスクラッチ試験で用いられているナノインデンターを使用すればよい。本実施形態では、試料サイズ25mm×25mmに対して先端角120°のダイヤモンド圧子を使用し、罫書距離5mm、罫書速度5mm/min、荷重速度3N/min、荷重を0.5Nから2.0Nまで増加させながら試料に疵をつけ、疵の深さおよび幅をレーザー顕微鏡で観察した。なおD×Wが上記の数値範囲内でも、極端に疵の深さ又は疵の幅が大きいと、密着性向上といった種々の良好な特性が発揮されない表面状態になる可能性もあるため、圧延方向における好ましい疵の深さを1μm以下、好ましい疵の幅を20μm以下と設定し、圧延直角方向における好ましい疵の深さを0.5μm以下、好ましい疵の幅を10μm以下と設定することができる。 Subsequently, the ferrite-based stainless steel sheet of the present embodiment will be described. In the ferritic stainless steel sheet of the present embodiment, the load at the start of the test is 0.5N and the load at the end of the test is 2.0N in the scratch test, and the depth and width of the flaw when the load is 0.5N are used as a reference. The amount of change in the depth of the flaw when the load is 2.0 N (the depth of the flaw when the load is 2.0 N-the depth of the flaw when the load is 2.0 N) is D [μm], and the amount of change in the width of the flaw. When (width of flaw at 2.0 N-width of flaw at 0.5 N) is W [μm], the value of D × W in the rolling direction is 15 or less, and D × W in the direction perpendicular to rolling. The value is 15 or less. The ferrite-based stainless steel sheet of the present embodiment having the above characteristics is less likely to be scratched by foreign matter accumulated on the wiper during line passing and minute irregularities on the roll surface, and has good surface properties without adding a polishing process. Have. This contributes to the improvement of etching performance in applications used for etching such as metal masks, and in electronic component substrate applications, it is possible to further improve the adhesion with the insulating layer. There is a tendency to improve the effect of enhancing the bondability with the member. Here, as the scratch tester, a nanoindenter generally used in a scratch test may be used. In this embodiment, a diamond indenter having a tip angle of 120 ° is used for a sample size of 25 mm × 25 mm, and the ruled distance is 5 mm, the ruled speed is 5 mm / min, the load speed is 3 N / min, and the load is from 0.5 N to 2.0 N. The sample was scratched while increasing, and the depth and width of the scratch were observed with a laser microscope. Even if D × W is within the above numerical range, if the depth of the flaw or the width of the flaw is extremely large, the surface state may not exhibit various good characteristics such as improved adhesion. Therefore, the rolling direction. The preferred flaw depth in the above can be set to 1 μm or less, the preferred flaw width can be set to 20 μm or less, the preferred flaw depth in the direction perpendicular to rolling can be set to 0.5 μm or less, and the preferred flaw width can be set to 10 μm or less.

まず表1に記載された組成を有する、厚さ0.3mmの帯状の中間素材を準備し、前述した中間素材に、予備冷間圧延を行った後、圧下率13%、先進率4%の条件で冷間圧延を1パスで行い、厚さ0.08mmのFe−Ni系合金薄板を作製した。その後、本発明例である試料No.1には伸び率0.7%の形状矯正を行い、比較例である試料No.2には形状矯正を行わなかった。 First, a strip-shaped intermediate material having the composition shown in Table 1 and having a thickness of 0.3 mm was prepared, and after preliminary cold rolling was performed on the above-mentioned intermediate material, the rolling reduction ratio was 13% and the advanced ratio was 4%. Cold rolling was carried out in one pass under the conditions to prepare a Fe—Ni alloy thin plate having a thickness of 0.08 mm. After that, the sample No. which is an example of the present invention. In No. 1, shape correction with an elongation rate of 0.7% was performed, and sample No. 1 as a comparative example. No shape correction was performed on No. 2.

Figure 2020163402
Figure 2020163402

冷間圧延および形状矯正を終えた本発明例及び比較例のフェライト系ステンレス薄板から、25mm×25mmの試験片を採取し、スクラッチ試験を行った。試験装置はナノテック製Revetest−RSTを使用し、Rockwell_120°のダイヤモンド圧子を用いて、荷重速度3N/min、罫書距離5mm、罫書速度5mm/minの条件で、荷重を0.5N〜2.0Nまで直線的に変動させながら試験を行った。試験後の疵の観察には、レーザー顕微鏡(OLYMPUS_OLS−4000)を用いた。試験の結果、荷重が0.5Nの際の疵の深さおよび幅を基準として、荷重が2.0Nの際の疵の深さ変化量をD[μm]、疵の幅変化量をW[μm]とした際、本発明例は圧延方向のD×Wが11.5、圧延直角方向のD×Wが8.0であった。対して比較例は、圧延方向のD×Wが16.9、圧延直角方向のD×Wが13.9であった。これにより、本発明例の薄板は耐疵性が高く、高い表面性状が必要な用途に適していることが確認できた。 A 25 mm × 25 mm test piece was taken from the ferrite-based stainless steel sheet of the examples of the present invention and the comparative example after cold rolling and shape correction, and a scratch test was performed. The test equipment uses Nanotech's Revest-RST, and a load speed of 3 N / min, a ruled distance of 5 mm, and a ruled speed of 5 mm / min using a diamond indenter of Rockwell_120 °, and the load is from 0.5 N to 2.0 N. The test was conducted while varying linearly. A laser microscope (OLYMPUS_OLS-4000) was used for observing the flaws after the test. As a result of the test, based on the depth and width of the flaw when the load is 0.5N, the amount of change in the depth of the flaw when the load is 2.0N is D [μm], and the amount of change in the width of the flaw is W [ In the example of the present invention, D × W in the rolling direction was 11.5 and D × W in the direction perpendicular to the rolling was 8.0. On the other hand, in the comparative example, D × W in the rolling direction was 16.9, and D × W in the direction perpendicular to rolling was 13.9. From this, it was confirmed that the thin plate of the example of the present invention has high flaw resistance and is suitable for applications requiring high surface texture.

Claims (2)

厚さが3.0mm以下の中間素材に対して、圧下率5〜45%、先進率1〜8%の冷間圧延を行う冷間圧延工程と、
前記冷間圧延工程後に、伸び率0.1〜0.8%の形状矯正を行う形状矯正工程と、を備え、
厚さが0.5mm以下のフェライト系ステンレス薄板を得る、
フェライト系ステンレス薄板の製造方法。
A cold rolling process in which cold rolling is performed on an intermediate material having a thickness of 3.0 mm or less with a reduction rate of 5 to 45% and an advanced rate of 1 to 8%.
After the cold rolling step, a shape straightening step of performing shape straightening with an elongation rate of 0.1 to 0.8% is provided.
Obtain a ferritic stainless steel sheet with a thickness of 0.5 mm or less.
Manufacturing method of ferritic stainless steel sheet.
厚さが0.5mm以下のフェライト系ステンレス薄板であって、
スクラッチ試験において試験開始時の荷重を0.5N、試験終了時の荷重を2.0Nとし、
荷重が0.5Nの際の疵の深さおよび幅を基準として、荷重が2.0Nの際の疵の深さ変化量をD[μm]、疵の幅変化量をW[μm]とした際、
圧延方向および圧延直角方向のD×Wの値が15以下である、フェライト系ステンレス薄板。

A ferritic stainless steel sheet with a thickness of 0.5 mm or less.
In the scratch test, the load at the start of the test is 0.5N and the load at the end of the test is 2.0N.
Based on the depth and width of the flaw when the load is 0.5N, the amount of change in the depth of the flaw when the load is 2.0N is D [μm], and the amount of change in the width of the flaw is W [μm]. When
A ferritic stainless steel sheet having a D × W value of 15 or less in the rolling direction and the direction perpendicular to rolling.

JP2019064283A 2019-03-28 2019-03-28 Manufacturing method of ferritic stainless steel sheet, and ferritic stainless steel sheet Pending JP2020163402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019064283A JP2020163402A (en) 2019-03-28 2019-03-28 Manufacturing method of ferritic stainless steel sheet, and ferritic stainless steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064283A JP2020163402A (en) 2019-03-28 2019-03-28 Manufacturing method of ferritic stainless steel sheet, and ferritic stainless steel sheet

Publications (1)

Publication Number Publication Date
JP2020163402A true JP2020163402A (en) 2020-10-08

Family

ID=72715538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064283A Pending JP2020163402A (en) 2019-03-28 2019-03-28 Manufacturing method of ferritic stainless steel sheet, and ferritic stainless steel sheet

Country Status (1)

Country Link
JP (1) JP2020163402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974193A1 (en) 2020-09-29 2022-03-30 Seiko Epson Corporation Liquid ejecting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974193A1 (en) 2020-09-29 2022-03-30 Seiko Epson Corporation Liquid ejecting apparatus

Similar Documents

Publication Publication Date Title
EP2692452B1 (en) Stainless steel sheet and method for manufacturing same
JP5035806B2 (en) Manufacturing method of primary cold-rolled shadow mask steel strip
CN112789362B (en) Austenitic stainless steel sheet and method for producing same
JP5960809B2 (en) Stainless steel sheet for precision machining and manufacturing method thereof
EP2660347B1 (en) Steel wire material and production method for same
KR101620252B1 (en) Stainless steel sheet and method for producing same
JP2012062499A (en) Copper or copper alloy rolled foil for electronic component, and method for producing the same
JP2021014639A (en) PRODUCING METHOD OF Fe-Ni ALLOY SHEET
JP2020163402A (en) Manufacturing method of ferritic stainless steel sheet, and ferritic stainless steel sheet
JP2010090442A (en) High workability and high strength steel pipe having excellent chemical treatment property and method for producing the same
JP6424875B2 (en) Directional electromagnetic steel sheet and method of manufacturing the same
JP7156279B2 (en) METHOD FOR MANUFACTURING METAL MASK THIN PLATE AND METHOD FOR METAL MASK SLIM
JP2020163401A (en) MANUFACTURING METHOD OF Fe-Ni-BASED ALLOY THIN PLATE, AND Fe-Ni-BASED ALLOY THIN PLATE
JP6137436B2 (en) Steel plate for can and manufacturing method thereof
JP2012006128A (en) Method of manufacturing high-tension steel plate excellent in chemical treatment property and manufacturing apparatus therefor
JP5434040B2 (en) Manufacturing method of high formability and high strength steel sheet with excellent chemical conversion
JP6975391B2 (en) Manufacturing method of Fe-Ni alloy sheet and Fe-Ni alloy sheet
JP6070616B2 (en) Manufacturing method of hot-rolled steel sheet
JP2014080676A (en) PRODUCTION METHOD OF Fe-Al BASED ALLOY BAND-STEEL
JP2006161094A (en) Method for manufacturing high-grade non-oriented electromagnetic steel sheet
JP6056333B2 (en) Manufacturing method of ultra-thin cold-rolled steel sheet
JP6210177B2 (en) Steel plate for can and manufacturing method thereof
JP6325869B2 (en) Manufacturing method of steel plate for heat treatment
JP2006249503A (en) Method of producing hot rolled original sheet for hot dip galvanized steel sheet having excellent cold rollability and waving workability
JP2022095311A (en) Cold rolled steel plate manufacturing method