JP2020161277A - All-solid-state secondary battery and method for manufacturing the same - Google Patents

All-solid-state secondary battery and method for manufacturing the same Download PDF

Info

Publication number
JP2020161277A
JP2020161277A JP2019058023A JP2019058023A JP2020161277A JP 2020161277 A JP2020161277 A JP 2020161277A JP 2019058023 A JP2019058023 A JP 2019058023A JP 2019058023 A JP2019058023 A JP 2019058023A JP 2020161277 A JP2020161277 A JP 2020161277A
Authority
JP
Japan
Prior art keywords
active material
electrode active
material layer
positive electrode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019058023A
Other languages
Japanese (ja)
Inventor
優太 佐藤
Yuta Sato
優太 佐藤
松本 修明
Nobuaki Matsumoto
修明 松本
雅一 満永
Masakazu Mitsunaga
雅一 満永
中井 敏浩
Toshihiro Nakai
敏浩 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2019058023A priority Critical patent/JP2020161277A/en
Publication of JP2020161277A publication Critical patent/JP2020161277A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

To provide an all-solid-state secondary battery having excellent charge/discharge cycle characteristics under a high-temperature environment, and a method for manufacturing the same.SOLUTION: An all-solid-state secondary battery of the present invention includes an electrode laminate including a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, and a solid electrolyte layer interposed between the positive electrode active material layer and the negative electrode active material layer. The positive electrode active material layer, the negative electrode active material layer and the solid electrolyte layer each contain a sulfide-based solid electrolyte, the negative electrode active material layer contains a resin binder, and the positive electrode active material layer does not substantially contain a resin binder.SELECTED DRAWING: Figure 1

Description

本発明は、高温環境下での充放電サイクル特性に優れた全固体二次電池と、その製造方法に関するものである。 The present invention relates to an all-solid-state secondary battery having excellent charge / discharge cycle characteristics in a high temperature environment, and a method for manufacturing the same.

近年、携帯電話、ノート型パーソナルコンピュータなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型・軽量で、かつ高容量・高エネルギー密度の二次電池が必要とされるようになってきている。 In recent years, with the development of portable electronic devices such as mobile phones and notebook personal computers and the practical application of electric vehicles, small and lightweight secondary batteries with high capacity and high energy density are required. It has become to.

現在、この要求に応え得る非水二次電池、特にリチウムイオン二次電池では、正極活物質にコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)などのリチウム含有複合酸化物が用いられ、負極活物質に黒鉛などが用いられ、非水電解質として有機溶媒とリチウム塩とを含む有機電解液が用いられている。 Currently, non-aqueous secondary batteries that can meet this demand, especially lithium ion secondary batteries, use lithium-containing composite oxides such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ) as the positive electrode active material. , Graphite or the like is used as the negative electrode active material, and an organic electrolytic solution containing an organic solvent and a lithium salt is used as the non-aqueous electrolyte.

そして、非水二次電池の適用機器の更なる発達に伴って、非水二次電池の更なる長寿命化・高容量化・高エネルギー密度化が求められていると共に、長寿命化・高容量化・高エネルギー密度化した非水二次電池の信頼性も高く求められている。 With the further development of non-aqueous secondary batteries, there is a demand for longer life, higher capacity, and higher energy density of non-aqueous secondary batteries, as well as longer life and higher energy density. The reliability of non-aqueous secondary batteries with higher capacity and higher energy density is also highly required.

しかし、リチウムイオン二次電池に用いられている有機電解液は、可燃性物質である有機溶媒を含んでいるため、電池に短絡などの異常事態が発生した際に、有機電解液が異常発熱する可能性がある。また、近年の非水二次電池の高エネルギー密度化および有機電解液中の有機溶媒量の増加傾向に伴い、より一層非水二次電池の信頼性が求められている。 However, since the organic electrolytic solution used in the lithium ion secondary battery contains an organic solvent which is a flammable substance, the organic electrolytic solution abnormally generates heat when an abnormal situation such as a short circuit occurs in the battery. there is a possibility. Further, with the recent increase in energy density of non-aqueous secondary batteries and the increasing tendency of the amount of organic solvent in organic electrolytic solutions, the reliability of non-aqueous secondary batteries is further required.

以上のような状況において、有機溶媒を用いない全固体型の二次電池も検討されている(特許文献1など)。全固体型の二次電池は、従来の有機溶媒系電解質に代えて、有機溶媒を用いない固体電解質の成形体を用いるものであり、固体電解質の異常発熱の虞がなく、高い信頼性を備えている。 Under the above circumstances, an all-solid-state secondary battery that does not use an organic solvent has also been studied (Patent Document 1 and the like). The all-solid-state secondary battery uses a molded body of a solid electrolyte that does not use an organic solvent instead of the conventional organic solvent-based electrolyte, and has high reliability without the risk of abnormal heat generation of the solid electrolyte. ing.

全固体二次電池は、特許文献1に記載されているように、正極活物質を含有する層(正極活物質層)や負極活物質を含有する層(負極活物質層)にバインダを含有させることが一般的であり、このバインダによって、これらの層の構成成分同士の結着性の向上や、これらの層と隣接する層(集電体や固体電解質層)との接着性の向上を図っている。 In the all-solid secondary battery, as described in Patent Document 1, a binder is contained in a layer containing a positive electrode active material (positive electrode active material layer) and a layer containing a negative electrode active material (negative electrode active material layer). In general, this binder is used to improve the bondability between the components of these layers and the adhesiveness between these layers and adjacent layers (current collector and solid electrolyte layer). ing.

その一方で、特許文献2には、正極活物質層や負極活物質層にバインダ(結着剤)を含有させずに、特定条件で加熱処理をして、これらの層と集電体との接着性を高めることで、バインダを使用することによる容量低下や内部抵抗の増大の抑制を図る技術も提案されている。 On the other hand, in Patent Document 2, the positive electrode active material layer and the negative electrode active material layer are heat-treated under specific conditions without containing a binder (binder), and these layers and the current collector are combined. A technique has also been proposed in which the use of a binder suppresses a decrease in capacity and an increase in internal resistance by increasing the adhesiveness.

特開2018−125260号公報JP-A-2018-125260 国際公開第2011/064842号International Publication No. 2011/064842

全固体二次電池には、今後益々適用範囲が広がることが予想され、それを受けて、全固体二次電池に特に期待される特性、具体的には高温環境下での充放電サイクル特性などを高めることが求められる。 It is expected that the range of application to all-solid-state secondary batteries will expand further in the future, and in response to this, the characteristics particularly expected of all-solid-state secondary batteries, specifically the charge / discharge cycle characteristics in high-temperature environments, etc. Is required to increase.

本発明は、前記事情に鑑みてなされたものであり、その目的は、高温環境下での充放電サイクル特性に優れた全固体二次電池と、その製造方法とを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an all-solid-state secondary battery having excellent charge / discharge cycle characteristics in a high temperature environment, and a method for manufacturing the same.

本発明の全固体二次電池は、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、前記正極活物質層と前記負極活物質層との間に介在する固体電解質層とを有する電極積層体を備え、前記正極活物質層、前記負極活物質層および前記固体電解質層は、それぞれ硫化物系固体電解質を含有し、前記負極活物質層は樹脂バインダを含有し、前記正極活物質層は実質的に樹脂バインダを含有しないことを特徴とするものである。 The all-solid secondary battery of the present invention is interposed between the positive electrode active material layer containing the positive electrode active material, the negative electrode active material layer containing the negative electrode active material, and the positive electrode active material layer and the negative electrode active material layer. The positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer each contain a sulfide-based solid electrolyte, and the negative electrode active material layer contains a resin binder. It is characterized in that the positive electrode active material layer contains substantially no resin binder.

また、本発明の前記全固体二次電池は、負極活物質と硫化物系固体電解質と樹脂バインダとを含有する負極活物質層形成用組成物を用いて負極活物質層を形成する工程と、正極活物質と硫化物系固体電解質とを含有し、かつ実質的に樹脂バインダを含有しない正極活物質層形成用組成物を用いて正極活物質層を形成する工程とを有する製造方法により製造することができる。 Further, the all-solid secondary battery of the present invention includes a step of forming a negative electrode active material layer using a composition for forming a negative electrode active material layer containing a negative electrode active material, a sulfide-based solid electrolyte, and a resin binder. Manufactured by a production method including a step of forming a positive electrode active material layer using a composition for forming a positive electrode active material layer containing a positive electrode active material and a sulfide-based solid electrolyte and substantially free of a resin binder. be able to.

本発明によれば、高温環境下での充放電サイクル特性に優れた全固体二次電池と、その製造方法とを提供することができる。 According to the present invention, it is possible to provide an all-solid-state secondary battery having excellent charge / discharge cycle characteristics in a high-temperature environment and a method for manufacturing the same.

本発明の全固体二次電池の一例を模式的に表す断面図である。It is sectional drawing which shows typically an example of the all-solid-state secondary battery of this invention.

本発明の全固体二次電池は、正極活物質および硫化物系固体電解質を含有する正極活物質層と、負極活物質および硫化物系固体電解質を含有する負極活物質層と、硫化物系固体電解質を含有し、正極活物質層と負極活物質層との間に介在する固体電解質層とを有する電極積層体を備えている。すなわち、本発明の全固体二次電池においては、正極は正極活物質層によって構成され、負極は負極活物質層によって構成される。 The all-solid secondary battery of the present invention has a positive electrode active material layer containing a positive electrode active material and a sulfide-based solid electrolyte, a negative electrode active material layer containing a negative electrode active material and a sulfide-based solid electrolyte, and a sulfide-based solid. It includes an electrode laminate containing an electrolyte and having a solid electrolyte layer interposed between the positive electrode active material layer and the negative electrode active material layer. That is, in the all-solid-state secondary battery of the present invention, the positive electrode is composed of a positive electrode active material layer, and the negative electrode is composed of a negative electrode active material layer.

そして、本発明の全固体二次電池においては、負極活物質層は樹脂バインダを含有する一方で、正極活物質層は樹脂バインダを実質的に含有しない。 In the all-solid-state secondary battery of the present invention, the negative electrode active material layer contains a resin binder, while the positive electrode active material layer does not substantially contain a resin binder.

樹脂バインダを含有しない正極活物質層を有する電極積層体を適用することで、全固体二次電池の高温環境下での充放電サイクル特性を高めることができる。樹脂バインダは抵抗成分として作用するが、これを正極活物質層に含有させると、特に高温環境下で正極活物質層の内部抵抗を高め、充放電を繰り返すに従ってその作用が増大すると推測される。よって、正極活物質層を、樹脂バインダを含有しない構成とすることで、樹脂バインダによって生じ得る問題が回避でき、全固体二次電池の高温環境下での充放電サイクル特性の向上が可能となる。 By applying an electrode laminate having a positive electrode active material layer that does not contain a resin binder, the charge / discharge cycle characteristics of an all-solid secondary battery in a high temperature environment can be enhanced. The resin binder acts as a resistance component, and when it is contained in the positive electrode active material layer, it is presumed that the internal resistance of the positive electrode active material layer is increased especially in a high temperature environment, and that the action increases as charging and discharging are repeated. Therefore, by forming the positive electrode active material layer so as not to contain a resin binder, problems that may occur due to the resin binder can be avoided, and the charge / discharge cycle characteristics of the all-solid secondary battery in a high temperature environment can be improved. ..

なお、例えば、正極活物質層に隣接する固体電解質層に樹脂バインダを含有させた場合、積層電極体の製造過程などにおいて、固体電解質層用に含有させた樹脂バインダの一部が正極活物質層に移行することがある。よって、本明細書でいう、正極活物質層が樹脂バインダを「実質的に」含有しない、とは、前記のように正極活物質層に不可避的に樹脂バインダが混入してしまう場合を除き、積極的に添加された樹脂バインダを正極活物質層が含有していないことを意味している。 For example, when the solid electrolyte layer adjacent to the positive electrode active material layer contains a resin binder, a part of the resin binder contained for the solid electrolyte layer is part of the positive electrode active material layer in the manufacturing process of the laminated electrode body. May move to. Therefore, in the present specification, the fact that the positive electrode active material layer does not "substantially" contain the resin binder means that the resin binder is inevitably mixed in the positive electrode active material layer as described above. This means that the positive electrode active material layer does not contain the positively added resin binder.

このように、本発明においては、正極活物質層に樹脂バインダを含有させない一方で、負極活物質層には樹脂バインダを含有させる。これは、負極活物質層に樹脂バインダを含有させても、充放電サイクル特性を低下させるものではなく、一方、樹脂バインダを含有させることにより、積層電極体の形状維持性が向上し、全固体二次電池の生産性や信頼性が高まるため、高温環境下での充放電サイクル特性を向上させることができる。 As described above, in the present invention, the positive electrode active material layer does not contain the resin binder, while the negative electrode active material layer contains the resin binder. This does not reduce the charge / discharge cycle characteristics even if the negative electrode active material layer contains a resin binder. On the other hand, the inclusion of the resin binder improves the shape retention of the laminated electrode body and is an all-solid state. Since the productivity and reliability of the secondary battery are increased, the charge / discharge cycle characteristics in a high temperature environment can be improved.

全固体二次電池の正極活物質層は、正極活物質および硫化物系固体電解質を含有する。 The positive electrode active material layer of the all-solid-state secondary battery contains a positive electrode active material and a sulfide-based solid electrolyte.

正極活物質には、従来から知られているリチウムイオン二次電池に用いられているものと同様の、リチウムイオンを吸蔵・放出可能な活物質を使用することができる。具体的には、LiM Mn2−x(ただし、Mは、Li、B、Mg、Ca、Sr、Ba、Ti、V、Cr、Fe、Co、Ni、Cu、Al、Sn、Sb、In、Nb、Mo、W、Y、RuおよびRhよりなる群から選択される少なくとも1種の元素であり、0.01≦x≦0.5)で表されるスピネル型リチウムマンガン複合酸化物、LiMn(1−b−a)Ni 2−d(ただし、Mは、Co、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Zr、Mo、Sn、Ca、SrおよびWよりなる群から選択される少なくとも1種の元素であり、0.8≦a1.2、0<b<0.5、0≦c≦0.5、d+f<1、−0.1≦d≦0.2、0≦f≦0.1)で表される層状化合物、LiCo1−g (ただし、Mは、Al、Mg、Ti、Zr、Fe、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦g≦0.5)で表されるリチウムコバルト複合酸化物、LiNi1−h (ただし、Mは、Al、Mg、Ti、Zr、Fe、Co、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦h≦0.5)で表されるリチウムニッケル複合酸化物、LiM 1−mPO(ただし、Mは、Fe、MnおよびCoよりなる群から選択される少なくとも1種の元素で、Nは、Al、Mg、Ti、Zr、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦m≦0.5)で表されるオリビン型複合酸化物、LiTi12で表されるリチウムチタン複合酸化物などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。 As the positive electrode active material, an active material capable of storing and releasing lithium ions, which is similar to that used in conventionally known lithium ion secondary batteries, can be used. Specifically, LiM 1 x Mn 2-x O 4 (where M 1 is Li, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Co, Ni, Cu, Al, Sn. , Sb, In, Nb, Mo, W, Y, Ru and Rh, at least one element selected from the group consisting of, and represented by 0.01 ≦ x ≦ 0.5). Oxide, Li a Mn (1-ba) Ni b M 2 c O 2-d F f (However, M 2 is Co, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn. , Zr, Mo, Sn, Ca, Sr and W, at least one element selected from the group consisting of 0.8 ≦ a1.2, 0 <b <0.5, 0 ≦ c ≦ 0.5. , D + f <1, −0.1 ≦ d ≦ 0.2, 0 ≦ f ≦ 0.1), LiCo 1-g M 3 g O 2 (where M 3 is Al, Mg , Ti, Zr, Fe, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and Ba, at least one element selected from the group consisting of 0 ≦ g ≦ 0.5). Represented lithium cobalt composite oxide, LiNi 1-h M 4 h O 2 (where M 4 is Al, Mg, Ti, Zr, Fe, Co, Cu, Zn, Ga, Ge, Nb, Mo, Sn , Sb and Ba, at least one element selected from the group consisting of LiM 5 1-m N m PO 4 (where M), a lithium nickel composite oxide represented by 0 ≦ h ≦ 0.5). 5 is at least one element selected from the group consisting of Fe, Mn and Co, and N is Al, Mg, Ti, Zr, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn and Sb. At least one element selected from the group consisting of and Ba, an olivine-type composite oxide represented by 0 ≦ m ≦ 0.5), and a lithium titanium composite oxide represented by Li 4 Ti 5 O 12 . Etc., and only one of these may be used, or two or more thereof may be used in combination.

正極活物質層における硫化物系固体電解質としては、LiS−P、LiS−P、LiS−P−P、LiS−SiS、LiI−LiS−P、LiI−LiS−SiS−P、LiS−SiS−LiSiO、LiS−SiS−LiPO、LiPS−LiGeS、Li3.40.6Si0.4、Li3.250.25Ge0.76、Li4−xGe1−x、Li11などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。 Examples of the sulfide-based solid electrolyte in the positive electrode active material layer include Li 2 S-P 2 S 3 , Li 2 S-P 2 S 5 , Li 2 S-P 2 S 3- P 2 S 5 , and Li 2 S-SiS. 2 , LiI-Li 2 S-P 2 S 5 , LiI-Li 2 S-SiS 2- P 2 S 5 , Li 2 S-SiS 2 -Li 4 SiO 4 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 3 PS 4- Li 4 GeS 4 , Li 3.4 P 0.6 Si 0.4 S 4 , Li 3.25 P 0.25 Ge 0.76 S 4 , Li 4-x Ge 1-x P Examples thereof include x S 4 , Li 7 P 3 S 11, and only one of these may be used, or two or more thereof may be used in combination.

正極活物質層には導電助剤を含有させることができる。正極活物質層の導電助剤としては、カーボンブラックなどの炭素材料などが挙げられる。 The positive electrode active material layer can contain a conductive auxiliary agent. Examples of the conductive auxiliary agent for the positive electrode active material layer include carbon materials such as carbon black.

正極活物質層は、正極活物質および硫化物系固体電解質を含有し、かつ実質的に樹脂バインダを含有しない正極活物質層形成用組成物を用いて形成される。前記正極活物質層形成用組成物は、必要に応じて導電助剤を含むものであってもよい。 The positive electrode active material layer is formed by using a composition for forming a positive electrode active material layer which contains a positive electrode active material and a sulfide-based solid electrolyte and substantially does not contain a resin binder. The composition for forming a positive electrode active material layer may contain a conductive auxiliary agent, if necessary.

前記正極活物質層形成用組成物は、各構成材料の粉体を混合した乾式の混合物(混合粉体)であってもよく、また、各構成材料の粉体を溶媒中で分散させた湿式のスラリーなどの組成物であってもよい。実質的に樹脂バインダを含有しない組成物であれば、その形態は特に限定されない。 The composition for forming a positive electrode active material layer may be a dry mixture (mixed powder) in which powders of each constituent material are mixed, or a wet type in which powders of each constituent material are dispersed in a solvent. It may be a composition such as a slurry of. The form of the composition is not particularly limited as long as it is a composition that does not substantially contain a resin binder.

正極活物質層形成用組成物が混合粉体の場合には、これを集電体などの基材上や、電極積層体において正極活物質層と隣接する固体電解質層上で、加圧処理(プレス処理)などによって圧縮することで正極活物質層を形成することができる。また、正極活物質層形成用組成物が湿式の組成物の場合には、これを集電体などの基材上や、電極積層体において正極活物質層と隣接する固体電解質層上に塗布して乾燥させ、必要に応じて加圧処理を施す工程を経て、正極活物質層を形成することができる。 When the composition for forming the positive electrode active material layer is a mixed powder, it is subjected to pressure treatment (on a substrate such as a current collector or on a solid electrolyte layer adjacent to the positive electrode active material layer in the electrode laminate). The positive electrode active material layer can be formed by compressing by pressing treatment) or the like. When the composition for forming the positive electrode active material layer is a wet composition, it is applied on a base material such as a current collector or on a solid electrolyte layer adjacent to the positive electrode active material layer in the electrode laminate. The positive electrode active material layer can be formed through a step of drying the material and applying a pressure treatment as needed.

正極活物質層形成用組成物が湿式の組成物である場合に使用する溶媒には、硫化物系固体電解質を劣化させ難いものを選択することが好ましい。硫化物系固体電解質は微少量の水分によって化学反応を起こすため、ヘキサン、ヘプタン、オクタン、ノナン、デカン、デカリン、トルエン、キシレンなどの炭化水素溶媒に代表される非極性非プロトン性溶媒を使用することが好ましい。特に、含有水分量を0.001質量%(10ppm)以下とした超脱水溶媒を使用することがより好ましい。また、三井・デュポンフロロケミカル社製の「バートレル(登録商標)」、日本ゼオン社製の「ゼオローラ(登録商標)」、住友3M社製の「ノベック(登録商標)」などのフッ素系溶媒、並びに、ジクロロメタン、ジエチルエーテルなどの非水系有機溶媒を使用することもできる。 When the composition for forming the positive electrode active material layer is a wet composition, it is preferable to select a solvent that does not easily deteriorate the sulfide-based solid electrolyte. Since sulfide-based solid electrolytes undergo a chemical reaction with a very small amount of water, non-polar aprotic solvents such as hydrocarbon solvents such as hexane, heptane, octane, nonane, decane, decalin, toluene, and xylene are used. Is preferable. In particular, it is more preferable to use a super dehydration solvent having a water content of 0.001% by mass (10 ppm) or less. In addition, fluorosolvents such as "Bertrel (registered trademark)" manufactured by Mitsui Dupont Fluorochemical, "Zeorolla (registered trademark)" manufactured by Nippon Zeon, and "Novec (registered trademark)" manufactured by Sumitomo 3M, as well as , Dichloromethane, diethyl ether and other non-aqueous organic solvents can also be used.

正極活物質層の組成としては、正極活物質の含有量が50〜90質量%であることが好ましく、硫化物系固体電解質の含有量が10〜50質量%であることが好ましい。また、正極活物質層に導電助剤を含有させる場合、その含有量は0.1〜10質量%であることが好ましい。 As for the composition of the positive electrode active material layer, the content of the positive electrode active material is preferably 50 to 90% by mass, and the content of the sulfide-based solid electrolyte is preferably 10 to 50% by mass. When the positive electrode active material layer contains a conductive auxiliary agent, the content thereof is preferably 0.1 to 10% by mass.

正極活物質層の厚みは、30μm〜3mmであることが好ましい。 The thickness of the positive electrode active material layer is preferably 30 μm to 3 mm.

全固体二次電池の負極活物質層は、負極活物質、硫化物系固体電解質および樹脂バインダを含有する。 The negative electrode active material layer of the all-solid-state secondary battery contains a negative electrode active material, a sulfide-based solid electrolyte, and a resin binder.

負極活物質は、従来から知られているリチウムイオン二次電池に用いられているものと同様の、リチウムイオンを吸蔵・放出可能な活物質を使用することができる。具体的には、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などのリチウムイオンを吸蔵・放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの元素を含む単体、化合物およびその合金;リチウム含有窒化物またはリチウム含有酸化物などのリチウム金属に近い低電圧で充放電できる化合物;リチウム金属;リチウム/アルミニウム合金;も、負極活物質として用いることができる。 As the negative electrode active material, an active material capable of storing and releasing lithium ions, which is similar to that used in conventionally known lithium ion secondary batteries, can be used. Specifically, for example, lithium ions such as graphite, pyrolytic carbons, cokes, glassy carbons, calcined bodies of organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers can be stored and released. One or a mixture of two or more carbon-based materials is used. In addition, simple compounds containing elements such as Si, Sn, Ge, Bi, Sb, and In, compounds and alloys thereof; compounds capable of charging and discharging at low voltages close to lithium metals such as lithium-containing nitrides or lithium-containing oxides; lithium metals. Lithium / aluminum alloys; can also be used as the negative electrode active material.

負極活物質層における硫化物系固体電解質には、正極活物質層に使用し得るものとして先に例示した各種硫化物系固体電解質と同じものが使用できる。 As the sulfide-based solid electrolyte in the negative electrode active material layer, the same sulfide-based solid electrolytes as those exemplified above that can be used in the positive electrode active material layer can be used.

負極活物質層における樹脂バインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂;アクリル樹脂;イミド系バインダ;アミド系バインダなどが挙げられる。 Examples of the resin binder in the negative electrode active material layer include fluororesins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); acrylic resins; imide-based binders; and amide-based binders.

負極活物質層には導電助剤を含有させることができる。負極活物質層の導電助剤としては、カーボンブラックなどの炭素材料などが挙げられる。 The negative electrode active material layer can contain a conductive auxiliary agent. Examples of the conductive auxiliary agent for the negative electrode active material layer include carbon materials such as carbon black.

負極活物質層は、負極活物質と硫化物系固体電解質と樹脂バインダとを含有する負極活物質層形成用組成物を用いて形成される。前記負極活物質層形成用組成物は、必要に応じて導電助剤を含むものであってもよく、各構成材料の粉体、エマルジョンまたは液体を溶媒中で分散もしくは溶解させた湿式の組成物(スラリー、ペーストなど)であり、これを集電体などの基材上や、電極積層体において負極活物質層と隣接する固体電解質層上に塗布して乾燥させ、必要に応じて加圧処理を施す工程を経て負極活物質層を形成することができる。 The negative electrode active material layer is formed by using a composition for forming a negative electrode active material layer containing a negative electrode active material, a sulfide-based solid electrolyte, and a resin binder. The composition for forming the negative electrode active material layer may contain a conductive auxiliary agent, if necessary, and is a wet composition in which a powder, an emulsion or a liquid of each constituent material is dispersed or dissolved in a solvent. (Slurry, paste, etc.), which is applied on a base material such as a current collector or on a solid electrolyte layer adjacent to the negative electrode active material layer in the electrode laminate, dried, and pressure-treated as necessary. The negative electrode active material layer can be formed through the step of applying.

負極活物質層形成用組成物に使用する溶媒も、正極活物質層形成用組成物に使用する溶媒と同様に、硫化物系固体電解質を劣化させ難いものを選択することが望ましく、正極活物質層形成用組成物用の溶媒として先に例示した各種溶媒を使用することが好ましく、含有水分量を0.001質量%(10ppm)以下とした超脱水溶媒を使用することが特に好ましい。 As for the solvent used in the composition for forming the negative electrode active material layer, it is desirable to select a solvent that does not easily deteriorate the sulfide-based solid electrolyte, like the solvent used in the composition for forming the positive electrode active material layer. As the solvent for the layer-forming composition, it is preferable to use various solvents exemplified above, and it is particularly preferable to use a super-dehydrating solvent having a water content of 0.001% by mass (10 ppm) or less.

負極活物質層の組成としては、例えば、負極活物質の含有量が50〜90質量%であることが好ましく、硫化物系固体電解質の含有量が10〜50質量%であることが好ましく、樹脂バインダの含有量が0.1〜10質量%であることが好ましい。また、負極活物質層に導電助剤を含有させる場合、その含有量は0.1〜10質量%であることが好ましい。 As for the composition of the negative electrode active material layer, for example, the content of the negative electrode active material is preferably 50 to 90% by mass, the content of the sulfide-based solid electrolyte is preferably 10 to 50% by mass, and the resin. The binder content is preferably 0.1 to 10% by mass. When the negative electrode active material layer contains a conductive auxiliary agent, the content thereof is preferably 0.1 to 10% by mass.

負極活物質層の厚みは、30μm〜3mmであることが好ましい。 The thickness of the negative electrode active material layer is preferably 30 μm to 3 mm.

全固体二次電池の固体電解質層は、硫化物系固体電解質を含有する。固体電解質層における硫化物系固体電解質には、正極活物質層に使用し得るものとして先に例示した各種硫化物系固体電解質と同じものが使用できる。 The solid electrolyte layer of the all-solid secondary battery contains a sulfide-based solid electrolyte. As the sulfide-based solid electrolyte in the solid electrolyte layer, the same sulfide-based solid electrolytes as those exemplified above that can be used in the positive electrode active material layer can be used.

固体電解質層は、実質的に樹脂バインダを含有させずに形成することができる。この場合、固体電解質層において抵抗成分として作用する樹脂バインダが存在しないことから、樹脂バインダによる内部抵抗の増大を回避でき、全固体二次電池の放電特性のさらなる向上が期待できる。なお、ここでいう「実質的に」とは、隣接する負極活物質層から樹脂バインダが固体電解質層中に移行するような不可避的に樹脂バインダが混入する場合を除き、積極的に添加された樹脂バインダを固体電解質層が含有していないことを意味している。 The solid electrolyte layer can be formed substantially without containing a resin binder. In this case, since there is no resin binder that acts as a resistance component in the solid electrolyte layer, it is possible to avoid an increase in the internal resistance due to the resin binder, and further improvement in the discharge characteristics of the all-solid secondary battery can be expected. The term "substantially" as used herein means that the resin binder was positively added except when the resin binder was unavoidably mixed in from the adjacent negative electrode active material layer to the solid electrolyte layer. It means that the solid electrolyte layer does not contain the resin binder.

他方、固体電解質層には、樹脂バインダを含有させてもよい。この場合、固体電解質層の樹脂バインダも、負極活物質層の樹脂バインダと同様の作用を有することから、全固体二次電池の生産性や信頼性のさらなる向上が期待できる。 On the other hand, the solid electrolyte layer may contain a resin binder. In this case, since the resin binder of the solid electrolyte layer also has the same function as the resin binder of the negative electrode active material layer, further improvement in productivity and reliability of the all-solid secondary battery can be expected.

固体電解質層に樹脂バインダを含有させる場合、その樹脂バインダには、負極活物質層に使用し得るものとして先に例示した各種樹脂バインダと同じものが使用できる。 When the solid electrolyte layer contains a resin binder, the resin binder can be the same as the various resin binders exemplified above as those that can be used for the negative electrode active material layer.

固体電解質層が樹脂バインダを含有する場合には、固体電解質層は、硫化物系固体電解質および樹脂バインダを含有する固体電解質層形成用組成物を用いて形成される。前記固体電解質層形成用組成物は、各構成材料の粉体、エマルジョンまたは液体を溶媒中で分散もしくは溶解させた湿式の組成物(スラリー、ペーストなど)であり、これを剥離可能な基材上、正極活物質層上または負極活物質層上に塗布して乾燥させ、必要に応じて加圧処理を施す工程を経て形成することができる。 When the solid electrolyte layer contains a resin binder, the solid electrolyte layer is formed by using a sulfide-based solid electrolyte and a composition for forming a solid electrolyte layer containing a resin binder. The composition for forming a solid electrolyte layer is a wet composition (slurry, paste, etc.) in which powders, emulsions, or liquids of each constituent material are dispersed or dissolved in a solvent, and the composition can be peeled off from the substrate. , It can be formed by applying it on the positive electrode active material layer or the negative electrode active material layer, drying it, and applying a pressure treatment if necessary.

また、樹脂バインダを含有しない態様の固体電解質層の場合には、樹脂バインダを含有ない以外は前記と同様の湿式の組成物を用い、前記と同様の工程で固体電解質層を形成してもよく、また、硫化物系固体電解質を含有する粉体(硫化物系固体電解質のみで固体電解質層を構成する場合は、硫化物系固体電解質の粉体)を、剥離可能な基材上、正極活物質層上または負極活物質層上で加圧処理などによって圧縮して形成してもよい。 Further, in the case of the solid electrolyte layer in a mode that does not contain the resin binder, the same wet composition as described above may be used except that the resin binder is not contained, and the solid electrolyte layer may be formed in the same step as described above. In addition, a powder containing a sulfide-based solid electrolyte (in the case where the solid electrolyte layer is composed of only the sulfide-based solid electrolyte, the powder of the sulfide-based solid electrolyte) is subjected to positive electrode activity on a peelable substrate. It may be formed by compression on the material layer or the negative electrode active material layer by a pressure treatment or the like.

固体電解質層形成用組成物に使用する溶媒も、正極活物質層形成用組成物に使用する溶媒と同様に、硫化物系固体電解質を劣化させ難いものを選択することが望ましく、正極活物質層形成用組成物用の溶媒として先に例示した各種溶媒を使用することが好ましく、含有水分量を0.001質量%(10ppm)以下とした超脱水溶媒を使用することが特に好ましい。 As for the solvent used in the composition for forming the solid electrolyte layer, it is desirable to select a solvent that does not easily deteriorate the sulfide-based solid electrolyte, like the solvent used in the composition for forming the positive electrode active material layer. As the solvent for the forming composition, it is preferable to use various solvents exemplified above, and it is particularly preferable to use a super-dehydrating solvent having a water content of 0.001% by mass (10 ppm) or less.

固体電解質層の組成としては、硫化物系固体電解質の含有量が50質量%以上であることが好ましい。なお、固体電解質層は硫化物系固体電解質のみで構成してもよいため、固体電解質層における硫化物系固体電解質の好適上限値は100質量%である。また、固体電解質層に樹脂バインダを含有させる場合、その含有量は0.1〜10質量%であることが好ましい。 As for the composition of the solid electrolyte layer, the content of the sulfide-based solid electrolyte is preferably 50% by mass or more. Since the solid electrolyte layer may be composed of only the sulfide-based solid electrolyte, the preferable upper limit value of the sulfide-based solid electrolyte in the solid electrolyte layer is 100% by mass. When the solid electrolyte layer contains a resin binder, the content thereof is preferably 0.1 to 10% by mass.

電極積層体の製造に際しては、はじめに正極活物質層を集電体などの基材上に形成し、続いて正極活物質層上に固体電解質層を形成し、続いて固体電解質層上に負極活物質層を形成する順序で各層を形成してもよい。すなわち、全固体二次電池に使用する電極積層体を、集電体などの基材上に正極活物質層を形成する工程と、形成した正極活物質層上に固体電解質層を形成する工程と、形成した固体電解質層上に負極活物質層を形成する工程とを有する方法で製造することができる〔以下、この方法を「電極積層体の製造方法の第1の態様」という〕。なお、正極活物質層や負極活物質層を複数有する電極積層体をこの方法で得る場合、形成した負極活物質層上に固体電解質層を形成し、この固体電解質層上に正極活物質層を形成し、形成後の正極活物質層上に固体電解質層を形成してから、その固体電解質層上に負極活物質層を形成する操作を順次実施すればよい。 In the production of the electrode laminate, the positive electrode active material layer is first formed on a base material such as a current collector, then the solid electrolyte layer is formed on the positive electrode active material layer, and then the negative electrode activity is formed on the solid electrolyte layer. Each layer may be formed in the order of forming the material layer. That is, in the electrode laminate used for the all-solid secondary battery, a step of forming a positive electrode active material layer on a base material such as a current collector and a step of forming a solid electrolyte layer on the formed positive electrode active material layer. It can be produced by a method having a step of forming a negative electrode active material layer on the formed solid electrolyte layer [hereinafter, this method is referred to as "the first aspect of the method for producing an electrode laminate"]. When an electrode laminate having a plurality of positive electrode active material layers and negative electrode active material layers is obtained by this method, a solid electrolyte layer is formed on the formed negative electrode active material layer, and the positive electrode active material layer is formed on the solid electrolyte layer. The operation of forming, forming the solid electrolyte layer on the positive electrode active material layer after formation, and then forming the negative electrode active material layer on the solid electrolyte layer may be sequentially performed.

また、はじめに負極活物質層を集電体などの基材上に形成し、続いて負極活物質層上に固体電解質層を形成し、続いて固体電解質層上に正極活物質層を形成する順序で各層を形成してもよい。すなわち、全固体二次電池に使用する電極積層体を、集電体などの基材上に負極活物質層を形成する工程と、形成した負極活物質層上に固体電解質層を形成する工程と、形成した固体電解質層上に正極活物質層を形成する工程とを有する方法で製造することができる〔以下、この方法を「電極積層体の製造方法の第2の態様」という〕。なお、正極活物質層や負極活物質層を複数有する電極積層体をこの方法で得る場合、形成した正極活物質層上に固体電解質層を形成し、この固体電解質層上に負極活物質層を形成し、形成後の負極活物質層上に固体電解質層を形成してから、その固体電解質層上に正極活物質層を形成する操作を順次実施すればよい。 Further, first, the negative electrode active material layer is formed on a base material such as a current collector, then the solid electrolyte layer is formed on the negative electrode active material layer, and then the positive electrode active material layer is formed on the solid electrolyte layer. Each layer may be formed with. That is, in the electrode laminate used for the all-solid secondary battery, a step of forming a negative electrode active material layer on a base material such as a current collector and a step of forming a solid electrolyte layer on the formed negative electrode active material layer. It can be produced by a method having a step of forming a positive electrode active material layer on the formed solid electrolyte layer [hereinafter, this method is referred to as "a second aspect of a method for producing an electrode laminate"]. When an electrode laminate having a plurality of positive electrode active material layers and negative electrode active material layers is obtained by this method, a solid electrolyte layer is formed on the formed positive electrode active material layer, and a negative electrode active material layer is formed on the solid electrolyte layer. The operation of forming the solid electrolyte layer on the negative electrode active material layer after the formation and then forming the positive electrode active material layer on the solid electrolyte layer may be sequentially performed.

また、固体電解質層を剥離可能な基材上にあらかじめ形成しておき、形成した固体電解質層を前記基材から剥離させて電極積層体の作製に用いることもできる。例えば、基材上に形成された固体電解質層上に、さらに正極活物質層または負極活物質層を形成し、その後に全体を基材から剥離させ、固体電解質層の基材側に位置していた面に対極となる活物質層を形成するのであってもよい。 Further, the solid electrolyte layer may be formed in advance on a peelable base material, and the formed solid electrolyte layer may be peeled off from the base material to be used for producing an electrode laminate. For example, a positive electrode active material layer or a negative electrode active material layer is further formed on the solid electrolyte layer formed on the base material, and then the whole is peeled off from the base material and is located on the base material side of the solid electrolyte layer. The active material layer as the opposite electrode may be formed on the opposite surface.

前記のいずれの方法で電極積層体を製造する場合においても、正極活物質層、固体電解質層および負極活物質層の形成は、先に述べた各方法で行えばよい。 In any of the above methods for producing the electrode laminate, the positive electrode active material layer, the solid electrolyte layer and the negative electrode active material layer may be formed by each of the methods described above.

また、電極積層体を構成する各層を形成した後に、電極積層体の全体を加圧処理することが好ましいが、特に正極活物質層を最後に形成する場合には、その形成時の圧縮によって、電極積層体全体の加圧処理を行うことができる。 Further, it is preferable to pressurize the entire electrode laminate after forming each layer constituting the electrode laminate, but particularly when the positive electrode active material layer is formed last, compression at the time of formation may result in the formation of the electrode laminate. The entire electrode laminate can be pressurized.

なお、負極活物質層は樹脂バインダを必須成分としており、樹脂バインダを含有しない正極活物質層に比べて形状安定性が優れている。よって、電極積層体の製造に際しては、負極活物質層を正極活物質層よりも先に形成する方法、すなわち、前記電極積層体の製造方法の第2の態様の方が、第1の態様よりも電極積層体の生産性、ひいては全固体二次電池の生産性を高めることができる。 The negative electrode active material layer contains a resin binder as an essential component, and is superior in shape stability to the positive electrode active material layer that does not contain a resin binder. Therefore, in the production of the electrode laminate, the method of forming the negative electrode active material layer before the positive electrode active material layer, that is, the second aspect of the method for producing the electrode laminate is more than the first aspect. It is also possible to increase the productivity of the electrode laminate and, by extension, the productivity of the all-solid-state secondary battery.

前記のようにして得られた電極積層体を、外装体に収容して全固体二次電池とする。 The electrode laminate obtained as described above is housed in an exterior body to form an all-solid-state secondary battery.

図1に、本発明の全固体二次電池の一例の断面を模式的に表す図面を示す。図1に示す全固体二次電池1では、正極10と負極20とを固体電解質層30を介在させつつ積層して構成した電極積層体が、外装缶40と、封口缶50と、これらの間に介在する樹脂製のガスケット60とで形成された外装体(コイン形やボタン形などと称される扁平形の外装体)内に封入されている。図1に示す全固体二次電池1においては、封口缶50は、外装缶40の開口部にガスケット60を介して嵌合しており、外装缶40の開口端部が内方に締め付けられ、これによりガスケット60が封口缶50に当接することで、外装缶40の開口部が封口されて電池内部が密閉構造となっている。そして、負極20の図中上面が負極端子を兼ねる封口缶50の内面と接触することで電気的に接続し、正極10の図中下面が正極端子を兼ねる外装缶40の内面と接触することで電気的に接続している。 FIG. 1 shows a drawing schematically showing a cross section of an example of an all-solid-state secondary battery of the present invention. In the all-solid-state secondary battery 1 shown in FIG. 1, the electrode laminate formed by laminating the positive electrode 10 and the negative electrode 20 with the solid electrolyte layer 30 interposed therebetween is formed between the outer can 40 and the sealing can 50. It is enclosed in an outer body (a flat outer body called a coin-shaped or button-shaped outer body) formed by a resin gasket 60 interposed therein. In the all-solid secondary battery 1 shown in FIG. 1, the sealing can 50 is fitted into the opening of the outer can 40 via the gasket 60, and the opening end of the outer can 40 is tightened inward. As a result, the gasket 60 comes into contact with the sealing can 50, so that the opening of the outer can 40 is sealed and the inside of the battery is sealed. Then, the upper surface of the negative electrode 20 in the drawing is electrically connected by contacting the inner surface of the sealing can 50 which also serves as the negative electrode terminal, and the lower surface of the positive electrode 10 in the drawing is in contact with the inner surface of the outer can 40 which also serves as the positive electrode terminal. It is electrically connected.

外装缶および封口缶で構成される外装体の場合、その形状は、平面視で多角形(三角形、四角形、五角形、六角形、七角形、八角形)であってもよく、平面視で円形や楕円形であってもよい。 In the case of an exterior body composed of an exterior can and a sealing can, the shape may be polygonal (triangle, quadrangle, pentagon, hexagon, heptagon, octagon) in plan view, and circular or octagon in plan view. It may be oval.

外装缶および封口缶にはステンレス鋼製のものなどが使用できる。また、ガスケットの素材には、ポリプロピレン、ナイロンなどを使用できるほか、電池の用途との関係で耐熱性が要求される場合には、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体(PFA)などのフッ素樹脂、ポリフェニレンエーテル(PEE)、ポリスルフォン(PSF)、ポリアリレート(PAR)、ポリエーテルスルフォン(PES)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)などの融点が240℃を超える耐熱樹脂を使用することもできる。また、電池が耐熱性を要求される用途に適用される場合、その封口には、ガラスハーメチックシールを利用することもできる。 Stainless steel cans can be used for the outer can and the sealing can. In addition, polypropylene, nylon, etc. can be used as the material of the gasket, and if heat resistance is required in relation to the application of the battery, tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), etc. can be used. Heat resistance of fluororesin, polyphenylene ether (PEE), polysulphon (PSF), polyallylate (PAR), polyethersulfon (PES), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), etc. with a melting point of more than 240 ° C. Resin can also be used. Further, when the battery is applied to an application requiring heat resistance, a glass hermetic seal can be used for the sealing.

また、全固体次電池の外装体には、樹脂フィルムや、樹脂フィルムと金属フィルム(アルミニウム箔など)とを積層した金属ラミネートフィルムなどで構成されたシート状外装体を使用することもできる。 Further, as the exterior body of the all-solid-state secondary battery, a resin film or a sheet-like exterior body composed of a metal laminate film in which a resin film and a metal film (aluminum foil or the like) are laminated can also be used.

本発明の全固体二次電池は、従来から知られている二次電池と同様の用途に適用し得るが、有機電解液に代えて固体電解質層を有していることに加えて、高温環境下での充放電サイクル特性に優れていることから、高温に曝される可能性のある用途に好ましく使用することができる。 The all-solid-state secondary battery of the present invention can be applied to the same applications as the conventionally known secondary batteries, but in addition to having a solid electrolyte layer instead of the organic electrolytic solution, a high temperature environment Since it has excellent charge / discharge cycle characteristics underneath, it can be preferably used in applications that may be exposed to high temperatures.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on Examples. However, the following examples do not limit the present invention.

実施例1
<電極積層体の形成>
溶媒としてキシレン(「超脱水」グレード)を用い、平均粒子径20μmの黒鉛と、硫化物系固体電解質(LiPSCl)と、アクリル樹脂バインダとを、質量比で50:47:3の割合とし、固形分比が50%となるように混合し、シンキーミキサーで10分間撹拌して均一なスラリーを調製した。
Example 1
<Formation of electrode laminate>
Using xylene (“super dehydrated” grade) as the solvent, graphite with an average particle size of 20 μm, a sulfide-based solid electrolyte (Li 6 PS 5 Cl), and an acrylic resin binder were mixed in a mass ratio of 50:47: 3. The mixture was mixed so that the solid content ratio was 50%, and the mixture was stirred with a sinky mixer for 10 minutes to prepare a uniform slurry.

このスラリーを、基材(SUS集電箔)上にアプリケータを用いてギャップを200μmとして塗布し、120℃で真空乾燥を行った後、加圧成形することにより、前記基材上に負極活物質層を形成した。 This slurry is applied onto a base material (SUS current collector foil) using an applicator with a gap of 200 μm, vacuum dried at 120 ° C., and then pressure-molded to perform negative electrode activity on the base material. A material layer was formed.

前記の基材と負極活物質層との一体化物を10mmφのサイズに打ち抜いて加圧成形用の金型内に入れ、その負極活物質層上に0.050gの硫化物系固体電解質(LiPSCl)を投入して3トン/cmの条件で加圧成形を行い、負極活物質層上に固体電解質層を形成した。 The integrated product of the base material and the negative electrode active material layer is punched to a size of 10 mmφ and placed in a mold for pressure molding, and 0.050 g of a sulfide-based solid electrolyte (Li 6 ) is placed on the negative electrode active material layer. PS 5 Cl) was added and pressure molding was performed under the condition of 3 tons / cm 2 , and a solid electrolyte layer was formed on the negative electrode active material layer.

平均粒子径3μmのLiNi0.6Co0.2Mn0.2と、硫化物固体電解質(LiPSCl)と、導電助剤であるカーボンナノチューブ〔昭和電工社製「VGCF」(商品名)〕とを質量比で55:40:5の割合で混合して、正極活物質層形成用の混合粉体を得た。 LiNi 0.6 Co 0.2 Mn 0.2 O 2 with an average particle size of 3 μm, a sulfide solid electrolyte (Li 6 PS 5 Cl), and carbon nanotubes as a conductive auxiliary agent [“VGCF” manufactured by Showa Denko Co., Ltd. (Product name)] was mixed at a mass ratio of 55:40: 5 to obtain a mixed powder for forming a positive electrode active material layer.

前記加圧成形用の金型内の固体電解質層上に0.020gの前記混合粉体を投入して10トン/cmの条件で加圧成形を行うことで正極活物質層を形成した。その後、これを金型から取り出し、電極積層体を得た。得られた電極積層体において、各層の厚みは、負極活物質層:200μm、固体電解質層:300μm、正極活物質層:200μmであった。 A positive electrode active material layer was formed by putting 0.020 g of the mixed powder onto the solid electrolyte layer in the mold for pressure molding and performing pressure molding under the condition of 10 tons / cm 2 . Then, this was taken out from a mold, and an electrode laminated body was obtained. In the obtained electrode laminate, the thickness of each layer was a negative electrode active material layer: 200 μm, a solid electrolyte layer: 300 μm, and a positive electrode active material layer: 200 μm.

<電池の組み立て>
ステンレス鋼製の封口缶の内底面上に前記負極の集電体(SUS集電箔)が前記内底面に接するようにして電極積層体を重ね、さらに、Al集電箔を電極積層体の正極活物質層の上に配置した後、ステンレス鋼製の外装缶をかぶせて封止を行うことにより、電極積層体の上面および下面にそれぞれ負極および正極の集電箔を有する以外は図1と同様の構造のコイン形全固体二次電池を作製した。
<Battery assembly>
The electrode laminate is laminated on the inner bottom surface of the stainless steel sealing can so that the current collector (SUS current collector foil) of the negative electrode is in contact with the inner bottom surface, and the Al current collector foil is further placed on the positive electrode of the electrode laminate. After arranging on the active material layer, it is covered with an outer can made of stainless steel and sealed, so that the upper and lower surfaces of the electrode laminate have negative electrode and positive electrode current collecting foils, respectively, as in FIG. A coin-shaped all-solid-state secondary battery having the above structure was manufactured.

比較例1
<正極活物質層>
溶媒としてキシレン(「超脱水」グレード)を用い、表面にLiとNbとの非晶質複合酸化物が形成された平均粒子径3μmのLiNi0.6Co0.2Mn0.2と、硫化物固体電解質(LiPSCl)と、導電助剤であるカーボンナノチューブ(昭和電工社製「VGCF」(商品名)〕と、アクリル樹脂バインダとを、質量比で50:44:3:3の割合とし、固形分比が50%となるように前記溶媒と混合し、シンキーミキサーで10分間撹拌して均一なスラリーを調製した。このスラリーを、基材(Al集電箔)上にアプリケータを用いて塗布し、120℃で真空乾燥を行った後、加圧成形することにより、正極活物質層を形成した。
Comparative Example 1
<Positive electrode active material layer>
Using xylene (“ultra-dehydrated” grade) as the solvent, LiNi 0.6 Co 0.2 Mn 0.2 O 2 with an average particle size of 3 μm in which an amorphous composite oxide of Li and Nb was formed on the surface. , Sulfurized solid electrolyte (Li 6 PS 5 Cl), carbon nanotubes as conductive aid ("VGCF" (trade name) manufactured by Showa Denko Co., Ltd.], and acrylic resin binder in a mass ratio of 50:44: 3. The ratio was 3, and the mixture was mixed with the solvent so that the solid content ratio was 50%, and stirred with a sinky mixer for 10 minutes to prepare a uniform slurry. This slurry was placed on a substrate (Al current collector foil). Was coated with an applicator, vacuum-dried at 120 ° C., and then pressure-molded to form a positive electrode active material layer.

<固体電解質層>
溶媒としてキシレン(「超脱水」グレード)を用い、平均粒子径1μmの硫化物系固体電解質(LiPSCl)と、アクリル樹脂バインダと、分散剤とを、質量比で100:3:1の割合とし、かつ固形分比が40%となるように前記溶媒と混合し、シンキーミキサーで10分間攪拌して均一なスラリーを調製した。このスラリーを、剥離用の基材(SUS箔)上にアプリケータを用いて塗布し、120℃で真空乾燥を行った後、加圧成形することにより、固体電解質層を形成した。
<Solid electrolyte layer>
Using xylene (“ultra-dehydrated” grade) as the solvent, a sulfide-based solid electrolyte (Li 6 PS 5 Cl) with an average particle diameter of 1 μm, an acrylic resin binder, and a dispersant were mixed in a mass ratio of 100: 3: 1. The solvent was mixed with the above solvent so that the solid content ratio was 40%, and the mixture was stirred with a sinky mixer for 10 minutes to prepare a uniform slurry. This slurry was applied onto a base material (SUS foil) for peeling using an applicator, vacuum dried at 120 ° C., and then pressure-molded to form a solid electrolyte layer.

<電極積層体の組み立て>
実施例1と同様にして基材上に形成した負極活物質層、および前記の正極活物質層並びに固体電解質層を、いずれも10mmφの大きさに打抜き、固体電解質層を基材から剥離した。SUS製の上下ピンの間にAl集電箔/正極活物質層−固体電解質層−負極活物質層/SUS集電箔の順に重ね、SUS製の筒に入れて10トン/cmで加圧することにより、電極積層体を得た。
<Assembly of electrode laminate>
The negative electrode active material layer formed on the base material in the same manner as in Example 1, the positive electrode active material layer and the solid electrolyte layer were all punched to a size of 10 mmφ, and the solid electrolyte layer was peeled off from the base material. Al collector foil / positive electrode active material layer-solid electrolyte layer-negative electrode active material layer / SUS current collector foil are stacked in this order between the upper and lower pins made of SUS, placed in a cylinder made of SUS, and pressurized at 10 tons / cm 2. As a result, an electrode laminate was obtained.

<電池の組み立て>
前記の電極積層体を用いた以外は実施例1と同様にして、コイン形全固体二次電池を作製した。
<Battery assembly>
A coin-type all-solid-state secondary battery was produced in the same manner as in Example 1 except that the electrode laminate was used.

比較例2
平均粒子径20μmの黒鉛と、硫化物系固体電解質(LiPSCl)とを、質量比で50:50の割合で混合して混合粉体を得た。
Comparative Example 2
Graphite having an average particle diameter of 20 μm and a sulfide-based solid electrolyte (Li 6 PS 5 Cl) were mixed at a mass ratio of 50:50 to obtain a mixed powder.

加圧成形用の金型に基材(SUS集電箔)を10mφに打ち抜いて入れ、その上に0.02gの前記混合粉体を投入して10トン/cmの条件で加圧成形を行って、基材上に負極活物質層を形成した。 A base material (SUS current collector foil) is punched into a mold for pressure molding to 10 mφ, 0.02 g of the mixed powder is put therein, and pressure molding is performed under the condition of 10 tons / cm 2. This was done to form a negative electrode active material layer on the substrate.

この負極活物質層上に、実施例1と同様にして固体電解質層および正極活物質層を順に形成して電極積層体を得た。そして、この電極積層体を用いた以外は、実施例1と同様にしてコイン形全固体二次電池を作製した。 A solid electrolyte layer and a positive electrode active material layer were sequentially formed on the negative electrode active material layer in the same manner as in Example 1 to obtain an electrode laminate. Then, a coin-shaped all-solid-state secondary battery was produced in the same manner as in Example 1 except that this electrode laminate was used.

実施例および比較例のコイン形全固体二次電池について、以下の方法で高温環境下での充放電サイクル特性評価を行った。 The charge / discharge cycle characteristics of the coin-shaped all-solid-state secondary batteries of Examples and Comparative Examples were evaluated in a high temperature environment by the following method.

各電池について、100℃の環境下で、0.1Cの電流値で電圧が4.2Vになるまで定電流充電を行い、続いて4.2Vの電圧で電流値が0.05Cになるまで定電圧充電を行い、0.1Cの電流値で電圧が2.7Vになるまで定電流放電させて、1サイクル目の充放電を行った(初回充放電)。その後、定電流充電時の電流値を1Cに変更した以外は前記と同じ条件での定電流・定電圧充電と、電流値を1Cに変更した以外は前記と同じ条件での定電流放電とを1つのサイクルとする充放電サイクルを、初回充放電から数えて100サイクル実施して、2サイクル目の放電容量に対する100サイクル目の放電容量の割合(容量維持率)により、充放電サイクル特性を評価した。その結果を表1に示す。 Each battery is charged with a constant current at a current value of 0.1 C until the voltage reaches 4.2 V under an environment of 100 ° C., and then at a voltage of 4.2 V until the current value reaches 0.05 C. The voltage was charged, and a constant current was discharged until the voltage became 2.7 V at a current value of 0.1 C, and the first cycle was charged and discharged (first charge and discharge). After that, constant current / constant voltage charging under the same conditions as above except that the current value during constant current charging was changed to 1C, and constant current discharge under the same conditions as above except that the current value was changed to 1C. The charge / discharge cycle, which is one cycle, is executed 100 cycles counting from the first charge / discharge, and the charge / discharge cycle characteristics are evaluated by the ratio of the discharge capacity of the 100th cycle to the discharge capacity of the second cycle (capacity retention rate). did. The results are shown in Table 1.

Figure 2020161277
Figure 2020161277

正極活物質層に樹脂バインダを含有させず、負極活物質層に樹脂バインダを含有させた実施例1の電池は、容量維持率が高く充放電サイクル特性が優れていた。 The battery of Example 1 in which the positive electrode active material layer did not contain the resin binder and the negative electrode active material layer contained the resin binder had a high capacity retention rate and excellent charge / discharge cycle characteristics.

一方、正極活物質層と負極活物質層のどちらにも樹脂バインダを含有させた比較例1の電池は、充放電サイクル特性が大幅に低下する結果となった。また、正極活物質層と負極活物質層のどちらにも樹脂バインダを含有させなかった比較例2の電池は、電極積層体の形状維持性が劣っており、実施例1の電池よりも充放電サイクル特性が劣っていた。 On the other hand, the battery of Comparative Example 1 in which the resin binder was contained in both the positive electrode active material layer and the negative electrode active material layer resulted in a significant decrease in charge / discharge cycle characteristics. Further, the battery of Comparative Example 2 in which neither the positive electrode active material layer nor the negative electrode active material layer contained the resin binder was inferior in shape retention of the electrode laminate, and was charged and discharged as compared with the battery of Example 1. The cycle characteristics were inferior.

1 全固体二次電池
10 正極
20 負極
30 固体電解質層
40 外装缶
50 封口缶
60 ガスケット
1 All-solid-state secondary battery 10 Positive electrode 20 Negative electrode 30 Solid electrolyte layer 40 Exterior can 50 Sealed can 60 Gasket

Claims (4)

正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、前記正極活物質層と前記負極活物質層との間に介在する固体電解質層とを有する電極積層体を備えた全固体二次電池であって、
前記正極活物質層、前記負極活物質層および前記固体電解質層は、それぞれ硫化物系固体電解質を含有し、
前記負極活物質層は樹脂バインダを含有し、前記正極活物質層は実質的に樹脂バインダを含有しないことを特徴とする全固体二次電池。
An electrode laminate having a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, and a solid electrolyte layer interposed between the positive electrode active material layer and the negative electrode active material layer. It is an all-solid secondary battery equipped with
The positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer each contain a sulfide-based solid electrolyte.
An all-solid-state secondary battery, wherein the negative electrode active material layer contains a resin binder, and the positive electrode active material layer does not substantially contain a resin binder.
前記固体電解質層は、樹脂バインダを含有する請求項1に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 1, wherein the solid electrolyte layer contains a resin binder. 前記固体電解質層は、実質的に樹脂バインダを含有しない請求項1に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 1, wherein the solid electrolyte layer does not substantially contain a resin binder. 請求項1〜3のいずれかに記載の全固体二次電池の製造方法であって、
負極活物質と硫化物系固体電解質と樹脂バインダとを含有する負極活物質層形成用組成物を用いて負極活物質層を形成する工程と、
正極活物質と硫化物系固体電解質とを含有し、かつ樹脂バインダを含有しない正極活物質層形成用組成物を用いて正極活物質層を形成する工程とを有することを特徴とする全固体二次電池の製造方法。
The method for manufacturing an all-solid-state secondary battery according to any one of claims 1 to 3.
A step of forming a negative electrode active material layer using a composition for forming a negative electrode active material layer containing a negative electrode active material, a sulfide-based solid electrolyte, and a resin binder.
An all-solid-state battery characterized by having a step of forming a positive electrode active material layer using a composition for forming a positive electrode active material layer containing a positive electrode active material and a sulfide-based solid electrolyte and not containing a resin binder. How to manufacture the next battery.
JP2019058023A 2019-03-26 2019-03-26 All-solid-state secondary battery and method for manufacturing the same Pending JP2020161277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019058023A JP2020161277A (en) 2019-03-26 2019-03-26 All-solid-state secondary battery and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019058023A JP2020161277A (en) 2019-03-26 2019-03-26 All-solid-state secondary battery and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2020161277A true JP2020161277A (en) 2020-10-01

Family

ID=72639674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019058023A Pending JP2020161277A (en) 2019-03-26 2019-03-26 All-solid-state secondary battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2020161277A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115194A (en) * 2013-12-11 2015-06-22 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid-state secondary battery and method for manufacturing all-solid-state secondary battery
JP2016212990A (en) * 2015-04-30 2016-12-15 富士フイルム株式会社 All-solid type secondary battery, composition for electrode active material layer, electrode sheet for all-solid type secondary battery, and manufacturing methods for all-solid type secondary battery and electrode sheet for all-solid type secondary battery
WO2018021503A1 (en) * 2016-07-28 2018-02-01 富士フイルム株式会社 Solid electrolyte composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and production method for all-solid-state secondary battery sheet and all-solid-state secondary battery
WO2018043382A1 (en) * 2016-08-30 2018-03-08 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115194A (en) * 2013-12-11 2015-06-22 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid-state secondary battery and method for manufacturing all-solid-state secondary battery
JP2016212990A (en) * 2015-04-30 2016-12-15 富士フイルム株式会社 All-solid type secondary battery, composition for electrode active material layer, electrode sheet for all-solid type secondary battery, and manufacturing methods for all-solid type secondary battery and electrode sheet for all-solid type secondary battery
WO2018021503A1 (en) * 2016-07-28 2018-02-01 富士フイルム株式会社 Solid electrolyte composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and production method for all-solid-state secondary battery sheet and all-solid-state secondary battery
WO2018043382A1 (en) * 2016-08-30 2018-03-08 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery

Similar Documents

Publication Publication Date Title
US8076027B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery using same, and methods for manufacturing those
US9985314B2 (en) All-solid battery and method for manufacturing the same
US11121403B2 (en) Production method of electrode for all-solid-state batteries and production method of all-solid-state battery
JP6259704B2 (en) Method for producing electrode for all solid state battery and method for producing all solid state battery
JP7345263B2 (en) Manufacturing method for all-solid-state lithium secondary battery
JP7320575B2 (en) FLAT ALL-SOLID BATTERY AND MANUFACTURING METHOD THEREOF
JPH09120818A (en) Nonaqueous electrolyte secondary battery
JP7278090B2 (en) All-solid lithium secondary battery and manufacturing method thereof
CN113451586A (en) Electrode plate of secondary battery, secondary battery and preparation method of secondary battery
JP2023536628A (en) METHOD FOR MANUFACTURING LAMINATED SOLID ELECTROLYTE COMPONENT AND ELECTROCHEMICAL CELL USING THE SAME
JP2000164252A (en) Solid electrolyte battery
JP7246196B2 (en) All-solid lithium secondary battery
JP7267163B2 (en) Positive electrodes for all-solid-state batteries and all-solid-state batteries
JP2010015852A (en) Secondary battery
JP2021034328A (en) All-solid battery and system of all-solid battery
JP2021034326A (en) All-solid battery
JP7253941B2 (en) All-solid lithium secondary battery and manufacturing method thereof
JP6963866B2 (en) Negative electrode for all-solid-state battery and all-solid-state battery
JP2023112393A (en) All-solid battery
JP7313236B2 (en) Negative electrodes for all-solid-state batteries and all-solid-state batteries
JP2020161277A (en) All-solid-state secondary battery and method for manufacturing the same
JP2022158106A (en) All-solid-state secondary battery and production method thereof
JP2021144906A (en) Positive electrode for all-solid battery, and all-solid battery
JP2021064584A (en) Solid electrolyte battery
WO2014128844A1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230330